
SANDIA REPORT
SAND2024-xxxx
Printed March 2023

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Correct Compilation of Concurrent C
Code
John Bender

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
The CompCert compiler [5] represents a landmark effort in program verification as both a piece
of verified software and as a compiler for verified C programs. A key shortcoming of CompCert
however is that it does not support multithreaded programs. Prior work to add threads to CompCert
has either required major rewrites of parts of the proof [8] or only works for well synchronized pro-
grams [2]. The problem is that CompCert’s backward simulation derives from a forward simulation
via the determinism of the semantics of intermediate representation languages. This makes the
proofs in CompCert easier but also makes them incompatible with standard models of multithread-
ing which are non-deterministic. Here we propose an alternate formulation of CompCert’s proof
structure that parameterizes the existing single threaded semantics with nondeterministic behavior
generated at the multithreading level. While this is an old trick where program equivalence is
concerned, performing it in the context of CompCert is quite subtle. Our approach allows for
expressive concurrent semantics and does not require major proof rewrites but still results in a
global backward simulation for multithreaded programs.

3

This page intentionally left blank.

4

ACKNOWLEDGEMENT

Special thanks to all the project contributors Elanor Tang, Anjali Pal, Zayne Khouja, Denis Bueno
and Philip Johnson-Freyd.

5

This page intentionally left blank.

6

CONTENTS

0.1. Introduction . 13
0.1.1. Related Work . 13
0.1.2. Our Work . 14

0.2. Our Approach . 15
0.2.1. Exemplar Semantics . 15
0.2.2. Example Optimization . 16
0.2.3. Non-determinism . 17
0.2.4. Memory Mapping . 17

0.3. Metathory . 20
0.3.1. Indexed Forward to Backward Simulation . 21
0.3.2. Lifted Backward Simulation . 21
0.3.3. Equivalence with Standard Semanatics . 21
0.3.4. Composition of Predicated Preorder . 22
0.3.5. Reordering Reads and Writes . 23

0.4. Assumptions and Implications . 24
0.4.1. Operating Environment . 24
0.4.2. Predicated preorder . 24
0.4.3. Safety and Fairness . 25
0.4.4. Proof burden for pass verifiers . 26

References . 27

7

This page intentionally left blank.

8

LIST OF FIGURES

Figure 0-1. Backward Simulation . 13
Figure 0-2. Determinacy . 13
Figure 0-3. Exemplar Syntax . 15
Figure 0-4. Rules For Standard Semantics . 15
Figure 0-5. Prophetic Semantics . 16
Figure 0-6. Read-Write Reordering . 16
Figure 0-7. Backward Simulation with Memory State . 18
Figure 0-8. Indexed Backward Simulation . 18
Figure 0-9. Monotonicity & Scott Continuity . 18
Figure 0-10. Alternate Optimization . 24
Figure 0-11. Alternate Optimization . 25

9

This page intentionally left blank.

10

LIST OF TABLES

11

This page intentionally left blank.

12

𝑠2
𝑜−→ 𝑠′2 ∧ 𝑠1 ∼𝑖 𝑠2 =⇒

∃ 𝑖′ 𝑠′1, 𝑠
′
1∼𝑖′𝑠

′
2 ∧ (𝑠1

𝑜−→+ 𝑠′1 ∨ (𝑠1
𝑜−→∗ 𝑠′1 ∧ 𝑖′ ⪯ 𝑖))

Figure 0-1. Backward Simulation

𝑠
𝑜1−→ 𝑠1 ∧ 𝑠

𝑜2−→ 𝑠2 =⇒ 𝑜1 ∼ 𝑜2 ∧ (𝑜1 = 𝑜2 −→ 𝑠1 = 𝑠2)

Figure 0-2. Determinacy

0.1. Introduction

CompCert derives a backward simulation from a whole-compiler forward simulation constructed
from the forward simulations of each compiler pass. The backward simulation of CompCert
appears in Figure 0-1. The simulation relation is denoted with ∼ and indexed by an 𝑖 of an ordered
type. Supposing the target takes a step from state 𝑠2 there is a simulation if the resulting 𝑠′2 is
related to some 𝑠′1 such that the source takes one or more steps to 𝑠′1 or it remains in the same
state (i.e. 𝑠1 = 𝑠′1) and the index of the simulation relation decreases. The reason for deriving
a backward simulation from a forward simulation, where the source and target steps are swapped
in the definition of Figure 0-1), is that proving simulation in the forward direction is much easier.
Most notably the user undertaking the proof can perform induction on the source program directly
where as with a backward simulation the proof would have to work under the compiler as a function
applied to the source program.

