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ABSTRACT
The Reynolds-averaged Navier–Stokes (RANS) equations remain a workhorse technology for sim-
ulating compressible fluid flows of practical interest. Due to model-form errors, however, RANS
models can yield erroneous predictions that preclude their use on mission-critical problems. This
report summarizes work performed from FY22-FY24 focused on improving RANS models for
hypersonic flows using data-driven modeling and scientific machine learning. In this work we:

1. Investigate the current capabilities of RANS models in Sandia’s parallel aerodynamics and
re-entry code (SPARC) for hypersonic flows with a focus on shock boundary layer interactions
(SBLIs),

2. Assess several established corrections that exist in the literature aimed at improving predic-
tions for SBLIs,

3. Develop improved models for the Reynolds stress tensor using tensor-basis neural networks,
4. Develop a neural-network-based variable turbulent Prandtl number model to reduce errors in

wall heating in SBLIs.
5. Begin future investigations including employing the LIFE framework to improve wall heating

predictions in SBLIs as well as the ensemble Kalman filter.
We find that current RANS models in SPARC are deficient for complex SBLI flows. In particular,
no current model jointly predicts wall heat flux, wall shear stress, and wall pressure with reasonable
accuracy. Existing corrections help, but do not alleviate this issue altogether. The development of
improved models for the Reynolds stress tensor via tensor-basis neural networks results in more
predictive RANS models across a suite of low-speed and high-speed cases. For hypersonic boundary
layers, the inclusion of the wall-normal Reynolds stress via TBNNs has an appreciable impact on
the wall-normal momentum balance and wall quantities. However, we find that improvements to
the Reynolds stress tensor do not address the over-prediction in wall heat flux in SBLIs. We find that
a neural-network-based variable turbulent Prandtl number model systematically and substantially
improves wall heating predictions for a range of SBLI cases.
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1. INTRODUCTION

Simulating hypersonic turbulent flows is of growing interest to the aerospace community. Despite
the growth in computing power over the past decades, scale-resolving modeling approaches such as
Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) remain impractical for most
geometries in realistic operating environments. As a result, simulation approaches based on the
Reynolds-averaged Navier–Stokes (RANS) equations remain the workhorse technology. RANS-
based methods solve the averaged equations of motion, which greatly reduces the computational
cost. The averaging process, however, results in unclosed terms that must be modeled. Developing
accurate models is difficult, and as a result RANS models can yield erroneous predictions that are
a dominant source of uncertainty in analyses of interest.

RANS models have several notable deficiencies when applied to hypersonic flows. These deficien-
cies include:

• Two-equations RANS models drastically over-predict wall heat flux around the point of
reattachment for shock boundary layer interactions and compression ramps [100, 13]. This
over-prediction appears to worsen as the Reynolds number increases.

• RANS models tend to over-predict skin friction and heat flux for high Reynolds number,
cold-wall high-speed boundary layers [1, 15, 74].

• RANS models tend to under-predict skin friction and heat flux for low Reynolds number,
cold-wall high-speed boundary layers [4].

• RANS models struggle to predict the size of the separation region in shock boundary layer in-
teractions and compression ramps. In general, models underpredict the size of the separation
region if stress limiters or other corrections are not employed [100].

• Standard models do not faithfully reproduce the law of the wall when there are significant
variations in density [100]. This issue is more prominent for the 𝑘−𝜖 model than 𝑘−𝜔-based
models and the Spalart–Allmaras model.

To make the above deficiencies concrete, we show results for RANS simulations of run 46 of the
HIFiRE ground test studies [93]. This configuration comprises a Mach 7 flow over a cone-slice-
ramp geometry. Figure 1-1 shows the geometry and predictions for wall quantities-of-interest (QoIs)
for three baseline RANS models implemented in Sandia’s parallel aerodynamics and re-entry code
(SPARC): the 𝑘−𝜖 model, the SSTV-2003 model, and the Spalart–Allmaras model1. We observe

1The below results are for model implementations that properly account for turbulent kinetic energy; see Chapter 2.

17



(a) HIFiRE ground test geometry. The figure is
from Ref. [93].
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(b) Wall QoIs from various RANS models.

Figure 1-1. Performance of RANS models on run 46 of the HIFiRE test geometry.

that all models fail to capture the size of the separation bubble and fail to accurately predict the rise
in heat flux at the flare. The Spalart–Allmaras model is the only model to give reasonable heat flux
predictions, but it does so partially due to mis-predicting flow separation. Both the SSTV-2003
and 𝑘−𝜖 model dramatically over-predict wall heat flux. We additionally observe that all models
over-predict wall heat flux leading up to the expansion, and the slope at which the wall heat flux is
decreasing appears to under-predicted. This result is typical for flow these types of flows.

Many works have sought to improve RANS models for hypersonic flows. We provide a brief review
here, and note that a more detailed review of the relevant literature will be provided in subsequent
chapters. Catris and Aupoix [9] modified the diffusion terms in RANS models to account for density
variations to recover the log-law in equilibrium boundary layers. Danis and Durbin [15] proposed a
compressibility correction that takes Mach number and wall-cooling into account. The correction
resulted in improved predictions for both wall profiles (skin friction, heat transfer) and wall-normal
profiles (velocity, temperature). In a similar spirit, Barone et al. [4] proposed several compressibility
corrections for the SA model including a transformation of the eddy viscosity, a new near-wall
damping function, and a normal stress correction. These corrections showed improvements for
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high-Reynolds number boundary layers. Rumsey [74] performs a detailed investigation of a variety
of compressibility corrections for the 𝑘−𝜔 model for hypersonic boundary layers, and concludes
that there is a need for an improved understanding of turbulence models applied to hypersonic
boundary layers.

Various corrections have been proposed for other deficiencies, such as performance in shock
boundary layer interactions (SBLIs) and wall heating predictions. Coakley, Huang, and others [12,
13] proposed various compressibility corrections to improve model performance in SBLIs. These
corrections include rapid compression corrections that help control the size of the separation region
and length-scale limiters that reduce over-prediction in peak heat flux. Xiao et al. [103] and Ott et
al. [59] have examined the development of variable turbulent Prandtl number models to improve
heat transfer predictions. These models incur a higher computational cost due to the need to solve
additional transport equations, and require further development for high-speed SBLIs [59]. Another
approach has been proposed by Roy and Sinha [70, 69], who developed a variable turbulent Prandtl
number model based on the linearized Rankine Hugoniot conditions applied to shock turbulence
interaction. The model results in improved wall heating and has been demonstrated on a variety
of hypersonic cases, but at the time of this writing, has not gained widespread use. In contrast
to non-local or transport-equation-based models, several groups have pursued the development
of algebraic turbulent heat flux and variable Prandtl number models [90, 6, 45, 99], several of
which are targeted at hypersonic flows [90, 6]. These models are often based on approximations
to the transport equations for the turbulent heat flux, but have yet to show systematic success on
hypersonic SBLIs. We emphasize that many other works exist.

While the aforementioned approaches have made select improvements, state-of-the-art one and
two-equation RANS models continue to struggle to provide reasonable predictions for wall shear
stress, wall heat flux, and wall pressure in hypersonic SBLIs. Most models additionally continue to
struggle to accurately predict wall QoIs for cold-wall, flat plate boundary layers. Scientific machine
learning (SciML) approaches provide an alternative path to improving RANS models. Rather
than relying on the traditional approach that combines phenomenological, scaling, and theoretical
arguments, these techniques rely on high-fidelity data from simulation and/or experiment to learn a
data-driven model. Numerous ML efforts have been undertaken to this end [17, 46, 95, 102, 62, 84,
80, 82, 31, 87, 97, 96, 98, 107]. We attempt to provide a brief (but necessarily non-comprehensive)
review here. First, various researchers have leveraged direct numerical simulation (DNS) and/or
experimental data to both calibrate and develop novel calibration procedures for RANS model
parameters [58, 10, 18, 11, 67]. These techniques involve updating scalar parameters in turbulence
closures such that the model output more faithfully matches experimental or high-fidelity simulation
data. More ambitiously, Duraisamy et al. developed a field inversion and machine learning (FIML)
framework that involves learning field corrections to turbulence models [62, 84, 80, 82, 31, 87].
The approach employs adjoint solvers and machine learning (ML) to optimize and learn a random
corrective field applied, e.g., to turbulent production. FIML is a higher-capacity learning approach
than parameter calibration as it more aggressively changes a turbulence model due to learning field
corrections. FIML and its extensions have been applied successfully in various settings including
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separated flows over airfoils [80] and transition [87].

Both parameter calibration and FIML are goal-oriented calibration methods in that they tune a term
of interest (parameters in the former case and a full random field in the latter case) such that the
calibrated RANS model associates with a reduced error on a specified quantity-of-interest (QoI)
functional. Another body of work directly targets the intrinsic deficiencies of RANS models by
modeling, e.g., the Reynolds stress directly. These approaches attempt to build better constitutive
relations for the Reynolds stress via data-driven techniques with the idea that improved Reynolds
stress predictions will propagate through to improved QoI predictions. Along the same time as the
initial developments of FIML, Ling et al. pioneered tensor-basis neural networks (TBNNs) [46].
TBNNs attempt to learn the anisotropic component of the Reynolds stress tensor via a basis expan-
sion of invariant tensors employed by Pope [65] in his generalized eddy viscosity hypothesis; neural
networks are employed to learn the coefficients of this basis as a function of field invariants (e.g.,
trace of the strain rate squared). TBNNs have been shown to be capable of improved predictions
of separated flows, secondary flows in ducts, and flows with curvature. Recent work has extended
TBNNs to scalar flux modeling [51, 50]. Also around the same time as the development of both
FIML and TBNNs, Xiao et al. developed a similar data-driven strategy, termed physics-informed
machine learning (PIML), for improving Reynolds stress predictions [102]. Their approach differs
slightly from Ling et al. in that they (1) model terms pertaining to an eigen-decomposition of
the Reynolds stress tensor, (2) they model a discrepancy in the turbulent kinetic energy, and (3)
they attempt to model only the discrepancy in the Reynolds stress (e.g., the difference between a
standard RANS model prediction and the truth value), opposed to the entire Reynolds stress. This
approach has additionally been shown to provide improved predictions on duct and separated flows.
Recent work by Peters et al. has proposed a similar approach in where they model discrepancies to
the Reynolds stress tensor in the mean strain-rate tensor eigenframe [63]. Yet another body of work
has sought to develop interpretable ML models. For instance, Weatheritt, Sandberg, and colleagues
have developed a framework based on evolutionary algorithms to learn explicit expressions for the
anisotropy tensor (discrepancy) [97, 96, 98, 107].

The present work aims to improve the improve the predictive performance of turbulence models
for hypersonic flows via data-driven approaches. We target two deficiencies in RANS models: the
Reynolds stress tensor and the turbulent heat flux. In our approach, we first augment an existing
model for the Reynolds stress with a data-driven discrepancy term constructed using tensor-basis
neural networks. This formulation has the advantage that it builds upon an existing model form and
thus corrects, rather than replaces, existing models. Further, the use of TBNNs makes the data-
driven correction Galilean invariant and interpretable. Second, we develop a variable turbulent
Prandtl number model using field inversion and machine learning to improve predictions for wall
heating in SBLIs. The novel contributions of this work include:

• The development, assessment, and interpretation of a TBNN trained on a database including
numerous hypersonic flow configurations,
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• The development and assessment of a variable turbulent Prandtl number model that reduces
wall heating errors in hypersonic SBLIs,

• The development of SciML-based approaches to improve the robustness of ML models via
a calibrated deep ensemble approach and Lipschitz continuous neural networks.

• Preliminary investigations of the Ensemble Kalman filter and LIFE framework for training
more consistent variable turbulent Prandtl number models.

The structure of this report will be as follows. In Chapter 2, we outline the RANS equations,
several one and two-equation models that are currently available in SPARC, and several established
corrections for hypersonic flows. Next, in Chapter 3 we perform a validation study of Sandia’s
implemented turbulence models on a suite of hypersonic flow cases. Chapter 4 outlines our data-
driven approach for improving the Reynolds stress tensor and presents results across a suite of
low-speed and high-speed test cases. Next, Chapter 5 outlines our approach for learning a variable
turbulent Prandtl number model to improve wall heating predictions in hypersonic SBLIs, while
Chapter 6 outlines future directions. Conclusions are provided in Chapter 7.
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2. GOVERNING EQUATIONS

We consider solutions to the Favre-averaged Navier–Stokes equations as given by

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢̃ 𝑗

)
= 0,

𝜕

𝜕𝑡
(𝜌𝑢̃𝑖) +

𝜕

𝜕𝑥 𝑗

(
𝑢̃ 𝑗 𝜌𝑢̃𝑖

)
= − 𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗
+
𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
,

𝜕

𝜕𝑡

(
𝜌𝐸̃

)
+ 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢̃ 𝑗

(
𝐸̃ + 𝑝

𝜌

))
=

𝜕

𝜕𝑥 𝑗

(
𝜎𝑖 𝑗 𝑢̃𝑖 + 𝜎𝑖 𝑗𝑢𝑖′′

)
− 𝜕

𝜕𝑥 𝑗

(
−
𝑐𝑝 𝜇̃

Pr
𝜕𝑇

𝜕𝑥 𝑗
+ 𝑐𝑝𝜌𝑢 𝑗 ′′𝑇 ′′ − 𝑢̃𝑖𝜏𝑖 𝑗 +

1
2
𝜌𝑢𝑖
′′𝑢𝑖′′𝑢 𝑗 ′′

)
,

where 𝜌 is the averaged fluid density, 𝑢̃𝑖 is the Favre-averaged velocity, 𝑝 is the Reynolds-averaged
pressure, 𝜏𝑖 𝑗 ≡ −𝜌𝑢′′𝑖 𝑢′′𝑗 is the Reynolds stress, 𝜎𝑖 𝑗 = 2𝜇̃

(
𝑆𝑖 𝑗 − 1

3
𝜕𝑢̃𝑘
𝜕𝑥𝑘
𝛿𝑖 𝑗

)
is the viscous stress tensor,

𝑆𝑖 𝑗 =
1
2

(
𝜕𝑢̃𝑖
𝜕𝑥 𝑗
+ 𝜕𝑢̃ 𝑗
𝜕𝑥𝑖

)
is the mean rate-of-strain tensor,𝑇 is the temperature, 𝜇̃ ≡ 𝜇̃(𝑇) is the molecular

viscosity modeled with Sutherland’s law, 𝐸̃ = 𝑒 + 1
2 𝑢̃𝑖𝑢̃𝑖 + 𝑘̃ is the Favre-averaged energy, 𝑒 = 𝑐𝑣𝑇

is the specific internal energy with 𝑐𝑣 being the specific-heat coefficient at constant volume, and
𝑘̃ is the turbulent kinetic energy (TKE). A term denoted by 𝑣′′ denotes a fluctuation about the
Favre-average of 𝑣, while we use 𝑣̃ to denote the Favre-averaging process applied to 𝑣. Similarly, a
term denoted by 𝑣 denotes the Reynolds average of 𝑣. We assume a calorically perfect gas with an
equation of state

𝑝 = (𝛾 − 1)
[
𝜌𝐸̃ − 1

2
𝜌

(
𝑢̃2

1 + 𝑢̃
2
2 + 𝑢̃

2
3

)
− 𝜌𝑘̃

]
.

Closing the governing equations for mass, momentum, and energy requires modeling the Reynolds
stress, turbulent heat flux, molecular diffusion, and turbulent transport. The standard assumptions
for these terms are:

• Molecular diffusion and turbulent transport are modeled as

𝜎𝑖 𝑗𝑢
′′
𝑖
− 1

2
𝜌𝑢′′

𝑖
𝑢′′
𝑖
𝑢′′
𝑗
≈

(
𝜇̃ + 𝜇𝑡

𝜎𝑘

)
𝜕𝑘̃

𝜕𝑥 𝑗
,

where 𝜇𝑡 is the turbulent viscosity and 𝜎𝑘 is a constant defined by a turbulence model.
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• The Reynolds stress is modeled with a linear eddy viscosity model,

𝜏𝑖 𝑗 ≈ 2𝜇𝑡
(
𝑆𝑖 𝑗 −

1
3
𝜕𝑢̃𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
− 2

3
𝜌𝑘̃𝛿𝑖 𝑗 . (2.0.1)

• The turbulent heat flux is modeled using a gradient-diffusion hypothesis

𝑐𝑝𝜌𝑢 𝑗
′′𝑇 ′′ ≈ −

𝑐𝑝𝜇𝑡

Pr𝑡
𝜕𝑇

𝜕𝑥 𝑗
, (2.0.2)

where Pr𝑡 = 0.9 is the turbulent Prandtl number.

The above assumptions require the turbulent eddy viscosity, 𝜇𝑡 , and turbulent kinetic energy for
closure.

2.1. RANS closure models

This section outlines the Spalart–Allmaras model, the SST-V 2003 model, and a 𝑘−𝜖 model, which
are the closure models currently implemented in Sandia’s parallel aerodynamics and re-entry code
(SPARC).

2.1.1. Spalart–Allmaras model

The Spalart–Allmaras (SA) model is a one-equation model that evolves a working variable for
the turbulent eddy viscosity. SPARC supports the SA-neg variant. We refer the reader to the SA
page on the NASA turbulence modeling resource [73] (NASA TMR) for the full definition of the
governing equations under the “SA-neg” section.

2.1.2. SST-V 2003

The Menter Shear Stress transport (SST) family of models are 𝑘−𝜔-based models that are designed
to behave as a 𝑘−𝜔 model in the inner region of the boundary layer and to switch to a 𝑘−𝜖 model
outside of the boundary layer. There are a variety of SST model variants, and SPARC supports
the SSTV-2003 variant of the Menter SST family of models. The reader is referred directly to the
SSTV-2003 section of the SST page on the NASA turbulence modeling resource (TMR) [73] for
the definition of the governing equations. We highlight two distinguishing features of the SST-V
2003 variant which have a significant impact for hypersonic SBLIs. First, the “2003” family of
SST models employs the strain invariant opposed to the vorticity invariant in the definition of the
eddy viscosity. In an SBLI, the strain invariant will be larger than the vorticity invariant. This
in turn decreases the magnitude of the eddy viscosity and enhances separation. Second, the “V”
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family employs the vorticity invariant for computing turbulent production. This modeling choice
additionally acts to decrease turbulence and enhance separation. We will observe that both of these
modeling choices result in poor predictions for hypersonic SBLI flows.

At the time of this writing, SPARC makes several assumptions in the implementation of the
SSTV-2003 model:

1. Turbulent kinetic energy is not included in the definition of the total energy, i.e., SPARC uses
𝐸̃ = 𝑒 + 1

2 𝑢̃𝑖𝑢̃𝑖 instead of 𝐸̃ = 𝑒 + 1
2 𝑢̃𝑖𝑢̃𝑖 + 𝑘̃ .

2. The turbulent kinetic energy is neglected in the definition of the Reynolds stress as appearing
in the energy flux, i.e., the 2

3𝜌𝑘̃𝛿𝑖 𝑗 term in Eq. (2.0.1) is neglected for the Reynolds stress
tensor appearing in the viscous flux of the energy equation.

Due to poor predictions resulting from the SSTV-2003 variant, we will additionally consider the
“standard” SST variant as outlined in the NASA TMR [73]1. This model employs the vorticity
invariant in the definition of eddy viscosity and computes the full production term.

2.1.3. 𝑘−𝜖

Lastly, we consider the 𝑘−𝜖 model currently supported by SPARC. The model is not a standard
formulation, and as such we give its full definition here. The model is given by

𝜕𝜌𝑘̃

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝜌𝑢̃𝑖 𝑘̃

)
=

𝜕

𝜕𝑥𝑖

[(
𝜇̃ + 𝜇𝑡

𝜎𝑘

)
𝜕𝑘̃

𝜕𝑥𝑖

]
+ 𝑃𝑘 − 𝜌𝜖,

𝜕𝜌𝜖

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
(𝜌𝑢̃𝑖𝜖) =

𝜕

𝜕𝑥𝑖

[(
𝜇 + 𝜇𝑡

𝜎𝜖

)
𝜕𝜖

𝜕𝑥𝑖

]
+ 𝜖
𝑘̃
(𝐶𝜖1 𝑓1𝑃𝑘 − 𝐶𝜖2 𝑓2𝜌𝜖) + 𝑆𝜖 ,

𝜇𝑡 = 𝑓𝜇𝐶𝜇
𝑘2

𝜖
.

(2.1.1)

The low-Reynolds number functions and model constants are

𝑓𝜇 =

(
1 + 4Re−3/4

𝑡

)
tanh

(
Re𝑘
125

)
, 𝑓1 = 1.0 − exp

[
−

(
Re𝑡
40

)2
]
+ 40Re𝑘

Re2
𝑘
+ 10000

, 𝑓2 = 1 − 2
9

exp
[
− (Re𝑡)2

]
,

Re𝑡 =
𝜌𝑘̃2

𝜇𝜖
, Re𝑘 =

𝜌
√︁
𝑘̃ 𝑦

𝜇
, 𝑆𝜖 =

14
9
𝐶𝜖2𝜇𝜖

𝑘̃


3∑︁
𝑖=1

(
𝜕
√︁
𝑘̃

𝜕𝑥𝑖

)2 ,
𝐶𝜇 = 0.09, 𝜎𝑘 = 1.0, 𝜎𝜖 = 1.3, 𝐶𝜖1 = 1.43, 𝐶𝜖2 = 1.92.

We note that TKE is properly accounted for in all 𝑘−𝜖 results presented in this report.
1This model was added in a research branch and is not supported by SPARC at the time of this writing
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2.2. Established corrections for hypersonic flows

A variety of corrections have been proposed for high-speed flows. These include compressibility
corrections to, e.g., account for dilatational effects, length-scale limiting to address over-predictions
in wall heat flux in SBLIs, and stress limiters and rapid compression corrections to improve the
prediction of the separation region in SBLIs. We outline several such corrections here.

2.2.1. Catris and Aupoix correction

Two-equation RANS models have been shown to poorly predict the logarithmic region of the
boundary layer in variable density boundary layers. Analysis in Wilcox [100], for instance, shows
that both the 𝑘−𝜔 and 𝑘−𝜖 models result in a velocity profile that follows the law of the wall, but with
a “constant” that depends on the wall-density ratio. For large wall-density ratios, which happens
in all but strongly cooled walls, both the 𝑘−𝜖 and 𝑘−𝜔 model will over-predict the “constant” in
the law of the wall and will have a correspondingly lower wall shear stress. This issue is more
pronounced for 𝑘−𝜖-based models than 𝑘−𝜔 models.

The Catris and Aupoix correction [9] (CA-correction) aims to address this deficiency by correcting
the diffusion terms to recover log-law behavior of the boundary layer velocity profile. The correction
is applicable to a variety of RANS models and can be implemented either by changing the working
variables or adding additional source terms. For the 𝑘−𝜖 model, the correction results in the
governing equations

𝜕𝜌𝑘̃

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝜌𝑢̃𝑖 𝑘̃

)
=

𝜕

𝜕𝑥𝑖

[
1
𝜌̃

(
𝜇̃ + 𝜇𝑡

𝜎𝑘

)
𝜕𝜌̃𝑘̃

𝜕𝑥𝑖

]
+ 𝑃𝑘 − 𝜌𝜖,

𝜕𝜌𝜖

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
(𝜌𝑢̃𝑖𝜖) =

𝜕

𝜕𝑥𝑖

[(
𝜇 + 𝜇𝑡

𝜎𝜖

)
𝜕𝜖

𝜕𝑥𝑖

]
+ 𝜖
𝑘̃
(𝐶𝜖1 𝑓1𝑃𝑘 − 𝐶𝜖2 𝑓2𝜌𝜖) + 𝑆𝜖 + 𝜌𝜖

(
𝜕𝑢̃𝑖

𝜕𝑥𝑖

)
+

3
2
𝜕

𝜕𝑥𝑖

1
𝜌̃

(
𝜖

(
𝜇 + 𝜇𝑡

𝜎𝜖

)
𝜕𝜌̃

𝜕𝑥𝑖

)
+ 1
𝜌̃

(
𝜇 + 𝜇𝑡

𝜌̃

)
𝜕𝜌̃

𝜕𝑥𝑖

(
3
2
𝜖

𝜌̃

𝜕 𝜌̃

𝜕𝑥𝑖
+ 𝜕𝜖
𝜕𝑥𝑖

)
,

𝜇𝑡 = 𝑓𝜇𝐶𝜇
𝑘2

𝜖
.

(2.2.1)

It is worth highlighting that, for the 𝑘−𝜖 model, the Catris and Aupoix correction adds a “rapid
compression” type term (which will be discussed in a subsequent section) to the 𝜖 equation,
𝜌𝜖

(
𝜕𝑢̃𝑖
𝜕𝑥𝑖

)
, whose sign is opposite of that recommended by the rapid compression corrections. The

CA-correction will, in general, have the net effect of decreasing the size of the separation region in
SBLIs.
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2.2.2. Length-scale limiting

Two-equation models are known to massively over-predict wall heat flux at the point of separation
in hypersonic SBLIs [100]. Various approaches have been proposed to address this, including
algebraic heat flux models and variable turbulent Prandtl number models [90, 6, 45, 99]. One
straightforward correction that has gained some use is to limit the turbulent length-scale. Coakley,
Huang, and co-authors[13, 12] established that the turbulent length-scale becomes much larger
than a distance-to-wall-based length-scale in SBLI flows. To address this deficiency, they propose
limiting the length-scale used in two-equation models as

ℓrans = min
(
𝐶ℓ𝑑,

𝑘3/2

𝜖

)
. (2.2.2)

The constant 𝐶ℓ = 2.5 is based on the relation 𝜅𝐶−3/4
𝜇 ≈ 2.5, where 𝜅 = 0.41. Practically, the

length-scale limiter is implemented by clipping the secondary variable in a two-equation model
(e.g., 𝜖). Noting that, ignoring low-Reynolds number functions, the turbulent eddy viscosity is
given by

𝜇𝑡 = 𝐶𝜇 𝜌̃
√
𝑘ℓ,

limiting the turbulent length-scale reduces the turbulent eddy viscosity, which in turn reduces the
magnitude of both momentum transfer and heat transfer.

2.2.3. Rapid compression corrections

In addition to over-predicting peak heat transfer in SBLIs, many RANS models do a poor job at
predicting the size of the separation region in hypersonic SBLIs. As an example, a baseline 𝑘−𝜖
model or 𝑘−𝜔model without a stress limiter usually under-predicts the size of the separation region
in SBLIs [100]. To address this issue, Coakley and Huang proposed modifications that reduce the
turbulent length-scale through a strong compression. This reduction in turbulent length-scale
enhances the size of the separation region. To achieve this, Coakley and Huang combine the 𝑘̃
and 𝜖 equations to form a model equation for the turbulent length-scale. They propose amplifying
the impact of dilatation in the 𝜖 equation so that the length-scale contracts in a compression and
expands in a compression.

The corrections proposed by Coakley and Huang reduce both the turbulent length-scale and tur-
bulent eddy viscosity through a compression. On the flip side, they will increase the turbulent
length-scale and turbulent eddy viscosity through an expansion. Here, we note that we can add
rapid compression terms to both the 𝑘 equation and the secondary equation that enables control
over both the net change of the turbulent length-scale and turbulent viscosity. Specifically, we could
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examine corrections of the form

𝜕𝜌𝑘̃

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝜌𝑢̃𝑖 𝑘̃

)
=

𝜕

𝜕𝑥𝑖

[(
𝜇̃ + 𝜇𝑡

𝜎𝑘

)
𝜕𝑘̃

𝜕𝑥𝑖

]
+ 𝑃𝑘 − 𝜌𝜖 + 𝐶k𝜌𝑘̃

(
𝜕𝑢̃𝑖

𝜕𝑥𝑖

)
𝜕𝜌𝜖

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
(𝜌𝑢̃𝑖𝜖) =

𝜕

𝜕𝑥𝑖

[(
𝜇 + 𝜇𝑡

𝜎𝜖

)
𝜕𝜖

𝜕𝑥𝑖

]
+ 𝜖
𝑘̃
(𝐶𝜖1 𝑓1𝑃𝑘 − 𝐶𝜖2 𝑓2𝜌𝜖) + 𝑆𝜖 + 𝐶𝜖 𝜌𝜖

(
𝜕𝑢̃𝑖

𝜕𝑥𝑖

)
,

(2.2.3)

where the final terms on the right-hand side of the above equations are the rapid compression
corrections.

