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ABSTRACT
This work explores the potential of utilizing temporal data from gamma-ray detectors, known as
list-mode data, to enhance radioisotope identification. Traditional identification methods, which
rely on full gamma-ray spectrum analysis, often require long dwell times and struggle with
“confuser” sources, or spectra with similarly spaced spectral peaks. We hypothesize that by
leveraging the probabilistic nature of nuclear decay and the time-encoded information from decay
sequences and interactions with surrounding materials, we can improve classification accuracy
over static spectral analysis. This research rigorously examines the temporal content of list-mode
data through exploratory data analysis via correlation discovery and information theory. We
further propose a basic classification model that can utilize spectral or temporal data (or both) to
determine if the incorporation of temporal information can improve radioisotope identification.
The findings suggest that the temporal information present in list-mode gamma-ray data has merit
and should be further investigated.
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ACRONYMS & DEFINITIONS

LDRD Lab Directed Research and Development

IPA Innovation for Proliferation Assessments

IA Investment Area

ARNIE Autonomous Reconfigurable Neural Intelligence At The Edge

N4PA Neuromorphic-computing for Proliferation Assessments

RIID Radioisotope Identification

LM-MLEM list-mode maximum likelihood expectation maximization

HMM Hidden Markov Models

MLE Maximum Likelihood Estimation

GADRAS Gamma Detector Response and Analysis Software

SNR Signal to Noise Ration

ROC Receiver Operating Characteristic

AUC Area Under Curve

MCA Multi-channel Analyzer

COTS Commercial Off The Shelf

CTMC continuous time Markov chain
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1. INTRODUCTION

Insight into proliferation activity is obtained using signatures of nuclear decay, typically gamma
ray and/or neutron measurements, to identify radioisotopes. Radioisotope identification (RIID) is
typically performed by analyzing gamma-ray spectra, sometimes in combination with neutron
measurements. Current classification methods use peak-fitting or full gamma-ray spectrum
analysis algorithms to identify isotopes, but these methods can require long dwell times to
accurately classify radioisotopes in radiologically cluttered environments or weak signal scenarios
[1, 2]. These methods also have difficulty with “confuser” sources, which have spectral peaks that
are very close to each other, e.g., Pu-239 vs I-131 and U-238 vs Ra-226.

In the construction of a spectrum, time and sequence information is lost as gamma-ray counts are
summed over time across energy bins—a fact that has been theoretically quantified [3]. Nuclear
decay is a probabilistic process that follows well-characterized decay sequences and known mean
decay times—information that is not present in a spectrum. Interactions of decay radiation with
materials surrounding a source cause subsequent emissions with time-encoded information that
can be attributed to geometry and materials. Utilizing the full temporal and sequential data from a
detector, known as list-mode data, on its own or in combination with a spectrum, may improve
methods for RIID, especially in the case of ambiguous spectra from confuser sources.

Some prior Sandia work has attempted to shed light on temporal information content in
gamma-ray emissions, namely the ARNIE LDRD [4] and N4PA LDRD (current ongoing effort),
both funded under the IPA IA, but it was not the focus of these efforts. Work from the BALDR
project, funded under NA-22, applied machine learning models to the spectra-based RIID task,
but admittedly still has trouble with confuser sources. Furthermore, list-mode data is used in
Compton imaging with known isotopes, in algorithms such as LM-MLEM [5], and temporal
based algorithms have been developed for fissile material characterization via active interrogation
[6]. However, list-mode data has, to the author’s knowledge, not been used successfully for
passive gamma ray based RIID.

In this work, we take a rigorous approach to determine the nature of the temporal content of
list-mode gamma-ray data. We begin by first addressing the Hidden Markov model hypothesis, in
Section 3, that was central to the original LDRD idea submission (Idea # 24-0575). We then detail
our datasets (Section 4) and data analysis efforts (Section 5) to define the nature of the temporal
content of our datasets. This definition is performed through standard methods for correlation
discovery and information theory analysis of the data. Lastly, we present a model for classification
(Section 6) and accompanying results (Section 7) that can use spectral data alone, temporal data
alone, or the fusion of the two, to determine if the temporal content of the data is beneficial to the
task of RIID.
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2. MOTIVATION

Isotope branching ratios, decay modes and energies, and half-lives are readily accessible in several
databases. For more complex radioisotope mixtures, there are many more metastable daughters
and decay modes, potentially providing alternative signatures that can be captured in
time-correlated list mode data. An example of one such decay chain is represented in Figure 2-1a.
These decay chain representations look very similar to Markov chains or Markov processes. A
Markov chain is a stochastic process that satisfies the Markov property. The Markov property
states that the future state of the process depends only on the present state and not on the sequence
of events that preceded it. Hidden Markov Models (HMMs) are statistical models used to
represent systems that follow a Markov process with hidden states. They are particularly useful for
modeling time series data where the system being modeled is assumed to be a Markov process
with unobservable (hidden) states. It is possible to cast a decay chain into a Hidden Markov
Model; see Figure 2-1b. In Section 3 we explore the application of this possibility to real radiation
data and the physics of radiation sensing.

(a) Simple illustration of the decay
chain associated with the radio isotope

Thorium-232
(b) A toy example of a hidden Markov process

model

Figure 2-1. On the surface, the representation of a radiological decay chain and a hidden Markov
model are very similar.

Statistical theory postulates that in creating a gamma-ray spectrum using a stream of pulses
coming from a detector and aggregating in time, information is being lost [3]. Therefore, using
temporal gamma-ray data directly from the detector, before it is binned into a spectrum, can in
principle be used to perform nuclear forensics and analysis with higher confidence and decrease
identification/characterization thresholds. In Sections 5.3.1 and 5.3.2 we rigorously investigate
this theory through Shannon Entropy analysis and Fisher Information quantification.
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Further, nuclear decay is commonly modeled as a Poisson process, a stochastic process in which
event counts are modeled via the Poisson distribution with a time dependency, exhibiting
well-understood branching ratios and characteristic time scales for every decay. Gamma-ray
emissions from a nuclear decay chain form fundamentally sequential information, and using only
the integrated counts in a time interval disregards the sequence and time-of-arrival data. Using
gamma-ray pulse measurements in a list-mode, real-time fashion, rather than a spectrum collected
over time, allows temporal information in the data to contribute to the result, enabling isotopic
identification to be made more rapidly than by using energy bin counts alone. In Section 6 we
explore a classifier that can determine if the presence of temporal data from gamma-ray list-mode
data can improve the accuracy of classifying radiological sources.