To derive the backward simulation CompCert requires two things. First it requires that the observ-
able effects, called traces, of the source and the target are identical to preserve properties over traces
of observable behavior. To see this note that in Figure 0-1, there is only one 𝑜 for both the target
and source steps. Second, all target semantics must be determinate which intuitively means that,
given two steps in the target semantics for identical traces, starting in an identical state, both steps
must arrive at an identical state, see Figure 0-2. On first inspection, this second property would
seem to preclude the extension of CompCert’s semantics with threads, which are naturally modeled
with non-determinism, but we propose a semantics and proof structure that carefully balances both
semantic design requirements and requires a minimum of changes to existing proofs.

0.1.1. Related Work

Prior work has attempted to address the determinacy requirement in a variety of ways. The work
of [8] observed that single threaded C programs already accommodate nondeterminism from the
outside world via trace inputs (e.g. a system call to rand) and moved reads and writes to memory
into the observable behavior of threads. However, this conflicts directly with the trace identity

13

requirement and as a result backward simulation requires whole proof rewrites in some places.
Separately, the work of [2] assumes that programs have been proven to be well-synchronized and
thereby adopt a semantics that is equivalent to single threaded behavior but proving programs
to be well-synchronized is a time consuming extra step for the user. More generally, there is
extensive work on alternate forms of program equivalence that can account for nondeterminism in
the context of verified compilers like the contextual equivalence proposed by [4, 9]. Contextual
equivalence requires significant effort because the proof quantifies over all possible contexts, but
more importantly we wish to extend CompCert and thereby avoid the onerous task of redoing all
the proofs for a verified C compiler.

0.1.2. Our Work

In standard concurrent program semantics there are two sources of non-determinism. First there is
the choice of threadh that will step and second there are the memory events, like reads and writes,
generated by the threads. The first is derived at the level of multiple threads but the second comes
from the threads themselves wherein the thread makes non-deterministic choices about things like
the write a read will be paired with to provide a value. Our solution is to paramterize the single
threaded semantics with any non-determinism it needs. This is an old trick! But implementing it
in the context of CompCert while reusing the existing single threaded proofs is quite subtle. To
leverage this approach and preserve the existing single threaded proofs for existing compiler passes
we make the following contributions:

1. A prophetic multithreaded semantics that parameterizes threads with the necessary nonde-
terminism

2. A method for mapping between the target semantics memory and the source to guarantee a
backward simulation via a presheaf construction

3. Theorems for lifting a single threaded backward simulation to a multithreaded backward
simulation

4. Theorems for equivalence with a standard multithreaded semantics

5. Theorems for verification of a standard weak memory reordering pass using our method

The rest of this report proceeds as follows: in Section 2 we will give a full accounting of this approach
and its subtleties; in Section 3 we give the 6 key theorems that constute the main contribution of
metatheory in this workl; and in Section 3 we will cover the assumptions built into our approach
about things like the operating environment.

All the mathematics in this SAND report have been formalized in a machine checkable format
using the Rocq programming language and can be found here. References to the source code in
what follows are relative to that link.

14

https://cee-gitlab.sandia.gov/fm/LDRD/c5/concurrent-compcert/-/tree/b546f219c355bbd3e897e43a2ac146eb6b2843f2

Nat 𝑛 := 0 | 1 | . . .
Location 𝑙, 𝑥, 𝑦 := . . .

Identifier 𝑖, 𝑚𝑖𝑑𝑥, 𝑡𝑖𝑑 := . . .

Statement 𝑠 := read(𝑙) | write(𝑙, 𝑛) | println(𝑙)
| readln(𝑙) | fork

Thread 𝑡 := 𝜖 | 𝑠 : 𝑡
Thread State 𝑠 := 𝜖 | (𝑚𝑖𝑑𝑥, 𝑡) : 𝑡𝑠

Memory Event 𝑒 := R(𝑙, 𝑖) | W(𝑙, 𝑛) | Print(𝑙, 𝑖) | RdLn(𝑙, 𝑛) | Noop
Memory 𝑚 := 𝜖 | (𝑖, 𝑡𝑖𝑑, 𝑒) : 𝑚

Events ℎ := print(n) | rdln(n)

Figure 0-3. Exemplar Syntax

𝑡
𝑒−→ 𝑡′ valid(𝑚 + 𝑒)

step-standard-thread
(𝑡 : 𝑡𝑠, 𝑚) → (𝑡′ : 𝑡𝑠, 𝑚 + 𝑒)

(𝑡𝑠, 𝑚) → (𝑡𝑠′, 𝑚′)
step-standard-other

(𝑡 : 𝑡𝑠, 𝑚) → (𝑡 : 𝑡𝑠′, 𝑚′)

Figure 0-4. Rules For Standard Semantics

0.2. Our Approach

Here we will detail our approach. We begin by detailing the small language in which we have
conducted our proofs, a traditional concurrent semantics, our concurrent semantics and use a
writes-after-reads optimization as a running example. Then will describe our solution from the
initial problem of preserving determinism in the single threaded semantics with the ultimate goal
of developing a lifting theorem that allows us to reuse the single threaded proofs that exist in
CompCert now for multithreaded programs.