We can examine the impact of the rapid compression corrections by deriving transport equations
for both the turbulent length-scale and turbulent viscosity. First we can derive an equation for the
turbulent length-scale, 𝑙 = 𝑘3/2

𝜖
, via chain rule by 𝑑𝑙

𝑑𝑡
= 3
√
𝑘

2𝜖
𝑑𝑘
𝑑𝑡
−
√
𝑘3

𝜖2
𝑑𝜖
𝑑𝑡

[12]. The contributions arising
from the RC corrections detailed in Eq. (2.2.3) lead to the following change to the length-scale
equation, [

𝑑𝑙

𝑑𝑡

]
rc
−

[
𝑑𝑙

𝑑𝑡

]
standard

= 𝑙

(
3
2
𝐶k − 𝐶𝜖

)
∇ · ũ.

For the corrections to shrink the length-scale in a compression and grow it in an expansion, which
makes sense physically, we require 3

2𝐶k > 𝐶𝜖 .

In addition to the turbulent length-scale, we can derive a governing equation for the eddy viscosity.
Ignoring wall functions, 𝜇𝑡 = 𝜌𝐶𝜇 𝑘

2

𝜖
. By chain rule, it is straightforward to show that the net effect

of the rapid compression corrections on the governing equations is[
𝑑𝜇𝑡

𝑑𝑡

]
rc
−

[
𝑑𝜇𝑡

𝑑𝑡

]
standard

= (2𝐶k − 𝐶𝜖 ) 𝜇𝑡∇ · ũ.

If 2𝐶k > 𝐶𝜖 , the eddy viscosity will shrink in a compression and increase in an expansion. On
the other hand, if 2𝐶k < 𝐶𝜖 , then the eddy viscosity will grow in a compression and shrink in an
expansion.

Two interesting cases are worth commenting on. First, consider 𝐶𝜖 = 3
2𝐶k. In this case, the rapid

compression corrections will have no net impact on the turbulent length-scale, but they will still
modify the eddy viscosity. The net impact is[

𝑑𝜇𝑡

𝑑𝑡

]
rc
−

[
𝑑𝜇𝑡

𝑑𝑡

]
standard

=
1
2
𝐶k𝜇𝑡∇ · ũ.

This result suggests that we can suppress/grow the turbulent viscosity by increasing/decreasing the
constant 𝐶k while holding the turbulent length-scale constant. Second, consider 𝐶𝜖 = 2𝐶k. In
this case, the rapid compression corrections will not have a net impact on the turbulent viscosity,
but they will have an impact on the length-scale. To ensure that the length-scale decreases in a
compression and increases in an expansion, we require 3

2𝐶k − 𝐶𝜖 = −1
2𝐶k > 0, which implies that

𝐶k < 0.
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2.2.4. Stress limiters

The rapid correction corrections proposed by Coakley and Huang have the net impact of reducing
turbulent viscosity, which enhances separation. A similar strategy is the use of stress limiters.
These methods, which are typically used in 𝑘−𝜔-based models, limit the turbulent eddy viscosity.
For example, for a standard 𝑘−𝜔 model, the turbulent eddy viscosity is given by

𝜇𝑡 =
𝜌̃ 𝑘̃

𝜔̂

where

𝜔̂ = max ©­«𝜔,𝐶lim

√︄
2𝑆𝑖 𝑗𝑆𝑖 𝑗
𝛽∗

ª®¬ .
This limiter reduces the eddy viscosity in regions where the specific dissipation rate is very high.
For high speed SBLIs, the stress limiter can promote separation [100].

2.2.5. Modifications to the Spalart–Allmaras model for compressible flow

Several modifications to the SA model for compressible boundary layer flows were proposed in
[4]. First, the low-Reynolds number correction of [86] is applied, which raises the model’s skin
friction for low-Reynolds number boundary layers. Second, a modified near-wall viscous damping
function inspired by hypersonic boundary layer DNS data sets and compressibility transformation
arguments is given by:

𝑓 𝑐𝑣1 = 𝛽−1
(
1 + 0.8𝑀2

𝑡𝑆𝐴

)−1
𝑓 𝑖𝑣1, 𝑀𝑡𝑆𝐴 =

√︁
𝜈̃𝑆/0.3
𝑐

, (2.2.4)

𝛽 = 1 +
(

1
2𝜌
𝑑𝜌

𝑑𝑦
− 1
𝜇

𝑑𝜇

𝑑𝑦

)
𝑦, 𝑓 𝑖𝑣1 =

[
1 − exp

(
− 𝜒

7

)]2
. (2.2.5)

where 𝑦 is a coordinate measured from the nearest wall point in the wall-normal direction and
𝑆 = | |Ω| | is the norm of the vorticity vector. The function is blended with the incompressible
damping function,

𝑓 𝑏𝑣1 = 𝜃 (𝜒) 𝑓 𝑖𝑣1 + (1 − 𝜃 (𝜒)) 𝑓
𝑐
𝑣1, 𝜒 =

𝜈̃

𝜈
, (2.2.6)

with

𝜃 (𝜒) = 1
2

[
tanh

(
𝜒 − 15

5

)
+ tanh

(
𝜒 + 15

5

)]
. (2.2.7)
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A further blending is required to ensure the corrected form does not activate in a low-Reynolds-
number region outside the boundary layer, resulting in the final value of

𝑓𝑣1 = 𝑓𝑑 𝑓
𝑖
𝑣1 + (1 − 𝑓𝑑) 𝑓

𝑏
𝑣1, 𝑓𝑑 = 1 − tanh

(
[8𝑟𝑑]3

)
, 𝑟𝑑 =

𝜈 + 𝜈̃

𝜅2𝑑2 max(10−10,
[∑

𝑖 𝑗
𝜕𝑈𝑖
𝜕𝑥 𝑗

2]1/2
)
,

(2.2.8)
where 𝑑 is the distance to the nearest wall. Finally, a normal Reynolds stress representation is
applied to more accurately calculate the associated wall-normal pressure gradients that can arise in
hypersonic boundary layers. The Reynolds stress is computed using

𝜏𝑖 𝑗 = 2𝜇𝑡
(
𝑆𝑖 𝑗 −

1
3
𝑑𝑢𝑘

𝑑𝑥𝑘
𝛿𝑖 𝑗

)
− 𝐶𝐵𝐿𝑐𝑟2𝜇𝑡𝑆𝛿𝑖 𝑗 . (2.2.9)

For a boundary layer, the last term resembles the normal stress term from the SA-QCR2020 model
[71], with a modified coefficient 𝐶𝐵𝐿

𝑐𝑟2 = 1.11.
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3. VALIDATION STUDY OF CURRENT SANDIA MODELS FOR
HYPERSONIC FLOWS

Before introducing data-driven corrections, in this chapter we perform a validation study of the
RANS models introduced in Chapter 2, along with some of the established compressibility cor-
rections, on a suite of test cases pertinent to hypersonic aerodynamics. These cases include flat
plate boundary layers, impinging SBLIs, compression ramps, and test vehicles. For all cases, the
RANS models are benchmarked against experimental data. Table 3-1 summarizes the validation
cases. While not shown, grid convergence studies were performed on all validation cases, and the
results presented here are on grids that yield either fully grid converged solutions or very close to
grid converged solutions. We assess the following RANS models:

• 𝑘−𝜖 . A standard 𝑘−𝜖 model, as given in Eq. (2.1.1).

• 𝑘−𝜖−RC. A 𝑘−𝜖 model with the addition of a rapid compression correction, as given in
Eq. (2.2.3) with constants 𝐶k = 0, 𝐶𝜖 = −0.75.

• 𝑘−𝜖−CA−RC−LC. A 𝑘−𝜖 model with the Catris and Aupoix correction, rapid compression
corrections, and a length-scale limiter. The model is given by Eq. (2.2.1) with the addition
of a length-scale limiter with a constant 𝐶ℓ = 5.0 and a rapid compression corretion with
constants 𝐶k = 0, 𝐶𝜖 = −2.0. We note that we observed the recommended value of 𝐶ℓ = 2.5
from Coakley and Huang [12] had a significant impact on zero pressure gradient boundary
layers and degraded performance. We additionally note the use of a “more negative” 𝐶𝜖 than
in the 𝑘−𝜖−RC model to compensate for the rapid-compression-type term added by the CA
correction.

• SST. The “standard” SST model as described on the NASA TMR.

• SSTV-2003. The SSTV-2003 variant of the SST model as described on the NASA TMR.

• SSTV-2003 (SPARC). The SSTV-2003 variant implemented in SPARC, which is equivalent
to the SSTV-2003 variant detailed on the NASA TMR but with turbulent kinetic energy
neglected in the definition of total energy and in the definition of the Reynolds stress in the
energy flux.

• SA. The SA-neg variant of the SA model as described on the NASA TMR.

• SA−CA. The SA-neg variant of the SA model with the Catris and Aupoix correction.
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Table 3-1. Summary of validation cases.

Case 𝑀∞ Re𝐿 Shock/ramp angle 𝑇𝑤/𝑇0
Mach 11 flat plate boundary layer 11.1 39.1 × 106 N/A 0.20

CUBRC 2D Compression Corner Run 12 8.2 146.9 × 106 27◦ 0.29
CUBRC 2D Compression Corner Run 19 8.1 139.3 × 106 33◦ 0.29
CUBRC 2D Compression Corner Run 24 8.0 145.3 × 106 36◦ 0.29

Schülein impinging shock 5.0 18.5 × 106 6◦ 0.73
Schülein impinging shock 5.0 18.5 × 106 10◦ 0.73
Schülein impinging shock 5.0 18.5 × 106 14◦ 0.73

Hollow cylinder flare run 13 6.01 16.24 × 106 36◦ 0.20
Hollow cylinder flare run 18 6.96 5.18 × 106 36◦ 0.14

HIFiRE-1 Run 30 7.2 16.9 × 106 33◦ 0.13
HIFiRE-1 Run 46 6.6 30.8 × 106 33◦ 0.16

• SA−CA−lowRe−𝑓𝑣1−normal. The SA variant of Barone with various corrections for hyper-
sonic boundary layers [4].

3.1. Mach 11 cold-wall boundary layer

We consider a Mach 11, cold-wall boundary layer. This case is designed to match the flow
conditions for a Mach 11.1 hypersonic turbulent flat plate boundary layer tested at Calspan–
University of Buffalo Research Center (CUBRC) [22, 23]. DNS results for this case are reported
in Refs. [105, 35]. Various studies have examined the performance of RANS models on this
case [35, 1, 23, 15] and have demonstrated a systematic over prediction of both skin friction and
wall heating. To account for the leading edge shock we employ modified free-stream boundary
conditions such that the post-shock conditions match those of the corresponding DNS simulations
and CUBRC experiments.

Figure 3-1 shows predictions from the various RANS models for wall QoIs. We observe that all
models perform similarly with several exceptions.

• Most notably, we observe that the addition of the CA correction to the 𝑘−𝜖 model results
in an over-prediction in both shear stress and heat flux. This trend is expected [100] since
the baseline 𝑘−𝜖 model is known over-predict the constant in the law of the wall and,
correspondingly, under-predict wall shear stress. We additionally note that the 𝑘−𝜖 model
presented here over-predicts wall shear stress for subsonic boundary layers.

• While small, the SPARC implementation of SSTV-2003, which neglects TKE in the definition
of total energy and in the definition of the Reynolds stress in the energy flux, differs from the
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Figure 3-1. Mach 11 flat plate boundary layer. RANS model predictions for wall heat flux (left) and wall
shear stress (right).

truth implementation of the SSTV-2003 model. While the difference is small, it is notable
that it is present for even a flat plate boundary layer.

• The SA−CA−lowRe−𝑓𝑣1−normal model results in slightly improved predictions for wall shear
stress and wall heat flux as compared to the standard SA model for higher Reynolds numbers.

• We also note that there is disagreement between DNS data and the corresponding experimental
data for both wall heat flux and wall shear stress. The reason for this disagreement is unclear.

3.2. Holden compression ramps

We next consider three Mach 8 compression ramps with deflection angles of 27◦ (run 12), 33◦ (run
19), and 36◦ (run 24). Experimental data for these cases are available from Holden et al. [28]. We
note that these cases are at high Reynolds numbers. Figure 3-2 shows density contours predicted
by a baseline 𝑘−𝜖 model to depict the flow. Figure 3-3 shows predictions from the various RANS
models for wall QoIs, while Figure 3-4 shows the associated relative errors of these QoIs as
compared to experimental data. We make the following observations.

• SST model variants:

– Comparing SSTV-2003 to SSTV-2003 (SPARC), we observe that neglecting the turbu-
lent kinetic energy in the definition of total energy and the energy flux has a substantial
impact on the solution. Neglecting these terms has the net effect of increasing the size
of the separation bubble. This increased separation bubble size is in worse agreement
with experimental data.
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Figure 3-2. Density contours for Holden compression ramps.

– Comparing SST to SSTV-2003, we observe that the SSTV-2003 variant results in a
larger separation region. This increased separation region is due to the use of the strain
invariant in the definition of eddy viscosity for the SSTV-2003 model, which in turn
decreases turbulent viscosity and enhances production.

• 𝑘−𝜖 model variants:

– The baseline 𝑘−𝜖 model under-predicts the size of the separation bubble and massively
over-predicts peak heat flux.

– Comparing 𝑘−𝜖−RC to 𝑘−𝜖 , we observe that the inclusion of rapid compression cor-
rections results in systematic improvements to the size of the separation region. The
peak heat flux is still massively over-predicted.

– Comparing 𝑘−𝜖−CA−RC−LC to 𝑘−𝜖−RC, we observe that the length-scale limiter
drastically reduces peak wall heat flux and brings it into better agreement with the data.
This improvement, however, is at the expense of a reduced peak wall shear stress which
is, in general, in worse agreement with experimental data.

• SA model variants:

– The SA model variants give systematically better predictions for wall heat flux as
opposed to the two equation models. This improvement in wall heat flux, however, is
at the expense of poor predictions for wall shear stress.

– The baseline SA and SA−CA model variants tend to under-predict separation. The
inclusion of the normal stress correction and the re-calibrated 𝑓𝑣1 results in slightly too
large a separation bubble.

• Model-to-model comments:

– In general, the 𝑘−𝜖-based models out-performs SST- and SA-based models for wall
shear stress.
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– The SA model results in the best predictions for wall heat flux at the expense of the
worse predictions for wall shear stress.

– The 𝑘−𝜖 models with the rapid compression corrections tend to give the best predictions
for the size of the separation region.

3.3. Schülein shock boundary layer interactions

We consider two impinging shock boundary layer interactions at Mach 5 with impinging shock
angles of 10◦ and 14◦ with experimental data from Schülein [78]. Figure 3-5 shows density contours
predicted by a standard 𝑘−𝜖 model to depict the flow.

Figure 3-6 shows predictions from the various RANS models for the Schülein SBLI validation
cases, while Figure 3-7 shows relative errors for wall QoIs as compared to experimental data.
Overall, we make similar observations for the Schülein SBLI cases as for the Holden compression
ramps. The 𝑘−𝜖 models give the best overall predictions for wall shear stress and wall pressure,
but drastically over-predict heat flux. Neglecting the TKE results in erroneous predictions, as seen
in the SSTV-2003 (SPARC) model. The SA model tends to under-predict separation, and wall heat
flux is well captured at the expense of wall shear.

3.4. CUBRC Hollow Cylinder Flare

We consider run 13 and 18 of the CUBRC hollow cylinder flare (HCF). The HCF run 13 corresponds
to a Mach 6 axisymmetric hollow cylinder flare with a 36◦ ramp. The run 18 case employs the same
geometry, but is at Mach 7 with a lower Reynolds number. Experimental data for wall quantities
are available from CUBRC. Both cases include a transition from laminar to turbulent flow. The
transition location is determined from the experimental data and we manually enforce a trip by
deactivating the turbulence model production term upstream of this location. A schematic of the
experimental setup for the HCF is shown in Figure 3-8.

Figure 3-9 shows predictions from the various RANS models for the HCF cases while Figure 3-10
presents relative errors for wall QoIs. We note that experimental data for wall shear stress are not
available. The same observations present in the Holden and Schülein cases are again present here.
Additionally, we highlight that the discrepancy in peak heat flux for the two-equation models is
much higher for run 13 than for run 18 and appears to have a Reynolds number dependence.
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Figure 3-3. Holden compression ramps. RANS model predictions for Holden run 12 (top), run 19 (middle),
and run 24 (bottom) compression ramp cases.
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Figure 3-4. Holden compression ramps. Relative errors for wall QoIs.
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Figure 3-5. Density contours for Schülein impinging SBLIs.
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(a) 10◦ case.
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Figure 3-6. Schülein SBLIs. RANS model predictions for wall QoIs for the 10◦ (top), and 14◦ (bottom)
cases.
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Figure 3-7. Schülein SBLIs. Relative errors for wall QoIs.

Figure 3-8. Hollow cylinder flare geometry. The figure is from Ref. [27].
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Figure 3-9. CUBRC hollow cylinder flare. RANS model predictions for run 13 (top) and run 18 (bottom).
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Figure 3-10. CUBRC hollow cylinder flare. Relative errors for wall QoIs.
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Figure 3-11. HIFiRE ground test geometry. The figure is from Ref. [93].

3.5. HIFiRE ground tests

We consider runs 30 and 46 of the HIFiRE test geometry. The cases correspond to approximately
Mach 7 flow with an expansion and a terminal 33◦ flare. Run 46 has a higher Reynolds number than
run 30. Experimental data for wall quantities are available for both cases from CUBRC. Both cases
again include a transition from laminar to turbulent flow. The transition location is determined
from the experimental data and we manually enforce a trip by deactivating the turbulence model
production term upstream of this location. A schematic of the problem geometry is shown in
Figure 3-11.

Figure 3-12 shows results for wall QoIs, while Figure 3-13 shows the relative errors. Most of
the previous observations are applicable to the HIFiRE cases. The baseline SA model performs
particularly poor for this case, failing to predict separation for both Reynolds numbers. We
emphasize that all models over-predict heat flux by more for the higher Reynolds number case (run
46). This is true for both the peak heat flux as well as for heat flux on the forebody. In particular,
we emphasize the apparent difference in slope for wall heat flux on the forebody for run 46.

3.6. Summary of validation study

This chapter reported the results of various RANS models applied to a suite of flows pertinent
to hypersonic aerodynamics. We assessed SPARC’s baseline RANS models along with various
corrections relevant to hypersonic flows. The high-level findings of the study are:

• The SA, SST, and 𝑘−𝜖 models all fail to yield accurate predictions for both wall shear stress
and wall heat flux in SBLI flows. The inclusion and re-calibration of existing corrections for
hypersonic flows helps, but does not fully address, this issue.
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Figure 3-12. Predictions for HIFiRE ground test run 30 (top) and run 46 (bottom).
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Figure 3-13. HIFiRE ground tests. Relative errors for wall QoIs.
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• Neglecting TKE in the definition of total energy and the definition of the Reynolds stress in
the energy equation degrades the predictive capability of the SSTV-2003 model in hypersonic
flows. These assumptions impact high Mach number flat plate boundary layer flows. For
the SBLI flows studied, these assumptions result in massive over-prediction of the separation
region which in turn results in erroneous predictions for wall shear stress, wall pressure, and
wall heat flux.

• The SSTV-2003 variant is inferior to the standard SST variant for hypersonic SBLI flows. The
SSTV-2003 variant tends to over-predict the separation region in shock-induced separated
flows. This over-prediction of separation can be attributed to the use of the strain invariant in
the definition of the eddy viscosity and the use of the vorticity magnitude for approximating
turbulent production.

• The SA model struggles to predict the size of the separation region in shock-induced SBLIs.
The baseline variant usually under-predicts the size of the separation bubble and, for some
cases, failed to predict it altogether.

• The SA model gives the best predictions for wall heat flux seemingly at the expense of poor
shear stress predictions.

• The 𝑘−𝜖 model massively over-predicts the size of the separation region. The use of a
length-scale limiter helps address this issue but does not altogether eliminate it.

• Lastly, we highlight the lack of joint high-quality shear stress and heat flux data. Of the
validation cases considered with SBLIs, only the Schülein cases and Holden compression
ramps had experimental data for both wall shear and wall heat flux. The data for the
compression ramp cases, however, have considerable noise. This issue is particularly relevant
as there appears to be a decoupling between peak wall shear stress and peak heat flux; this
result is supported in Ref. [78]. While 𝑘−𝜖 based models massively over-predict wall heat
flux, they appear to do better for wall shear stress. However, for the cases considered, there
is not enough high-quality data to draw this conclusion with confidence. There is further
a challenge that, for the available DNS simulations of hypersonic flows, there is often a
significant mismatch between DNS-calculated wall shear stress and experiments [91]. It is
our opinion that there is a need for more experimental data of hypersonic flow configurations
with high quality measurements of both wall shear stress and heat flux.
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4. DATA-DRIVEN MODELS FOR THE REYNOLDS STRESS TENSOR

This chapter presents a data-driven turbulence modeling strategy aimed at developing improved
models of the Reynolds stress tensor. The strategy outlined has three core aspects: (1) prediction for
the discrepancy in the Reynolds stress tensor via machine learning (ML), (2) estimating uncertainties
in ML model outputs via out-of-distribution detection, and (3) multi-step training strategies to
improve feature-response consistency. Results are presented across a range of cases involving
wall-bounded flows, jet flows, hypersonic boundary layer flows with cold walls, and hypersonic
SBLIs. We find that one ML-enhanced turbulence model provides consistent improvements for
numerous quantities-of-interest across all cases.

4.1. Introduction

We hypothesize that the inaccuracies of the various RANS models depicted in Chapter 3 can largely
be attributed to the modeling of the Reynolds stress tensor and the turbulent heat flux. This chapter
investigates the former and outlines a data-driven approach for improved modeling of the Reynolds
stress tensor. Specifically, we develop an approach leveraging Lipschitz-continuous tensor-basis
neural networks (TBNNs) and calibrated deep ensembles to model discrepancies in the Reynolds
stress anisotropy tensor.

This chapter proceeds as follows. First, Section 4.2 gives a brief overview of the literature focused
on improving predictions for the Reynolds stress tensor via machine learning techniques. Next,
Sections 4.3-4.7 will outline the specific formulation employed in the present work. We will outline
how we model discrepancies in the Reynolds stress tensor via TBNNs, our approach for quantifying
model-form uncertainties and enforcing model smoothness, and how we generate weakly consistent
training data via an iterative training procedure. Next, Section 4.9 will present results of the iterative
training procedure for a suite of cases. Section 4.10 will show results on out-of-sample test cases.

4.2. Literature overview

Various bodies of work have targeted improving RANS models via data-driven improvements
to models for the Reynolds stress tensor. These approaches attempt to build better models for
the Reynolds stress tensor with the idea that improved Reynolds stress predictions will propagate
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through to improved QoI predictions. Relevant to the present work, Ling et al. pioneered tensor-
basis neural networks (TBNNs) [46]. TBNNs attempt to learn the anisotropic component of the
Reynolds stress tensor via a basis expansion of invariant tensors employed by Pope [65] in his
generalized eddy viscosity hypothesis; neural networks are employed to learn the coefficients of
this basis as a function of field invariants. TBNNs have been shown to be capable of improved
predictions of separated flows, secondary flows in ducts, and flows with curvature. Recent work
has extended TBNNs to scalar flux modeling [51, 50]. Around the same time as the development
of TBNNs, Xiao et al. developed a similar data-driven strategy, termed physics-informed machine
learning (PIML), for improving Reynolds stress predictions [95, 102]. Their approach differs
slightly from Ling et al. in that they (1) model terms pertaining to an eigen-decomposition of
the Reynolds stress tensor, (2) they model a discrepancy in the turbulent kinetic energy, and (3)
they attempt to model only the discrepancy in the Reynolds stress (e.g., the difference between a
standard RANS model prediction and the truth value), opposed to the entire Reynolds stress. This
approach has additionally been shown to provide improved predictions on duct and separated flows.
Recent work by Peters et al. has proposed a similar approach in where they model discrepancies to
the Reynolds stress tensor in the mean strain-rate tensor eigenframe [63].

The aforementioned bodies of work employ difficult-to-interpret ML techniques for learning im-
provements to the Reynolds stress tensor. Another body of work has sought to obtain more
interpretable corrections. For instance, Weatheritt, Sandberg, and colleagues have developed a
framework based on evolutionary algorithms to learn explicit expressions for the anisotropy tensor
(discrepancy) [97, 96, 98, 107]. Opposed to TBNNs, and PIML, this evolutionary approach has
the advantage that it results in tangible models that can be written down and analyzed. We refer
the interested reader to the review [17] for a more complete survey of the literature.

Here, we investigate TBNNs as our primary vehicle for improving predictions for the Reynolds
stress tensor. We employ TBNNs opposed to, e.g., evolutionary algorithms due to the following
observations and hypotheses:

• TBNNs employ neural networks, which are more expressive than, e.g., symbolic regression
algorithms which require a pre-defined dictionary of terms.

• While symbolic regression algorithms result in models that are, in theory, interpretable, the
functional forms of models that have been discovered thus far are quite complicated and not
amenable to interpretation.

• We prefer to not modify the discrepancy in the turbulent kinetic energy, as is done in PIML,
due to concerns about generalizability. Specifically, we hypothesize that learning a generic
correction to the turbulent kinetic energy is difficult and will require more data than are
available.

We emphasize that we do not discount other approaches and that, while we investigate TBNNs,
what follows can be applied to other modeling formulations.
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4.3. Tensor-basis neural networks

We aim to improve Reynolds stress predictions via TBNNs [46]. In our approach, we augment
a Reynolds stress model with an anisotropy-based discrepancy term. The anisotropy tensor 𝑎𝑖 𝑗 is
modeled as

𝑎𝑖 𝑗 ≈ 𝑎RANS
𝑖 𝑗 + Δ𝑎ML

𝑖 𝑗 ,

where
𝑎𝑖 𝑗 =

−𝜏𝑖 𝑗
𝜌𝑢′′

𝑘
𝑢′′
𝑘

− 1
3
𝛿𝑖 𝑗

is the anisotropy tensor, 𝛿𝑖 𝑗 is the Kronecker delta, 𝑎RANS
𝑖 𝑗

=
𝜏RANS
𝑖 𝑗

2𝜌𝑘̃ −
1
3𝛿𝑖 𝑗 is the anisotropy tensor

predicted by a standard RANS model, and Δ𝑎ML
𝑖 𝑗

is an ML correction. For the functional form of
the correction, we employ a TBNN [46, 65] such that

Δ𝑎ML
𝑖 𝑗 =

𝐾max∑︁
𝑖=1

g𝑘 (𝝀)T 𝑘𝑖 𝑗 ,

where 𝝀 are invariant features, T 𝑘 : Ω → R3×3, 𝑘 = 1 . . . , 𝐾max are tensors, Ω is the physical
domain, and g𝑘 : 𝝀 ↦→ g𝑘 (𝝀), 𝑘 = 1, . . . , 𝐾max are ML regression models trained from simulation
data. We highlight that, unlike Ref [46], we employ TBNNs to only model the discrepancy in the
Reynolds stress tensor. We employ a truncated version of the basis employed by Pope [65] with
𝐾max = 4 comprising the four basis tensors:

T 1
𝑖 𝑗 = 𝑆∗𝑖 𝑗 , T 2

𝑖 𝑗 = 𝑆∗𝑖𝑘Ω
∗
𝑘 𝑗 −Ω

∗
𝑖𝑘𝑆
∗
𝑘 𝑗 , T3 = 𝑆∗𝑖 𝑗𝑆

∗
𝑗 𝑘 −

1
3
𝛿𝑖 𝑗 Tr(𝑆∗2), T 4 = Ω∗𝑖𝑘Ω

∗
𝑘 𝑗 −

1
3
𝛿𝑖 𝑗 Tr(Ω∗2)

(4.3.1)

where 𝑆∗
𝑖 𝑗
=

(
𝑆𝑖 𝑗 − 1

3
𝜕𝑢̃𝑘
𝜕𝑥𝑘
𝛿𝑖 𝑗

)
𝑘̃/𝜖 ,Ω∗

𝑖 𝑗
= Ω𝑖 𝑗 𝑘̃/𝜖 are non-dimensional strain and rotation rate tensors,

respectively, Ω𝑖 𝑗 = 1
2

(
𝜕𝑢̃𝑖
𝜕𝑥 𝑗
− 𝜕𝑢̃ 𝑗

𝜕𝑥𝑖

)
is the rotation rate tensor, and we have used the notation 𝑄2 =

𝑄𝑖 𝑗𝑄 𝑗 𝑘 for a tensor 𝑄 ∈ R3×3. We use only the first four tensor bases since higher-order bases
have cubic terms which may introduce undesirable numerical properties of the model. We use four
non-dimensional features in our model. The first two features associate with invariants of the tensor
basis while the second two features are measures of the local Reynolds number,

𝝀 =

[
Tr(𝑆∗2) Tr(Ω∗2) log(𝜇𝑡/𝜇) 3 tanh

(
1
3𝑑wall

√
𝑘

50𝜈

)]𝑇
,

where 𝑑wall is the distance to the wall. We note that the final feature is designed to have a smooth
threshold at a value of 3.
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4.3.1. Analysis: TBNN simplifications for a parallel flow

A zero-pressure gradient turbulent boundary layer is a foundational physics for RANS modeling. To
gain insight into the behavior of the TBNN in this setting, we consider reduction of the tensor-basis
neural network when applied to a parallel flow, e.g., a channel. In this setting, all gradients are zero
except for those in the wall-normal (here, 𝑥2) direction. The strain and rotation tensors reduce to

𝑆𝑖 𝑗 =
1
2


0 𝜕𝑢̃1

𝜕𝑥2
0

𝜕𝑢̃1
𝜕𝑥2

0 0
0 0 0

 , Ω𝑖 𝑗 =
1
2


0 𝜕𝑢̃1

𝜕𝑥2
0

− 𝜕𝑢̃1
𝜕𝑥2

0 0
0 0 0

 .
The tensor basis (4.3.1) simplifies to

T1 =
𝑘

2𝜖


0 𝜕𝑢̃1

𝜕𝑥2
0

𝜕𝑢̃1
𝜕𝑥2

0 0
0 0 0

 , T2 =
𝑘2

2𝜖2


−

(
𝜕𝑢̃1
𝜕𝑥2

)2
0 0

0
(
𝜕𝑢̃1
𝜕𝑥2

)2
0

0 0 0


,

T3 =
𝑘2

12𝜖2



(
𝜕𝑢̃1
𝜕𝑥2

)2
0 0

0
(
𝜕𝑢̃1
𝜕𝑥2

)2
0

0 0 −2
(
𝜕𝑢̃1
𝜕𝑥2

)2


,T3 = −T4.