This work seeks to provide evidence and support to the temporal information content of list-mode
gamma-ray data. We then ask, is the temporal information present useful to the task of
radioisotope identification?
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3. HIDDEN MARKOV MODELING OF LIST-MODE DATA

Radioactive decay is a stochastic process wherein unstable atomic nuclei spontaneously transform
into more stable configurations, emitting radiation in the form of gamma rays, among many other
forms. Focusing solely on gamma-ray emissions, radioactive decay can be stated to have the
following properties:

1. Each decay event, i.e., particle emitted, occurs independently of others.

2. Memoryless: The probability of a decay event is constant over time, leading to an
exponential distribution of interarrival times.

3. Large Number of Atoms: In practical quantities, radioactive sources contain an
appreciable fraction of Avogadro’s number (∼ 6.022 × 1023) of atoms that can be emitted
during radioactive decay.

As such, radioisotope decay can be thought of as a continuous time Markov chain (CTMC) that
transitions between different decay states and could be related to the measurement observations of
time stamps and/or energies once a decay particle is observed. One may thus hypothesize that a
Hidden Markov Model (HMM), which is able to relate observations to unobserved states, can be
used to reliably identify these states and thus identify the radioisotope.

A Hidden Markov Model (HMM) [7, 8] is a statistical model where the system being studied is
assumed to follow a Markov process with hidden, i.e., unobservable, states. These hidden states
consist of a finite set {𝑆1, 𝑆2, . . . , 𝑆𝑁 } through which the system transitions over time. In
continuous time [9], the likelihood of moving from one state to another is determined by the
generator matrix 𝐴 that defines the instantaneous transition rate from state 𝑆𝑖 to state 𝑆 𝑗 . In
addition to these transition rates, continuous time HMMs also include emission probabilities that
define the likelihood of observing a particular output 𝑌𝑡 given the current hidden state 𝑋𝑡 .

Let 𝑋𝑡 denoting the hidden state at time 𝑡 and 𝑌𝑡 the observed output, then the behavior of an
HMM can be expressed mathematically as follows:

P(𝑋𝑡 = 𝑆 𝑗 | 𝑋𝑡−1 = 𝑆𝑖) = 𝑎𝑖 𝑗 , P(𝑌𝑡 = 𝑜𝑘 | 𝑋𝑡 = 𝑆 𝑗 ) = 𝑏 𝑗 (𝑜𝑘 ),

where 𝑎𝑖 𝑗 denotes the elements of the generator matrix that yields the transition probability matrix
over time 𝑡, 𝑃𝑡 = exp(𝐴𝑡), hosting the transition probabilities 𝑝𝑡,𝑖 𝑗 = P(𝑋𝑡 = 𝑆 𝑗 |𝑋0 = 𝑆𝑖. Further,
𝑏 𝑗 (𝑜𝑘 ) are the emission probabilities that describe the likelihood of observing output 𝑜𝑘 given
that the system under observation is in state 𝑆 𝑗 .
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We attempted to fit HMMs to energy data, ignoring the time stamp, with varying numbers of
hidden states: 2, 3, 4 and 5. For example, for a 3-state HMM, the generator matrix 𝐴 was
specified as:

𝐴 =


−𝑎11 𝑎12 𝑎13
𝑎21 −𝑎22 𝑎23
𝑎31 𝑎32 −𝑎33


Emission distributions were defined using Poisson distributions with varying means, given that
the measured energies are discrete. In all cases and data, however, each HMM failed to converge
or provide sensible parameter estimates.

This result is not surprising when we take a step back and consider the nature of the physical
phenomenon that we are attempting to model. Although HMMs are widely used in various fields
for modeling systems that exhibit Markovian properties where the future state depends only on the
current state, in the context of radioactive decay there are violations of the fundamental HMM
assumptions that are required for an HMM to function (e.g., the stochastic nature of nuclear decay
and practical observation limits) effectively rendering the HMMs impractical for analyzing
list-mode gamma radiation data.

Implications of the HMM Assumption
An assumption of HMMs is violated when attempting to model a system composed of 𝑁 ≈ 1023

independently decaying atoms using a single HMM chain. Each atom follows its own CTMC,
independent of the others, as individual radioactive decay events are independent emissions from
an unstable nucleus. When observing the overall decay process, we are capturing events from all
atoms, rendering the use of a single HMM inadequate for modeling the collected data. To
properly exploit the Markov property and relate each atom’s isotope (hidden state) to the observed
measurements, we would need to use on the order of 1023 independent HMMs, one for each atom.
This usage would require a factorial HMM [10] to relate each atom’s hidden state (isotope) to an
observed event. However, inference and parameter estimation in this approach quickly becomes
computationally intractable, as managing such a large number of independent chains would
exceed the capacity of any modern computational resource.

Stochastic Nature of Nuclear Decay
Nuclear decay chains, which give rise to observable radiation signatures, are well understood.
However, radioactive decay is a stochastic process, making it impossible to predict when a
particular nucleus will decay, regardless of its age. For any given source-to-detector configuration,
it is impossible to know whether a given emission related to a transition along a decay chain will
be detected, and if it is, by what process. For example, a ≈ 1001 keV gamma ray from the decay of
U-238 may only interact with a detector via Compton scatter, resulting in an observed energy
deposition anywhere between 0 and ≈ 1001 keV.

Practical Observation Limitations
For any practical quantity of material of interest to the National Security Programs (NSP)
Investment Area (IA), multiples of Avogadro’s constant of decaying nuclei (e.g., hundreds of
sextillions) will be under observation at once. The length of this observation is typically much
shorter than even the short portions of a given decay chain. Using U-238 as an example, with a
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half-life of ≈ 4.5 billion years, it is clear that no practical NSP application should expect to make
meaningful observations of decay chains of interest.