0.2.1. Exemplar Semantics

We denote memory locations with 𝑙, event ids with 𝑖, and memory values with 𝑛. In Figure 0-3
we denote multithreaded-program states as a pair of a list of threads 𝑡 : 𝑡𝑠 and a memory state 𝑚.
Threads are a list of triples of a memory index 𝑚𝑖𝑑𝑥, a thread id 𝑡𝑖𝑑, and a list of statements 𝑠 : 𝑡,
where 𝑚𝑖𝑑𝑥 denotes where next memory event will come from in the thread specific set of memory
for 𝑡𝑖𝑑. Memory is a list of event ids paired with memory events: reads R(𝑙, 𝑖), writes W(𝑙, 𝑛),
observable reads from memory Print(𝑙, 𝑖), observable reads into memory from the environment
RdLn(𝑙, 𝑛) and noops, Noop. In the case of reads and prints the 𝑖 denotes the identifier that the

15

𝑚 ⪯ 𝑚′
step-prophecy-prophesy

(𝑡𝑠, 𝑚) → (𝑡𝑠, 𝑚′)

𝑡 −→𝑚 𝑡′
step-prophecy-thread

(𝑡 : 𝑡𝑠, 𝑚) → (𝑡′ : 𝑡𝑠, 𝑚)

(𝑡𝑠, 𝑚) → (𝑡𝑠′, 𝑚′)
step-prophecy-other

(𝑡 : 𝑡𝑠, 𝑚) → (𝑡 : 𝑡𝑠′, 𝑚′)

Figure 0-5. Prophetic Semantics

Fixpoint reorder_writes_reads_pairs (m : list (mem_rec * mem_rec)) : list (mem_rec * mem_rec):=
match m with
| [] => []
| (ev1, ev2) :: m’ =>

(match ev1, ev2 with
| (i1, tid1, mem_ev_read l1 iw n1), (i2, tid2, mem_ev_write l2 n2) =>

if negb (ident_eq l1 l2) && (Nat.eq_dec tid1 tid2) (* different locations, same thread *)
then (ev2, ev1)
else (ev1, ev2)

| _, _ => (ev1, ev2)
end) :: reorder_writes_reads_pairs m’

end.

Figure 0-6. Read-Write Reordering

read takes its value from. We sometimes omit the related write for simplicity. Observable traces
are denoted with observable events, print(𝑛) and rdln(𝑛), in lists 𝑒𝑣. Thread state is a pair of the
memory index and list of statements.

A traditional multithreaded semantics has two rules as in Figure 0-4 step-standard-thread and step-
standard-other, allowing the first thread to step and generate a memory even to be validated by the
memory model and allowing some other thread to step, respectively.

Our prophetic multithreading semantics has three rules in Figure 0-5: extend the memory with
non-deterministic choices (step-prophecy-prophesy) according to the preorder which we will detail
in Section 0.2.4.1, allow the first thread to do some work with the current memory state (step-
prophecy-thread), and choosing another thread to do some work (step-prophecy-other).

The single threaded semantics not depicted resolves the event in the memory 𝑚 at 𝑚𝑖𝑑𝑥 as matching
the shape of the statement at the head of the thread.

The mechanization of these semantics can be found in the Coq development file
concurrency/Semantics.v.

0.2.2. Example Optimization

In Figure 0-6 we provide an example mapping from an optimized program where the writes in a
thread are reordered after reads in the same thread when their locations are different to the original

16

ordered program. That is, the mapping swaps the reads back before the write to match the source
program. We also define a predicate that will inform the preorder discussed later in Section 0.2.4.1
where we will see why reordering is a particularly important optimization where the preorder is
concerened.

0.2.3. Non-determinism

Traditionally thread steps in concurrent semantics take the form of the step-standard-thread rule in
Figure 0-4. The step-standard-thread rule chooses the thread 𝑡 at the head of the list to execute.
For a thread step, the thread semantics generates an event 𝑒𝑣 for an expression that operates on
memory. For example, a read of the variable 𝑥 with a value 1. Then the valid predicate ensures the
event is possible, in this case that there is some visible write to 𝑥 of the value 1. What’s important
is that the thread is making a non-deterministic guess about the possible values for the variable 𝑥.
In the context of CompCert this makes a traditional single threaded semantics unworkable.

In contrast to prior work, our solution is to invert this relationship and parameterize the single
threaded semantics with a memory state that contains the necessary non-deterministic choices
for the thread to operate deterministically. We denote this with −→𝑚 in step-prophecy-thread in
Figure 0-5. The idea is that the memory state should include enough non-deterministic choices for
upcoming memory operations so that we can recover a deterministic thread semantics.

Of course this is a small conceptual change and an old trick in program equivalence, but it has
important implications for simulation proofs in CompCert. To start, it introduces an existential
quantifier into the backward simulation. In Figure 0-7 we have now introduced the memory state
𝑚2 for the target and 𝑚1 for the source. Intuitively, for any memory state that works for a target
step we need to find at least one memory state for a step in the source.