The above result demonstrates that the second, third, and fourth tensor bases only impact the normal
components of the Reynolds stress. Although not shown, the sixth tensor basis modifies the shear
component of the Reynolds stress. The remaining tensors impact the normal components of the
Reynolds stress or are zero. This has two important repercussions:

1. Consider a data point drawn from a parallel flow dataset. For this data point, the only non-zero
velocity gradient will be 𝜕𝑢̃1

𝜕𝑥2
, and the gradient of the “shear” anisotropy component Δ𝑎12 —

which is the only anisotropy component to enter the governing equations — with respect to
the coefficients for tensor bases 2 through 4 will be identically zero. This result implies that,
in training, modeling the normal components of the anisotropy tensor does not “interfere"
with the shear components so long as the model has high enough capacity.

2. For a parallel flow, the normal components of the Reynolds stress do not impact the governing
equations. As a result, the TBNN tensors 2 through 4 will have no impact.

The above result holds exactly for a parallel flow. The result pertaining to training will additionally
hold for canonical flows like shear layers and boundary layers under the assumption that 𝜕𝑢̃1

𝜕𝑥2
dominates all other gradients. Note that, for high-speed boundary layers, the normal components
of the Reynolds stress have a non-negligible impact on the flow, and thus higher-order tensor bases
will impact the solution for these flows. This result will be detailed later in this report.
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4.4. Ensembles for uncertainty quantification and out-of-distribution detection

Having described the structural form of our machine-learned corrections, we now describe how the
discrepancy terms are modeled. We aim to achieve two primary goals with our models:

• High capacity for predicting test points that are in-distribution with respect to the
training set. We want to ensure that our model is of a high enough fidelity that it can capture
complex relationships in high-dimensional feature spaces when it is deployed on testing data
that are drawn from the same data-generating distribution as our training data (e.g., the model
must be accurate in interpolation).

• Robustness to out-of-distribution and poorly learned data regimes. In practical scenarios
an ML model will be deployed on data that lie outside of the convex hull (e.g., are extrapola-
tive) of the training set and/or lie in a feature space region where training data are extremely
sparse such that the model did not learn an accurate feature-response map. In these scenarios
it is critical to identify whether or not the ML model is accurate and, in the case where it is
not accurate, make an appropriate decision on how to include the ML prediction to maintain
robustness.

Towards this end, we propose a Bayesian-type approach leveraging ensembles of neural networks.
Motivated from the concept of “deep ensembles” [43] the approach relies on the empirical result
that an ensemble of over-parameterized neural networks tends to provide a similar prediction for
testing data that are drawn from the training-data-generating distribution but simultaneously provide
different predictions for out-of-distribution testing data. The variance of the ensemble can be used
as an empirical error indicator. We now describe this approach within the context of tensor-basis
neural networks for the anisotropy discrepancy.

For modeling the Reynolds stress, we learn tensor-basis neural networks mapping input features to
the anisotropy discrepancy and a scalar variance,

NN : (𝝀; 𝜽) ↦→ (Δ𝑎ML, 𝜎2)

where 𝜎2 ∈ R+ is a scalar variance. The ensemble approach trains 𝑀 such networks. For each
network, we optimize the log-likelihood as given by

𝜽 = arg min
𝜽∗∈R𝑁𝜽

𝑁train∑︁
𝑘=1

(
Δ𝑎ML

𝑖 𝑗

(
𝝀𝑘 , 𝜽∗

)
− Δ𝑎𝑘

𝑖 𝑗

)2

2𝜎2 (
𝝀𝑘 , 𝜽∗

) +
𝜎2 (

𝝀𝑘 , 𝜽∗
)

2
,
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where 𝑁𝜽 denotes the total number of weights and biases. The mean and variance of the networks
is then given by

Δ𝑎
ML

=
1
𝑀

(
𝑀∑︁
𝑖=1

Δ𝑎ML(𝝀; 𝜽𝑖)
)
,

Δ̂𝑎
ML

=
𝐶̂

𝑀

𝑀∑︁
𝑖=1

[
1
9

3∑︁
𝑙=1

3∑︁
𝑚=1

(
Δ𝑎ML

𝑙𝑚

2(𝝀; 𝜽𝑖) − Δ𝑎
ML
𝑙𝑚

2
)]
+ 1
𝑀

𝑀∑︁
𝑖=1

𝜎2 (𝝀, 𝜽𝑖) ,

where 𝜽𝑖 denote the weights and biases for the 𝑖th network, Δ𝑎
ML ∈ R3×3 is the mean anisotropy

tensor predicted by the networks, Δ̂𝑎
ML ∈ R+ is a mean variance of the anisotropy tensors predicted

by the networks, and 𝐶̂ ∈ R+ is a constant used to calibrate the ensemble variance. We will discuss
selection of this constant shortly.

Given a predicted mean and variance, the correction to the anisotropy tensor in our CFD solver is
set to be

Δ𝑎ML
𝑖 𝑗 =

𝜎2
prior

𝜎2
prior + Δ̂𝑎

MLΔ𝑎
ML
𝑖 𝑗 . (4.4.1)

The approximation (A.0.1) is inspired by a Bayesian formulation. For notational simplicity we
define the weighting in the above in terms of a “confidence measure” 𝐶∗ ∈ [0, 1] where

𝐶∗ =
𝜎2

prior

𝜎2
prior + Δ̂𝑎

ML . (4.4.2)

We make the following comments on the formulation given in Eq. (A.0.1):

• In the limit Δ̂𝑎
ML ≪ 𝜎prior, then 𝐶∗ → 1 and Δ𝑎ML → Δ𝑎

ML
, i.e., the prediction for the

anisotropy discrepancy tensor seen by the solver is given by the mean of the ensemble. This
case corresponds to where we expect the ML models to be accurate.

• In the limit Δ̂𝑎
ML ≫ 𝜎prior, then 𝐶∗ → 0 and Δ𝑎ML → 0, i.e., we don’t correct the standard

anisotropy tensor at all. This case corresponds to where we expect the ML models to be
inaccurate.

• We note that we employ a mean variance Δ̂𝑎
ML

for the entire anisotropy tensor as opposed
to a unique variance for each component. We do this in an effort to make our model more
interpretable and to ensure that the resulting model for the anisotropy tensor is trace free, but
employing a different variance for each component is a possible choice.

• The functional form of the update given in Eq. (A.0.1) is motivated from a Bayesian formu-
lation for the anisotropy tensor with Gaussian assumptions and a zero prior.
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Employing the discrepancy model in Eq. (A.0.1) requires specification of the scaling factor 𝐶̂ and
prior confidence 𝜎prior. We determine the constant 𝐶̂ using the following process:

1. Model the error in our ensemble of networks as

(Δ𝑎𝑙𝑚 − Δ𝑎
ML
𝑙𝑚 )2 ≈

𝐶̂

𝑀

𝑀∑︁
𝑖=1

[(
Δ𝑎ML

𝑙𝑚

2(𝝀; 𝜽𝑖) − Δ𝑎
ML
𝑙𝑚

2
)]
.

2. Fit the constant 𝐶̂ after training the network ensemble by evaluating the prediction error
across the validation set.

We set 𝜎prior = 1.0. The result of this process is (approximate) control over how much we trust the
prediction of the ensemble.

4.5. Lipschitz-continuous neural networks

While our ensemble approach can improve the performance of the ML model for extrapolative
data, feed-forward neural networks can still produce non-smooth outputs which may deteriorate
the convergence of the RANS solver (e.g., see the summary in Ref [94]). Some previous works
have found it necessary to smooth the anisotropy predictions obtained from neural networks for the
RANS solver to converge [2, 21]. Rather than applying a smoothing operation on the neural network
outputs, we enforce that the input–output map learned by the network is Lipschitz continuous. A
real-valued function 𝑓 : R → R is said to be 𝑘-Lipschitz continuous if, ∀𝑥 ∈ R, 𝑦 ∈ R,

| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝑘 |𝑥 − 𝑦 |.

Lipschitz continuous functions are appealing because the smoothness of the output can be bounded
by the smoothness of the input.

We construct Lipschitz continuous neural networks using spectral normalization [53]. In spectral
normalization, the weights of each layer are implicitly normalized by their spectral norm,

w𝑖
∗ =

w𝑖

𝜁 (w𝑖)

where
𝜁 (w𝑖) ≡ max

∥𝒙∥2≤1
∥w𝑖𝒙∥.

Leveraging the fact that common activation functions (e.g., ReLU, tanh) are 1-Lipschitz, the use of
spectral normalization results in neural networks that are also 1-Lipschitz. To enable a more flexible
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framework, we embed a hyper-parameter into our neural networks by multiplying the normalized
weights by a constant 𝑘 lip at each layer,

𝑓lip : (𝝀, 𝜽) ↦→ 𝑔

(
·; 𝑘 lipw𝑁layer

∗ , b𝑁layer
)
◦ · · · ◦ 𝑔

(
· 𝑘 lipw1

∗, b1
)
.

The constant 𝑘 lip is a hyper-parameter: higher values will result in more expressive networks with
“rougher” outputs, while smaller values will result in smooth networks that are less expressive. For
notational simplicity, we use 𝜽 = [w∗, b] to denote the combined weights and biases from here on
out.

4.5.1. Automatic selection of Lipschitz constant

We determine the constant 𝑘 lip from the training data. Specifically, we loop through input-output
training pairs, compute a “local” Lipschitz constant on these pairs, and set the total Lipschitz-
constant of the network based on quantiles of the local Lipschitz constants. A lower quantile
will result in a lower Lipschitz constant. Algorithm 1 details the algorithm for a simple neural
network.

Computing an appropriate Lipschitz constant is more difficult for TBNNs since we aim to learn the
coefficients of the tensor basis, and we generally do not have measurements of these coefficients.
In the present work we perform a least-squares fit to determine the optimal coefficients, and then
use these coefficients to identify the Lipschitz constant.

Algorithm 1 Basic algorithm for estimating the Lipschitz constant
Input: quantile, 𝑞
for 𝑖 = 1, . . . , 𝑁train do

for 𝑗 = 1, . . . , 𝑁train do
(𝑞1, 𝑞2) ← (𝜼𝑖, 𝜼 𝑗 ) ⊲ Sample (normalized) features
(𝑟1, 𝑟2) ← (𝑦ML

𝑖
, 𝑦ML

𝑗
) ⊲ Sample (normalized) response

𝑘𝑖 𝑗 =
∥𝑟1−𝑟2∥22
∥𝑞1−𝑞2∥22

⊲ Compute local Lipschitz constant and store
end for

end for
𝑘 ← quantile(𝒌, 𝑞) ⊲ Compute constant based on quantiles

4.6. Multi-step training framework for feature consistency

We now outline the process for training the model weights {w𝑖}𝑀𝑖=1. One of the primary challenges
in training an ML turbulence model is feature and response consistency. This issue has been
discussed in numerous places and we provide only a brief summary here.
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We first discuss feature consistency. Consider a feature of the form 𝑆∗
𝑖 𝑗

extracted from a high-
fidelity dataset. This feature depends on the turbulent kinetic energy and turbulent dissipation due
to the non-dimensionalization 𝑆∗

𝑖 𝑗
= 𝑆𝑖 𝑗 𝑘/𝜖 . Unfortunately, even if the velocity fields match almost

exactly, the turbulent kinetic energy and turbulent dissipation in a RANS simulation often differ
significantly from their truth values. As a result, the RANS version of a feature 𝑆∗

𝑖 𝑗
can differ

significantly from its high-fidelity counterpart. An ML model trained on input features extracted
from a high-fidelity dataset can thus fail when deployed in a RANS solver as it is receiving different
features than what it was trained on.

The second challenge is response consistency. To illustrate this challenge, consider the case where
we have trained a perfect machine-learned model for the anisotropy discrepancy tensor Δ𝑎𝑖 𝑗 . The
anisotropy discrepancy enters the momentum and energy equations through the form of a Reynolds
stress discrepancy, Δ𝜏𝑖 𝑗 = −2𝜌𝑘Δ𝑎𝑖 𝑗 . If the turbulent kinetic energy in the RANS model differs
from that in the high-fidelity data, then a perfect model for the anisotropy tensor will still end up
being imperfect for the Reynolds stress.

Various approaches have been pursued to address the above including learning solutions about
baseline RANS solutions [46], modified cost functions [89], approaches that learn a discrepancy
in the turbulent kinetic energy [95, 102] , approaches that directly learn the Reynolds stress rather
than the anisotropy [95], solves for the RANS auxiliary equations with a specified high-fidelity
velocity [50, 75], and iterative training procedures [89]. In the present work we employ an
iterative training procedure similar to [89]. We employ this approach primarily because it was
straightforward to implement with our ML models and solver. The steps for our iterative approach
are as follows:

• For each training case, do:

1. Setup and solve a baseline RANS computation corresponding to a high-fidelity dataset.

2. Learn a discrepancy model for the anisotropy tensor, where the input features of the
model are computed from the baseline RANS solution and the response is computed
from the high-fidelity data.

3. Compute a correction to the anisotropy tensor by querying the learned models about
the baseline RANS solution. Freeze these correction fields, and re-converge the solver.

4. Learn new discrepancy models for the anisotropy tensor, where the input features of the
model are extracted from the ML–RANS solution computed in step 3 and the response
is still computed from the high-fidelity data.

5. Compute a new correction to the anisotropy tensor by querying the models learned in
step 4 about the ML–RANS solution computed in step 5. Freeze these correction fields,
and re-converge the solver. We emphasize that this new correction that is learned is
quantifying the discrepancy between the anisotropy tensor predicted from the baseline
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Figure 4-1. Depiction of the iterative training process employed for each case.

RANS model (with improved input features coming from the new fields computed in
Step 3) and the truth data.

6. Repeat steps 3-5 until convergence or the maximum number of iterations has been
reached. In the present work full convergence was never reached and we terminated the
loop after 10 iterations.

• Train one global ML model for all cases with the ML–RANS solutions computed in Step 5
as input features and the high-fidelity data as responses.

Figures 4-1 and 4-2 depict the above steps. Figure 4-1 shows the iterative training process employed
for each case, while Figure 4-2 shows the global training process used to develop the final machine-
learned model.

Before proceeding we highlight that an outstanding issue with our approach is that, while it
improves feature consistency, it does not fully address response consistency. Although the iterative
solution process tends to improve predictions for turbulent kinetic energy, there is ultimately still a
discrepancy between the turbulent kinetic energy in the RANS equations vs. a high-fidelity dataset.
As a result the magnitude of the Reynolds stress correction can still be erroneous.

4.7. Implementation in SPARC

The TBNN discrepancy models for the anisotropy tensor are implemented in Sandia’s parallel
aerodynamics and re-entry code (SPARC). At the time of this writing, these models are not
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Figure 4-2. Depiction of the global iterative training process employed to construct our final ML model.

implemented on the main branch. SPARC supports various discretizations (finite-volume, finite-
difference, finite-element), and in the present work we study the performance of our models within
SPARC’s second-order cell-centered finite volume method. The anisotropy discrepancy tensor is
treated within the viscous flux routine.1 We currently do not modify any of the Jacobian entries and
as such treat the discrepancy model explicitly in the solver; implicit treatment of the discrepancy
models is an area of active work. Lastly, we note that in practice we only call the ML model every
𝑛skip Newton iterations to accelerate model performance. In the examples presented in this work
we use 𝑛skip = 20.

4.8. Training

This section details the training data employed in this work and the results of the iterative training
procedure applied to each training case.

4.8.1. Training datasets, data cleaning, and data balancing

Presently we employ 12 datasets for training: channel flows at 𝑅𝑒𝜏 = 180, 395, and 590 [33], a duct
flow at Re = 3500 [64], flow over a periodic hill [20], three hypersonic boundary layers at cold wall
conditions [105], and four hypersonic cases over forward-facing walls (FFW) and backward-facing
walls (BFW) which correspond to the 𝛼 = 0.2 and 𝛼 = 1.0 cases from [57]. For the FFW and BFW

1We have explored implementation of the discrepancy model as both a source term and in the viscous flux routine
and observed little difference. We default to the viscous flux routine so that the method is conservative.
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Table 4-1. Description of datasets used for training
Dataset name Dataset size Simulation type Dataset dimension
Channel at 𝑅𝑒𝜏 = 180 65 DNS 1D
Channel at 𝑅𝑒𝜏 = 395 129 DNS 1D
Channel at 𝑅𝑒𝜏 = 590 128 DNS 1D
Duct flow 10201 DNS 2D
Periodic hill flow 25088 LES 2D
ZPGFBL at M = 6, 𝑇𝑤/𝑇𝑟 = 0.25 188 DNS 1D
ZPGFBL at M = 6, 𝑇𝑤/𝑇𝑟 = 0.76 177 DNS 1D
ZPGFBL at M = 14, 𝑇𝑤/𝑇𝑟 = 0.18 227 DNS 1D
FFW steep ramp at M = 4.9, 𝑇𝑤/𝑇𝑟 = 0.91 320x5 DNS 1.5D
FFW shallow at M = 4.9, 𝑇𝑤/𝑇𝑟 = 0.91 320x5 DNS 1.5D
BFW steep at M = 4.9, 𝑇𝑤/𝑇𝑟 = 0.91 320x5 DNS 1.5D
BFW shallow at M = 4.9, 𝑇𝑤/𝑇𝑟 = 0.91 320x5 DNS 1.5D

cases, the wall shapes were designed such that the 𝛼 = 1.0 wall shapes induced a reasonably strong
pressure gradient while not inducing flow separation while the 𝛼 = 0.2 cases were designed such
that the flow would separate. Table 4-1 summarizes these data. We note that all of these data are
available through the NASA turbulence modeling resource (NASA TMR) and links therein with
the exception of the duct flow data.

Table 4-1 highlights that the different datasets are of disparate size. The channel flow and hypersonic
boundary layer data comprise one-dimensional wall-normal profiles, while the duct flow and
periodic hill are two-dimensional datasets. A naive compilation of these various datasets may
result in an ML model that more accurately fits the two-dimensional flows. To minimize this
possibility we perform empirical data balancing where we duplicate the one-dimensional datasets
to increase their prevalence in the loss function used for training the final ML model. In the present
work we replicate each channel data set 8 times so that we end up with around 2500 data points
from the channels, we replicate each hypersonic boundary layer data 5 times so that we end up
with around 3000 training data points from the hypersonic boundary layers, and we replicate the
hypersonic FFW and BFW cases just once so that each case has 1600 training points. The reader
may note that there are still significantly more data in the periodic hill and duct flow datasets. This
was done intentionally as the interesting physics in the periodic hill and duct flow datasets are
contained to a smaller regime of the flow. We additionally note that we did not observe significant
sensitivity to the data balancing, and we expect that different choices will result in similar solutions.
Lastly, we note that more automated procedures exist, e.g., Barone et al. [5], and employing these
techniques will be a subject of future work.
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Table 4-2. Hyper-parameters employed in the TBNN and variable Prandtl number models.
Model ℓ2 regularization Initial learning rate Epochs Batch size Learning rate decay
TBNN 10−5 2 × 10−3 500 50 0.9991

4.8.2. Training details and architectures

Our tensor basis neural networks are implemented in PyTorch. We employ a standard 80/20
training-validation split on the data with standard normalization applied to the input features (i.e.,
we center each input feature by its mean across the training set and scale by its standard deviation
across the training set). We do not normalize the response values. We train an ensemble of 10
Lipschitz-continuous neural networks. All networks employ tanh as the activation function, have
three hidden layers, and have 30 nodes per hidden layer. We use an 85% quantile in computation
of the Lipschitz constant. The remaining hyper-parameters are given in Table 4-2.

4.9. Training results

We now present results of the iterative training procedure detailed in Section 4.6 on a set of training
cases. We emphasize that in each case we are recursively training an ensemble of networks to learn
the anisotropy tensor discrepancy and propagating the resulting corrections through the model.
The results of these training cases will be used to create a single global ML model. In all cases,
we employ the 𝑘−𝜖 model with the Catris and Aupoix correction and a rapid compression
correction with constant 𝐶𝜖 = −1.0 as our baseline model.

4.9.0.1. Channel flows

We first consider results of the iterative training procedure on the three channel flows. All three cases
are simulated as one-dimensional flows with a constant pressure gradient forcing term. Figure 4-3
shows results for velocity profiles, turbulent kinetic energy, and Reynolds shear stress for all three
Reynolds numbers. Table 4-3 tabulates the relative error between the RANS and DNS for each
profile. The relative error is defined as

𝑒𝑞 =

∫ Re𝜏

0

(
𝑞RANS − 𝑞DNS)2(

𝑞DNS)2 𝑑𝑦+

for 𝑞 = 𝑢+, 𝑘+, and 𝜏+12. In all cases 𝑘−𝜖−ML results in improved Reynolds stress predictions over
the 𝑘−𝜖 model. We see that this improvement propagates through to improved velocity predictions
in every case and improved turbulent kinetic energy predictions in two of the three cases.
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Figure 4-3. Channel flow. Results of iterative training procedure.

Table 4-3. Relative errors for channel flow quantities of interest for three Reynolds numbers
Re𝜏 = 180 Re𝜏 = 395 Re𝜏 = 590

𝑒𝑢+ 𝑒+
𝑘

𝑒+𝜏12 𝑒𝑢+ 𝑒+
𝑘

𝑒+𝜏12 𝑒𝑢+ 𝑒+
𝑘

𝑒+𝜏12
𝑘–𝜖 0.0789 0.0987 0.094 0.051 0.045 0.067 0.054 0.062 0.046
𝑘–𝜖–ML 0.0324 0.0896 0.072 0.035 0.055 0.037 0.033 0.050 0.033

4.9.0.2. Duct flow

The duct flow is implemented as a two-dimensional periodic flow with a constant pressure gradient.
The problem is simulated non-dimensionally on a 2 × 2 domain with a constant (non-dimensional)
viscosity 𝜇̃ = 2.2×10−3, a constant pressure gradient of magnitude 0.5, an isothermal wall boundary
condition 𝑇wall = 178.57, an initial density of 𝜌 = 1, and a gas constant of 𝑅 = 10 with the equation
of state 𝑝 = 𝜌𝑅𝑇 . Figure 4-4 shows results for the 𝑥2 velocity and turbulent kinetic energy for the
duct flow case while Table 4-4 tabulates QoI errors for the problem. In this case the error for a QoI
𝑞 is defined as

𝑒𝑞 =

𝑁∑︁
𝑖=1

(
𝑞(x𝑖)RANS − 𝑞(x𝑖)DNS)2(

𝑞(x𝑖)DNS)2 (4.9.1)

where x𝑖 ∈ R2, 𝑖 = 1, . . . , 𝑁 refer to the spatial locations at which the DNS data are available.
We observe improved predictions for all Reynolds stress components but the 𝑎23 component. This
improved prediction again propagates to improved predictions for the velocity.

Table 4-4. Duct flow. Relative errors for QoIs.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒𝑢 𝑒𝑣 𝑒𝑎11 𝑒𝑎22 𝑒𝑎33 𝑒𝑎12 𝑒𝑎23 𝑒𝑘

0.137 1.000 1.000 1.000 1.000 0.328 1.000 0.207
0.099 0.402 0.233 0.306 0.306 0.235 1.194 0.339
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(b) Turbulent kinetic energy
Figure 4-4. Duct flow. Results of iterative training procedure.

Table 4-5. Periodic hill flow. Relative errors for QoIs.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒𝑢 𝑒𝑣 𝑒𝑎11 𝑒𝑎22 𝑒𝑎33 𝑒𝑎12 𝑒𝑘

0.163 0.469 0.309 0.642 0.290 0.596 0.245
0.105 0.209 0.124 0.214 0.153 0.333 0.230

4.9.0.3. Periodic hill

The periodic hill is implemented as a periodic two-dimensional flow with a constant pressure
gradient forcing. The flow is simulated non-dimensionally with viscosity 𝜇̃ = 1.888 × 10−5, a
constant pressure gradient 𝑝𝑥 = 0.00033, an isothermal boundary condition of 𝑇wall = 1/𝛾 with
𝛾 = 1.4, a gas constant of 𝑅 = 1 with the equation of state 𝑝 = 𝜌𝑅𝑇 , and an initial uniform density
of 𝜌 = 1. Figure 4-5 shows results for 𝑥1 velocity contours and velocity profiles as a function of 𝑦
for various 𝑥 locations. Table 4-5 tabulates QoI errors for the problem. In this case QoI errors are
defined the same as in Eq. (4.9.1). We make the same observations as in the channel and duct flows.
All components of the Reynolds stress tensor are computed more accurately by the ML model
as compared to the standard model. These improved predictions propagate through to improved
predictions for both velocity components as well as turbulent kinetic energy.
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Figure 4-5. Periodic hill flow. Results of iterative training procedure. Note that the “wiggles" in the LES
data for the 𝑣 velocity are an interpolation artifact that are amplified by the small 𝑣-velocity magnitude.
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Table 4-6. Free-stream conditions for hypersonic boundary layer cases.
M6Tw025 M6Tw076 M14Tw018

𝑢∞ (m/s) 871.17 871.45 1883.74
𝜌∞ (kg/m3) 0.0421 0.0414 0.0149
𝑇∞ (K) 54.17 54.139 44.802

Table 4-7. M6Tw025 hypersonic boundary layer. Relative errors after iterative training procedure.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒+𝑢 𝑒𝑇 𝑒𝑎11 𝑒𝑎22 𝑒𝑎33 𝑒𝑎12 𝑒𝑘 𝑒𝑐 𝑓 𝑒𝑐ℎ

0.068 0.217 0.991 1.002 1.008 0.903 0.269 0.075 0.071
0.049 0.208 0.236 0.848 0.922 0.903 0.293 0.036 0.020

4.9.0.4. Hypersonic boundary layers

Next we consider training results for three hypersonic boundary layer cases. The flows are simulated
on a dimensional two-dimensional domain with a perfect gas with gas constant of 𝑅 = 287
J · kg−1 · K−1 and heat capacity ratio 𝛾 = 1.4. The free-stream conditions for each case are selected
so that flow conditions after the leading edge shock match the DNS conditions provided in Zhang
et al. [105]; the free-stream conditions for each case are provided in Table 4-6.