To illustrate the impracticality of using HMMs for this purpose, consider a thought experiment
starting with the simplest case of a single atom in a 4𝜋 detector in a vacuum, where the detector
can observe all emissions. As we remove ideal assumptions, the complexity of the system
increases significantly:

1. Planar Detector: A finitely sized planar detector introduces solid angle loss, causing missed
observations even with just one atom. Additionally, observations that do enter the plane of
the detector will have a probability of being missed, as radiation interactions with the
detector are probabilistic.

2. Terrestrial Environment: Introducing a terrestrial environment adds complexities such as
Compton scattering, pair production, and emissions from natural sources, which modify
and/or mask observations from the original source emission.

3. Multiple Atoms: Adding more than one atom (e.g., Avogadro numbers of them) results in
emissions from atoms at different stages of the decay chain, further complicating the
analysis.

4. Half-Life Considerations: A half-life is merely an observed length of time for which half
the original atoms of a material have decayed, not a prescription of when emissions actually
occur. Thus, emissions along the decay chain are completely unknowable until a perfect
observation is made, which is not possible in any practical scenario.

Given these considerations, it is clear that Hidden Markov Models are not practical for the
analysis of radiation list-mode data due to the quantity of independent decay events,
computational intractability, stochastic nature of nuclear decay, and practical observation
limitations. Consequently, whether HMMs can be leveraged to perform any useful classification
of radioisotopes is not considered further here.
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4. DATASETS

Our work in this report utilizes three different datasets collected in July 2022, April 2024, and
August 2024. All these datasets come from radioactive sources collected with a 2” × 4” × 16” low
resolution inorganic scintillator (Sodium Iodide (NaI) or Cesium Iodide (CsI)) connected to a
COTS multichannel analyzer (MCA)—Canberra/Micron Osprey or digiBase. For all datasets, we
did not utilize the first 100 seconds of data due to this period of time being reserved for
experiment setup. All collections were performed with a stationary detector and a stationary
source. In this section we detail each dataset’s sources with spectrum and any relevant details
regarding the nature of the collection.

4.1. July 2022 Data

This dataset consists of five collections across four different sources, with the fifth collection
being a combination of two of the sources. The collection was performed with a stationary
detector and a stationary source. Collection periods were for approximately three hours. Sources
used in this collection are as follows:

1. Cs-137

2. Y-88

3. Ba-133

4. U-232

5. Ba-133 + U-232

No calibration for drift was performed on this detector, and as such any data beyond 20 minutes
was not used. Spectra based on 20s worth of events for each source are presented below in Figure
4-1.
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(a) Spectrum of Background from July 2022 (b) Spectrum of Ba133 from July 2022

(c) Spectrum of Cs137 from July 2022 (d) Spectrum of U232 from July 2022

(e) Spectrum of U232 & Ba133 from July
2022

(f) Spectrum of Y88 from July 2022

Figure 4-1. Figures 4-1a, 4-1b, 4-1c, 4-1d, 4-1e, and 4-1f display the spectrum associated with
background, Ba133, Cs137, U232, the combination of U232 and Ba133, and Y88, respectively. The

list-mode data associated with these plots was collected in July 2022.

4.2. April 2024 Data

This dataset consists of three collections across two different sources, with the third collection
being a combination of the two unique sources. The collection was performed with a stationary
detector and a stationary source. Collection periods were not controlled. Sources used in this
collection are as follows:

1. Ba-133

2. U-232
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3. Ba-133 + U-232

Calibration of the detector was performed to account for drift from long dwell times. Spectra
based on 20s worth of events for each source are presented below in Figure 4-2.

(a) Spectrum of Background from April
2024

(b) Spectrum of Ba133 from April 2024

(c) Spectrum of U232 from April 2024 (d) Spectrum of U232 & Ba133 from April
2024

Figure 4-2. Figures 4-2a, 4-2b, 4-2c, and 4-2d display the spectrum associated with background,
Ba133, U232, and the combination of U232 and Ba133, respectively. The list-mode data associated

with these plots was collected in April 2024.

4.3. August 2024 Data

This dataset was produced as a result of our initial results on the first two data sets. Because each
source has a distinctly different gross count rate, we were concerned that the classifier may be
exploiting the gross count difference as a discriminator. To test this hypothesis, this dataset placed
the sources at different distances in an attempt to make the gross count rate of each collection the
same. Sources used were as follows:

1. Cs-137

2. Y-88

3. Ba-133

4. Cs-137 + Ba-133
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Table 4-1 details the distances each source was placed from the detector and the corresponding
gross count rate achieved. Distance 1 refers to the set of distances to achieve a nominal count rate
of between 1600 to 1800. That data is referred to as D1. Distance 2 refers to the set of distances to
achieve a nominal count rate of between 1200 and 1400. That data is referred to as D2. For
completeness, Table 4-2 makes record of the MCA settings used for this collection. Collection
periods were not controlled. Spectra based on 20s worth of events for each source in datasets D1
and D2 can be found in Figures 4-3 and 4-4.

Distance 1 (D1) Distance 2 (D2)
Source Distance Gross Count Rate Distance Gross Count Rate

Cs-137 10ft 2in 1598 15ft 2.5in 1181
Y-88 7ft 1.5in 1738 11ft 4in 1230
Ba-133 21ft 6in 1827 29ft 1381
Cs-137 & Ba-133 22ft 9in 1849 31ft 1350
Background 751

Table 4-1. Distances used for each source to achieve specific count rate targets.