0.2.4. Memory Mapping

Our solution to the problem of determinacy raises yet another issue as this new existential would
constitute a major update to every proof in CompCert because we would need to make a choice
for the newly quantified source memory state. To solve this we utilize a skolem function to make
the existential choice by defining a mapping from the target memory to the right source memory.
We use this mapping from target memories to construct an indexed backward simulation which is
indexed over a preordered type for memory states.

The idea is that for a compiler pass that manipulates memory, this mapping will transform the
memory of the target program so that it’s possible to find a step for the source program that matches
the target. For example, if a compiler pass were to reorder a write to the variable 𝑥 and a read to
the variable 𝑦 the attendant mapping would switch those operations back in the memory state for
the source step as in Figure 0-6.

However, since we will define such a mapping for every compiler pass that manipulates memory
operations within the program, and each of those will be composed into a global mapping to match
the final composition of every compiler pass, we won’t be able to inspect the contents of the final

17

𝑠2
𝑜−→𝑚2 𝑠

′
2 ∧ 𝑠1 ∼𝑖 𝑠2 =⇒

∃𝑚1 𝑖
′ 𝑠′1, 𝑠

′
1∼𝑖′𝑠

′
2 ∧ (𝑠1

𝑜−→𝑚1
+ 𝑠′1 ∨ (𝑠1

𝑜−→𝑚1
∗ 𝑠′1 ∧ 𝑖′ ≤ 𝑖))

Figure 0-7. Backward Simulation with Memory State

𝑠2
𝑜−→𝑚2 𝑠

′
2 ∧ 𝑠1 ∼𝑖 𝑠2 =⇒

∃ 𝑖′ 𝑠′1, 𝑠
′
1∼𝑖′𝑠

′
2 ∧ (𝑠1

𝑜−→ 𝑓 𝑚2
+ 𝑠′1 ∨ (𝑠1

𝑜−→ 𝑓 𝑚2
∗ 𝑠′1 ∧ 𝑖′ ≤ 𝑖))

Figure 0-8. Indexed Backward Simulation

monotonic𝑝1,𝑝2 𝑓 ≜ ∀𝑚1 𝑚2, 𝑚1 ≤𝑝1 𝑚2 =⇒ 𝑓 𝑚1 ≤𝑝2 𝑓 𝑚2

scottcont𝑝2 𝑓 ≜ ∀𝑚1 𝑚2, 𝑝2 𝑚1 =⇒ 𝑓 (𝑚1 + + 𝑚2) = 𝑓 𝑚1 + + 𝑓 𝑚2

Figure 0-9. Monotonicity & Scott Continuity

mapping. Thus, we must provide some general constraints for each such mapping to satisfy such
that we can construct a global multithreaded backward simulation using the composed mapping.
Similarly, those constraints must also compose so that global mapping will carry them forward.

The first such condition is that the mapping should be monotonic with respect to a preorder
over memories. The preorder will capture the idea that memories can be ordered by how many
"behaviors" as steps they permit and thus, if the mapping is monotonic it should also always result
in more behaviors which is exactly what we want when proving a backward simulation. Roughly,
the source memory we are mapping too should permit more steps in the source program.

The second is that the mapping should distribute over subsets ordered according to the definition
of the preorder making it Scott Continuous [7]. As the preorder defines the idea of extending a
memory with more behaviors the mapping should be able to operate on those extensions without
concern for the smaller memory contents.

0.2.4.1. Predicated Preorder

There are three critical parts of our metatheory that depend on the definition of the preorder:

First, it must be strong enough support the monotonicity of steps in the single threaded semantics.
This is what it means for a "larger" memory to support more behaviors.

Second, it must be weak enough that it admits a backward simulation from a standard concurrency
semantics to our prophetic semantics. That is, when a thread in a standard semantics generates

18

a memory event the preorder has to be weak enough to allow any such event to be added to the
prophetic memory in (step-prophecy) in Figure 0-5.

Third, it must be calibrated carefully to allow compiler pass verifiers to verify many optimizations
under the montonicity constraint. In this case it must both constrain the memories being ordered in
the antecedent and also allow the memory mapping freedom to change memory in the consequent.

A naive approach is to ordered memories is through direct extension:

𝑚1 ≤ 𝑚2 := ∃ 𝑒𝑥𝑡, 𝑚2 = 𝑚1++ 𝑒𝑥𝑡

This definition satisfies the first and second properties directly. In the first case, any step with 𝑚1
will also be possible with 𝑚2 because the same event that enabled the step with 𝑚1 is also present
in 𝑚2. In the second case, the prophetic semantics can always guess the same event that the thread
generated in the standard semantics by extending to including it and matching memories in the
program state.