Figures 4-6-4-8 shows predicted QoIs for the M6Tw025, M6Tw076, and M14Tw018 cases, respec-
tively, while Tables 4-7-4-9 tabulate the errors between the RANS predictions and reference DNS
solutions. For a QoI 𝑞, the errors for this problem are defined as

𝑒𝑞 =

∫ 𝑦+end

0

(
𝑞RANS − 𝑞DNS)2(

𝑞DNS)2

where 𝑦+end is the final 𝑦+ value listed in the DNS dataset. Numerical integration is performed
with the trapezoidal rule. In all cases, we observe that the TBNN reduces skin friction and brings
it into better agreement with the DNS data. The wall heat flux is additionally reduced, and is
in better agreement with the DNS data for the M6Tw025 and M14Tw018 cases. We observe an
under-prediction in heat flux for the M6Tw076 case. We observe that the ML models result in
similar velocity and temperature profiles, and the most significant difference is in the Reynolds
stress profiles. Specifically, we observe that the TBNN better predicts the peak in 𝜏11 near the wall
as well as correctly suppresses 𝜏22.

4.9.1. FFW and BFW cases

To simulate the Mach 5 curved wall cases a 2D domain was simulated with a prescribed inflow
boundary such that the inflow boundary layer thickness matched DNS predicted boundary layer
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Figure 4-6. Hypersonic boundary layer at 𝑀 = 6, 𝑇𝑤/𝑇𝑟 = 0.25. Results of iterative training procedure.

Table 4-8. M6Tw076 hypersonic boundary layer. Relative errors after iterative training procedure.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒+𝑢 𝑒𝑇 𝑒𝑎11 𝑒𝑎22 𝑒𝑎33 𝑒𝑎12 𝑒𝑘 𝑒𝑐 𝑓 𝑒𝑐ℎ

0.068 0.150 0.983 0.993 1.006 0.786 0.173 0.148 0.105
0.035 0.138 0.387 0.895 0.947 0.787 0.156 0.039 0.512
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Figure 4-7. Hypersonic boundary layer at 𝑀 = 6, 𝑇𝑤/𝑇𝑟 = 0.76. Results of iterative training procedure.

Table 4-9. M14Tw018 hypersonic boundary layer. Relative errors after iterative training procedure.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒+𝑢 𝑒𝑇 𝑒𝑎11 𝑒𝑎22 𝑒𝑎33 𝑒𝑎12 𝑒𝑘 𝑒𝑐 𝑓 𝑒𝑐ℎ

0.103 0.095 0.989 0.998 1.010 0.781 0.279 0.264 0.259
0.043 0.084 0.524 0.920 0.923 0.776 0.320 0.112 0.039
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Figure 4-8. Hypersonic boundary layer at 𝑀 = 14, 𝑇𝑤/𝑇𝑟 = 0.18. Results of iterative training procedure.
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Table 4-10. Free-stream and wall conditions for Mach 5 curved wall cases.
𝑢∞ (m/s) 𝜌∞ (kg/m3) 𝑇∞ (K) 𝑇𝑤 (K)

794 0.272 66.2 317

Table 4-11. Relative errors of each model for the curved wall cases.

Model FFW Sharp FFW Shallow FFW Sharp FFW Shallow
𝑒𝜏 𝑒𝑝 𝑒𝜏 𝑒𝑝 𝑒𝜏 𝑒𝑝 𝑒𝜏 𝑒𝑝

𝑘−𝜖 0.616 0.045 0.265 0.038 0.183 0.048 0.187 0.047
𝑘−𝜖−ML 0.334 0.165 0.126 0.029 0.127 0.046 0.073 0.043

thickness. This inflow profile was extracted from a precursor flat plate RANS simulation using
the baseline 𝑘−𝜖 model with the CA correction and 𝐶𝜖 set to −1.0, which is also used as the base
𝑘−𝜖 model for training purposes. All cases share the same freestream and wall conditions which
are provided in Table 4-10. As the separation bubble is highly sensitive to the turbulence model
this dataset benefits from an iterative training procedure allowing the model to be retrained as the
separation bubble changes, which can significantly alter the downstream profiles. We note that the
database includes 5 sample profiles (U2 and L1-L4) for each case. When comparing with DNS,
profiles L1 and L3 were allowed to float positions so they would be just before separation or just
after reattachment if flow separation occurred. Due to the growth of the separation bubble the steep
FFW case profile U2 was also allowed to float so that this profile would be at least 1 𝛿 upstream of
separation, i.e., in the undisturbed flow.

The results of the iterative training procedure can be found in Figures 4-9 and 4-10. For all results
there is an initial adjustment at the start of the domain due to the inflow profile not including the
ML model adjustment, this however does not appear to significantly impact results. First examining
pressure, there is relatively negligible change in predicted pressure with the exception of the FFW
steep case. Here, predictions are worsened due to a drop in peak pressure. This is however
expected with the growth of the separation bubble lowering peak pressure. Wall shear stress shows
improvement in the upstream region and in the prediction of peak shear stress even though the
separation bubble grows larger as a result of the decreased shear. The relative error for each case
is reported in Table 4-11, where shear stress is shown to improve by about a factor of 2 over the
domain while pressure shows minor improvement, with the exception to the previously mentioned
FFW sharp case.

4.9.2. Global model training

Having computed improved RANS solutions for each of the training cases we now develop global
discrepancy models trained on all of the data. As discussed in Section 4.8.1, we balance the dataset
by duplicating each channel flow case 8 times and each hypersonic boundary layer case 5 times. We
train an ensemble comprising 10 models for the anisotropy discrepancy. For training, all settings
are the same as that discussed in Section 4.8.2.
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(a) FFW Steep (b) FFW Shallow

(c) BFW Steep (d) BFW Shallow
Figure 4-9. Hypersonic curved wall at 𝑀 = 4.9, 𝑇𝑤/𝑇𝑟 = 0.91. Results of iterative training procedure on

wall pressure predictions.
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(a) FFW Steep (b) FFW Shallow

(c) BFW Steep (d) BFW Shallow
Figure 4-10. Hypersonic curved wall at 𝑀 = 4.9, 𝑇𝑤/𝑇𝑟 = 0.91. Results of iterative training procedure on

wall shear stress predictions.
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Figure 4-11. Global training. Loss function vs. epoch for each ensemble member.

Figure 4-11 shows the convergence of the loss function on the validation set as a number of
epochs for each member. We note that the loss is negative as we minimize the log-likelihood. We
observe that all members of the ensemble behave similarly. Application of the calibration procedure
described in Section 4.4 results in a scaling constant of 𝐶̂ ≈

√
1500.

4.10. Test cases

We now consider results of our global ML model applied to various test cases spanning different
physics. These physics include low speed boundary layers, jets, separated flows, high speed
boundary layers, SBLIs, and compression ramps/flares.

4.10.1. Zero pressure gradient flat plate boundary layer

We first consider a zero-pressure gradient boundary layer. The case setup follows the “2DZP: 2D
Zero Pressure Gradient Flat Plate Validation Case” as described on the NASA turbulence modeling
resource, and we compare to the DNS data by Sillero at el. [79]. For all simulations, we start from
a uniform free-stream value and converge our solver with a uniform time step at a CFL of 1000.
Figure 4-12 shows results for the velocity, Reynolds shear stress, and friction coefficient, while
Table 4-12 tabulates errors between the RANS models and the DNS data by Sillero at el. [79]. For
this problem we define an error metric for skin friction as

𝑒𝐶 𝑓 =

√√√√√√√∫ 6660
4000

(
𝐶DNS
𝑓
− 𝐶RANS

𝑓

)2
𝑑Re𝜃∫ 6660

4000

(
𝐶DNS
𝑓

)2
𝑑Re𝜃

.
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Figure 4-12. Flat plate. Predictions for velocity (left), Reynolds shear stress (center), and friction
coefficient (right). K-S stands for the Karman-Schoenherr relation.

Table 4-12. Relative errors for zero-pressure gradient flat plate boundary layer.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒𝑢 𝑒𝜏12 𝑒𝑐 𝑓

0.0041 0.2136 0.1195
0.0001 0.1283 0.0135

We note that Re𝜃 = 6600 is the last value available in the DNS dataset and occurs in the RANS
solutions at around 𝑥 = 0.6. We also note that RANS solutions at Reynolds numbers lower than
Re𝜃 = 4000 are very near the leading edge and are not fully turbulent. We additionally consider
QoI errors for (wall-normal) streamwise velocity and Reynolds stress profiles at Re𝜃 = 6500 which
we define as

𝑒𝑞 =

√√√√∫ 𝑦+2
0

(
𝑞DNS − 𝑞RANS)2

𝑑𝑦+∫ 𝑦+2
0

(
𝑞DNS)2

𝑑𝑦+

for 𝑞 = 𝑢+, 𝜏12 and where 𝑦+2 = 5100 is the last point in the DNS dataset. The 𝑘−𝜖−ML model is
seen to improve upon the baseline 𝑘−𝜖 model for all quantities. The Lipschitz continuous network
formulation results in a relatively smooth Reynolds stress prediction, with the exception of a slight
kink near the wall and edge of the buffer layer. Before proceeding, we investigate the impact of three
aspects of our formulation: (1) the impact of ensembles, (2) the impact of Lipschitz continuity, and
(3) the impact of the number of tensor bases.

4.10.1.1. Impact of ensembles

We briefly highlight the impact of ensembles. Figure 4-13 shows residual convergence (left) and
QoI convergence (right) for ML-enhanced RANS simulations starting from a uniform freestream
utilizing ML models trained with two different formulations: a single Lipschitz-continuous tensor-
basis neural network and an ensemble formulation. We note that these networks employ a slightly
different training dataset than that described above, and the purpose here is to simply highlight
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Figure 4-13. Flat plate. Impact of ensemble formulation. Residual convergence (left) and convergence of
the drag coefficient (right).

the impact of the ensemble formulation. The standard 𝑘−𝜖 model is additionally included. The
training configuration between the single network and the ensemble of networks is equivalent.
Figure 4-13 shows that the single network formulation leads to an un-converged solution. After
about 10 iterations, the solver returns NaNs. In contrast, the ensemble formulation results in
iterative convergence on par with the baseline 𝑘−𝜖 model. While these results vary from case
to case and trained network to trained network we have, in general, observed that the ensemble
formulation is more robust than a single network formulation.

4.10.1.2. Impact of Lipschitz-continuous regularization

We briefly assess the impact of the Lipschitz-continuous networks. We train three ensembles of
TBNNs with layer-wise Lipschitz constants of 𝑘 lip = 1.75, 3, 4. All other hyper-parameters are the
same between the networks. As expected, we observe that lowering the Lipschitz constant results
in a higher testing loss. We again note that these networks employ a slightly different training
dataset and configuration than what is described above, and the goal of this section is simply to
highlight the impact of Lipschitz continuity. Figure 4-14 shows residual convergence, predicted
Reynolds shear stress, and velocity profiles predicted by the three formulations on the flat plate
case. Although they (surprisingly) display reasonable residual convergence, the networks with
high Lipschitz constants produce noisy Reynolds stress fields. These Reynolds stress fields in turn
impact mean profiles and result in velocity profiles that violate the log-law. In general, we have
observed that enforcing a lower Lipschitz constant results in more robust networks with smoother
outputs. Too low of a Lipschitz constant does reduce network accuracy, however.
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Figure 4-14. Flat plate. 𝑘−𝜖−ML results for different layer-wise Lipschitz constants.

4.10.1.3. Impact of number of tensor bases

We consider solutions with an ensemble of tensor-basis neural networks with two configurations:
one where we use all four bases of the TBNN ensemble and one where we only use the first basis.
We emphasize that the two configurations correspond to the same networks; the one basis ensemble
is just a truncated version of the four-basis ensemble. Figure 4-15 shows the velocity profiles,
Reynolds stress profiles, and iterative convergence of the different models. As expected from the
analysis provided in Section 4.3.1, the one basis and four-bases solutions lie on top of each other.
This result demonstrates that the higher-order tensor bases have a minimal impact the dynamics of
the flow for a subsonic, zero-pressure gradient boundary layer.

4.10.2. Wall-mounted hump

We next consider the “2D NASA Wall-Mounted Hump Separated Flow” case as summarized on
the NASA TMR; Figure 4-16 depicts the problem schematic as described on the TMR. This case
comprises flow separating over a smooth body. Experiments of this configuration are summarized
in Refs. [25, 24, 55] and data are available on the TMR. For this problem we define error metrics
for skin friction and pressure coefficient as

𝑒𝑞 =

√√√√∫ 𝑥2
𝑥1

(
𝑞EXP − 𝑞RANS)2

𝑑𝑥∫ 𝑥2
𝑥1

(
𝑞EXP)2

𝑑𝑥

for 𝑞 = 𝐶 𝑓 , 𝐶𝑝. We additionally consider QoIs for field metrics which are defined as Eq. (4.9.1) for
𝑞 = 𝑢̃1, 𝑢̃2, 𝜏12. Figure 4-17 depicts the pressure coefficient and skin friction as a function of the
streamwise location for the 𝑘–𝜖 and 𝑘–𝜖–ML models. The inclusion of the ML model results in
small but improved predictions for both skin friction and pressure coefficient. Pressure coefficient
is captured slightly better throughout the separation region between roughly 0.6 ≤ 𝑥 ≤ 1.2, and
predictions for skin friction are noticeably improved downstream of separation. We do observe that
the 𝑘−𝜖−ML slightly under predicts the peak skin friction, and we observe small “wiggles" in the
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Figure 4-15. Flat plate. Impact of number of TBNN bases. Velocity profiles (top left), Reynolds shear
stress (top right), residual convergence (bottom left) and convergence of the drag coefficient (bottom

right).
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Figure 4-16. NASA hump. Problem configuration (figure taken from NASA TMR).

Table 4-13. Relative errors for wall-mounted hump problem.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒𝑢 𝑒𝑣 𝑒𝜏12 𝑒𝑐 𝑓 𝑒𝑐𝑝

0.0916 0.3767 0.4922 0.2368 0.1502
0.0683 0.2909 0.4469 0.1832 0.1099

solution near reattachment. Figure 4-18 shows contours of the 𝑥1 and 𝑥2 velocities predicted by the
𝑘−𝜖 and 𝑘−𝜖−ML models. The addition of the ML model results in small differences. We observe
a slightly stronger recirculation region around 𝑥 = 0.8, as indicated by a larger negative 𝑥1 velocity
and a larger 𝑥2 velocity.

Table 4-13 tabulates the relative errors between the RANS solution and experiment for skin friction,
pressure coefficient, 𝑥1 and 𝑥2 velocities, and Reynolds stress. Comparing 𝑘−𝜖−ML to the standard
𝑘−𝜖 model, we observe 15-30% lower errors for all metrics. Most pronounced are the 30%
improvements to the pressure coefficient and the velocity fields.

4.10.3. Axisymmetric jet

The next flow we consider is an axisymmetric subsonic jet flow as detailed on the NASA TMR.
The flow is characterized by a M = 0.5 jet exiting into an almost quiescent M = 0.01 background.
Experimental data for this configuration are detailed in [8] and are readily available on the NASA
TMR. The problem configuration is shown in Figure 4-19. For a QoI 𝑞, error metrics for this
problem are defined as in Eq. (4.9.1).
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Figure 4-17. NASA hump. Pressure coefficient (left) and skin friction (right) as a function of streamwise

location.

Table 4-14. Relative errors for the axisymmetric jet.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒𝑢 𝑒𝑣 𝑒𝜏12

0.0878 0.4871 0.3264
0.0765 0.4183 0.2877

Figure 4-20 shows the centerline velocities as predicted by the 𝑘−𝜖 and 𝑘−𝜖−ML models as a
function of downstream distance at 𝑦 = 𝑧 = 0. We observe that the 𝑘−𝜖 model under-predicts the
centerline velocity magnitude by a significant margin, while the 𝑘−𝜖−ML model yields improved
solutions. This result is enforced in Figure 4-21, which shows contours of the mean flow solutions
for the 𝑘−𝜖 and 𝑘−𝜖−ML models as compared to the experimental PIV measurements. The
𝑘−𝜖 model is seen to under-predict the distance which the jet exhausts into ambient background,
while the 𝑘−𝜖−ML model results in a prediction that is more qualitatively accurate. Table 4-14
tabulates the quantity-of-interest errors for axisymmetric jet problem. The 𝑘−𝜖−ML model results
in improved predictions across all three quantities of interest.

4.10.4. Mach 11 cold-wall boundary layer

We consider a Mach 11, cold-wall boundary layer under conditions that match a Mach 11.1
hypersonic turbulent flat plate boundary layer tested at Calspan–University of Buffalo Research
Center (CUBRC) [22, 23]. DNS results for this case are reported in Refs. [105, 35, 34]. Baseline
RANS models result in a systematic over-prediction of both skin friction and wall heating at high
Reynolds numbers [35, 1, 23, 15]. As described in Ref. [61], to account for the leading-edge
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Figure 4-18. NASA hump. RANS predictions and PIV measurements for 𝑥1 (left) and 𝑥2 (right) components

of the velocity.
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Figure 4-19. Axisymmetric jet. Problem configuration (figure taken from NASA TMR).
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Figure 4-20. Axisymmetric jet. Centerline velocities.
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Figure 4-21. Results for axisymmetric jet. In each figure the RANS solution is depicted for 𝑦 > 0 and the

PIV data are depicted for 𝑦 < 0.
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Figure 4-22. Mach 11 boundary layer. Comparison of RANS solutions to the DNS reported in Ref. [34].

shock we employ modified free-stream boundary conditions such that the post-shock conditions
match those of the corresponding DNS simulations and CUBRC experiments; these modified
boundary conditions are given in Ref. [61]. Experimental free-stream conditions are reported
in [49]. Figure 4-22 shows predictions for the Van-Driest transformed velocity, 𝜏11, 𝜏22, and 𝜏12
Reynolds stresses, and compares them to the DNS results reported by Huang et al. [34]. Figure 4-
23 reports skin friction and wall heat flux results, while QoI errors are given in Table 4-15. The
𝑘−𝜖−ML model results in overall improved predictions. In particular, the 𝑘−𝜖−ML model results
in a decrease in both skin friction and heat flux which are in better agreement with high-fidelity
data.

Examining the Reynolds stresses, we observe that the ML model amplifies the 𝜏11 component of
the Reynolds stress while suppressing the 𝜏22 component. The normal components of the Reynolds
stress tensor do not make a significant impact on the dynamics of a low-speed boundary layer, as
evidenced in Section 4.10.1.3. Exploring the performance of the TBNN, we find that the situation
is different for hypersonic boundary layers. Figure 4-24 shows solutions for wall heat flux and wall
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Figure 4-23. Mach 11 boundary layer. Wall shear stress (left) and wall heat flux (right).

Table 4-15. Relative errors for the M11Tw020 case.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒𝑢 𝑒𝑇 𝑒𝜏12 𝑒𝜏11 𝑒𝜏22 𝑒𝜏𝑤 𝑒𝑞𝑤

0.1573 0.2307 0.1601 0.5840 1.1156 0.2386 0.2514
0.0879 0.3206 0.1636 0.2149 0.3878 0.1555 0.1218

shear stress using a one-basis and four-basis TBNN. Like the subsonic flat plate, note that the two
configurations correspond to the same networks; the one basis TBNN is just a truncated version of
the four-basis TBNN. The predictions of the two configurations deviate; this is unlike the subsonic
case reported in Figure 4-15. Investigation of this discrepancy shows that it can be attributed to the
contribution of the wall-normal Reynolds stress in the wall-normal momentum equation. As shown
by Barone et al. [4], the wall-normal momentum equation in a flat plate boundary layer reduces
to

𝑑𝑝

𝑑𝑥2
=
𝜕𝜏22
𝜕𝑥2

,

where we have assumed 𝑥2 to be the wall-normal coodinate. In low-speed boundary layers, the
wall-normal component of the Reynolds stress is small compared to the mean pressure, and the
above can safely be reduced to 𝑑𝑝

𝑑𝑥2
= 0. The situation appears to be different for high Mach number

boundary layers, where the Reynolds stress becomes non-negligible compared to the pressure. As
a result, changes to the wall-normal Reynolds stress in turn impact the pressure (and, as a result, the
dynamics of the flow). Although not shown, the four-basis TBNN results in improved predictions
for wall-normal pressure and density profiles. In the present context, the four-basis TBNN (which
suppresses the wall-normal component of the Reynolds stress) has the net effect of raising wall
shear stress and wall heating.
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Figure 4-24. Mach 11 boundary layer. Wall shear stress (left) and wall heat flux (right) for four-bases and
one-basis TBNN solutions.

4.10.5. Curved wall

We now consider two cases from the curved wall database [57] that were held out from training.
Each case comprises a curved wall that has a medium steepness which results in incipient or mean
flow separation. In addition to the model described in Section 4.9.2, which we refer to as “Model
1”, another model is tested here to explore the sensitivity of the TBNN to training hyper-parameters.
This second model employs a layer-wise Lipschitz constant of 2.5, was trained using a standard ℓ1

loss opposed to the log-likelihood, and employed a training dataset where each curved wall case
was replicated two times. We will refer to this model as “Model 2”. Figures 4-25 and 4-26 show
results of these two models. Both models predict relatively the same thing, however, Model 1 gives
smoother results. This indicates that even with changes in the training configuration the model still
follows essentially the same trends. As the results are roughly the same further discussion will be
on Model 1.

Pressure predictions are essentially unchanged except on the curved wall section of the FFW
medium case where predictions are worsened. This is due to the occurrence of flow separation
which drops peak pressure. It should be noted that the DNS indicates incipient separation albeit
not mean flow separation, so this result is not unreasonable with the corrected shear stress. Shear
stress shows modest improvements to the predictions of upstream and peak shear stress even though
there is a mismatch in separation prediction. The expected enhancement of separation is apparent
with both cases which results in separation for the FFW medium case, while the BFW medium case
does not quite separate. Overall the models improve predictions as can be seen in the reduction in
relative error noted in Table 4-16.
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(b) Model 2 FFW Medium
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(c) Model 1 BFW Medium
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(d) Model 2 BFW Medium
Figure 4-25. Hypersonic curved wall at 𝑀 = 4.9, 𝑇𝑤/𝑇𝑟 = 0.91. Results of combined models for wall

pressure predictions.

Table 4-16. Relative errors of each model for the curved wall test cases.

Model FFW Medium BFW Medium
𝑒𝜏 𝑒𝑝 𝑒𝜏 𝑒𝑝

𝑘 − 𝜖 0.467 0.048 0.133 0.068
𝑘 − 𝜖 − 𝑀𝐿1 0.386 0.127 0.110 0.065
𝑘 − 𝜖 − 𝑀𝐿2 0.404 0.189 0.133 0.064

83



0.15 0.20 0.25 0.30 0.35 0.40 0.45

x (m)

0

100

200

300

400

w
, N

/m
2

DNS
k-eps
k-eps-ml

(a) Model 1 FFW Medium

0.15 0.20 0.25 0.30 0.35 0.40 0.45

x (m)

0

100

200

300

400

w
, N

/m
2

DNS
k-eps
k-eps-ml

(b) Model 2 FFW Medium
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(c) Model 1 BFW Medium

0.15 0.20 0.25 0.30 0.35 0.40 0.45

x (m)

0

20

40

60

80

100

w
, N

/m
2

DNS
k-eps
k-eps-ml

(d) Model 2 BFW Medium
Figure 4-26. Hypersonic curved wall at 𝑀 = 4.9, 𝑇𝑤/𝑇𝑟 = 0.91. Results of combined model on wall shear

stress predictions.
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Figure 4-27. Mach 5 shock boundary layer interaction. RANS predictions for QoIs.

Table 4-17. Relative errors for Schülein shock boundary layer interaction.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒𝜏𝑤 𝑒𝑝 𝑒𝑞𝑤

0.7608 0.2689 1.2841
0.5545 0.2635 0.4622

4.10.6. Shock boundary layer interactions at M = 5.0

We consider a shock boundary layer interaction with an impinging shock at 14◦, a free-stream
Mach number of M = 5.0, and with a cooled wall at a wall-to-recovery ratio of 𝑇𝑤

𝑇𝑟
= 0.8. The cases

match the experimental conditions of Schülein [78]. DNS of these configurations, but at a lower
Reynolds number, are reported in Volpiani et al [91].

Figure 4-27 reports results for wall shear stress, wall pressure, and wall heat flux. Table 4-17
tabulates errors for wall quantities for both cases.2 As previously reported, the baseline 𝑘−𝜖 model
under-predicts the size of the separation region and dramatically over-predicts heat flux. The
𝑘−𝜖−ML model results in substantial improvements. In particular, the size of the separation region
is slightly increased and the over-prediction in heat flux is reduced. The wall shear stress at and
downstream of reattachment is decreased slightly. Despite the improvements, over-prediction of
the heat flux at the point of reattachment is still significant.

4.10.7. CUBRC Hollow Cylinder Flare

The final test case we consider is run 13 of the CUBRC hollow cylinder flare (HCF). The HCF run
13 corresponds to a Mach 6 axisymmetric hollow cylinder flare with a 36◦ ramp. A schematic of
the experimental configuration is shown in the following chapter in Figure 5-12. Figure 4-28 shows
the wall pressure and wall heat flux predicted by the baseline and ML-enhanced models. Table 4-18

2The reported errors correspond to the relative ℓ2 norm of the point-wise error between the RANS prediction and
experimental data.
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Figure 4-28. CUBRC hollow cylinder flare. Run 13.

Table 4-18. Relative errors for HCF run 13.

Model

𝑘−𝜖
𝑘−𝜖−ML

𝑒𝑝 𝑒𝑞𝑤

0.4644 1.3806
0.4057 1.5780

tabulates the relative errors between the predictions and the experimental data. We observe that the
ML model has a positive impact on the predictions. Similar to the impinging SBLI, we find that the
size of the separation region is improved, which in turn results in an improved prediction of peak
pressure. We additionally find a better prediction for wall heat flux on the forebody. However, we
find that the ML-enhanced model does not improve wall heat flux near the point of reattachment.
Indeed, the ML model predicts a higher peak wall heat flux, although we do note that this increased
heat flux can largely be attributed to the larger separation region. However, the TBNNs clearly do
not address the over-prediction in peak wall heat flux.

4.11. Summary and outlook

This chapter presented an approach for developing improved models for the Reynolds stress tensor
via TBNNs. The approach was used to improve upon a baseline 𝑘−𝜖 model. To improve robustness
of the ML-enhanced model, we developed Lipschitz-continuous versions of the TBNN leveraging
calibrated deep ensembles to quantify model uncertainties. We additionally performed analysis
of the TBNN architecture for parallel flows, where we demonstrated that most higher-order tensor
bases only modulate the normal component of the Reynolds stress. We discussed the implications
of this finding for boundary layer flows.

We presented numerical results across a range of low-speed and high-speed exemplars. We
observed that the ML-enhanced RANS model led to improved predictions for most QoIs in almost
all cases. We further observed that the use of Lipschitz-continuous networks and deep ensembles
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increased model robustness. For subsonic boundary layer flows, numerical results demonstrated
the higher-order tensor bases have no impact on the solution given that they only modulate the
normal component of the Reynolds stress. For hypersonic boundary layers, the machine-learned
model resulted in lower wall shear stress and heat flux as compared to the baseline 𝑘−𝜖 model.
Results for these cases demonstrated that the wall-normal Reynolds stress makes an appreciable
contribution to the wall-normal momentum balance and impacts the overall flow. Lastly, for SBLIs
and compression ramps, the ML corrections resulted in improved performance as compared to the
baseline model. In particular, the size of the separation region was better predicted. However,
the resulting model formulation tended to still under-predict the size of the separation region and
over-predict heat flux near the point of reattachment.

The results in this chapter demonstrate the ability to develop a generic RANS model resulting
in improved results over a variety of cases using data-driven techniques. For hypersonic SBLIs,
however, we find that the improvements to the Reynolds stress model via TBNNs result in improved
predictions for QoIs that are not, on the surface, “better” than classical improvements shown in
Chapter 3, e.g., rapid compression corrections. While a generic model is appealing, the use-
proposition for practical analyses remains unclear. The strongest such argument from the authors’
perspective is that TBNNs result in a Reynolds stress model that is closer to truth, and fewer
additional corrections are then required.