Amplifier Gain 0.4
Shaping Time 2 𝜇sec

ADC Lower Level Disc 17
Upper Level Disc 1023

High Voltage Target 666

Table 4-2. MCA Settings for August 2024 dataset collection.
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(a) Spectrum of Cs137 from August 2024 D1 (b) Spectrum of Y88 from August 2024 D1

(c) Spectrum of Ba133 from August 2024 D1 (d) Spectrum of Cs137 & Ba133 from August
2024 D1

(e) Spectrum of Background from August
2024

Figure 4-3. Figures 4-3e, 4-3a, 4-3c, and 4-3d display the spectrum associated with Cs137, Y88,
Ba133, the combination of Cs137 and Ba133, and background, respectively. The list-mode data

associated with these plots was collected in August 2024 at D1.
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(a) Spectrum of Cs137 from August 2024 D2 (b) Spectrum of Y88 from August 2024 D2

(c) Spectrum of Ba133 from August 2024 D2 (d) Spectrum of Cs137 & Ba133 from August
2024 D2

Figure 4-4. Figures 4-4b, 4-4a, 4-4c, and 4-4d display the spectrum associated with background,
Y88, Cs137, Ba133, and the combination of Cs137 and Ba133, respectively. The list-mode data

associated with these plots was collected in August 2024 at D2.
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5. EXPLORATORY DATA ANALYSIS

In this section we explore the relationship between time and energy in the list-mode data that was
collected. Section 5.1 shows the results of correlation analysis on the July 2022 and April 2024
datasets. Section 5.2 discusses the results of the distribution analysis that was conducted on the
July 2022 dataset. Lastly, Section 5.3 discusses the results of the Shannon entropy and Fisher
information analysis that was conducted on all datasets mentioned in Chapter 4. Except when
stated otherwise, we used a 20s sample from each of the datasets in order to generate the results in
this section.

5.1. Correlation

One way to analyze the relationship between two variables is by using the Pearson’s correlation
coefficient, which we will henceforth refer to as the correlation coefficient. The correlation
coefficient is a unit-less measure of the strength and direction of the linear relationship between
two variables [11]. It ranges in value from −1 to 1, with values that are larger in magnitude
indicating that there is a strong linear relationship between the two variables. Due to the nature of
the list-mode data that was collected, a strong linear relationship between interarrival time and
energy was not expected. Table 5-1 shows that the Pearson’s correlation coefficient between
interarrival time and energy is nearly zero for every source, and therefore a linear relationship
between energy and interarrival time does not exist in our datasets. An alternative measure of
correlation is referred to as Spearman’s rho. Spearman’s rho is calculated in a similar way to
Pearson’s correlation coefficient except that it uses ranks and average ranks to arrive at a measure
of the strength and direction of the monotonic relationship between two variables [12]. Again, due
to the nature of our data, we did not expect there to be a strong monotonic relationship between
interarrival time and energy. This hypothesis was validated by the results of this analysis that can
be found in Table 5-1.

Additionally, since all of these datasets represent time-series data, we explored two correlation
metrics that are specifically used for time-series data. The first metric is referred to as
autocorrelation and is used to measure the strength and direction of the linear relationship
between a variable at one moment in time and the same variable at another moment in time [13].
This metric can also be described as a measure of how well one can use a linear function to
predict the ( 𝑗 + 𝑘)𝑡ℎ element in the series when given the 𝑗 𝑡ℎ element in the series. Just as before,
the values for this metric fall between −1 and 1, where large values in magnitude imply a strong
linear relationship. When using this metric we looked at interarrival times and energy separately.
Since a linear relationship is not expected to exist between elements in the list-mode data, the
autocorrelation value was hypothesized to be close to zero for both the interarrival times and the
energy. The autocorrelation value between the 𝑗 𝑡ℎ interarrival time and the ( 𝑗 + 𝑘)𝑡ℎ interarrival
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Relationship Between Interarrival Time & Energy
July 2022 Pearson’s

Correlation
Spearman’s
Rho

Autocorrelation
(Time, Energy)

Cross-
Correlation

Background -0.0028 -0.0007 (0.0151, 0.0083) 0.0147
Y88 -0.0019 -0.0004 (0.0142, 0.0136) 0.0156
Cs137 -0.0029 0.0009 (0.0115, 0.009) 0.0127
U232 -0.0037 -0.0017 (0.0071, 0.0068) 0.0059
Ba133 0.01 0.0085 (0.0077, 0.0089) 0.0118
U232 & Ba133 -0.0003 -0.0044 (0.004, 0.004) 0.0063
April 2024
Background -0.0092 -0.0218 (0.0196, 0.0154) 0.0166
U232 -0.0041 -0.0138 (0.0144, 0.012) 0.0145
Ba133 -0.0077 -0.0107 (0.013, 0.0105) 0.0123
U232 & Ba133 -0.0077 -0.0187 (0.0088, 0.0132) 0.0129

Table 5-1. The table displays the different correlation metrics that were used to analyze the
list-mode datasets.

time was found to indicate a lack of correlation for every dataset. The maximum autocorrelation
value is shown in Table 5-1, where the values of 𝑘 that were considered were between 1 and 42.
Similar results were obtained for the energy variable. Furthermore, cross-correlation was used to
test whether there was a linear relationship between the series of interarrival times and the series
of energies. The maximum cross-correlation between 𝑥 [𝑡 + 𝑘] and 𝑦 [𝑡] is shown in Table 5-1,
where 𝑥 [𝑡 + 𝑘] represents the interarrival time for the 𝑡𝑡ℎ event with a lag of 𝑘 ∈ {−42, . . . , 42}
and 𝑦 [𝑡] represents the energy channel associated with the 𝑡𝑡ℎ event. All cross-correlation values
indicate a lack of a linear relationship between the two variables.

The analysis presented above gives credence to the assumption that the energy channels and
interarrival times are linearly independent of each other. It further confirms and extends the work
from [4] that looked at similar correlation metrics under binned versions of radiation data. That
same work also investigated Liquid State Machines (LSM, a class of algorithms well suited to
exploit temporal correlations in data), by applying a genetic algorithm (GA) for optimization of
the LSMs. The GA optimized out the very structure of the LSM that exploits temporal
correlations, indicating the list-mode radiation data contains no temporal correlation.