But consider the reordering optimization in Figure 0-6 and the following candidate memories that
represent a counter example.

[R(𝑥)] ≤ [R(𝑥),W(𝑦, 𝑛)] =⇒ 𝑓 [R(𝑥)] ≤ 𝑓 [R(𝑥),W(𝑦, 𝑛)]
=⇒ [R(𝑥)] ≤ [W(𝑦, 𝑛),R(𝑥)]

Here we write 𝑓 for reorder_writes_reads_pairs. While it’s possible to find an extension
to order the unmodified memory state, the mapping will fail to preserve the ordering. The key
observation we can make here is that the memory mapping will produce different values based on
the amount of information in the target memory state. Thus we parameterize the preorder with a
predicate intended to ensure that it’s only possible to order memory states with enough information
for the mapping to operate.

𝑚1 ≤𝑝 𝑚2 ≜

{
𝑝 𝑚2 ∧ ∃𝑒𝑥𝑡, 𝑚2 = 𝑚1 + + 𝑒𝑥𝑡 if 𝑝 𝑚1

𝑚1 = 𝑚2 otherwise

Intuitively, we expect an extension when both of the memories match the predicate and otherwise
we are "stuck" with the existing memory.

For the counterexample above we define 𝑝 𝑚 ≜ even(length 𝑚) and this rules out any memories
that lack right shape to be considered in the preorder, in particular odd events sequences like
[W(𝑥, 𝑣)]. That is, when ordered guesses are made in the prophetic semantics they must contain
enough information for the mapping to operate properly. Concretely, when encountering a read the
next event must be available to see if it’s a write that should be reordered.

Note, not depicted here we additional require that if 𝑚1 is valid according to the memory model of
the semantics the 𝑚2 must also be valid. This ensures that the memory mapping always preserves
validity for any extension it makes and will be relevant in the proof of lifting for single threaded to
multithreaded backward simulation.

19

0.2.4.2. Montonicity and Predicated Preorder

Importantly though this new defintion breaks the natural form of composition for monotonicity
that comes with a uniform preorder. To address this we provide a new theorem of composition for
the monotonicity of mappings with the notable caveat that the second predicate must be consistent
among them. In practice the second predicate will simply be ‘True‘ as we expect at the top level
the ordering will require no constraints (since there is no further mapping to be done).

monotonic𝑝1, 𝑝3 𝑓 =⇒ monotonic𝑝2, 𝑝3 𝑔 =⇒ monotonic(𝜆𝑚,𝑝1 𝑚 ∧ 𝑝2 (𝑓 𝑚)), 𝑝3 (𝑔 ◦ 𝑓)

We give a proof in Section 0.3.4.

Further we must restrict the predicates such that they cannot rule out certain memory events and
thereby break the second critical constraint on the preorder by preventing the prophetic semantics
from guessing an event generated by the axiomatic semantics.

strict𝑝 ≜ 𝑝 ∅ = ⊤
safe𝑝 ≜ ∀𝑚 𝑒1 𝑒2, 𝑒1 ∈ 𝑚 =⇒ 𝑝 𝑚 = 𝑝 ((𝑚/{𝑒1}) ∪ {𝑒2})

Proposition 0.2.1.

∀ 𝑓 , safe 𝑝1 =⇒ safe 𝑝2 =⇒ safe (𝜆𝑚, 𝑝1 𝑚 ∧ 𝑝2 (𝑓 𝑚))

Here we require that it be possible to swap out any event in a given memory without changing
the outcome the predicate’s result. More generally we should show that such a safety property
composes along with monotonicty so that we will have a safe composed predicate when proving
the backward simulation from standard to prophetic semantics.

0.2.4.3. Scott Continuity

We additionally require that mappings be Scott continuous as in Figure 0-9 for the directed set of
memory extensions defined by the attendant predicated preorder. This is necessary to for proving
monotonicity because there we assume an ordered memory which means an extension and then
must show that the mapping will operate properly on both the original memory and its extension.

We give a proof of this property for the example reordering mapping in Section 0.3.5.1.

0.3. Metathory

Here we detail how our approach supports the key metatheorems outlined in the introduction. We
give each theorem and sketch of the proof along with a reference to their mechanized proofs.

20

0.3.1. Indexed Forward to Backward Simulation

Lemma 0.3.1. Given forward simulation indexed by a preorder type adn mapping we can derive a
backward simulation for the same type.

Proof. See the Coq development file common/Presheaf.v

0.3.2. Lifted Backward Simulation

Theorem 0.3.2. If for any state and step from that state in the single threaded target semantics we
have an indexed backward simulation to a single threaded step in the source semantics then we can
demonstrate a multithreaded backward simulation from the target to the source.

Proof Sketch. By assumption we have that there is a step in the multithreaded target program from
some memory state 𝑚2 (we elide discussion of non-memory state here for brevity) and we must
show that we can construct a step in the multithreaded source program from a state related by a
simulation relation.