The developed TBNNs did not improve the over-prediction in wall heat flux near the point of
reattachment. We hypothesize that this over-prediction is due to modeling of the turbulent heat
flux, and the subsequent chapter will examine the development of variable turbulent Prandtl number
models to address this issue.
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5. VARIABLE TURBULENT PRANDTL NUMBER MODELING

We develop a neural-network-based variable turbulent Prandtl number model for the 𝑘−𝜖 turbulence
model using field inversion and machine learning (FIML) for improved wall heating predictions in
hypersonic shock boundary layer interactions (SBLIs). The model is developed by performing a
finite-dimensional field inference for a spatially varying turbulent Prandtl number on six canonical
SBLIs: three compression ramps at Mach 8 and three impinging shocks at Mach 5. The inference
results identify a turbulent Prandtl number that reduces wall heating by systematically directing
heat transfer away from the wall. An ensemble of neural networks is then trained on the inferred
turbulent Prandtl number fields to develop a predictive model. We test the resulting variable
turbulent Prandtl number model on a suite of test cases including the hollow cylinder flare and
HIFiRE ground test experiments. We find that the learned model systematically and substantially
improves wall heating predictions as compared to the baseline 𝑘−𝜖 model, a 𝑘−𝜖 model augmented
with various high speed corrections, and the SST model.

5.1. Introduction

The modeling improvements to the Reynolds stress tensor proposed in Chapter 4 were seen to
improve the predictive capability of RANS models across a suite of test cases. However, the
TBNN corrections had a nominal impact when deployed on shock boundary layer interactions.
In particular, TBNNs did not address the over-prediction in peak wall heat flux near the point of
reattachment. This chapter aims to address this issue by developing a variable turbulent Prandtl
number model to improve the model for the turbulent heat flux.

The organization of this chapter proceeds as follows. Section 5.2 provides an overview of the
relevant literature. Section 5.3 outlines a field inference approach, while Section 5.4 presents
inference results across our training cases. Next, Section 5.5 outlines our framework for learning
the inferred fields, while Section 5.6 provides results on a suite of test cases. Section 5.7 provides
a brief analysis and interpretation of how the ML model reduces the wall heat flux. Sections 5.8
and 5.9 discuss iterative and grid convergence. A chapter summary is provided in Section 5.10.
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5.2. Literature review

Various efforts have targeted improved predictions for surface heating in SBLIs over the years.
Here we provide a (necessarily) non-comprehensive review. In Refs. [13, 12], Coakley, Huang, and
co-authors propose several modifications to two-equation models to improve their performance in
hypersonic flows. In particular, they propose rapid compression corrections to enhance separation
in SBLIs which result in improved predictions for wall pressure. They further propose a length-
scale limiter that clips the turbulent length-scale near the wall so that it does not exceed an algebraic
length-scale based on the distance to the wall. This length-scale correction results in improved
predictions for wall heating.1 Another approach to improve predictions for wall heating in SBLIs is
to improve the model for the turbulent heat flux. Classically, the turbulent heat flux is modeled via
a gradient-diffusion hypothesis with a constant turbulent Prandtl number model taking on a value
of Prt = 0.9. This value is appropriate for canonical boundary layers, but is known to be deficient in
SBLIs. To address this, researchers have pursued variable turbulent Prandtl number models. Xiao
et al. [103] and Ott et al. [59] have examined the development of variable turbulent Prandtl number
models that are based on the addition of extra transport equations for the temperature variance
and its dissipation rate. These models incur a higher computational cost due to the need to solve
additional transport equations, and require further development for high-speed SBLIs [59]. Another
approach has been proposed by Roy and Sinha [70, 69], who developed a variable turbulent Prandtl
number model based on the linearized Rankine Hugoniot conditions applied to shock turbulence
interaction. The resulting model is dependent on non-local conditions (e.g., the density ratio across
a shock wave), and an additional transport equation for a “shock strength" variable is added to make
a local model. The model results in improved wall heating and has been demonstrated on a variety
of hypersonic cases, but at the time of this writing, has not gained widespread use. In contrast
to non-local or transport-equation-based models, several groups have pursued the development
of algebraic turbulent heat flux and variable Prandtl number models [90, 6, 45, 99], several of
which are targeted at hypersonic flows [90, 6]. These models are often based on approximations
to the transport equations for the turbulent heat flux, but have yet to show systematic success on
hypersonic SBLIs.

In recent years, SciML-based approaches have been deployed to improve heat flux modeling, and
here we highlight work relevant to learning a variable turbulent Prandtl number model. First,
to the best of our knowledge, Jordan [38] is the only work in the open literature that develops
a data-driven turbulent Prandtl number tailored to hypersonics. In the approach, Jordan utilizes
an equation learning approach and high-fidelity data from hybrid RANS/LES to train a variable
turbulent Prandtl number model for the shear stress transport (SST) turbulence model. The model
is deployed across a variety of hypersonic SBLI cases and shows consistent improvement. The
performance of the model, however, was typically bounded by the performance of the Menter
baseline model (BSL) and SST, which is problematic for cases where both models over-predict

1However, we note that the length-scale limiter also reduces wall shear which was not examined in Refs. [13, 12]. For
the cases considered in this manuscript, this reduced wall shear is in worse agreement with the experimental data.
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wall heat flux. Several other bodies of work have considered learning variable turbulent Prandtl
number models, but not in the context of hypersonics. Xu et al. learn a variable turbulent Prandtl
number model for buoyancy-effected flows using symbolic learning [104]. Milani, Ling, and co-
authors develop data-driven models for scalar flux modeling [52, 50, 51]. Initial work focused on
learning a gradient-diffusion-based model with a learned turbulent diffusivity, while later works
developed scalar flux models by extending tensor-basis neural network formulations. In all works,
it is assumed that high-fidelity data for the scalar flux are available. These models have been shown
to improve heat transfer predictions in incompressible flows.

A challenge for building a data-driven turbulent Prandtl number model for hypersonics is the lack
of experiments and simulations in which high-fidelity full-field data are available. Performing
experiments that produce full-field measurements of the turbulent heat flux at hypersonic Mach
numbers is extremely difficult, and at the time of this writing, only a few direct numerical simulations
of hypersonic shock boundary layer interactions exist [91, 66, 14, 57].2 There is, however, a
considerable amount of experimental data for wall quantities of interest (wall pressure, wall heat
flux, and wall shear stress) for hypersonic shock boundary layer interactions across a range of
flow conditions. To this end, another relevant body of machine learning efforts are field inference
(FI) based approaches [62, 83, 84, 80, 87]. In these methods, a corrective field is embedded
in the (deficient) model, and the field is then inferred to minimize the misfit on the quantity of
interest (QoI), e.g., wall quantities that have been measured in experiments. In terms of obtaining
a predictive model, both two-step [62, 84, 80] (infer the field at each grid point, and then learn
the field as a function of features) and one-step [87, 31, 30] (parameterize the corrective field in
terms of a model, and directly infer the model parameters) approaches have been considered. Both
approaches have resulted in improved model forms.

The goal of this chapter is to improve predictions for wall heating in hypersonic SBLIs. To this
end, we develop a variable turbulent Prandtl (variable−Prt) number model using the two-step
FIML framework [80, 62, 84]. We pursue field inference-based approaches due to the limited
amount of field data available for hypersonic SBLIs as well as the significant discrepancy between
existing RANS models and truth. We further pursue the classic two-step approach proposed in
Refs. [80, 62, 84], rather than the one-step approaches deployed in Refs. [87, 31, 30], so as to more
easily enable training on a large suite of cases, explore various feature sets, and more effectively
train an accurate neural network. We emphasize that we do not discount a one-step approach, and
that the present work provides insight that can be leveraged in a one-step approach (e.g., feature
sets that perform well). We develop our variable turbulent Prandtl number for the 𝑘−𝜖−RC model
documented in Chapter 3 that contains a rapid compression correction calibrated to improve the
prediction of the separation region in hypersonic SBLIs. We develop our model for the 𝑘−𝜖
model as opposed to the more widely used SST model due to the observation that 𝑘−𝜖 gave more
reliable predictions for the size of the separation region and peak wall shear (see Chapter 3). This
allowed us to focus on improved predictions for wall heating. We emphasize that the presented

2We further note that the mismatch between experimental data and DNS simulations for these flows is oftentimes
significant [91, 14].
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approach is model agnostic and could be used to develop an improved SST model. To compare to
other established approaches, we compare our developed variable turbulent Prandtl number model
to its baseline variant using a constant turbulent Prandtl number, a 𝑘−𝜖 model employing rapid
compression corrections, the Catris and Aupoix corrections, and a length-scale limiter, and the SST
turbulence model.

5.3. Field inference for a variable turbulent Prandtl number

The aforementioned modifications mitigate, but do not eliminate, the erroneous predictions of wall
heating in SBLIs. We hypothesize that these deficiencies are largely attributed to the constant
turbulent Prandtl number in the turbulent heat flux model (2.0.2) [105, 70, 91, 39, 57]. To this end,
we develop a variable turbulent Prandtl number model via the field inversion and machine learning
(FIML) approach.

To describe the FIML approach, we express the compressible Favre-averaged Navier–Stokes equa-
tions closed with a turbulence model on the spatial domain Ω as

R (𝒖) = 0,

where R is the residual (conservation equations for mass, momentum, energy, turbulent kinetic
energy, and turbulent dissipation) and 𝒖 is the PDE state vector, with components mass, momentum,
energy, and conserved turbulence model variables. Additionally, let 𝒔 denote a quantity of interest
(e.g., wall heat flux).

To improve performance, FIML modifies the governing equations by introducing a field discrepancy
term. Mathematically,

RFI (𝒖; 𝛽) = 0,
where RFI is the modified residual function and 𝛽 : Ω → R is the field discrepancy term. In the
present work, we focus on modifying the turbulent heat flux for improved wall-heating predictions.
To this end, we use the field discrepancy term to modify the turbulent Prandtl number arising in
the energy equation. Mathematically, the modified turbulent heat flux is written as

𝑞′𝑗 = 𝛽
𝑐𝑝𝜇𝑡

Prt

𝜕𝑇

𝜕𝑥 𝑗
.

The objective is to infer a spatially-varying correction 𝛽 to minimize misfit in the wall heat flux.

5.3.1. Field inference

To infer the corrective field 𝛽, we solve the field inference problem
minimize

𝛽
J (𝒔 (𝒖, 𝛽) , d)

subject to RFI (𝒖, 𝛽) = 0,
(5.3.1)
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where J is the objective function (e.g., mismatch between the RANS wall heat flux and high-
fidelity measurements) and d is high-fidelity data. We employ gradient-based optimization with a
steepest decent algorithm to solve the inference problem. We set 𝛽0(𝑥) = 1, compute the gradient
of the objective function, and update the correction as

𝛽𝑛+1 = 𝛽𝑛 − 𝜖 𝑑J
𝑑𝛽

,

where 𝜖 ∈ R+ is the step size. The optimization continues for 𝑛 = 1, 2, . . . until convergence is
reached.

A principal challenge for solving the optimization problem (5.3.1) via gradient-based optimization
is computation of the (discretely high-dimensional) gradient, 𝑑J

𝑑𝛽
. The most effective approach is

(discrete) adjoint-based optimization. In this approach an auxiliary set of adjoint equations are
solved, and from this auxiliary set of equations the gradient of the objective function with respect
to the field correction can be computed in one step. While effective, adjoint-based formulations for
field inversion are not available or easily accessed in a variety of codes.

An alternative approach, and the one employed here, is to perform a finite-dimensional field
inference by restricting the corretion to live within a low-dimensional affine subspace, 𝛽 ∈ V with
dim (V) = 𝐾 . To this end, let 𝝓𝑖, 𝑖 = 1, . . . , 𝐾 with span{𝝓𝑖}𝐾𝑖=1 + 1 = V denote a (discretely)
orthonormal basis spanningV−1. We note the use of an affine offset of value 1 to exactly represent
a constant field with a value of 1, which corresponds to the baseline model (i.e., no correction).
The field correction can be written as

𝛽(𝑥) =
𝐾∑︁
𝑖=1

𝝓𝑖 (𝑥) 𝛽𝑖 + 1.

The advantage of this representation is that the derivative of the objective function can be obtained
with O (𝐾) forward evaluations of the model; in the present work we employ first-order finite
differences, which requires 𝐾 + 1 evaluations. This approach, while more expensive than adjoint-
based optimization, requires only a primal solver and is less intrusive.

5.3.2. Random field expansions

Performing the finite-dimensional field inference step outlined above requires identifying the basis
functions, 𝝓𝑖, 𝑖 = 1, . . . , 𝐾 . We employ random fields and principal component analysis for this
purpose. To this end, let P denote a probability space and let 𝑇 denote a random field on Ω such
that ∀𝑥 ∈ Ω, 𝑇 (𝑥) is a random variable on P. Further, let 𝑇𝑖, 𝑖 = 1, . . . , 𝑛𝑠 denote i.i.d. samples of
𝑇 . Given these samples, we identify a low-dimensional basis for the random field by solving the
optimization problem

minimize
{𝝓𝑖}𝐾𝑖=1,(𝝓𝑖 ,𝝓 𝑗)𝑤=𝛿𝑖 𝑗

𝑛𝑠∑︁
𝑖=1
∥ (𝑇𝑖 − 1) −

𝐾∑︁
𝑖=1

(
𝝓 𝑗 , 𝑇𝑖 − 1

)
𝑤
𝝓 𝑗 ∥2𝑤 (5.3.2)
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where (·, ·)𝑤 denotes the 𝐿2(Ω) weighted inner product, 𝑤 : Ω → R+ denotes the weighting, and
∥𝑣∥2𝑤 =

∫
Ω
𝑤(𝑥)𝑣(𝑥)2𝑑Ω denotes the weighted 𝐿2(Ω) norm.3 Here, we employ a weighting such

that the bases are ℓ2 orthonormal at the discrete level. In practice, this optimization problem can
be solved with the singular value decomposition. Algorithm 2 outlines the algorithm used in this
work.

Algorithm 2 Algorithm for obtaining random field expansions. We use the ®· notation to denote
discrete quantities.
Input: Probability space, P, energy criterion, tol, and number of samples, 𝑛𝑠
Output: (Discrete) basis vectors, 𝝓𝑖, 𝑖 = 1, . . . , 𝐾 .

for 𝑖 = 1, . . . , 𝑛𝑠 do
®𝑇𝑖 ∼ ®P ⊲ Draw (discrete) sample from probability space

end for
S =

[
®𝑇1, . . . , ®𝑇𝑠

]
⊲ Collect samples into snapshot matrix

U, 𝜎,V = svd (S) ⊲ Perform (thin) singular value decomposition
𝑒(𝑘) =

∑𝑘
𝑖=1 𝜎

2
𝑖∑𝑛𝑠

𝑖=1 𝜎
2
𝑖

⊲ Compute energy captured in the first 𝑘 singular values
𝐾 = arg min

𝑘∗
∥𝑒(𝑘∗) − tol∥ ⊲ Determine reduced basis size using energy criterion

𝝓𝑖 = U𝑖, 𝑖 = 1, . . . , 𝐾 ⊲ Set reduced basis to be the first 𝐾 left singular vectors

The expressiveness and dimension of the field expansions depends on the probability space P. In
the present work, we define the probability space as a 𝑑-dimensional Gaussian (where 𝑑 is the
number of spatial dimensions, i.e., 1, 2, or 3) with mean 0 and covariance

𝐾 : (𝒙, 𝒚) ↦→ 𝜎2𝑒(𝒙−𝒚)
𝑇𝚺(𝒙−𝒚)

: R𝑑 × R𝑑 → R+
(5.3.3)

with
𝚺 = diag (ℓ1, . . . , ℓ𝑑) .

The length-scales ℓ𝑑 define the correlations in the 𝑑th dimension, respectively. The value chosen
for these will be detailed in the following section.

Before proceeding, we remark that the field inference results will ultimately depend on the random
field expansion, and different probability spaces will result in different solutions. We emphasize
that the objective of the random field expansions is not to identify a perfect, unique solution 𝛽;
rather it is a means to an end to obtain a finite-dimensional inference problem that is used to
identify fields that can be learned to develop an improved model. Due to the computational (and

3In practice, we solve the optimization problem by simply performing SVD at the discrete level, which formally
corresponds to minimizing in a weighted two norm where the weighting is defined by the cell volumes.
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Table 5-1. Summary of cases for field inference.

Case 𝑀∞ Re𝐿 Shock/ramp angle 𝑇𝑤/𝑇0
Holden Compression Corner Run 12 8.2 146.9 × 106 27◦ 0.29
Holden Compression Corner Run 19 8.1 139.3 × 106 33◦ 0.29
Holden Compression Corner Run 24 8.0 145.3 × 106 36◦ 0.29

Schülein impinging shock 5.0 18.5 × 106 6◦ 0.73
Schülein impinging shock 5.0 18.5 × 106 10◦ 0.73
Schülein impinging shock 5.0 18.5 × 106 14◦ 0.73

human time) expense of performing the finite-dimensional field inference across a suite of cases we
only present results for one inference process here, but we do note that we have explored various
inference hyper-parameters (e.g., correlation lengths, energy cutoffs) and results follow the same
patterns.

5.4. Field inference results

We now present field inference results. We perform field inference on six cases: three Mach
8 compression ramps with corner angles of 27◦, 30◦, and 33◦ degrees from Holden et al. [28]
and three impinging shock boundary layer interactions at Mach 5 with impinging shock angles
of 6◦, 10◦, and 14◦ with experimental data from Schülein [78]. Figure 5-1 shows contours of the
density field for each case to depict the flow and Table 5-1 gives the conditions for each case. All
the training cases are two-dimensional (𝑑 = 2). For all inference cases, the objective function is
the square of the ℓ2 norm of the point-wise error between experimental wall heat flux data and the
RANS predictions, i.e.,

J (𝒔, d) =
𝑛𝑑∑︁
𝑖=1

(
𝑞

exp
wall(𝑥

𝑖) − 𝑞RANS
wall (𝑥

𝑖)
)2
,

where 𝑛𝑑 are the number of available experimental data points and 𝑥𝑖 refers to the wall location at
which the data point is recorded.

We now discuss the definition of the probability space. For all inference cases, we employ a
Gaussian random field in a transformed coordinate system. Specifically, we set the coordinate
system in Equations (5.3.3) to be

𝒙 =

[
𝑥1, log

(
𝑑wall

𝑑min
wall

)]
(5.4.1)

where 𝑥1 (m) is the standard streamwise coordinate, 𝑑wall (m) is the distance to wall in meters, and
𝑑min

wall is the minimum distance to wall value in the computational mesh. We use this transformation
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Figure 5-1. Density contours for Holden compression ramps (top) and the Schülein SBLIs (bottom).

to enable more resolution near the wall. Additionally, we clip the value of the random field to lie
within the range 10−2 ≤ 𝛽 ≤ 100. For all cases, we generate 400 samples of the random field and
perform principal component analysis with an energy criterion of 0.95 to determine the basis, i.e.,
we use Algorithm 2 with inputs tol = 0.95, 𝑛𝑠 = 400, and a probability space corresponding to
Equations (5.3.3) with the length-scales and cutoffs described in this section.

For the Holden compression ramps, the value of 𝑑min
wall is 2.7 × 10−8 (m), 2.46 × 10−8 (m), and

2.42×10−8 (m) for run 12, run 19, and run 24, respectively. For length-scales, we employ ℓ1 = 0.02
(m) and ℓ2 = 1.0. We additionally restrict the random field to only be active for 𝑥 ≥ 0.95 (m) and
𝑑wall ≤ 0.03 (m). For the Schülein SBLIs, 𝑑min

wall = 5.625 × 10−7 (m). As length-scales, we use
ℓ1 = 0.01 (m) and ℓ2 = 0.5. We restrict the random field to only be non-zero for 𝑑wall ≤ 0.02 (m).
When performing field inference, we only infer against experimental data for 𝑥𝑖 ≤ 0.175 (m); after
this point there is an expansion wave in the experiment which is not modeled in the RANS.

Lastly, we make a remark on grid convergence. We have observed that obtaining grid-converged
solutions for hypersonic SBLI cases like the ones tested here is difficult and requires resolution
beyond typical engineering tolerances. The peak heat flux and shear stress near the point of
reattachment are, in particular, difficult to converge. Since our inference technique requires many
evaluation of the forward model, performing it on our finest level of grids would be very expensive.
To accelerate our inference process, it is performed on meshes that are slightly coarser than what
is required for a grid converged solution. Further refinement to grid converged solutions results
in ±5% changes to peak shear stress and heat flux. Mesh convergence is detailed in Section 5.9.
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We emphasize that all results will be presented on our finest level of meshes when we assess the
predictive capabilities of our trained model in Section 5.6.

Figures 5-2 and 5-3 present inference results for the three Holden compression ramps, while
Figures 5-4 and 5-5 present inference results for the Schülein cases. Figures 5-2 and 5-4 show wall
QoIs, while Figures 5-3 and 5-5 show the inferred turbulent Prandtl number fields. We observe the
following:

• In all cases, the inferred solution is able to address the over-prediction in wall heat flux at and
downstream of reattachment.

• There is a rise in wall heat flux downstream of the interval in which experimental data are
available. In practice, this rise in heat flux causes little concern as ultimately this portion of
the field will not be used for training.

• Wall shear stress and wall pressure profiles in the inferred solutions are mostly unchanged
from the baseline model. The most notable deviations are in wall shear stress for the
compression ramps.

• Wall quantities of the inferred models display small oscillations; this is a result of the
finite-dimensional inference.

• For the compression ramps, the inferred turbulent Prandtl number fields are characterized by
a region of high Prt very near the wall (in many areas, Prt > 10) downstream of reattachment.
This region plays the critical role in reducing the wall heat flux. As will be detailed Section 5.7,
in this region the wall-normal turbulent heat flux is negative (moving heat towards the wall).
Increasing the turbulent Prandtl number acts to decrease the magnitude of the turbulent heat
flux, which in turn reduces heat transfer towards the wall.

• For the Schülein cases, the inferred turbulent Prandtl number fields are characterized by a
coherent and consistent region of low Prt after the interaction in the area 0.1 ≤ 𝑥 ≤ 0.2 (m)
and 1 × 10−5 ≤ 𝑦 ≤ 1 × 10−3 (m). We have observed that this change is the primary driver
for a reduced heat flux. An explanation for this is again provided in Section 5.7, where it is
shown that, in this region, the wall-normal turbulent heat flux is positive (moving heat away
from the wall). Decreasing Prt results in an increased turbulent heat flux magnitude, which
in turn moves more heat away from the wall.

5.5. Machine learning

Having inferred 𝛽 across multiple datasets, the task is now to learn it using local flow features to
produce a predictive model. This section describes our ML formulation. Before describing this we
remark that, in the above section, we highlighted that regions of high Prt very near the wall played
an important role in reducing wall heat flux for compression ramps. Compression ramps are of
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(a) Wall shear stress (run 12).
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(b) Wall pressure (run 12).
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(c) Wall heat flux (run 12).

0.90 0.95 1.00 1.05 1.10 1.15

x

−2000

0

2000

4000

6000

8000

10000

12000

τ w
,

N
/m

2

k − ε
k − ε-FI

Experiment

(d) Wall shear stress (run 19).
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(e) Wall pressure (run 19).
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(f) Wall heat flux (run 19).
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(g) Wall shear stress (run 24).
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(h) Wall pressure (run 24).
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Figure 5-2. Holden compression ramps. Inference results for wall QoIs. The uncertainty bounds on
experimental data are estimates given in Ref. [22].
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(b) Run 19.
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(c) Run 24.
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(d) Run 12 (log scale).
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(e) Run 19 (log scale).
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(f) Run 24 (log scale).

Figure 5-3. Holden compression ramps. Inferred turbulent Prandtl number, Prt. The top row shows results
in a linear scale while the bottom results shows results in a log scale using distance to wall as the

vertical axis.
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(a) Wall shear stress (6◦ case).
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(b) Wall pressure (6◦ case).
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(c) Wall heat flux (6◦ case).
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(d) Wall shear stress (10◦ case).
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(e) Wall pressure (10◦ case).
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(f) Wall heat flux (10◦ case).
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(g) Wall shear stress (14◦ case).
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(h) Wall pressure (14◦ case).
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(i) Wall heat flux (14◦ case).

Figure 5-4. Schülein SBLIs. Inference results for wall QoIs for the 6◦ (top), 10◦ (middle), and 14◦ (bottom)
cases. Note: The downstream expansion fan present in the experimental data is not represented in the

RANS as the present configuration only involves an impinging shock on a flat plate.
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(a) 6◦.
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(b) 10◦.
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(c) 14◦.
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(d) 6◦ (log scale).
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(e) 10◦ (log scale).
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(f) 14◦ (log scale).

Figure 5-5. Schülein SBLIs. Inferred turbulent Prandtl number for the 6◦ (left), 10◦ (center), and 14◦ (right)
cases. The top row shows results in a linear scale while the bottom row shows results in a log 𝑦 scale.

primary interest to us, and to be able to most effectively learn this aspect, we choose to learn on a
transformation of Prt of the form

𝑦 = log
(

𝛽

Prnom
t

)
, (5.5.1)

where Prnom
t = 0.9 is the standard value. The motivation for this transformation is that it will

“stretch" the co-domain of the model for regions where Prt is high and more easily enable us to
represent this phenomena.

5.5.1. Features

We use seven features in our variable turbulent Prandtl number model. The first two features
are kinematic features based on the invariance of the strain and rotation tensors, the second two
features are Reynolds number-based features, while the final three features are designed to be active
in regions where compressibility and heat transfer effects are important. The feature set is given
by

𝜼 =

[
Tr(𝑆∗2) Tr(Ω∗2) log(𝜇𝑡/𝜇) 3 tanh

(
1
3𝑑wall

√
𝑘

50𝜈

) 𝜕𝑇̃
𝜕𝑛

(
𝜈3
𝜖

) 1
4

𝑇

√
𝑘√
𝛾𝑅𝑇

min
(
𝑘3/2/𝜖
𝑑wall

, 5
)]𝑇

.
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Here, 𝑆∗
𝑖 𝑗
=

(
𝑆𝑖 𝑗 − 1

3
𝜕𝑢̃𝑘
𝜕𝑥𝑘
𝛿𝑖 𝑗

)
𝑘̃/𝜖 , Ω∗

𝑖 𝑗
= 1

2

(
𝜕𝑢̃𝑖
𝜕𝑥 𝑗
− 𝜕𝑢̃ 𝑗

𝜕𝑥𝑖

)
𝑘̃/𝜖 are non-dimensional strain and rotation

rates, 𝑛 is the wall-normal vector, and we have used the notation𝑄2 =𝑄𝑖 𝑗𝑄 𝑗 𝑘 for a tensor𝑄 ∈ R3×3.
The first two features are the first two invariants of the strain and rotation rate tensors, the third is
the log of the turbulent viscosity ratio, and the fourth is the wall distance Reynolds number with a
smooth cutoff. The fifth feature was selected to highlight thermodynamic effects. We have used
the wall-normal temperature gradient instead of the magnitude of the gradient upon the observation
that the sign of the temperature gradient matters for wall heating. The sixth feature, which is
the turbulent Mach number, enables Mach number sensitivity and increased the capacity of our
models when learning on both incident shock boundary layer interactions and compression ramps
at different Mach numbers. The last feature is motivated by the work of Coakley and Huang [13]
and is the ratio of the length-scale predicted by the RANS model to a distance-to-wall length-scale.
We observed that capping this length-scale ratio improved learning.

5.5.2. Fully connected neural networks

We employ fully connected feed forward neural networks for learning 𝑦 (and hence a variable
turbulent Prandtl number). To this end, let

(
w𝑖, b𝑖

)
, 𝑖 = 1, . . . , 𝑁layer denote the weights and biases

of an 𝑁layer neural network. Given input features 𝜼 ∈ R𝑁 , we learn a (transformed) variable
turbulent Prandtl number model as

𝑦ML : (𝜼; 𝜽) ↦→ 𝑔

(
·,w𝑁layer , b𝑁layer

)
◦ · · · ◦ 𝑔

(
𝜼∗,w1, b1

)
,

where 𝑔 is the activation function, e.g., ReLU, 𝜽 = {w1, b1, · · · ,w𝑁layer , b𝑁layer} denotes the collective
set of weights and biases, and 𝜼∗ denotes the normalized features. To improve the robustness of
our model, we include additional techniques to improve regularity and robustness of the neural
networks.

5.5.2.1. Lipschitz-continuous neural networks

Similar to the previous chapter, we employ Lipschitz continuous neural networks for learning our
variable turbulent Prandtl number model. We refer the reader to Section 4.5 for more details.

5.5.2.2. Ensemble prediction

To further improve the robustness of our networks, we employ an ensemble approach leveraging
multiple learned networks. In the approach, we train an ensemble of networks and utilize the mean
prediction of the ensemble. While not pursued here, we highlight that such an ensemble approach
can be additionally used to approximate model-form uncertainties by analyzing the variance of the
ensemble outputs [43]; we use this approach in the previous chapter.
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Table 5-2. Summary of training dataset.