5.2. Distributions

Although we were unable to establish the existence of a relationship between interarrival time and
energy channel in the previous section, we investigated the energy and interarrival time
distributions separately in order to evaluate whether or not there are differences in the distributions
of each of these variables for each of the classes. This investigation was conducted by generating
box plots from the 20s samples that we had used in the previous section. Box plots are a visual
representation of the “five-number summary,” which includes the first (𝑄1), second (𝑄2), and
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third quartile (𝑄3) as well as the upper and lower fence. The second quartile is usually referred to
as the median, and the upper and lower fences are calculated by using the following equations:

upper fence: 𝑄3 + 1.5 × 𝐼𝑄𝑅 (5.1)
lower fence: 𝑄1 − 1.5 × 𝐼𝑄𝑅 (5.2)

𝐼𝑄𝑅 = 𝑄3 −𝑄1 (5.3)

where 𝐼𝑄𝑅 is called the interquartile range. Values outside of the fences are considered to be
outliers. If the minimum value in the dataset is larger than the calculated value for the lower fence,
then the lower fence value is set to the minimum value in the dataset. Likewise, if the maximum
value in the dataset is smaller than the calculated value for the upper fence, then the value for the
upper fence is set to the maximum value in the dataset. In the datasets that we dealt with, the
former was a common occurrence because the smallest possible interarrival time is 1
microsecond. The results of this initial look at the distribution of the energy and interarrival times
for each source are presented in Figure 5-1. As expected, the distribution of the energy channels
varies based on the source dataset. This variation is most likely part of the reason that the
spectrum is useful as a means for radioisotope identification. Additionally, a similar variability is
present in the case of interarrival times, which establishes the potential utility of this additional
variable when used in a model intended for radioisotope identification.

Since our work is primarily focused on leveraging the time dimension of list-mode data for
radioisotope identification, we further studied the stability of the distribution of interarrival times
by looking at how this distribution changes across 80 different 20s windows and how the
distribution changes as the size of the sampling window changes. In the former case, each
different 20s window was given an interval index, as can be seen in Figures 5-2a and 5-2b. In the
latter case, 100 differently sized sampling windows were created by using the formula 20/𝑑,
where 𝑑 is an integer 𝑑 ∈ {1, . . . , 100}. Therefore the sampling window size ranged from 20s to
0.2s. Each of the differently sized sampling windows was given an interval length index based on
the divisor used in the above formula. For example, an interval length index of 1 implies that the
sampling window size was 20s, whereas an interval length index of 100 implies that the sampling
window size was 0.2s. This phrasing was used in Figures 5-2c and 5-2d. As expected, the
distribution of interarrival times did not change significantly across the 80 different 20s windows,
but it did change as the size of the sampling window changed. By establishing the stability of the
distribution of each dataset across several 20s windows we are able to provide evidence that shows
that variability in the interarrival times across sources should be expected regardless of the 20s
window that is chosen. These results can be seen in Figures A-1 and A-2 in Appendix A.1. Unlike
in Figure 5-1, for this analysis, energy values less than or equal to 200 keV were filtered out as a
way of removing some of the events that would typically be associated with background. It can be
difficult to discern any possible changes in the distributions by looking at Figures A-1 and A-2,
therefore summary statistics were calculated for each box plot. Figure 5-2 shows a few example
plots of the median and interquartile range under these different cases, but the full list of generated
plots is available in Appendix A.1. The y-axes of Figures 5-2a and 5-2b point to a lack of
variability in the median and interquartile range as the sampling window is changed. However, the
y-axes for Figures 5-2c and 5-2d indicate that as the length of the interval is varied the distribution
of interarrival times varies more significantly than when the the sampling windows were changed.
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(a) Distribution of energy values for each source collected on July 2022

(b) Distribution of interarrival times for each source collected on July 2022

Figure 5-1. Figures 5-1a and 5-1b display the distribution of energy and interarrival time on a per
source basis over the 20𝑠 window that was used for the correlation analysis presented in the

previous subsection.
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The observations discussed here for Figure 5-2 hold true for the other similar box plots found in
Appendix A.1.

(a) Median of interarrival Times of U232 &
Ba133 on July 2022

(b) IQR of interarrival Times of U232 &
Ba133 on July 2022

(c) Median of interarrival Times of U232 &
Ba133 on July 2022

(d) IQR of interarrival Times of U232 &
Ba133 on July 2022

Figure 5-2. Figures 5-2a and 5-2c display the change in the median associated with the distribution
of interarrival times for the combination of U232 and Ba133 as the sampling window changes and

as the size of the sampling window changes, respectively. Figures 5-2b and 5-2d display the
change in the interquartile range associated with the distribution of interarrival times for the

combination of U232 and Ba133 as the sampling window changes and as the size of the sampling
window changes, respectively. The list-mode data associated with these plots was collected in

July 2022.

5.3. Understanding Information Present In List-Mode Data

Current state-of-the-art classifiers use spectra for radioisotope identification [14]. These spectra
can be viewed as list-mode data that has been binned in time. In particular, the list-mode data over
some interval of time is summarized into a histogram of counts per energy channel in order to
generate the spectra. In order to gain insight into the effect of binning in time on the information
present in list-mode data, we chose to study the impact of binning in time on two information
metrics: Shannon entropy and Fisher information.

5.3.1. Background: Shannon Entropy

Stemming from information theory, Shannon entropy is used as a metric for quantifying the
average level of uncertainty or information associated with the outcomes of a random variable.
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Suppose 𝑋 is a random variable with a probability mass function 𝑝𝑋 (𝑥) = 𝑃(𝑋 = 𝑥) and let 𝑆 be
the set of possible values for 𝑋 , then the Shannon entropy of 𝑋 is defined as

𝐻 (𝑋) = E
[
− log2 (𝑝𝑋 (𝑥))

]
= −

∑︁
𝑥∈𝑆

𝑝𝑋 (𝑥) log2 (𝑝𝑋 (𝑥)) , (5.4)

where here log2 refers to the logarithm with a base of 2 [15]. In order to understand this metric
better, let us consider a couple of examples. First consider the extreme case where the
𝑃(𝑋 = 𝑐) = 1 and 𝑐 ∈ 𝑆 ⊆ R, then the Shannon entropy of 𝑋 is

𝐻 (𝑋) = −
∑︁
𝑥∈𝑆

𝑝𝑋 (𝑥) log2 (𝑝𝑋 (𝑥)) = −𝑝𝑋 (𝑐) log2 (𝑝𝑋 (𝑐)) = 0. (5.5)

Therefore, the more certain one is of the value of our random variable, the less informative
knowledge of that random variable becomes. As our second example, suppose that 𝑋 is a random
variable whose set of possible values are integers from 𝑆 = {1, . . . , 𝑛}; then it can be shown that
the maximum Shannon entropy is obtained when 𝑃(𝑋 = 𝑥) = 1

𝑛
for 𝑥 ∈ 𝑆. This result again

implies that higher uncertainty about the value of the random variable results in a larger Shannon
entropy value.