We can construct the simulation relation using the single threaded simulation relation for each
thread and by assigning the memory state of the source to be 𝑓 𝑚2 for the memory mapping in the
indexed backward simulation.

We proceed by induction on the step of the multithreaded target semantics. In the case that a
thread is stepping we must show that the thread can step from a state in the simulation relation and
that the state it arrives at is also in the relation. First, we note that the target will have stepped to
some new memory state 𝑚′

2 and that 𝑚2 ⪯ 𝑚′
2 according to step-prophecy-prophesy in Figure 0-5.

Second, we must have that 𝑓 𝑚′
2 and 𝑚′

2 will be related memory states according to our simulation
relation. Then we use the indexed backward simulation to derive a single threaded step in the
source semantics from the memory state 𝑓 𝑚′

2. We must also show that 𝑓 𝑚′
2 is valid according

the given memory model which follows from the definition of the preorder and that fact that the
memory mapping must preserve the validity of its input.

In the case where the semantics chooses a thread not at the head of the list the inductive hypothesis
applies and we are done.

0.3.3. Equivalence with Standard Semanatics

0.3.3.1. Axiomatic semantics simulated by Prophetic Semantics

Theorem 0.3.3. For every step in the standard Axiomatic Semantics there is a matching step in the
Prophetic Semantics with matching states and observations.

21

Proof Sketch. First, note that the program is identical in both semantics. Second, note that we
define a simulation relation that requires all memory extensions in the prophetic memory sate
comport with statements in the program and that the prophetic memory state is an extension of the
axiomatic memory state.

We proceed by induction on the Axiomatic step.

In the case where a thread steps and generates an event, the Prophetic Semantics either has enough
events from previous guesses which must match the program according to the simulation relation
which means it can already take a thread step or it first guesses a memory extension that comports
with the predicate 𝑝 for the attendent preorder. Since 𝑝 is safe, the next event can match the next
statement in the thread and the step procees.

The case of an different thread stepping follows from the inductive hypothesis.

The mechanization can be found in the Coq development file concurrency/Simulation.v.

0.3.3.2. Prophetic Semantics simulated by Axiomatic Semantics

Theorem 0.3.4. If we assume that a series of guesses is bounded by a decreasing order, one guess
per thread without events to execute, then for every step in the Prophetic Semantics there is a
matching step in the Axiomatic Semantics with matching states and observations.

Proof Sketch. We proceed by induction on the Prophetic step.

In the case guessing a new memory state, we allow the Axiomatic Semantics to sit still with the
assumed decreasing order or the decreasing order is already at the least element and the guess step
is not allowed producing a contradiction.

In the case where a thread steps the Axiomatic Semantics can match according to the event that
was used to step the thread in the Prophetic Sematics and for which we know the memory will be
valid because the Prophetic Semantics requires all guesses to be valid.

The case of a different thread stepping follows from the inductive hypothesis.

The mechanization can be found in the Coq development file concurrency/Simulation.v.

0.3.4. Composition of Predicated Preorder

Theorem 0.3.5. Given two functions 𝑓 and 𝑔 which are monotone over the preorders parameterized
by the predicates 𝑝1 and 𝑝3 for 𝑓 and 𝑝2 and 𝑝3 for 𝑔 then 𝑔. 𝑓 is monotone with respect to the
predicates 𝑝1𝑚&&𝑝2(𝑓 𝑚) for any memory 𝑚.

22

Proof Sketch. We proceed by cases on each instance of monotonicity.

For any 𝑚1 and 𝑚2, 𝑚1 ≤𝑝1 𝑚2 implies 𝑓 𝑚1 ≤𝑝3 𝑓 𝑚2. For any 𝑚1 and 𝑚2, 𝑚1 ≤𝑝2 𝑚2 implies
𝑔 𝑚1 ≤𝑝3 𝑔 𝑚2. Assume 𝑚1 ≤∀𝑚,𝑝1&&𝑝2 (𝑓 𝑚) 𝑚2 Show 𝑔 (𝑓 𝑚1) ≤𝑝3 𝑔 (𝑓 𝑚2)

Note that each predicate is a boolean valued function and thefefore the outcome is decidable.

We proceed by cases on 𝑝1 𝑚1&&𝑝2 (𝑓 𝑚1). If it’s not true 𝑚1 = 𝑚2 so whether 𝑝3 𝑚1 is true or
not the ordering follows trivially.

If it is true then we have that 𝑝1 𝑚1 and 𝑝2 (𝑓 𝑚1), also 𝑝1 𝑚2 and 𝑝2 (𝑓 𝑚2) and that 𝑚2 is an
extension of 𝑚1.

From that we can derive that 𝑓 𝑚1 ≤𝑝3 𝑓 𝑚2 from the first assumption instantiated with 𝑚1 and
𝑚2. We can also derive that 𝑔 (𝑓 𝑚1) ≤𝑝3 𝑔 (𝑓 𝑚2) from the second assumption instantiated with
𝑓 𝑚1 and 𝑓 𝑚2 as required.