Case 𝑀∞ Re𝐿 Shock/ramp angle 𝑇𝑤/𝑇0 𝑛data
Holden Compression Corner Run 12 8.2 146.9 × 106 27◦ 0.29 2774
Holden Compression Corner Run 19 8.1 139.3 × 106 33◦ 0.29 3464
Holden Compression Corner Run 24 8.0 145.3 × 106 36◦ 0.29 2832

Schülein impinging shock 5.0 18.5 × 106 6◦ 0.73 10881
Schülein impinging shock 5.0 18.5 × 106 10◦ 0.73 10881
Schülein impinging shock 5.0 18.5 × 106 14◦ 0.73 10881

Mach 6 boundary layer 5.84 8.08 × 106 N/A 0.23 5588
Mach 6 boundary layer 5.86 7.91 × 106 N/A 0.69 2775
Mach 14 boundary layer 13.64 6.76 × 106 N/A 0.17 11020

Mathematically, the ensemble approach trains 𝑀 networks targeted at learning 𝑦. For each network,
we minimize the loss function

𝜽 = arg min
𝜽∗∈R𝑁𝜽

𝑁train∑︁
𝑘=1

ℓ

(
𝑦𝑖, 𝑦

ML (𝜼𝑖; 𝜽∗)
)
,

where ℓ denotes the loss function, 𝜼𝑖 and 𝑦𝑖, 𝑖 = 1, . . . , 𝑁train denote the 𝑖th feature-response pair,
and 𝑁𝜽 denotes the total number of weights and biases. The mean of the networks is given by

𝑦ML =
1
𝑀

(
𝑀∑︁
𝑖=1

𝑦ML(𝜼; 𝜽𝑖)
)
,

where 𝜽𝑖 denote the weights and biases for the 𝑖th network.

5.5.3. Training data collection and machine learning details

We train on data extracted from the field inference solutions presented in Section 5.3. For the
Schülein cases, we learn on data for 0.05 ≤ 𝑥1 ≤ 0.175 and 𝑥2 ≤ 0.01. For the Holden cases, we
learn on data for 0.95 ≤ 𝑥1 ≤ 1.1 and 𝑑wall ≤ 0.01. Additionally, to maintain the performance
of the model for standard boundary layers, we supplement the field inference data with data from
three hypersonic zero pressure gradient flat plate boundary layers [105]. For each of these flat plate
cases, we assign a target turbulent Prandtl number of Prt = 0.9. Table 5-2 summarizes the final
dataset on which we learn.

For learning, we employ a standard mean-squared-error loss,

ℓ(𝑦, 𝑦ML) =
(
𝑦ML − 𝑦

)2
.

103



Table 5-3. Summary of cases the ML model is tested on. Cases in blue correspond to cases that are
included in the training set, while cases in blue are outside of the training set.

Case 𝑀∞ Re𝐿 Shock/ramp angle 𝑇𝑤/𝑇0
Holden Compression Corner Run 12 8.2 146.9 × 106 27◦ 0.29
Holden Compression Corner Run 19 8.1 139.3 × 106 33◦ 0.29
Holden Compression Corner Run 24 8.0 145.3 × 106 36◦ 0.29

Schülein impinging shock 5.0 18.5 × 106 6◦ 0.73
Schülein impinging shock 5.0 18.5 × 106 10◦ 0.73
Schülein impinging shock 5.0 18.5 × 106 14◦ 0.73

Hollow cylinder flare run 13 6.01 16.24 × 106 36◦ 0.20
Hollow cylinder flare run 18 6.96 5.18 × 106 36◦ 0.14

HIFiRE-1 Run 30 7.2 16.9 × 106 33◦ 0.13
HIFiRE-1 Run 46 6.6 30.8 × 106 33◦ 0.16

We note that we explored various objective functions, and that the above objective function slightly
favored performance on the compression ramp cases which are of more direct interest to us. We
use fully connected neural networks with three hidden layers and 30 nodes per layer. We employ an
ensemble of size 𝑀 = 10. We use ReLU as an activation function4. We train for 1000 epochs using
a batch size of 50. We include ℓ2 regularization with a very weak penalty parameter of 𝜆 = 1×10−9.
We use standard normalization (center about the mean and scale by the standard deviation) for the
input features. We do not normalize the output target data. The layer-wise Lipschitz constant
computed from Algorithm 1 is approximately 𝑘 lip = 2.5. We use an 80/20 training/validation split
in training, use an initial learning rate of lr = 1 × 10−4, and use a learning rate decay parameter of
0.9998 (i.e., the learning rate after the 𝑛th epoch is lr × (0.9998)𝑛).

5.5.4. Implementation

The machine-learned variable turbulent Prandtl number model is implemented in SPARC. We do
not modify any of the Jacobian entries and as such treat the variable turbulent Prandtl number
model explicitly in the solver. Lastly, we note that we only call the ML model every 𝑛skip iterations
to accelerate the model evaluation. In the examples presented in this work we use 𝑛skip = 50.
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5.6. Predictions

We now present predictions from the ML-embedded RANS model. First we present training results
and feature importance. Next, we present results for the three Holden and three Schülein cases
on which the models were trained. Following this, we present predictive results on the CUBRC
hollow cylinder flare [27] and HIFiRE ground tests [93]. Table 5-3 summarizes the cases. All
cases are computed on refined meshes; we again refer the reader to Section 5.9 for more details on
grid convergence. Specific run schedules differ for each case. Residual and QoI convergence for a
representative case are presented in Section 5.8, and here we note that employing the ML model in
the solver did not have a noticeable impact on iterative convergence. In what follows, we will refer
to the 𝑘−𝜖−RC model using the ML variable Prandtl number model as the 𝑘−𝜖−RC−ML model.
We will additionally compare results to the 𝑘−𝜖−CA−RC−LC model given in Equation (2.2.3) and
the standard SST model as detailed on the NASA turbulence modeling resource [73].

5.6.1. Machine learning results

Figure 5-6 shows the loss function as a function of epoch (training iteration) for each of the neural
network ensemble members. The loss function computed on the training set is shown in blue,
while the loss function computed on the validation set is shown in red. We observe that the loss is
decreased by approximately a factor of 5− 10x from the first epoch. We observe some deviation in
loss between the different ensemble members, but the overall trends are consistent. The loss between
the training and validation data are both still (slowly) decreasing after 1000 epochs, suggesting that
the networks are not overfit to the training data.5

Next, Figure 5-7 shows feature importance as computed using a feature importance permutation
algorithm for the first four ensemble members. The algorithm is provided in Alg. 3. The main idea
is to contaminate a feature by shuffling its input data and then assess the impact to the loss function.
A high impact suggests that the feature is important. We observe that the ratio of eddy viscosity
to laminar viscosity, wall-distance Reynolds number, and non-dimensional wall-normal temper-
ature gradient are consistently identified as the most important features. The kinematic features
corresponding to the strain and rotation tensors are consistently the least important features.

5.6.2. Predictions on training cases: Holden compression ramps and Schülein
impinging shocks

Figure 5-8 shows predictions across the Holden compression ramp cases, while Table 5-4 tabulates
relative wall heat flux errors. While not as accurate as the field inference predictions, the ML

4We have observed similar results with tanh.
5We emphasize that this does not mean the networks will be predictive on out-of-distribution data.
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Algorithm 3 Permutation algorithm for feature importance
Input: Feature-response pairs, (𝜼𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 𝑁train, trained model, 𝑦ML

Output: Feature importance scores, 𝑆 𝑗 , 𝑗 = 1, . . . , 𝑁

𝐿 = 0
for 𝑖 = 1, . . . , 𝑁train do

𝐿 = 𝐿 + ℓ
(
𝑦𝑖, 𝑦

ML (𝜼𝑖; 𝜽∗)
)

⊲ Compute loss of the baseline model
end for

for 𝑗 = 1, . . . , 𝑁 do ⊲ Loop over the number of features
𝐿 𝑗 = 0
𝜼̃ = 𝜼 ⊲ Copy features
𝜼̃ 𝑗 = shuffle

(
𝜼 𝑗

)
⊲ Shuffle data for the 𝑗 th feature

for 𝑖 = 1, . . . , 𝑁train do
𝐿 𝑗 = 𝐿 𝑗 + ℓ

(
𝑦𝑖, 𝑦

ML (𝜼𝑖; 𝜽∗)
)

⊲ Compute loss of model with the 𝑗 th feature shuffled
end for
𝑆 𝑗 =

|𝐿 𝑗−𝐿 |
|𝐿 | ⊲ Compute feature importance score

end for

100 101 102 103

Epochs

10−1L
os

s

Training

Validation

(a) Loss for 𝑘−𝜖−RC−ML model.

Figure 5-6. Machine learning results. Decrease in loss function for the 𝑘−𝜖−RC−ML model.
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(b) Ensemble member 1.
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(c) Ensemble member 2.
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(d) Ensemble member 3.

Figure 5-7. Machine learning results. Feature importance for the first four members of the ensemble. A
high score suggests that the feature is important.
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Table 5-4. Holden compression ramps. Relative errors for wall heat flux.

Model

𝑘−𝜖−RC
𝑘−𝜖−RC−ML

𝑘−𝜖−CA−RC−LC
SST

Run 12

0.327
0.302
0.346
0.265

Run 19

1.308
0.451
0.672
0.619

Run 24

1.711
0.585
0.679
0.801

model results in substantially improved heat flux predictions. For run 12, the peak heat flux is quite
similar to the experimental data, while for run 19 and run 24, which correspond to stronger shocks,
wall heat flux is still over predicted but is significantly improved from the baseline model. Similar
to the FI results, minimal changes are observed in the mean wall shear and wall pressure fields.
The exception to this is run 24, where we find that the ML model slightly increases peak pressure
and reduces the size of the separation bubble; the same trend was seen in the FI solution (Figure 5-
2). Upon comparing to the 𝑘−𝜖−CA−RC−LC and SST models, we find that the 𝑘−𝜖−RC−ML
model better captures the value and location of the peak heat flux. The length-scale limiter in the
𝑘−𝜖−CA−RC−LC model results in a heat flux rise that lags behind the experimental data. This
limiter additionally reduces wall shear stress and brings it further away from the experimental data.
The SST model yields similar results to the 𝑘−𝜖−CA−RC−LC model in terms of peak heat flux, but
noticeably struggles to predict the size of the separation region for run 24. Additionally, while SST
yields improved wall heat flux predictions over the baseline 𝑘−𝜖 models, it notably does so at the
expense of a reduced wall shear stress which is in worse agreement with the experimental data.

Figure 5-9 shows the turbulent Prandtl number predicted by the ML model. As compared to the FI
results, we observe that the ML model gives a much more coherent prediction for Prt but the main
trends are still present. In particular, we observe that the ML models predict a region of high Prt
very near the wall, followed by a region of low Prt further away from the wall. This trend is similar
to what was observed in the FI results. We additionally observe minimal impact on Prt upstream
of the interaction region.

Figure 5-10 presents predicted wall quantities for the ML model on the suite of Schülein cases
while Table 5-5 tabulates relative errors in the wall heat flux. Across all cases we observe that,
while again not as accurate as the field inference results, the ML model systematically improves
wall heat flux predictions as compared to the baseline model. In all cases, the overprediction of the
peak wall heat flux is significantly mitigated. We additionally note that the variable−Prt model has
a negligible impact on wall shear stress and wall pressure. As compared to the 𝑘−𝜖−CA−RC−LC
model, we again observe that the ML model results in substantially better predictions for the wall
heat flux for all cases. The 𝑘−𝜖−RC−ML model yields better results than the SST model on all
but the 14◦ case, where we again note that SST gives an improved prediction to wall heating at
the expense of a worse prediction for wall shear. Next, Figure 5-11 shows the predicted Prt fields.
We observe that all models predict a reduced turbulent Prandtl number near and downstream of
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(a) Wall shear stress (run 12).
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(b) Wall pressure (run 12).
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(c) Wall heat flux (run 12).
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(d) Wall shear stress (run 19).
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(e) Wall pressure (run 19).
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(f) Wall heat flux (run 19).
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(g) Wall shear stress (run 24).
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(h) Wall pressure (run 24).
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(i) Wall heat flux (run 24).

Figure 5-8. Holden compression ramps. Predictions for Holden run 12 (top), run 19 (middle), and run 24
(bottom) compression cases.
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(a) Run 12.
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(b) Run 19.
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(c) Run 24.
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(d) Run 12 (log scale).
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(e) Run 19 (log scale).
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(f) Run 24 (log scale).

Figure 5-9. Holden compression ramps. Turbulent Prandtl number predicted by the ML model. The top
row shows results in a linear scale while the bottom row shows results in a log-𝑦 scale using the distance

to wall as the vertical axis.
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Table 5-5. Schülein SBLIs. Relative errors for wall heat flux.

Model

𝑘−𝜖−RC
𝑘−𝜖−RC−ML

𝑘−𝜖−CA−RC−LC
SST

6◦ case

0.495
0.218
0.597
0.510

10◦ case

0.783
0.329
0.728
0.399

14◦ case

0.971
0.499
0.784
0.38

the interaction region. Unlike the inference results, we additionally observe a coherent region of a
slightly higher turbulent Prandtl number near the wall.

5.6.3. Predictions on unseen test cases: Hollow cylinder flare and HIFiRE ground
test

The previous subsection demonstrated that we were able to learn a variable−Prt model that improves
wall heating predictions for the cases on which field inference was performed. We now assess the
performance of the model on unseen testing cases. As test cases, we consider runs 13 and 18 of the
CUBRC hollow cylinder flare (HCF) and runs 30 and 46 of the HIFiRE test geometry. The HCF
run 13 corresponds to a Mach 6 axisymmetric hollow cylinder flare with a 36◦ ramp. The run 18
case employs the same geometry, but is at Mach 7 with a lower Reynolds number. The HIFiRE
cases correspond to approximately Mach 7 flow with an expansion and a terminal 33◦ flare. Run
46 has a higher Reynolds number than run 30. Experimental data for wall quantities are available
for both cases from CUBRC. Both cases include a transition from laminar to turbulent flow. The
transition location is determined from the experimental data and we manually enforce a trip by
deactivating the turbulence model production term upstream of this location. Schematics of the
problem geometries for the two cases are shown in Figure 5-12.

Figure 5-13 shows results of the ML-embedded RANS model for HCF runs 13 and 18, while
Table 5-6 tabulates the errors in wall heat flux. We highlight that run 13 has a lower Mach number
and higher Reynolds number than run 18, and that the baseline models perform worse for the high
Reynolds number cases. We observe that, despite being a testing case, the ML model results in
improved wall heat flux predictions. For both run 13 and 18, the peak heat flux is decreased and is in
better agreement with experimental data. For both cases there is minimal change to wall pressure.
Wall shear stress is not shown because experimental data are not available. In comparison to the
𝑘−𝜖−CA−RC−LC and SST models, we observe that the 𝑘−𝜖−RC−ML model results in improved
predictions for peak heat flux as well as for the location of peak heat flux. We additionally highlight
that this case displays physics not present in the training cases in that it (1) is an axisymmetric case
and (2) undergoes a transition from laminar to turbulent flow. The ML model appears to robustly
handle these new physics. Figure 5-14 shows contours of Prt predicted by the ML model for run

111



0.00 0.05 0.10 0.15 0.20 0.25

x (m)

−50

0

50

100

150

200

250

τ w
,

N
/m

2

k − ε
k − ε-ML

k − ε-HS

SST

(a) Wall shear stress (6◦ case).
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(b) Wall pressure (6◦ case).
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(c) Wall heat flux (6◦ case).
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(d) Wall shear stress (10◦ case).
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(e) Wall pressure (10◦ case).
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(f) Wall heat flux (10◦ case).
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(g) Wall shear stress (14◦ case).
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(h) Wall Pressure (14◦ case).

0.00 0.05 0.10 0.15 0.20 0.25

x (m)

0

25000

50000

75000

100000

125000

150000

175000

200000

H
ea

t
flu

x,
W
/m

2

Experiment

k − ε
k − ε-ML

k − ε-HS

SST

(i) Wall heat flux (14◦ case).

Figure 5-10. Schülein SBLIs. Predictions for wall QoIs for the 6◦ (top), 10◦ (middle), and 14◦ (bottom)
cases.
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(a) 6◦.
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(b) 10◦.
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(c) 14◦.

Figure 5-11. Schülein SBLIs. ML predictions for the turbulent Prandtl number for the 6, 10, and 14◦
Schülein cases.

Figure 5-12. Hollow cylinder flare geometry (left) and HiFIRE ground test geometry (right). The figures are
from Ref. [27] and [93], respectively.
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(a) Wall heat flux on forebody.
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(b) Pressure on flare.
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(c) Wall heat flux on flare.
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(d) Wall heat flux on forebody.
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(e) Pressure on flare.
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(f) Wall heat flux on flare.

Figure 5-13. CUBRC hollow cylinder flare. Run 13 is shown on the top, while Run 18 is shown on the
bottom.

13. We see that the ML model predicts a region of low Prt in the corner, but there is again a region
of high Prt very near to the wall.

Figure 5-15 shows results of the ML-embedded RANS model for HIFiRE ground tests run 30 and
run 46, while Table 5-7 tabulates the wall heat flux errors. As compared to the HCF cases, the
HIFiRE ground tests include an expansion prior to the compression corner; these physics are not
included in the training data. For both cases, we again observe that the ML-embedded model
results in a decreased peak heat flux. For run 30 the 𝑘−𝜖−RC−ML model better captures both
the rise in heat flux and the peak heat flux location as compared to the baseline 𝑘−𝜖−RC model.
The 𝑘−𝜖−RC−ML additionally better predicts peak heat flux and the location of peak heat flux

Table 5-6. CUBRC hollow cylinder flare. Relative errors for wall heat flux.

Model

𝑘−𝜖−RC
𝑘−𝜖−RC−ML

𝑘−𝜖−CA−RC−LC
SST

Run 13

1.629
0.354
0.411
0.429

Run 18

1.229
0.231
0.213
0.371
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(a) 𝑘−𝜖−RC−ML.
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(b) 𝑘−𝜖−RC−ML (close up of flare).

Figure 5-14. CUBRC hollow cylinder flare. Turbulent Prandtl number predicted from ML models. The top
row shows the full geometry, while the bottom row shows a close up of the flare.

Table 5-7. HIFiRE ground tests. Relative errors for wall heat flux.

Model

𝑘−𝜖−RC
𝑘−𝜖−RC−ML

𝑘−𝜖−CA−RC−LC
SST

Run 30

0.804
0.108
0.285
0.320

Run 46

1.604
0.398
0.577
0.795

as compared to the 𝑘−𝜖−CA−RC−LC and SST models. Predictions for wall heating are mostly
unaffected in the upstream boundary layer, but we do observe that the 𝑘−𝜖−RC−ML model yields
a slightly lower wall heat flux for both cases. The same story is present in the run 46 case. At
the higher Reynolds number, the baseline models severely over-predict the maximum wall heat
flux. The ML model is able to significantly decrease this over-prediction while improving wall heat
flux downstream of reattachment. For both cases, changes to surface pressure are small. Lastly,
Figure 5-16 shows contours of the predicted Prt for run 30. We again observe a low region of Prt
near the flare along with a very high value of Prt near the wall. We additionally observe a region of
high Prt around the compression corner shock which is more pronounced than in the other cases.

5.7. Model interpretation

A simple interpretation of the ML-augmented variable−Prt model is provided through examination
of the solution at the location of peak wall heat flux. In each of the cases considered, this location
is downstream of both the shock wave/surface intersection, as well as boundary layer reattachment.
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(a) Wall heat flux on forebody.
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(b) Wall pressure on flare.
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(c) Wall heat flux on flare.
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(d) Wall heat flux on forebody.
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(e) Wall pressure on flare.
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(f) Wall heat flux on flare.

Figure 5-15. Predictions for HIFiRE ground test run 30 (top) and run 46 (bottom).
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(a) 𝑘−𝜖−RC−ML
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(b) 𝑘−𝜖−RC−ML (close up of flare)

Figure 5-16. Turbulent Prandtl number predicted from ML models for run 30.
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In this regime, energy budget analysis as well as wall heat transfer decomposition analysis identifies
that the wall-normal turbulent heat flux component dominates over the stream-wise component.
The wall-normal turbulent heat flux term may transfer heat either towards the wall (negative sign)
or away from the wall (positive sign). Methods that decompose the wall heat flux into constitutive
terms (e.g., [3]) show that the overall turbulent heat flux contribution to the wall heat flux is∫ ∞

0
1
𝛾
𝑞𝑡𝑛d𝑛, where 𝑞𝑡𝑛 is the wall-normal turbulent heat flux and the integral is taken in the wall

normal direction 𝑛 across the boundary layer profile. All else being equal, the effect of an increase
in Prt is to decrease the magnitude of the turbulent heat flux, and vice-versa.

Figure 5-17 shows Prt predicted by the standard 𝑘−𝜖−RC model and the 𝑘−𝜖−RC−ML model for
the 14◦ Schülein case (top) and run 13 of the hollow cylinder flare (bottom) at the location of peak
heat flux. As outlined previously, we observe a region of increased Prt near the wall, followed
by a low region of Prt further away from the wall. Upon comparing these trends to the turbulent
heat flux, we observe that the ML model collectively acts to reduce heat transfer to the wall. In
the near wall region where the turbulent heat flux is negative (heat moving towards the wall), the
ML model predicts an increased Prt. This increased Prt acts to decrease heat transfer to the wall.
This near-wall region of negative wall-normal heat flux is much less pronounced for the Schülein
14◦ case than the HCF run 13 case, which helps explain why the inference process and resulting
ML model does not predict as drastic of a rise in Prt near the wall. Similarly, in regions where
the wall-normal turbulent heat flux is positive (heat moving away from the wall), the ML model
predicts a decreased Prt. This decreased Prt acts to increase heat transfer away from the wall.

5.8. Iterative convergence

We did not notice a notable difference in residual convergence of the ML-embedded RANS solver as
compared to the baseline RANS solver. To depict typical convergence behavior, Figure 5-18 shows
nonlinear residual and QoI convergence for the 14◦ Schülein case for the 𝑘−𝜖−RC and 𝑘−𝜖−RC−ML
models. The results for this case are representative of most cases considered, although we do note
that residual convergence for both the baseline 𝑘−𝜖 and 𝑘−𝜖−RC−ML models was worse for the
HIFiRE ground test cases. The QoI we examine is the maximum value of the heat flux. We
observe that the 𝑘−𝜖−RC and 𝑘−𝜖−RC−ML models both display very similar convergence, and
that inclusion of the ML model does not deteriorate convergence. This convergence is despite not
including the sensitivities of the neural network in the solver Jacobians as well as only updating the
turbulent Prandtl number field every fifty iterations.

5.9. Grid convergence

Obtaining grid converged solutions for hypersonic SBLIs is known to be difficult. To mitigate large
run times, we perform our field inference on meshes that are slightly coarser than what is required

117



(a) Turbulent Prandtl number (Schülein, 14 ◦ case). (b) Wall-normal turbulent heat flux (Schülein, 14 ◦
case).

(c) Turbulent Prandtl number (HCF, run 13). (d) Wall-normal turbulent heat flux (HCF, run 13).

Figure 5-17. Turbulent heat flux analysis. Predictions for turbulent Prandtl number (left) and wall-normal
turbulent heat flux (right) at the location of peak wall heat flux. The Schülein 14◦ case is shown on top,

while the hollow cylinder flare run 13 case is shown on the bottom. The 𝑥-axis, 𝑛+, is the wall distance in
wall units.
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Figure 5-18. Schülein SBLIs. Residual convergence (left) and maximum heat flux (right) for the 𝑘−𝜖−RC
and 𝑘−𝜖−RC−ML models.
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(b) Wall pressure.
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(c) Wall heat flux.

Figure 5-19. Holden compression ramps. Grid convergence for the 𝑘−𝜖−RC−ML model. R0 is the
coarsest grid while R2 is the finest.

for a grid converged solution. To quantify uncertainties due to grid resolution, this section presents
grid convergence results for the 𝑘−𝜖−RC−ML model for the Holden run 19 and Schülein 14◦ cases;
we note that the grid convergence of the 𝑘−𝜖−RC model is very similar . Figure 5-19 shows grid
convergence results for Holden run 19, while Table 5-8 tabulates details on the mesh. The field
inference is performed on the coarse “R0” mesh, while the ML results are shown for the fine mesh.
We observe that, despite having a maximum 𝑦+ of under 1, on the coarsest mesh the peak heat
flux and peak shear stress are not grid-converged and are under-predicted by approximately 5%.
The separation bubble is additionally slightly under-predicted. After one level of refinement (2x
in the wall-normal direction and 2x near the compression corner in the streamwise direction), grid
convergence is almost reached.

Figure 5-20 shows results grid convergence results for the Schülein 14◦ case, which is the most
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Table 5-8. Summary of meshes for Holden run 19.

Level 𝑛𝑥1 𝑛𝑥2 max 𝑦+ on wall
R0 327 151 0.42
R1 501 301 0.21
R2 883 601 0.11
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Figure 5-20. Schülein SBLIs. Grid convergence for the 𝑘−𝜖−RC−ML model. R0 is the coarsest grid while
R2 is the finest.

stringent incident SBLI, while Table 5-9 tabulates details on the mesh. The field inference is
performed on the coarse “R0” mesh, while the ML results are shown for the “R2” mesh. We
observe that all meshes produce very similar wall pressure, but wall heat flux and wall shear stress
are slightly over-predicted on the coarser mesh at and downstream of reattachment. One level of
refinement (2x in each direction) results in solutions that are almost identical to those obtained after
2 levels of refinement (4x in each direction).

5.10. Conclusions

We presented a field inversion and machine learning strategy to construct a variable turbulent
Prandtl number model to improve wall heat flux predictions in hypersonic shock boundary layer

Table 5-9. Summary of meshes for the Schülein 14◦ case.

Level 𝑛𝑥1 𝑛𝑥2 max 𝑦+
R0 251 201 0.67
R1 501 401 0.33
R2 1001 801 0.16
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interactions. We performed a finite-dimensional field inference to obtain corrections to the turbulent
Prandtl number with the goal of improving predictions on a suite of SBLI cases with available
experimental data. We then developed a predictive model for a variable turbulent Prandtl number
by learning these corrective fields as a function of local flow features. Our learning framework
leveraged Lipschitz-continuous neural networks and ensembles to further improve robustness.

We trained a variable turbulent Prandtl number model to work in a manner that is consistent with a
𝑘−𝜖 model with a rapid compression correction. The model was trained on relatively simple two-
dimensional problems and was seen to systematically improve wall heat flux predictions across the
training cases as well as on unseen three-dimensional axisymmetric test cases that are geometrically
different from the training cases. Additionally, the model was shown to out-perform an additional
𝑘−𝜖 model that included various existing fixes to improve predictions for hypersonic flows and the
SST model. In particular, the model led to systematic improvements in the prediction of peak heat
flux near the point of reattachment, which is a known deficiency of RANS models. Analysis of the
resulting solutions shows that the ML-augmented variable turbulent Prandtl number has the overall
effect of reducing heat transfer to the wall. In regions where the turbulent heat flux is negative (i.e.,
heat moving towards the wall), the ML model, in general, predicts an increased turbulent Prandtl
number which decreases heat transfer to the wall. Similarly, in regions where the wall-normal
turbulent heat flux is positive (heat moving away from the wall), the ML model predicts a decreased
turbulent Prandtl number which increases heat transfer away from the wall.

We are careful to remark that the goal of this work was not to develop a general turbulence model.
Rather, the focus was on a more pragmatic engineering objective: to develop a framework to
improve existing models for wall heat transfer in hypersonic shock-boundary layer interactions and
demonstrate generalizability in this class of problems. As future work we will extend the work
to include the development of a variable turbulent Prandtl number for an SST model appropriate
for hypersonic flows along with the validation of field data (e.g., temperature fields) against high-
fidelity datasets. At the present time, direct numerical simulation data of hypersonic SBLIs, in
particular, compression ramps, is extremely limited. As these datasets become more available, we
will assess the performance of our variable turbulent Prandtl number models for predicting field
quantities. Future work will further focus on a fully coupled inference process using, e.g., the LIFE
framework [87] such that the inferred fields are guaranteed to be learnable.
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6. FUTURE DIRECTIONS

This chapter highlights ongoing work that was started during this LDRD and is recommended as
future work. We focus on deployment to more complex exemplars, the development of a model
that joinly uses TBNNs for improved Reynolds stress predictions and a variable turbulent Prandtl
number model for improved wall heat flux predictions, fully coupled model training using the
Ensemble Kalman Filter, and fully coupled model training using the LIFE framework.