For our purposes, we wanted to determine the effect of binning on the information present in the
data. Since we used list-mode data, which contains information on both time 𝑇 and energy 𝐸 , we
needed to use the multivariate equation for Shannon entropy, which takes into account the joint
distribution of both random variables. The multivariate equation for Shannon entropy is as
follows

𝐻 (𝑇, 𝐸) = 𝐻 (𝑇) + 𝐻 (𝐸 |𝑇), (5.6)

where

𝐻 (𝐸 |𝑇) = −
∑︁

𝑒,𝑡∈𝐸×𝑇
𝑝𝐸,𝑇 (𝑒, 𝑡) log2

(
𝑝𝐸,𝑇 (𝑒, 𝑡)
𝑝𝑇 (𝑡)

)
[15] . (5.7)

5.3.2. Background: Fisher Information

As can be determined by its definition found in equation (5.8), Fisher information is related to
log-likelihood. The log-likelihood function for the binned and unbinned scenarios is defined in
Section 6.2.4. Let ℓ(𝜽) represent the likelihood function, then the Fisher information matrix looks
as follows

𝐼 (𝜽) = −E
[
𝜕2ℓ(𝜽)
𝜕𝜽 𝜕𝜽𝑇

]
. (5.8)

Using equation (5.8) the Fisher information associated with the rate parameter of each source 𝜆𝑘
can be calculated in both the unbinned and binned log-likelihood function scenarios.
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5.3.3. Binning of List-Mode Data

As stated previously, our goal was to determine the effects of binning on Shannon entropy and
Fisher information. This goal required us to define a process for binning list-mode data
progressively into larger time bins until we obtain the spectrum for the source that created the
list-mode data. We consider the spectrum to be the fully-binned case and the original list-mode
data to be the case where nothing has been binned.

Process for defining bins
The following shows how intermediary binning cases were defined:

1. Choose an integer number of bins 𝑏 where 𝑏 ∈ {1, . . . , 𝑛}, 1 refers to the fully-binned case,
and 𝑛 refers to the original list-mode data.

2. Calculate the difference between the maximum time and the minimum time in the list-mode
data: 𝑡𝑑 = 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

3. Divide the difference by the number of bins you have selected. Therefore, the size of each
bin is 𝑠 = 𝑡𝑑/𝑏, where time is measured in microseconds.

4. Therefore, each bin is defined as follows: (𝑡1 + (𝑖 − 1) × 𝑠, 𝑡1 + 𝑖 × 𝑠], where 𝑖 ∈ {2, . . . , 𝑏}.
For the first bin, 𝑖 = 1, the above is slightly modified in order to include the minimum time,
𝑡1, within that bin. Therefore, the first bin is defined as follows: [𝑡1, 𝑡1 + 𝑠].

The above binning would result in bins that are equal in terms of the time they represent, but each
bin was not required to have the same number of energy observations. Therefore, the number of
events in each bin was dependant solely on the dataset being evaluated. Using different-sized bins
of time would have led to an artificial effect on the Shannon entropy values because the length of
time represented by the bin is correlated to the number of events included in the bin and therefore
has an effect on the distribution of energy and time values within the bin. However, such variation
in the length of time represented by each bin would not be accounted for by equation (5.6). It also
would have been problematic to choose to have the same number of energy observations within
each bin because it would have obscured the effects of the different datasets on the Shannon
entropy. Doing this binning would have been the equivalent of comparing different-sized bins
across datasets, which as stated above is problematic because such variation is not accounted for
by equation (5.6).

Adjusting data based on bins
Following the creation of the bins, the list-mode data was adjusted. All values for times that fell
within a certain bin were replaced with the maximum value that could have been obtained for said
bin, 𝑡1 + 𝑖 × 𝑠. In this way, each bin was its own spectrum because it contained the histogram of
counts for each energy channel represented within said bin. Once this process was completed, the
Shannon entropy for the new data was calculated by using equations (5.6) and (5.7).
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5.3.4. Results from Binning Experiments: Shannon Entropy

In this section we demonstrate the effects of binning the list-mode data in time on Shannon
entropy. For each source we used 20-second samples of data after removing the first 100 seconds
of list-mode data. The sample of list-mode data was then binned in the way described in
Section5.3.3. A few examples of the kind of plots generated to show how binning affected the
Shannon entropy are displayed in Figure 5-3. All other plots for this analysis can be found in
Appendix A.2. For each plot we chose to let 𝑏 ∈ {1, . . . , 20, 𝑛}. The red dashed line in those plots
represents the maximum Shannon entropy obtained by our method of binning for a particular
source’s list-mode data (𝑏 = 𝑛). Similarly, the blue dashed line represents the minimum Shannon
entropy obtained by our method of binning a particular source’s list-mode data (𝑏 = 1). As was
expected, the plots all show that binning in time results in a decrease in Shannon entropy.

(a) Shannon Entropy for Binning of U232
on July 2022

(b) Shannon Entropy for Binning of U232 &
Ba133 on July 2022

Figure 5-3. Figures 5-3a and 5-3b display the Shannon entropy associated with the binning of data
from the U232 and the combination of U232 and Ba133 datasets, respectively. The list-mode data

associated with these plots was collected in July 2022.

Although these Shannon entropy calculations show that there is a loss of information when
list-mode data is binned in time, this observation does not answer the question of whether or not
the information that was lost is useful for radioisotope identification. Though such a question is
difficult to answer, we attempted to provide evidence that would indicate there is a relationship
between the temporal and energy information that is unique to the list-mode data that was
collected. We made this attempt by comparing the Shannon entropy obtained when the list-mode
data was binned to that obtained when binning randomly generated data. For the original
list-mode data the order in which the energies appear is related to the order of times. The random
list-mode data was created by shuffling the energies, which is intended to remove any potential
relationship between the order of the energies and the time. For each source 100 random
list-mode datasets were created. The absolute percent difference between the Shannon entropy
results for the original list-mode data and each of the 100 random list-mode datasets was
computed for each source as shown in equation (5.9).