0.3.5. Reordering Reads and Writes

0.3.5.1. scott continuous

Theorem 0.3.6. If a memory 𝑚1 satisfies the ordering predicate even(length 𝑚1) then 𝑓 (𝑚1 +
+𝑚2) = 𝑓 𝑚1 + + 𝑓 𝑚2.

Proof Sketch. Follows from the fact that 𝑓 will only fail to deal with a tail element when the length
of 𝑚1 is odd.

0.3.5.2. Monotonicity

Theorem 0.3.7. The reordering optimization in Figure 0-6 is monotonic with respect to the order
predicated by even(length𝑚) and ⊤ and the validity predicate of the X86 memory model. That is,
for any memories 𝑚1 an 𝑚2 we have that if 𝑚1 ≤𝑒𝑣𝑒𝑛 𝑚2 then 𝑓 𝑚1 ≤⊤ 𝑓 𝑚2.

Proof Sketch. The validity requirement follows from the fact that X86 allows writes to be reordered
with reads to different locations in the same thread. Then if the even length predicate does not hold
for the assume ordering of memories the memories are equal and montonicity follows directly.

We must show that if the ordered memories are of even length then 𝑓 𝑚2 is an extension of 𝑓 𝑚1.
Since we know that 𝑚2 is an extension of 𝑚1 according to the antecedent its enough to show that
𝑓 (𝑚1++𝑒𝑥𝑡) is an extension of 𝑓 𝑚1, by scott continuity we know that 𝑓 (𝑚1++𝑒𝑥𝑡) = 𝑓 𝑚1++ 𝑓 𝑒𝑥𝑡
and thus 𝑓 𝑒𝑥𝑡 is the extension of 𝑓 𝑚1 as required.

The mechanization can be found in the Coq development file concurrency/Optimizations.v.

23

Fixpoint reorder_writes_reads_opt (ev_op : option mem_rec) (m : mem) : mem :=
match ev_op, m with
| None, ev1 :: m’ => reorder_writes_reads_opt (Some ev1) m’
| Some ev1, [] => [ev1]
| Some ev1, ev2 :: m’ =>

match ev1, ev2 with
| (i1, tid1, mem_ev_read l1 iw n1), (i2, tid2, mem_ev_write l2 n2) =>

if negb (ident_eq l1 l2) && (Nat.eq_dec tid1 tid2) (* different locations, same thread *)
then ev2 :: reorder_writes_reads_opt (Some ev1) m’
else ev1 :: reorder_writes_reads_opt (Some ev2) m’

| _, _ => ev1 :: reorder_writes_reads_opt (Some ev2) m’
end

| _, _ => m
end.

Figure 0-10. Alternate Optimization

0.4. Assumptions and Implications

0.4.1. Operating Environment

All concurrent semantics embed a few key assumptions about their operating environment. First,
that shared memory is only ever manipulated by threads within the same program. Second,
that forking a new thread acts as a hard syncrhonization between the forked thread and memory
operations from before the fork. Third, we also assume that there is a clear distinction between
thread local memory and shared memory, the former of which should not appear in the memory
representation to make compiler pass verification easier.

The first two assumptions are embedded in our semantics. In the first case because only the program
can manipulate the memory state. In the second case because a fork generates a whole new, thread
specific memory.

We have not yet expressed nor explored the need for local memory manipulations where our model
of concurrency is concerned. Memory operations on non-shared memory should not appear in the
memory representation and thus the attendant memory mapping should be the identity function.
However this requires some guarantee about the fact that memory, known to be local like the stack
frame for a function, will not be manipulated by other threads.

0.4.2. Predicated preorder

An important caveat for the predicated preorder in our approach is that each mapping, and thus
each optimization, must work within a finite window of memory events. To see why consider the
following modification to the the reordering mapping in Figure 0-10.

Consider the second, more natural recursive implementation, operating one event at a time. As
before we can’t find an extension to fix the reordering issue without a predicate but here it’s also
hard to say what the predicate should be to ensure the mapping has enough information to proceed
because it may reorder a read past every write in the entire memory without a boundary. For a

24

safe 𝑠 ≜ ∀𝑠′, 𝑠 ∅−→ 𝑠′ =⇒ final 𝑠′ ∨ (∃ 𝑡 𝑠′,
𝑡−→ 𝑠′′)

Figure 0-11. Alternate Optimization

program where with nothing but writes after a read this means we could never guess enough events
to make the mapping work properly and thus monotonicity would not be preserved.