6.1. Deployment of models on fully 3D exemplars and extended validation set

Both the developed TBNNs and variable turbulent Prandtl number model were only tested on 2D
and axisymmetric bodies. As future work, we will continue to deploy the developed models on
increasingly complex geometries and expand the validation test suite. Here, we describe the start
of such an effort for deploying the variable turbulent Prandtl number model learned in Chapter 5
on Sandia’s cone-slice-wedge.

6.1.1. Cone-slice-wedge Predictions

Preliminary simulation results were obtained for a three-dimensional cone-slice-wedge (CSW)
conceptual vehicle shape [60] using the variable−Prt model. The CSW model was tested in
Sandia’s Hypersonic Wind Tunnel. Here, we compare only predictions given by different model
variants and leave model validation to future studies. The overall geometry and flow-field topology
are shown in Figure 6-1. The flow is at zero angle of attack and a free stream Mach number of 8.
The boundary layer transitions ahead of the cone/slice expansion; the turbulent boundary layer then
encounters the wedge-shaped control surface, setting up a three-dimensional compression corner
SBLI. The flow was calculated using the 𝑘−𝜖 , 𝑘−𝜖−RC, and 𝑘−𝜖−ML models at three different
flow conditions described in Table 6-1. The nominal Mach 8 wind tunnel condition is at a relatively
low Reynolds number and a moderately cold wall. To test the sensitivity of predictions to model
variants at different conditions, we also considered a lower wall temperature “cold-wall” case, as
well as a high-Reynolds number condition.

Figure 6-2 shows predictions of the wall heat flux along the vehicle symmetry plane for the three
model variants at the three flow conditions. For the HWT condition, the 𝑘−𝜖−RC model reduces
the peak heat flux relative to the 𝑘−𝜖 model, while the ML model provides no further change to the
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Figure 6-1. Cone-slice-wedge 𝑘-𝜖 solution at the HWT flow condition. Surface contours of pressure with
symmetry plane contours of temperature.

Table 6-1. Flow conditions for the cone-slice-wedge model tests.

Case 𝑀∞ Re𝐿 𝑇𝑤/𝑇𝑟
HWT Mach 8 Condition 8.1 9.2 × 106 0.56

Low Wall Temperature Condition 8.1 9.2 × 106 0.20
High Reynolds Number Condition 8.1 177 × 106 0.56
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(a) HWT flow condition. (b) Low 𝑇𝑤 condition. (c) High 𝑅𝑒 number condition.

Figure 6-2. Cone-slice-wedge model predictions.

peak heat flux. At the low temperature and high Reynolds number conditions, the RC correction
has only small impact on the peak heat flux while the ML model provides a substantial decrease in
the peak heat flux below that of the other two model variants. These results indicate the possibility
that the ML model mainly activates for relatively cold walls and higher Mach numbers, which might
be a result of the training data and process being weighted more towards these conditions. Future
work will explore this issue, in conjunction with comparison to experimental measurements.

6.2. Joint Reynolds stress and Variable Prt results

The results presented to this point have only utilized either an improved model for the Reynolds stress
via TBNNs or a variable turbulent Prandtl number. The joint development of these models poses
an additional challenge. Specifically, these models should be jointly trained to be as consistent as
possible. In this section, however, we briefly assess the joint performance of a 𝑘−𝜖 model utilizing
the TBNN developed in Chapter 4 and the variable turbulent Prandtl number model developed in
Chapter 5. We embed these models within a 𝑘−𝜖 model with the CA correction and, motivated by
the observation that the results in Chapter 4 indicated slightly to small of a separation region, we
employ a rapid compression correction with 𝐶𝜖 = −1.5.

Figure 6-3 shows predictions of the 𝑘−𝜖 model with both the TBNN and variable−Prt correction
for the Schülein 14◦ SBLI, the HCF run 13, and HIFiRE run 46. Figure 6-4 presents the QoI errors.
The other models considered in Chapter 3 are additionally presented for reference. We observe that,
despite the inconsistencies in how the Reynolds stress and variable−Prt models were trained, the
resulting model is able to give state-of-the-art predictions across the three cases. Peak shear stress,
peak pressure, and peak heat flux are well captured in all cases. We highlight the decreased peak
heat flux for the Schülein 14◦ case, which the variable−Prt model alone struggled to predict. Close
examination of the ML-enhanced model, however, highlights some oscillations on the HIFiRE test
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case, and in general we observed the joint model to be more subject to oscillations. The results,
however, are overall promising.

6.3. Fully-consistent training

Chapter 5 developed a variable turbulent Prandtl number model using the two-step FIML approach.
The advantage of such an approach is that it is relatively affordable and it is easy to add more data
to the model. However, the two-step FIML approach has the disadvantage that the inferred fields
might not be learnable. An alternative approach is to embed an ML model within the RANS solver
and directly infer the model parameters. This process directly results in a learned model which
should be more predictive than one obtained via the two-step approach. However, there are several
difficulties with a direct training approach:

1. Just like field inference, the resulting optimization problem is a high-dimensional, PDE-
constrained optimization problem. The most efficient solution approach is adjoint-based
optimization, which is difficult for legacy codes without adjoint capabilities.

2. Training a neural network via PDE-constrained optimization is largely unexplored. Methods
which have been proven necessary for training accurate neural networks, e.g., mini-batching,
regularization, stochastic optimization, are not thoroughly developed for PDE-constrained
training.

3. Direct training through PDE-constrained optimization is extremely expensive. As an exam-
ple, in Chapter 5, we trained a neural network model for a turbulent Prandtl number using six
training cases for 1000 epochs. Assuming the same number of epochs are required, directly
training the network via PDE-constrained optimization would take 6000 forward PDE solves
and 6000 adjoint solves to compute sensitivities. This process would need to be repeated for
any change to the model configuration, e.g., new training data, new features, etc.

In this work, these challenges precluded the development of a mature neural network variable tur-
bulent Prandtl number trained via a direct approach. However, we did perform an initial exploration
of several direct training methods, and these are outlined in this chapter. First, Section 6.4 explores
directly training an variable turbulent Prandtl number model via the Ensemble Kalman Filter. Next,
Section 6.5 explores training a similar model using the LIFE framework.

6.4. Fully consistent training with the Ensemble Kalman Filter

We first consider a variable turbulent Prandtl number trained via the Ensemble Kalman Filter
(EnNF). The EnKF is a data assimilation method used for estimating a state variable from noisy
data, and it can also be used for model inversion through iterating an ensemble of states with the
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(a) Schülein 14◦ SBLI.
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Figure 6-3. RANS model predictions for various validation cases.
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Figure 6-4. Relative errors for wall QoIs.

Kalman Filter algorithm [37]. EnKF only requires forward PDE solves, and as such does not require
an adjoint capability.

A variety of EnKF algorithms have been developed that use different cost functions and iteration
methods. The algorithm utilized in this work is the EnKF with adaptive stepping, developed in
[47] and utilized for data-driven turbulence modeling in [106]. EnKF with adaptive stepping uses
approximate gradients based on the Kalman filter and iterative updates based on the Levenberg-
Marquardt algorithm.

We describe the EnKF within the context of training a neural network model. LetM : w ↦→ M(w)
denote the mapping from the neural network weights w ∈ R𝑁w to a QoI (or set of QoIs) of interest.
The EnKF optimizes the model weights w by iteratively minimizing the objective function

J = ∥d −M(w𝑙)∥2𝛾R + ∥w
𝑙+1 − w𝑙 ∥2P (6.4.1)

where 𝑙 is the iteration index, d ∈ R𝑛data is the data vector, 𝛾 ∈ R+ is a scaling parameter, and
P ∈ R𝑁w×𝑁w and R ∈ R𝑛𝑑×𝑛𝑑 are the model and observation covariance matrices. The full
algorithm is given in Algorithm 4.

The data d can consist of experimental data, high-fidelity simulation data, or a combination of
them, as one of the advantages of EnKF and adjoint-based methods is their ability to work with
disparate data. In this work the data consists of a combination of skin friction, surface pressure,
and heat flux measurements.
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Algorithm 4 EnKF with adaptive stepping algorithm
𝜀𝑏𝑒𝑠𝑡 = ∞
Initialize 𝑁𝑠 samples of neural network weights w0

𝑗
∈ R𝑁w , 𝑗 = 1, ..., 𝑁𝑠 using He initialization

[26].
while 𝑙 <= 𝑁iter−max do

Compute the terms

w𝑙
=

1
𝑁𝑠

𝑁𝑠∑︁
𝑗=1

w𝑙
𝑗 (6.4.2)

S𝑙w =
1

√
𝑁𝑠 − 1

[
w𝑙

1 − w𝑙
,w𝑙

2 − w𝑙
, ...,w𝑙

𝑁𝑠
− w𝑙

]
(6.4.3)

S𝑙d =
1

√
𝑁𝑠 − 1

[
M(w𝑙

1) −M(w
𝑙),M(w𝑙

2) −M(w
𝑙), . . . ,M(w𝑙

𝑁𝑠
) −M(w𝑙)

]
(6.4.4)

The Kalman gain matrix is defined as:

K = SwS𝑇d
(
SdS𝑇d + 𝛾

𝑙R
)−1

(6.4.5)

where R is the observation error covariance matrix and 𝛾𝑙 is the adaptive step, which will be
defined below. The neural network weights are updated with:

w𝑙+1
𝑗 = w𝑙

𝑗 +K
(
d𝑙𝑗 −M(w𝑙

𝑗 )
)

(6.4.6)

where d𝑙
𝑗

is the data vector d perturbed with d𝑙
𝑗
= d + N(0,R), where N(0,R) is a normal

distribution with zero mean and covariance R.
Compute error

𝜖 𝑙+1 = ∥d −M(w𝑙)∥2𝛾R (6.4.7)

for 𝑗 = 1, ..., 𝑁𝑠 do
if ∥d −M(w𝑙

𝑗
)∥ < 𝜀𝑏𝑒𝑠𝑡 then

𝜀𝑏𝑒𝑠𝑡 = ∥d −M(w𝑙
𝑗
)∥

w𝑏𝑒𝑠𝑡 = w𝑙
𝑗

end if
end for
if 𝜖 𝑙+1 < 𝜖 𝑙 then

𝛾 = 0.8𝛾
else

𝛾 = 1.6𝛾
end if

end while
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6.4.0.1. EnKF trained variable turbulent Prandtl number model

We consider the EnKF to train a neural network variable turbulent Prandtl number model. Motivated
from Chapter 5, we consider a neural network formulated to predict the log of the inverse of the
turbulent Prandlt number

Prt =
1

exp(𝑦ML)
(6.4.8)

where 𝑦ML is the neural network output. This ensures that the corrections to the turbulent Pran-
dlt number are positive and weights the data so high values of Prandlt number are accurately
predicted.

The features used to predict the turbulent Prandtl number are taken to be a simplified version of the
features selected in Chapter 5,

𝜼 =

[
Tr(𝑆∗2) Tr(Ω∗2) log(𝜇𝑡/𝜇) 𝑚𝑎𝑥(𝑑

√
𝑘

50𝜈 , 2) | |∇𝑇 | |2
]𝑇
,

where the first two features are invariants of the nondimensionalized strain and rotation tensor, the
third is the log of the turbulent viscosity ratio, the fourth is the wall distance Reynolds number,
and the fifth is the norm of the temperature gradient. We note that the fifth feature is not non-
dimensional.

6.4.1. Two-step EnKF training

The EnKF algorithm described above could be used to directly learn a neural network model
leveraging datasets spanning multiple cases. Such a process, however, is expensive and difficult
to scale. For example, if one added a new training dataset, the entire EnKF would have to be
re-run. Further, EnKF-based training of ML techniques equipped with UQ estimates, such as those
described in Chapter 4, is unclear. Due to these challenges, we pursue a two-step training process
here. In the two-step process, the EnKF algorithm is first deployed individually on each training
case. After learning a neural network model (and associated turbulent Prandtl number field) for
each case, these data are then aggregated into one large training set, and a neural network is directly
learned that maps from features to the turbulent Prandtl number fields. While this process gives up
on strong consistency between the ML model and the RANS solver, it is more scalable. We note
that the two-step training presented in the previous chapter used field inference aimed at optimizing
the Prandtl number field such that the model matched the data, and then trained a neural network
ensemble to make predictions. In contrast, the method presented here aims to optimize a number
of neural network models for the Prandtl number, then trains an ensemble from that data. The main
difference is that the method presented here ensures that each inferred Prandtl number field after
EnKF is learnable from the features for that dataset.
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Table 6-2. Summary of cases for EnKF. Blue cases are training cases while red cases are testing cases.

Case 𝑀∞ Re𝐿 Shock/ramp angle 𝑇𝑤/𝑇0
CUBRC 2D Compression Corner Run 19 8.1 139.3 × 106 33◦ 0.29

Schülein impinging shock 5.0 18.5 × 106 10◦ 0.73
HIFiRE-1 Run 30 7.2 16.9 × 106 33◦ 0.13

CUBRC hollow cylinder flare run 13 6.01 16.24 × 106 36◦ 0.20

6.4.1.1. Deep ensembles

Similar to Chapters 4 and 5, we utilize an ensemble prediction for the final neural network model.
The final neural network formulation follows closely that described in Chapter 5, but additionally
includes a UQ estimate as described in Chapter 4. Full details are given in the Appendix.

6.4.2. Results

We now present results for an EnKF-trained variable turbulent Prandtl number model. The model
is trained on two cases: the 14◦ Schülein impinging shock and run 19 of the 2D compression
corner. The model is tested on HIFiRE run 30 and run 13 of the hollow cylinder flare. Table 6-2
summarizes the cases. The baseline RANS model used for all simulations is the 𝑘−𝜖−RC model
as described in Chapter 3.

6.4.2.1. EnKF training

Each EnKF realization uses 𝑁𝑠 = 20 samples and is run until for 50 iterations or until 8 iterations
without a decrease in the cost function, defined as

L =

𝑁𝑠∑︁
𝑗=1
∥M(w𝑙) − d∥2𝛾R. (6.4.9)

The data covariance matrix R is chosen to be a diagonal matrix with elements

R𝑖,𝑖 =
abs (d𝑖)

10
.

The data vector d is a combination of the wall stress, wall pressure, and wall heat flux. Each
quantity is first scaled by the mean values of each before concatenating the values into a vector d.
Each EnKF algorithm trains a neural network with 3 hidden layers and 10 nodes per hidden layer.
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Figure 6-5. Turbulent Prandtl number fields computed from two distinct neural networks trained
independently with EnKF for the Schülein 10◦ case.

The Schülein and CUBRC 2D compression corner cases are used as the training cases and are
trained separately using EnKF to compute the neural network weights. Each case was trained
twice to examine how much the inferred turbulent Prandtl number is dependent on the random
initialization of the algorithm. Figures 6-5 and 6-6 show the turbulent Prandtl number fields found
using the neural networks on the Schülein and CUBRC 2D compression corner cases, respectively.
For both cases the two realizations produce qualitatively similar results, though differences are
more visible for the CUBRC 2D compression corner. The near-wall behavior is probably most
important to predicting the wall quantities, so we show the turbulent Prandtl number in regions
close to the wall in Figure 6-7 for both cases. There is a thin layer of high turbulent Prandtl number
very close to the wall in both cases. Above that, the CUBRC 2D compression corner has very low
turbulent Prandtl number while the Schülein case has a region of turbulent Prandlt number around
0.7 with another high turbulent Prandtl number region above that.

Figures 6-8 and 6-9 show the Stanton number, pressure, and skin friction resulting from the EnKF
algorithm compared to a standard 𝑘−𝜖 , standard model with compressibility correction 𝑘−𝜖−RC,
and the experimental data. Unsurprisingly, the wall quantities are predicted more accurately with
EnKF, but for the Schülein 10◦ case EnKF fails to predict the Stanton number profile near the
shock crossing point. This indicates that either EnKF is not converged, the neural network does
not contain enough parameters to predict the wall heat flux profile accurately, or the difference is
due to model form error from a turbulent Prandtl number assumption.
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Figure 6-6. Turbulent Prandtl number fields computed from two distinct neural networks trained
independently with EnKF for the CUBRC 2D compression corner.
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Figure 6-7. Turbulent Prandtl number fields near shock boundary layer interactions for Schülein 10◦ case
(top) and CUBRC 2D compression corner (bottom).

(a) Stanton number (b) Pressure (c) Skin friction
Figure 6-8. Wall quantities from EnKF for Schülein 10◦ case compared to baseline models with and

without a compressibility correction and experimental data.
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(a) Stanton number (b) Pressure (c) Skin friction
Figure 6-9. Wall quantities from EnKF for CUBRC 2D compression corner case compared to baseline

models with and without a compressibility correction and experimental data.

Table 6-3. Ensemble training sets.

Training Number of CUBRC 2D Number of Schülein Epistemic scaling
set # compression corner case 10◦ cases coefficient

1 2 0 33.
2 0 2 21.
3 2 2 17.

6.4.2.2. Ensemble training

Neural network ensembles are trained to predict the turbulent Prandtl number from the converged
EnKF cases. We set up ensembles using three different sets of training data, specified in Table 6-
3. The test cases are the HIFiRE-1 run 30 and the CUBRC hollow cylinder flare run 13. Each
ensemble contains 10 neural networks with 4 hidden layers and 10 nodes per hidden layer. The
neural networks are trained for 500 epochs, at which point the neural networks are converged. The
prior is set to 𝜎2

prior = 1. The epistemic scaling coefficient 𝐶̂ varies for each training set and is given
in Table 6-3.

Figure 6-10 shows the wall heat flux and wall pressure from the CUBRC hollow cylinder flare
case for each ML-RANS model as well as the baseline 𝑘−𝜖−RC model. Both wall heat flux and
wall pressure are accurately predicted by all the models from the inlet until close to the ramp.
However, all the models over-predict the heat flux significantly near the point of reattachment. The
ML-RANS models with training set 1 and training set 3, which contain compression ramp data,
lower the peak heat flux in comparison with the baseline model, but they still have large heat flux
errors.

Fig. 6-11 shows the wall heat flux and wall pressure on the HIFiRE-1. The ML-RANS models
using training sets 2 and 3 bring the heat flux down slightly and closer to the experimental data,
while the heat flux profile for training set 1 differs from the experiment by having an initial rise
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(d) Wall pressure near ramp
Figure 6-10. Wall heat flux and pressure from CUBRC hollow cylinder flare run 13 compared to a baseline

𝑘 − 𝜀 models with and without compressibility corrections and experimental data.
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(d) Wall pressure near ramp
Figure 6-11. Wall heat flux and pressure from HIFiRE-1 run 30 compared to baseline 𝑘 − 𝜀 models with

and without compressibility corrections and experimental data.

near the ramp, then levels off before rising again. Since the solutions with training set 2 and 3 are
almost identical, this suggests that the feature set used here cannot adequately capture the physics
of the CUBRC 2D compression ramp well enough to transfer information about the Prandtl number
to the HIFiRE-1.

6.4.3. Discussion and future work

While the method presented here generally improves heat flux and wall pressure on the test cases,
the improvement is only marginal. However, it is encouraging that the ML-RANS models all give
reasonable predictions and are generally closer to the experimental data despite being trained on
only one or two distinct cases.

There are a large number of directions that future works could go to improve on the results shown
here. Some of them are:
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• Improving the EnKF algorithm. A number of improvements were explored in Ref. [41]
including adding momentum, additional sample variance, expanding ensembles, and variable
step size.

• Improving the feature set. We explored utilizing the more detailed feature set given in
Chapter 5, but did not have sufficient time for a detailed study.

• Implementing a tensor basis neural network to predict the turbulent heat flux term instead of
a turbulent Prandtl number approximation.

• Introducing additional sample variance during EnKF so that the converged ensemble can be
used to approximate aleatoric uncertainty.

• Training on a larger number of datasets.

6.5. Development of a variable turbulent Prandtl number using the LIFE
framework

Lastly, we consider training a variable turbulent Prandtl number using the LIFE framework opposed
to FIML. In the FIML approach, a field inference problem is first solved for the model discrepancy
(see Eq. (5.3.1)). This optimization problem is solved for a variety of training cases. Then, one
examines field quantities that can be obtained from the simulations, uses them to create features
𝜼 that correlate well with the learned discrepancy fields, and then learns the discrepancy fields as
a function of the features 𝜼. Typically, a neural network is used to predict the inferred field 𝛽 in
terms of the features [62, 81].

While this method has had some success, it has some notable drawbacks. First, since the field
inference (FI) problems for each training case are completely decoupled, there is no guarantee that
the inferred 𝛽-fields for different cases behave consistently in the feature-space with respect to each
other. Therefore, it might not be possible to learn a model that can accurately predict all of them.
Even if this is not the case, the inferred discrepancy fields may not be learnable in terms of the
chosen set of features or any possible set of features since FI is not performed with consideration
of the augmented model’s structure. Thus, there is no guarantee that FIML will yield an adequate
model augmentation.

To address these concerns, Holland et al. proposed an approach referred to as integrated inference
and machine learning (IIML). Here, the augmentation model is integrated directly into the solver
before the learning process begins, and the two-step approach of FIML is replaced by simply directly
solving an optimization problem for the model parameters for all of the cases simultaneously. By
eliminating the intermediate step, this approach implicitly considers the model’s functional form
during the learning process, guaranteeing that the inferred discrepancy fields can be calculated
by the augmentation model. Furthermore, by coupling the individual cases during the learning
process, it ensures that the augmentation is consistent across all of them [31].
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These benefits come at a cost, however. In addition to the training-related challenges outlined in
Section 6.3, IIML requires developing features and the augmentation function before performing
any inference on the data. This may not always be be practical without performing an additional
FI step beforehand to learn about how field quantities and potential features behave. Furthermore,
while simple IIML does guarantee a learnable model, it does not have any safeguards to ensure that
the model is robust and generalizable [87].

Srivastava and Duraisamy proposed the Learning and Inference Assisted by Feature-space Engi-
neering (LIFE) framework to address these issues [87]. It extends the concepts of IIML by providing
a set of guiding principles as well as an implementation of them to create robust, generalizable
feature-based model augmentations trained on sparse data sets.

One of their key contributions was the idea of localized learning. Localized learning refers to
learning techniques that only modify the model in the vicinity of available training data, leaving
regions of the feature-space without data untouched. This ensures that, if the augmented model is
applied to a case outside of the training regime, at worst, it will behave as badly as the baseline
model. Since the baseline model is still a physically realizable solution, it prevents the spurious
behavior that could result from simple implementations of nonlinear augmentation functions, such
as a neural network [87]. For a more detailed description of the tenets of LIFE, we refer the reader
to [87].

6.5.1. Learning feature-based data-driven model augmentations

To describe LIFE, we outline the introduction of a feature-based augmentation model into the
equations. This is similar to the approach deployed in Chapter 5, but here the augmentation is
implicitly defined as a function of features (instead of spatial coordinate). Mathematically, for a
steady-state solver, this can be expressed by

R𝑚 (ũ𝑚, 𝝃) = 0 → R𝑚,𝑎𝑢𝑔 (ũ𝑚; 𝛽(𝜼(ũ𝑚),w), 𝝃) = 0 (6.5.1)

where 𝑅𝑚 represents the discretized system of steady-state equations we attempt to find a solution
for, ũ𝑚 the model states that we solve for, and 𝝃 the boundary conditions and geometry that
characterize a specific problem or case. We inject the augmentation model that uses the states ũ𝑚
to calculate values for features 𝜼, which are the inputs to the model that calculates 𝛽, a discrepancy
term calculated for each point in the computational domain. The goal of the learning process is to
determine the values for the weights w that result in the best performing model.

We assess the performance of both the baseline model and the augmented models using a cost func-
tionJ . While it is explicitly just a function of ũ𝑚, it is also implicitly a function of the augmentation
𝛽 (𝜼 (ũ𝑚) ,w) since the augmentation will affect the obtained solution. Thus, determining the best
performing model can be expressed as the optimization problem
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min
w
J (ũ𝑚; 𝛽(𝜼(ũ𝑚),w)) s.t. R𝑚,𝑎𝑢𝑔 (ũ𝑚; 𝛽(𝜼(ũ𝑚),w), 𝝃) = 0. (6.5.2)

6.5.1.1. The discrete adjoint method

Techniques for solving optimization problems of the form given in Eq. (6.5.2) can be classified into
one of two categories – gradient-free or gradient-based. Here, the gradient refers to the derivative
of the cost function with respect to the model parameters. Generally, gradient-based methods are
significantly more efficient than their counterparts; this is particularly true when the optimization
variable is high-dimensional. Despite the cost of calculating the gradients, such methods can
much more efficiently traverse the optimization space and require fewer forward evaluations of the
model, especially when the number of input parameters is large. A particularly effective method
for computing gradients is the discrete adjoint method, which can be described as follows.

Given our cost function J (ũ𝑚; 𝜷(𝜼(ũ𝑚),w)), its total derivative with respect to the model param-
eters w is given by

𝑑J
𝑑w

=
𝑑J
𝑑𝜷

𝜕𝜷

𝜕w
=

(
𝜕J
𝜕𝜷
+ 𝜕J
𝜕ũ𝑚

𝑑ũ𝑚
𝑑𝜷

)
𝜕𝜷

𝜕w
. (6.5.3)

This formula requires the challenging computation of the total derivative 𝑑ũ𝑚
𝑑𝜷 . To avoid this, we

can notice that no matter what values for the input parameters we use, we constrain the governing
equations to always be satisfied. Therefore, we require that

R𝑚,𝑎𝑢𝑔 (ũ𝑚; 𝜷(𝜼(ũ𝑚),w), 𝝃) = 0 (6.5.4)

always, which means that its derivative is defined by and must satisfy

𝑑R𝑚,𝑎𝑢𝑔
𝑑𝜷

=
𝜕R𝑚,𝑎𝑢𝑔
𝜕𝜷

+
𝜕R𝑚,𝑎𝑢𝑔
𝜕ũ𝑚

𝑑ũ𝑚
𝑑𝜷

= 0. (6.5.5)

Solving Eq. (6.5.5) for 𝑑ũ𝑚
𝑑𝜷 and substituting into Eq. (6.5.5) yields

𝑑J
𝑑w

=

(
𝜕J
𝜕𝜷
− 𝜕J
𝜕ũ𝑚

[
𝜕R𝑚,𝑎𝑢𝑔
𝜕ũ𝑚

]−1 𝜕R𝑚,𝑎𝑢𝑔
𝜕𝜷

)
𝜕𝜷

𝜕w
. (6.5.6)

Each of the partial derivatives in this equation can be calculated directly using backpropagation
or algorithmic differentiation techniques. However, this formula still requires a performing a
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matrix inversion for the triple-matrix product. To avoid this, either the product 𝜕J
𝜕ũ𝑚

[
𝜕R𝑚,𝑎𝑢𝑔
𝜕ũ𝑚

]−1
or[

𝜕R𝑚,𝑎𝑢𝑔
𝜕ũ𝑚

]−1 𝜕R𝑚,𝑎𝑢𝑔
𝜕𝜷 can be computed separately to result in a simpler two-matrix product. Since

the objective function J is a scalar and input parameters w are a vector, it is cheaper to calculate
the former. This product is referred to as the adjoint vector and is the solution 𝝍𝑇 of the adjoint
system that corresponds to the forward problem, given by

𝝍𝑇
𝜕R𝑚,𝑎𝑢𝑔
𝜕ũ𝑚

= − 𝜕J
𝜕ũ𝑚

. (6.5.7)

Therefore, the desired sensitivities are obtained by calculating

𝑑J
𝑑w

=

(
𝜕J
𝜕𝜷
+ 𝝍𝑇

𝜕R𝑚,𝑎𝑢𝑔
𝜕𝜷

)
𝜕𝜷

𝜕w
(6.5.8)

where 𝝍𝑇 is obtained by solving Eq. (6.5.7).

6.5.2. Application of LIFE for improved modeling of wall heating in hypersonic
SBLIs.

We assess LIFE for improving the post-interaction wall heat transfer predictions of RANS sim-
ulations for hypersonic boundary layers experiencing shock interactions by learning a variable
turbulent Prandtl number augmentation. This work was performed at the University of Michigan
and leveraged an in-house, second order-in-space, unstructured, finite volume code. Forward solves
were performed using a fully coupled implicit Euler approach. For adjoint solves, the code employs
the ADOL-C automatic differentiation package to calculate the necessary Jacobian terms and used
the MUMPS parallel sparse direct linear solver library to solve the adjoint system.