Absolute Percent Difference = 100 × |𝐻 (𝑇, 𝐸)𝑟 − 𝐻 (𝑇, 𝐸)𝑜 |
𝐻 (𝑇, 𝐸)𝑟

(5.9)

In equation (5.9), 𝐻 (𝑇, 𝐸)𝑟 represents the Shannon entropy associated with the random list-mode
dataset after binning, and 𝐻 (𝑇, 𝐸)𝑜 represents the Shannon entropy associated with the original
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list-mode dataset after binning. The maximum difference among all 100 differences was obtained
for each source. The results can be seen in Table 5-2 under the Maximum Absolute Difference
column. The differences were also averaged over all 100 random list-mode datasets for each
source in order to obtain the Mean Absolute Difference found in Table 5-2. The last column of
Table 5-2 shows the standard deviation of the absolute percent difference. These results seem to
indicate that the difference between the Shannon entropy associated with the original list-mode
data and that associated with the randomly generated data is negligible, which implies that as far
as the Shannon entropy metric is concerned it is difficult to differentiate between the list-mode
data that was collected and that associated with a random process. It also implies that the decrease
in Shannon entropy as the binning process is executed is not a unique feature of the list-mode data
that was collected. Despite our inability to show that there are unique features in the list-mode
data that result in a decrease in Shannon entropy as one bins in time, it is not possible for us to say
that the time domain provides absolutely no benefit in the identification of radioisotopes.

Comparison of Shannon Entropy To Random Case
Datasets:
July 2022

Maximum
Absolute
Difference (%)

Mean
Absolute
Difference (%)

Standard
Deviation (%)

Background 0.0884 0.0204 0.0179
Ba133 0.0519 0.0105 0.0093
Cs137 0.0747 0.0145 0.0127
U232 0.0339 0.0055 0.0051
U232 & Ba133 0.0232 0.0039 0.0036
Y88 0.0919 0.0187 0.0170
Datasets:
April 2024
Background 0.1319 0.0255 0.0225
Ba133 0.0825 0.0177 0.0146
U232 0.0974 0.0210 0.0172
U232 & Ba133 0.0513 0.0111 0.0095

Table 5-2. The table displays the metrics that were calculated from comparisons between the
Shannon entropy of binning the source list-mode data and that of binning randomly generated

dataset
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5.3.5. Results from Binning Experiments: Fisher Information

Unbinned Fisher Information for 𝜆𝑘
In the unbinned log-likehood function scenario, the Fisher information associated with the rate
parameter for the background, 𝜆0, is calculated in the following way:

𝜕ℓ(𝜽 |D, 𝐾, 𝐵)
𝜕𝜆0

=
𝜕

[∑𝑛
𝑖=1 log

(
𝜆0𝑝𝐸0 (𝑒𝑖)

)
− 𝑥𝑖𝜆0

]
𝜕𝜆0

,

=

𝑛∑︁
𝑖=1

𝜕
[
log

(
𝜆0𝑝𝐸0 (𝑒𝑖)

)
− 𝑥𝑖𝜆0

]
𝜕𝜆0

,

=

𝑛∑︁
𝑖=1

[
𝜕 log

(
𝜆0𝑝𝐸0 (𝑒𝑖)

)
𝜕𝜆0

− 𝜕𝑥𝑖𝜆0
𝜕𝜆0

]
,

=

𝑛∑︁
𝑖=1

[
𝑝𝐸0 (𝑒𝑖)
𝑝𝐸0 (𝑒𝑖)𝜆0

− 𝑥𝑖
]
,

=

𝑛∑︁
𝑖=1

[
1
𝜆0

− 𝑥𝑖
]

−E
[
𝜕2ℓ(𝜽 |D, 𝐾, 𝐵)

𝜕𝜆2
0

]
= −E


𝜕
∑𝑛
𝑖=1

[
1
𝜆0

− 𝑋𝑖
]

𝜕𝜆0

 , (5.10)

=

𝑛∑︁
𝑖=1

E

[
1
𝜆2

0

]
, (5.11)

=
𝑛

𝜆2
0
, (5.12)

where for background it is implied that 𝜋𝑘1 = 𝜋0 = 1, 𝜆𝑘2 = 𝜆0, and 𝑝𝐸𝑘1 = 𝑝𝐸0

Similarly, the Fisher information associated with the rate parameter for the non-background
sources, 𝜆1, is calculated as follows:
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𝜕ℓ(𝜽 |D, 𝐾, 𝐵)
𝜕𝜆1

=

𝜕

[∑𝑛
𝑖=1 log

(∑1
𝑘2=0

∑1
𝑘1=0 𝜋𝑘1𝜆𝑘2 𝑝𝐸𝑘1

(𝑒𝑖)
)
− ∑1

𝑘2=0 𝑥𝑖𝜆𝑘2

]
𝜕𝜆1

,

=

𝑛∑︁
𝑖=1

𝜕
[
log

(
(𝜆0 + 𝜆1)

(
𝜋0𝑝𝐸0 (𝑒𝑖) + 𝜋1𝑝𝐸1 (𝑒𝑖)

) )
− 𝑥𝑖 (𝜆0 + 𝜆1)

]
𝜕𝜆1

,

=

𝑛∑︁
𝑖=1

𝜕
[
log (𝜆0 + 𝜆1) + log

(
𝜋0𝑝𝐸0 (𝑒𝑖) + 𝜋1𝑝𝐸1 (𝑒𝑖)

)
− 𝑥𝑖 (𝜆0 + 𝜆1)

]
𝜕𝜆1

,

=

𝑛∑︁
𝑖=1

[
𝜕 log (𝜆0 + 𝜆1)

𝜕𝜆1
+
𝜕 log

(
𝜋0𝑝𝐸0 (𝑒𝑖) + 𝜋1𝑝𝐸1 (𝑒𝑖)

)
𝜕𝜆1

− 𝜕𝑥𝑖 (𝜆0 + 𝜆1)
𝜕𝜆1

]
,

=

𝑛∑︁
𝑖=1

[
1

𝜆0 + 𝜆1
− 𝑥𝑖

]

−E
[
𝜕2ℓ(𝜽 |D, 𝐾, 𝐵)

𝜕𝜆2
1

]
= −E


𝜕
∑𝑛
𝑖=1

[
1

𝜆0+𝜆1
− 𝑋𝑖

]
𝜕𝜆1

 , (5.13)

=

𝑛∑︁
𝑖=1

E
[

1
(𝜆0 + 𝜆1)2

]
, (5.14)

=
𝑛

(𝜆0 + 𝜆1)2 . (5.15)

Equations 5.12 and 5.15 show that for the unbinned log-likelihood function the Fisher information
associated with the rate parameters is not expected to change as the bin size changes. This
behavior is not surprising because the unbinned log-likelihood function does not account for
binning and the total number of recorded events does not change when binning is used.