[R(𝑥),W(𝑦, 𝑛)] ≤ [R(𝑥),W(𝑦, 𝑛),W(𝑧, 𝑛)] =⇒ 𝑓 [R(𝑥),W(𝑦, 𝑛)] ≤ [R(𝑥),W(𝑦, 𝑛),W(𝑧, 𝑛)]
=⇒ [W(𝑦, 𝑛),R(𝑥)] ≤ [W(𝑦, 𝑛),W(𝑧, 𝑛),R(𝑥)]

Again, the result is not ordered because there’s no viable extension. It seems clear that some finite
amount of consideration is required such that we can define a predicate that will allow finite guesses
and still preserve monotonicity.

0.4.3. Safety and Fairness

CompCert defines safe states for a semantics as in Figure 0-11. The key idea is that from any 𝑠𝑎 𝑓 𝑒

state, if we can take zero or more steps, the program is in a final state or another step can be taken.
This idea of safety is based on the important work of [10] where bad program states are represented
by a "stuck" state, ie where no step rules apply. In CompCert undefind behavior of C programs
is captured as a "stuck" states. Thus, if a program can always take a step from a safe state and
assuming determinism, it can never perform undefined behavior.

In the context of a multithreaded program the notion of "stuck" becomes much more subtle. For
example, it could be that a particular thread is stuck but there are other threads that can execute
indefinitely so the multi-threaded program is safe in the sense of not being stuck.

Most importanty, the backward simulation that CompCert proves for single threaded programs
which we use to prove the multithreaded backward simulation in Section 0.3.2 requires that we
demonstrate the state we’ve instantiated the single threaded backward simulation with is in fact safe.
Our approach is to derive this fact from the assumption of a multithreaded safe state. Intuitively, a
safe state in the multithreaded context should imply that the derived state for each thread is safe.

Initially, this requires at least some notion of fairness because, as described the existing definition of
safety in CompCert does not guarantee that any given thread can step even when they are enabled.
However there are additional issues which require addressing.

Most obviously, we give the semantics a finite memory to operate, without a new extension of the
memory with memory events for the thread from the concurrent semantics the thread may run out
of memory events to execute. Taken with the observation that the predicate which defines final
states does not have access to the memory state since it’s part of the semantics if the thread runs
out of memory events it might not be in a final state and no able to step.

25

0.4.4. Proof burden for pass verifiers

It’s important to note that this approach does obligate the compiler pass author to provide a mapping
that can determine source memory states from target memory states. We believe that this extra
side-obligation works out rather naturally within existing proofs and requires few modifications
even when a pass does modify memory.

Further we have not yet been able to test this approach with real compiler passes so direct exper-
imental evidence of how much modification of existing proofs is required is still unknown. We
expect that this should minimal, confined largely to the extension of intermediate semantics to
incorporate a memory parameter. Otherwise the mapping proofs should have no impact on the
compiler pass beyond where that mapping pertains to their correctness with respect to a given
memory model (e.g. if the optimization is not allowed).

26

REFERENCES

[1] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,
July 2014.

[2] Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W Appel. Verified com-
pilation for shared-memory c. In Programming Languages and Systems: 23rd European
Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings 23, pages 107–127. Springer, 2014.

[3] Soham Chakraborty and Viktor Vafeiadis. Grounding thin-air reads with event structures.
Proceedings of the ACM on Programming Languages, 3(POPL):1–28, 2019.

[4] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao
Chen, David Costanzo, and Tahina Ramananandro. Certified concurrent abstraction layers.
ACM SIGPLAN Notices, 53(4):646–661, 2018.

[5] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and
Christian Ferdinand. Compcert-a formally verified optimizing compiler. In ERTS 2016:
Embedded Real Time Software and Systems, 8th European Congress, 2016.

[6] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: X86-tso. In
Proceedings of the 22Nd International Conference on Theorem Proving in Higher Order
Logics, TPHOLs ’09, pages 391–407, Berlin, Heidelberg, 2009. Springer-Verlag.

[7] Scott Continuity. Scott continuity, 2024. [Online; accessed 1-October-2024].

[8] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter
Sewell. Compcerttso: A verified compiler for relaxed-memory concurrency. Journal of the
ACM (JACM), 60(3):1–50, 2013.

[9] Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek
Dreyer. Conditional contextual refinement. Proceedings of the ACM on Programming Lan-
guages, 7(POPL):1121–1151, 2023.

[10] Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

27

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Technical Library 1911 sanddocs@sandia.gov

Hardcopy—Internal

Number of
Copies Name Org. Mailstop

1 L. Martin, LDRD Office 1910 0359

28

This page intentionally left blank.

29

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	Related Work
	Our Work

	Our Approach
	Exemplar Semantics
	Example Optimization
	Non-determinism
	Memory Mapping

	Metathory
	Indexed Forward to Backward Simulation
	Lifted Backward Simulation
	Equivalence with Standard Semanatics
	Composition of Predicated Preorder
	Reordering Reads and Writes

	Assumptions and Implications
	Operating Environment
	Predicated preorder
	Safety and Fairness
	Proof burden for pass verifiers

	References