6.5.2.1. Baseline model and augmentation

For our turbulence model, we use the standard formulation of the Wilcox 2006 𝑘 − 𝜔 turbulence
model given by

𝜕 (𝜌𝑘)
𝜕𝑡
+
𝜕 (𝜌𝑢 𝑗 𝑘)
𝜕𝑥 𝑗

= 𝑃 − 𝛽∗𝜌𝑘𝜔 + 𝜕

𝜕𝑥 𝑗

[(
𝜇 + 𝜎𝑘

𝜌𝑘

𝜔

)
𝜕𝑘

𝜕𝑥 𝑗

]
(6.5.9a)

𝜕 (𝜌𝜔)
𝜕𝑡

+
𝜕 (𝜌𝑢 𝑗𝜔)
𝜕𝑥 𝑗

=
𝛾𝜔

𝑘
𝑃 − 𝛽𝜌𝜔2 + 𝜕

𝜕𝑥 𝑗

[(
𝜇 + 𝜎𝜔

𝜌𝑘

𝜔

)
𝜕𝜔

𝜕𝑥 𝑗

]
+ 𝜌𝜎𝑑

𝜔

𝜕𝑘

𝜕𝑥 𝑗

𝜕𝜔

𝜕𝑥 𝑗
(6.5.9b)
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A description of the model and the values for the closure coefficients 𝛽, 𝛽∗ (not the discrepancy
field),𝛾, 𝜎𝑘 , 𝜎𝜔, 𝜎𝑑 are given in Ref. [100].

Our variable turbulent Prandtl number augmentation is given by

Prt,0 → 𝑒𝛽Prt,0 = 0.9𝑒𝛽, (6.5.10)

where the nominal constant value for the turbulent Prandtl number is Prt,0 = 0.9. This specific
mathematical form of the augmentation was chosen for two reasons. First, it made the optimization
problem an unconstrained one, which allowed for simpler optimization approaches to be used.
Second, since Prt appears in the denominator of its corresponding source term in the RANS
energy equation, using 𝑒𝛽 rather than just 𝛽 prevented numerical conditioning issues whenever the
optimization drove Prt → 0. These findings were confirmed through preliminary FI studies.

6.5.2.2. Full Learning Problem

To quantify how well a RANS model performs with respect to our modeling goal, we used the
objective function

J =
1
𝑛𝑥

𝑛𝑥∑︁
𝑖=1

(
𝑞𝑤,𝑚 (𝑥𝑖) − 𝑞𝑤,𝑟𝑒 𝑓 (𝑥𝑖)

)2 × 10−12, (6.5.11)

which is the mean-squared error of the wall heat transfer (𝑞𝑤) predictions by the model with respect
to the reference data at 𝑛𝑥 wall faces in the computational domain. The factor of 10−12 converts the
heat transfer measurements to MW/m2 from W/m2 to improve the numerical conditioning of the
objective function and sensitivities calculated by the adjoint simulations.

To enforce our learning goal, the reference data was constructed using experimental data from
the studies described in Table 6-4 as follows. First, a simulation of the flow using the baseline
turbulence model was computed1 and the wall heat transfer distributions were extracted. These
distributions were then compared to the experimental data. The reference data was chosen to be
the baseline simulation results up until the point where the baseline simulation and experimental
data diverge. Since our goal was to learn a model focused solely on improving post-interaction heat
transfer predictions, this approach prevented undesired changes within the zero-pressure-gradient
boundary layer upstream of the shock. To prevent overfitting to noise and measurement error, and
to ignore the effect of other phenomena present in the data such as expansion waves, the reference
data downstream of this point was a piecewise regression of the experimental results that capture the
trend we expected to see. Transitions between the baseline RANS and experimental regressions, as

1The freestream boundary conditions for these simulations account for the effect of the leading edge shock to obtain
the desired freestream/edge flow conditions recorded in the studies.
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Table 6-4. Reference data used

Case Study Geometry 𝑀∞ Angle (◦)
S6

Schülein (2006) [78] Oblique incident shock wave 5.00
6

S10 10
S14 14

N026 Nicholson et al. (2024) [57] Curved forward-facing wall 4.87 ≈ 28.4

well as the individual regressions used cubic splines to ensure smoothness and reduce the potential
for numerical artifacts that might arise when trying to fit to cusps in the reference data. Using
this approach, reference data values are generated for each wall face in the computational domain,
allowing for a straightforward, consistent calculation of the objective function.

Thus, the full optimization problem can be stated as

min
w
J s.t. R𝑚,𝑎𝑢𝑔 (ũ𝑚; 𝜷(𝜼(ũ𝑚),w), 𝝃) = 0. (6.5.12)

Here, the cost function J is given by Eq. (6.5.11) and the weights w are the augmented model
parameters. No regularization was included in the cost function as it was found to be unnecessary
during preliminary FI studies. Furthermore, the case-coupling approach of LIFE and its reduction
of dimension in the optimization adds an implicit regularization to the problem [87].

6.5.2.3. Simplified Learning Problem

The above inverse problem is complex and not easy to find an adequate solution for. Hence, a
simpler learning problem was required to better understand the influence of data-driven variable
turbulent Prandtl number models on RANS simulations for hypersonic SBLIs and characterize the
problem. For this purpose, we also solved a simpler inference problem. For this, the cost function
is given by

J =
1
𝑛𝑥

𝑛𝑥∑︁
𝑖=1

(
𝑞𝑤,𝑚 (𝑥𝑖) − 𝑞𝑤,𝐾𝐶 (𝑥𝑖)

)2 × 10−12, (6.5.13)

which is the mean-squared error of the wall heat transfer predictions by the model with respect
to a RANS simulation implementing the baseline turbulence model (Eq. (6.5.9)) and the variable
turbulence model of Kays and Crawford [40], which can be stated as

Prt =
1

0.5882 + 0.228 (𝜇𝑡/𝜇) − 0.0441 (𝜇𝑡/𝜇)2
[
1 − exp

(
−5.165
𝜇𝑡/𝜇

)] . (6.5.14)
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If one divides Eq. (6.5.14) by the nominal Prandtl number value Prt,0, then the equation can be
interpreted as a variable turbulent Prandtl number augmentation to the baseline turbulence model
with constant Prt. Furthermore, it would be an augmentation with only a single nondimensional
input feature of 𝜇𝑡/𝜇. Therefore, if we state the learning problem for the LIFE framework as

min
w
J s.t. R𝑚,𝑎𝑢𝑔 (ũ𝑚; 𝜷 (𝜂 (𝜇𝑡/𝜇) ,w) , 𝝃) = 0 (6.5.15)

where J is given by Eq. (6.5.13), then one local minimum, and hopefully the global minimum,
should be the LIFE model weights that recreate the model given by Eq. (6.5.14) as closely as
possible.

Since this inference problem had a clear, desired, single-feature solution, it served as an excellent
proxy to characterize the numerics of the full learning problem. If a model trained by LIFE was
unable to adequately replicate the Prt-field given by Eq. (6.5.14), then there would have been no
hope that LIFE would be able to find an adequate solution to the full learning problem.

Furthermore, this problem served as an excellent study for guiding feature design. The domain of
Eq. (6.5.14) is (0,∞)2, which is unbounded. If the augmentation utilized a piecewise multilinear
representation for the feature space, then LIFE would be unable to learn a feature of the exact same
form as Eq. (6.5.14) as such a representation would require a closed interval for its domain. Thus,
we expected that different functional forms of 𝜇𝑡/𝜇 with a finite range would have varying ability
to recreate the trend of Kays and Crawford.

6.5.3. Inferring the Kays-Crawford model

6.5.3.1. LIFE setup

To solve the simplified learning problem of Eqn. 6.5.15, two optimizations using LIFE, each with
a different input feature based on 𝜇𝑡

𝜇
, were conducted. For these, the training data set was just the

three cases from Schülein’s study. One used the simple “wrapped” feature

𝜂 =
𝜇

𝜇𝑡 + 𝜇
, (6.5.16)

which has a range of (0, 1]. The wrapped feature and others with a similar form were successfully
used by Srivastava and Duraisamy to improve turbulence transition modeling [87]. It represents
one of the simplest ways to bound an unbounded, non-negative quantity. However, when a linear
discretization of the feature space is used, features of this form suffer from severe compression and
loss of information when the input quantity has values over several orders of magnitude. For the

2Note it has a valid limit of 0.5882 as 𝜇𝑡/𝜇→ 0
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hypersonic cases used in this work, the 𝜇𝑡/𝜇 values predicted by RANS encompass a range of over
ten orders of magnitude. Since notable regions of the flow attain values throughout this range, we
sought a feature more suited to a linear discretization, resulting in the “logarithmed” feature

𝜂 = 5 tanh
©­­«

log10

(
𝜇𝑡
𝜇
+ 10−16

)
0.75 · 5

ª®®¬, (6.5.17)

which has an output bounded within (−5, 5). Taking the common logarithm can be interpreted as
determining the order of magnitude of 𝜇𝑡/𝜇 at that point in the mesh. The 10−16 is required to
prevent log10 (0) from being calculated and causing “not a number” issues. The hyperbolic tangent
is used to bound the output of the logarithm. Since the most important values seemed to fall within
[10−4, 104], a value of 5 was chosen to encompass this range while minimizing compression. The
factor of 0.75 was included to provide additional fidelity within this range.

6.5.3.2. Results

Figure 6-12 shows the inferred Prt vs. 𝜇𝑡/𝜇 relationships for several configurations of each model.
Both LIFE models were tested with 161, 81, 41, 21, and 11 nodes in the feature space. Regardless
of the number of discretization points in the feature space, the logarithmed feature was able to
much more closely and smoothly approximate the Kays-Crawford model than the wrapped feature.
While it was unable to replicate the asymptotic behavior due to the lack of data for the most extreme
values of 𝜇𝑡/𝜇, it was able to match the transition between the two almost exactly. The models
utilizing fewer nodes matched the Kays-Crawford model more smoothly and also attained higher
values of Prt for the smaller 𝜇𝑡/𝜇-values. The wrapped feature was simply unable to replicate the
trend with any clarity. Due to the extreme compression of 𝜇𝑡/𝜇-values far from unity in value,
the optimization process yielded oscillations between higher and lower values for Prt in an attempt
to have a mean behavior that somewhat resembled the trend. Furthermore, all models with the
wrapped feature exhibited a value of Prt ≈ 0.2 around 𝜇𝑡/𝜇 = 10−0.5, going completely against the
behavior predicted by the Kays-Crawford model. The source of this has not yet been determined.

Figure 6-12b also provides insight on the balance between localized learning and generalizability
for models trained using LIFE. As the number of nodes used decreased, the learned model was
able to better match the Kays-Crawford trend for 𝜇𝑡/𝜇-values that were higher than range of values
presented in the training data. Thus it demonstrates the impact that hyper-parameters for the feature
space discretization have on the generalizability of the model and highlights the careful analysis
that must be performed by the user.

Figure 6-13 compares the heat transfer distributions of the various RANS models in terms of the
Stanton number

145



(a) LIFE, wrapped feature (b) LIFE, logarithmed feature
Figure 6-12. LIFE Prt predictions.

𝑆𝑡 =
𝑞𝑤

𝜌∞𝑈∞𝑐𝑝 (𝑇𝑟 − 𝑇𝑤)
, (6.5.18)

where 𝜌∞,𝑈∞ are the reference freestream density and velocity, 𝑐𝑝 = 1004.675 is the isobaric
specific heat of air, 𝑇𝑟 is the recovery temperature, and 𝑇𝑤 is the wall temperature. The selected
LIFE-inferred models are the ones using 21 nodes for the feature-space discretization. Figures
6-14-6-16 compare the Kays-Crawford Prt-field with the inferred ones using a log scale for the
wall-normal axis. Blue indicates regions of decreased turbulent Prandtl number, red regions of
increase, and white regions of no change. Density contour lines are illustrated the gray lines to help
visualize the shocks.

Unsurprisingly, the heat transfer predictions for the logarithmed feature almost perfectly match the
ones from the Kays-Crawford model, shown by them lying top of each other. Despite the messy
relationship shown in Figure 6-12a, the wrapped feature was still able to match the Kays-Crawford
model at a level that would generally be considered satisfactory.

However, the Prt contour plots highlight the issue with the wrapped feature. Disregarding the
freestream, the field predicted by the Kays-Crawford model is a very simple and reasonable field.
It attains high values at the wall before decreasing throughout the boundary layer. While the
logarithmed feature was not able to exactly match the behavior at the wall (which might be
ameliorated by finer wall-spacing in the mesh), it was able to match the boundary layer behavior
almost exactly. The wrapped feature was unable to do this. The Prt fields for its predictions rapidly
switch between increased and decreased values in a manner that does not seem at all realistic.
Furthermore, it was not able to obtain the band of very high turbulent Prandtl number near the wall
and downstream of the interaction for Case S14.
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(a) Case S6 (b) Case S10

(c) Case S14
Figure 6-13. LIFE wall heat transfer distributions
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(a) Kays-Crawford

(b) LIFE, wrapped feature

(c) LIFE, logarithmed feature
Figure 6-14. Inferred Prt-fields for learning the Kays-Crawford model for Case S6
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(a) Kays-Crawford

(b) LIFE, wrapped feature

(c) LIFE, logarithmed feature
Figure 6-15. Inferred Prt-fields for learning the Kays-Crawford model for Case S10
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(a) Kays-Crawford

(b) LIFE, wrapped feature

(c) LIFE, logarithmed feature
Figure 6-16. Inferred Prt-fields for learning the Kays-Crawford model for Case S14
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Table 6-5. Features used for LIFE

Feature Lower Bound Upper Bound # Nodes

5 tanh
(

log10 (𝜇𝑡/𝜇+10−16)
0.75·5

)
(Eq. (6.5.17)) -5.0 5.0 41

1.5 tanh ( 1
1.5
∇𝑇 ·𝑛̂
𝑇/𝑑wall

) -1.5 1.5 41

Despite the troubles with the wrapped feature, the logarithmed feature proved that the LIFE
framework, provided that carefully designed features are used, can be applied to our hypersonics
heat transfer problem as it was able to successfully replicate an existing variable turbulent Prandtl
number model. Furthermore, it suggested that, with an appropriate choice for the feature-space
discretization, there is potential for predictive modeling to unseen cases.

6.5.4. Inferring and predicting experimental data

6.5.4.1. LIFE setup

In a preliminary attempt to solve the full learning problem given by Eq. (6.5.12), an optimization
using LIFE with two input features was performed. The feature space was defined according to
Table 6-5. The first is the same logarithmed feature used to learn the Kays-Crawford model. The
second is based on the wall-normal temperature gradient nondimensionalized by the cell’s local
temperature and wall distance. A wall-normal temperature gradient feature was selected after other
preliminary work indicated it gave valuable insight on where standard turbulence models failed to
accurately predict wall-normal heat transfer. The model was trained on data from all three of the
Schülein cases and then tested against one of DNS cases from Nicholson et al. [57].

6.5.4.2. Training results

Figure 6-17 shows the evolution of the objective function during training. For all cases, the cost
function was able to improve by over two orders of magnitude. The optimization was terminated
after the 21st step due to forward simulations failing to converge.

Figure 6-18 shows the heat transfer distributions of the experimental data, baseline model, and
LIFE model. Figure 6-19 shows the inferred Prt-fields, again using a log scale for the wall-
normal axis. We can see that the inferred model is able to fairly closely match the experimental
data downstream of the interaction. It also accomplishes this with minimal impact on the flow
upstream of the interaction and with virtually zero change to the wall pressure and skin friction
distributions3. There are, however, some visible oscillations in the heat transfer distributions for
the weaker interaction cases.

3Plots are omitted for brevity.
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Figure 6-17. Training objective evolution

The inferred turbulent Prandtl number fields are markedly different from the ones suggested by the
Kays-Crawford model, but align much better with the fields suggested by preliminary FI studies we
conducted. The dominant feature is the large region of significantly decreased Prt in the boundary
layer at and downstream of the shock interaction. It is most pronounced for Case S14, which is the
strongest interaction case. Other minor features are the small regions of increased Prt just upstream
of the interaction within the boundary layer and in the upper edge of the boundary layer, both of
which the size and strength correlate with the shock strength.

The concerning aspects of the fields are the alternating bands of increased and decreased Prt
in the upstream regions of all cases and in the downstream regions near the wall, the latter of
which is inversely correlated with shock strength. These bands are reminiscent of the oscillatory
behavior exhibited by the LIFE-trained model using the wrapped feature to learn the Kays-Crawford
relationship. In general, these bands result from the features and their representations being unable
to properly distinguish between the various flow phenomena. Regarding the upstream bands, the
optimization is driven primarily by cells located near the wall at and downstream of the interaction.
However, feature-values in these cells also match some of those within the boundary layer in the
upstream regions, affecting the heat transfer prior to the shock. The optimization then tries to
compensate for this by adding a region of opposing behavior adjacent to it. Unsurprisingly, this
causes a domino effect, resulting in the bands. To address this, a third feature that can distinguish
between undisturbed and disturbed boundary layers will likely have to be added. The bands in
the downstream region are simply explained by having an inadequate set of features. The two
chosen features and their representations are simply unable to properly distinguish the different
flow regions. While adding an additional feature will likely help, the features might also need to
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(a) Case S6

(b) Case S10

(c) Case S14
Figure 6-18. LIFE wall heat transfer distributions
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be modified or replaced.

Despite these concerns, the learned model is still a fully functional augmentation that can use
low fidelity states to fairly closely match the desired behavior. Thus, it highlights the LIFE
framework’s ability to obtain a learnable model provided a suitable set of features and feature space
discretization.

6.5.4.3. Testing results

To assess the robustness and generalizability of the learned model, we compared it to the DNS
results of a moderate steepness forward-facing curved wall interacting with a turbulent Mach 4.87
boundary layer from Nicholson et al. (referred to as M5FFW0p26 in their study) [57]. While
the Mach number and freestream Reynolds number are comparable with the training cases, the
geometry, and consequently the nature of the shock interaction is significantly different. Here, a
single shock is generated as a result of the flow geometry, whereas in the training data a shock is
externally generated and causes a second, reflected shock. Furthermore, the curved nature of the
wall will cause the flow features to evolve differently than the abrupt nature of an incident shock.

Figure 6-21 shows that the predicted Prt-field for this test case generally matches what was seen
in the training cases. The dominant feature is the region of significantly decreased turbulent
Prandtl number in the boundary layer downstream of the shock interaction. The oscillatory bands
throughout the boundary layer upstream of the shock and in the near-wall region downstream of
the shock are again present.

Despite the inability to account for the expansion corner and the overaggressive correction, this
preliminary model trained using LIFE was able to significantly improve the heat transfer predictions
when applied to a case with a geometry outside of its training regime. In addition, the predic-
tion remained physically realizable; there was no spurious behavior. These highlight the LIFE
framework’s ability to generate both generalizable and robust predictive models.

6.5.5. Conclusions and future work

This section presented preliminary results suggesting that the LIFE framework proposed by Sri-
vastava and Duraisamy [87] can be used to learn variable turbulent Prandtl number models to
improve the RANS heat transfer of hypersonic SBLIs. We first took the full optimization problem
of learning a multiple-feature model to match experimental data and simplified it to a problem for
learning a single-feature model to recreate the existing variable turbulent Prandtl number model of
Kays and Crawford. We showed that with a carefully constructed feature that provided fidelity over
the full range of values, a simple piecewise linear representation of the feature was able to closely
match the Kays-Crawford model. This effort gave confidence to the LIFE framework and provided
us with valuable insight for feature development. We then expanded on these findings to create a
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(a) Case S6

(b) Case S10

(c) Case S14
Figure 6-19. Inferred Prt-fields for the LIFE-trained model
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(a) Heat transfer

(b) Pressure

(c) Skin friction
Figure 6-20. Predicted wall quantities for Case N026
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Figure 6-21. Predicted Prt-field for Case N026

preliminary two-feature model trained on the experimental data from a Mach 5 oblique SBLI study.
LIFE was able to infer a model that resulted in satisfactory predictions on the training cases and
significantly improved the heat transfer predictions for a case with a drastically different geometry,
highlighting its potential as a learning approach.

The model presented in this report is preliminary and still being improved upon. The current
version is unable to properly distinguish between all relevant flow features and regions to create an
augmentation that properly isolates and distinguishes between the regions of the flow the baseline
model is inaccurate for. Furthermore, this model, and others developed but not covered in this
report, have been unable to improve the heat transfer predictions for flows at higher Mach numbers
and with more significant adverse pressure gradients. We plan to methodically consider additional
features to add and replace the current ones. Specifically, we will first focus on developing features
that can ensure that undisturbed boundary layers remain unaffected by the learned augmentation
and result in much smoother predicted discrepancy fields. Once this is accomplished, we will
expand and modify the model to handle more extreme hypersonic cases.
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7. CONCLUSIONS

This report summarized work performed from FY22-FY24 focused on improving RANS models
for hypersonic flows using data-driven modeling and scientific machine learning. In this report,
we investigated the performance of RANS models currently implemented in SPARC on a range of
hypersonic problems with a focus on SBLIs. We highlighted deficiencies in current capabilities.
To address these deficiencies, we developed data-driven corrections to the Reynolds stress tensor
and turbulent heat flux. First, we formulated a discrepancy approach that corrects an existing
RANS model with a tensor-basis neural network (TBNN). To further improve the robustness of the
TBNN, we developed approaches to enforce smoothness via Lipschitz-continuous networks and
quantify model-form uncertainty via calibrated deep ensembles. We demonstrated the approach to
improve predictions for a 𝑘−𝜖 model. We showed that the resulting ML-enhanced model yields
more accurate predictions across a suite of low-speed and high-speed problems displaying various
physics. For hypersonic boundary layers, we found that the wall-normal Reynolds stress has an
appreciable impact on the solution. When deployed on hypersonic SBLIs, the ML-enhanced models
resulted in improved predictions, but significant discrepancies were present. In particular, wall heat
flux is significantly over-predicted near the point of reattachment.

To address the issue of over-prediction in wall heat flux, Chapter 5 developed an approach for
learning a variable turbulent Prandtl number to improve predictions for wall heating in SBLIs. The
developed approach learns a neural-network-based variable turbulent Prandtl number model using
field inversion and machine learning (FIML). We demonstrated the approach for improving a 𝑘−𝜖
model, and showed that the resulting variable turbulent Prandtl number model improves predictions
on a suite of test cases including the hollow cylinder flare and HIFiRE ground test experiments.

Lastly, Chapter 6 highlighted promising future directions. We:

• Showed preliminary predictions of a variable turbulent Prandtl number model on Sandia’s
cone-slice-wedge geometry,

• Showed preliminary results of a 𝑘−𝜖 model employing both a variable turbulent Prandtl
number model and a TBNN-based Reynolds stress model,

• Investigated the use of the ensemble Kalman filter for learning a variable turbulent Prandtl
number model,

• Showed preliminary results for the LIFE framework deployed to learning a variable turbulent
Prandtl number model.
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All of these future directions show improved results and highlight the future promise of data-driven
turbulence modeling for hypersonic turbulent flows.
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APPENDIX A. Deep ensembles for the turbulent Prandtl number

For modeling the ensemble Prandtl number correction described in section 6.4, we learn tensor-basis
neural networks mapping input features to the output 𝑦𝑁𝑁 and a scalar variance 𝜎2,

NN : (𝜼; 𝜽) ↦→ (𝑦𝑁𝑁 , 𝜎2)

where 𝜎2 ∈ R+ is a scalar variance and 𝜽 denote the weights and biases. The ensemble approach
trains 𝑀 such networks. For each network, we optimize the log-likelihood as given by

𝜽 = arg min
𝜽∗∈R𝑁𝜽

𝑁train∑︁
𝑘=1

(
𝑦𝑁𝑁

(
𝜼𝑘 , 𝜽∗

)
− 𝑦𝑘

)2

2𝜎2 (
𝜼𝑘 , 𝜽∗

) +
𝜎2 (

𝜼𝑘 , 𝜽∗
)

2
,

where 𝑁𝜽 denotes the total number of weights and biases. The mean and variance of the networks
is then given by

𝑦𝑁𝑁 =
1
𝑀

(
𝑀∑︁
𝑖=1

𝑦𝑁𝑁 (𝜼; 𝜽𝑖)
)
,

𝑦̂𝑁𝑁 =
𝐶̂

𝑀

𝑀∑︁
𝑖=1

(
𝑦𝑁𝑁

2(𝜼; 𝜽𝑖) − 𝑦𝑁𝑁
2
)
+ 1
𝑀

𝑀∑︁
𝑖=1

𝜎2 (𝜼, 𝜽𝑖) ,

where 𝑦𝑁𝑁 ∈ R3 is output of the networks, 𝑦̂𝑁𝑁 ∈ R+ is a mean variance of the anisotropy tensors
predicted by the networks, and 𝐶̂ ∈ R+ is a constant used to calibrate the ensemble variance.
The constant is determined by the ratio of the network error the the variance of the ensemble as
described in Chapter 4. Given a predicted mean and variance, a weight 𝛽 is computed as

𝛽 =
𝜎2

prior

𝜎2
prior + 𝑦̂𝑁𝑁

(A.0.1)

Then the predicted log inverse Prandtl number is

𝑦𝑀𝐿 = 𝛽 𝑦𝑁𝑁 + (1 − 𝛽) log(1/0.9). (A.0.2)

The approximation (A.0.1) is inspired by a Bayesian formulation and requires specification of a
hyper-parameter for the prior confidence, 𝜎2

prior.

171



DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

CA Technical Library 8551 cateclib@sandia.gov

172



This page intentionally left blank.

173



Sandia National Laboratories is
a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of Sandia
LLC, a wholly owned subsidiary
of Honeywell International Inc.,
for the U.S. Department of
Energy’s National Nuclear
Security Administration under
contract DE-NA0003525.


	Acknowledgement
	Introduction
	Governing equations
	RANS closure models
	Spalart–Allmaras model
	SST-V 2003
	k-

	Established corrections for hypersonic flows
	Catris and Aupoix correction
	Length-scale limiting
	Rapid compression corrections
	Stress limiters
	Modifications to the Spalart–Allmaras model for compressible flow


	Validation study of current Sandia models for hypersonic flows
	Mach 11 cold-wall boundary layer
	Holden compression ramps
	Schülein shock boundary layer interactions
	CUBRC Hollow Cylinder Flare
	HIFiRE ground tests
	Summary of validation study

	Data-driven models for the Reynolds stress tensor
	Introduction
	Literature overview
	Tensor-basis neural networks
	Analysis: TBNN simplifications for a parallel flow

	Ensembles for uncertainty quantification and out-of-distribution detection
	Lipschitz-continuous neural networks
	Automatic selection of Lipschitz constant

	Multi-step training framework for feature consistency
	Implementation in SPARC
	Training
	Training datasets, data cleaning, and data balancing
	Training details and architectures

	Training results
	FFW and BFW cases
	Global model training

	Test cases
	Zero pressure gradient flat plate boundary layer
	Wall-mounted hump
	Axisymmetric jet
	Mach 11 cold-wall boundary layer
	Curved wall
	Shock boundary layer interactions at M=5.0
	CUBRC Hollow Cylinder Flare

	Summary and outlook

	Variable turbulent Prandtl number modeling
	Introduction
	Literature review
	Field inference for a variable turbulent Prandtl number
	Field inference
	Random field expansions

	Field inference results
	Machine learning
	Features
	Fully connected neural networks
	Training data collection and machine learning details
	Implementation

	Predictions
	Machine learning results
	Predictions on training cases: Holden compression ramps and Schülein impinging shocks
	Predictions on unseen test cases: Hollow cylinder flare and HIFiRE ground test

	Model interpretation
	Iterative convergence
	Grid convergence
	Conclusions

	Future directions
	Deployment of models on fully 3D exemplars and extended validation set
	Cone-slice-wedge Predictions

	Joint Reynolds stress and Variable Prt results
	Fully-consistent training
	Fully consistent training with the Ensemble Kalman Filter
	Two-step EnKF training
	Results
	Discussion and future work

	Development of a variable turbulent Prandtl number using the LIFE framework
	Learning feature-based data-driven model augmentations
	Application of LIFE for improved modeling of wall heating in hypersonic SBLIs.
	Inferring the Kays-Crawford model
	Inferring and predicting experimental data
	Conclusions and future work


	Conclusions
	Bibliography
	Appendices
	Deep ensembles for the turbulent Prandtl number