Binned Fisher Information
In the binned log-likehood function scenario, the Fisher information associated with the rate
parameter for the background, 𝜆𝐵0 , is calculated in the following way:

𝜕ℓ(𝜽 |D, 𝐾, 𝐵)
𝜕𝜆𝐵0

=

𝜕

[∑𝑚
𝑗=1

(
𝑛 𝑗 log

(
𝜆𝐵0

)
− 𝜆𝐵0 − log(𝑛 𝑗 !) +

∑𝑛 𝑗

𝑖=1 log
(
𝑝𝐸0 (𝑒𝑖)

) )]
𝜕𝜆𝐵0

,

=

𝑚∑︁
𝑗=1

[
𝜕

[ (
𝑛 𝑗 log

(
𝜆𝐵0

)
− 𝜆𝐵0 − log(𝑛 𝑗 !)

) ]
𝜕𝜆𝐵0

+
𝑛 𝑗∑︁
𝑖=1

𝜕
[
log

(
𝑝𝐸0 (𝑒𝑖)

) ]
𝜕𝜆𝐵0

]
,

=

𝑚∑︁
𝑗=1

[
𝜕

(
𝑛 𝑗 log

(
𝜆𝐵0

) )
𝜕𝜆𝐵0

−
𝜕

(
𝜆𝐵0

)
𝜕𝜆𝐵0

−
𝜕 log

(
𝑛 𝑗 !

)
𝜕𝜆𝐵0

+
𝑛 𝑗∑︁
𝑖=1

[
𝜕 log

(
𝑝𝐸0 (𝑒𝑖)

)
𝜕𝜆𝐵0

] ]
,

=

𝑚∑︁
𝑗=1

[
𝑛 𝑗

𝜆𝐵0

− 1
]
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−E
[
𝜕2ℓ(𝜽 |D, 𝐾, 𝐵)

𝜕𝜆2
𝐵0

]
= −E


𝜕

[∑𝑚
𝑗=1

(
𝑛 𝑗
𝜆𝐵0

− 1
)]

𝜕𝜆𝐵0

 , (5.16)

=

𝑚∑︁
𝑗=1

E

[
𝑛 𝑗

𝜆2
𝐵0

]
, (5.17)

=

𝑚∑︁
𝑗=1

𝜆𝐵0

𝜆2
𝐵0

, (5.18)

=
𝑚

𝜆𝐵0

(5.19)

Similarly, the Fisher information associated with the rate parameter for the non-background
sources, 𝜆1, is calculated as follows:

𝜕ℓ(𝜽 |D, 𝐾, 𝐵)
𝜕𝜆1

=

𝜕

[∑𝑚
𝑗=1

(
𝑛 𝑗 log

(∑1
𝑘=0 𝜆𝑘𝐵 𝑗

)
− ∑1

𝑘=0 𝜆𝑘𝐵 𝑗 − log(𝑛 𝑗 !) +
∑𝑛 𝑗

𝑖=1 log
(∑1

𝑘=0 𝜋𝑘 𝑝𝐸𝑘 (𝑒𝑖)
))]

𝜕𝜆1
,

=

𝑚∑︁
𝑗=1

𝜕
[ (
𝑛 𝑗 log

(
𝜆0𝐵 𝑗 + 𝜆1𝐵 𝑗

)
− 𝜆0𝐵 𝑗 − 𝜆1𝐵 𝑗 − log(𝑛 𝑗 !)

)
)
]

𝜕𝜆1
+

𝜕
[∑𝑛 𝑗

𝑖=1 log
(
𝜋0𝑝𝐸0 (𝑒𝑖) + 𝜋1𝑝𝐸1 (𝑒𝑖)

) ]
𝜕𝜆1

,

=

𝑚∑︁
𝑗=1

[
𝜕

(
𝑛 𝑗 log

(
𝜆0𝐵 𝑗 + 𝜆1𝐵 𝑗

) )
𝜕𝜆1

−
𝜕𝜆0𝐵 𝑗

𝜕𝜆1
−
𝜕𝜆1𝐵 𝑗

𝜕𝜆1
−
𝜕 log(𝑛 𝑗 !)
𝜕𝜆1

]
+

𝑛 𝑗∑︁
𝑖=1

[
𝜕 log

(
𝜋0𝑝𝐸0 (𝑒𝑖) + 𝜋1𝑝𝐸1 (𝑒𝑖)

)
𝜕𝜆1

]
,

=

𝑚∑︁
𝑗=1

[
𝑛 𝑗𝐵 𝑗

𝜆0𝐵 𝑗 + 𝜆1𝐵 𝑗
− 𝐵 𝑗

]
,

=

𝑚∑︁
𝑗=1

[
𝑛 𝑗

𝜆0 + 𝜆1
− 𝐵 𝑗

]
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−E
[
𝜕2ℓ(𝜽 |D, 𝐾, 𝐵)

𝜕𝜆2
𝐵1

]
= −E


𝜕

[∑𝑚
𝑗=1

(
𝑛 𝑗

𝜆𝐵0+𝜆𝐵1
− 1

)]
𝜕𝜆𝐵1

 , (5.20)

=

𝑚∑︁
𝑗=1

E

[
𝑛 𝑗(

𝜆𝐵0 + 𝜆𝐵1

)2

]
, (5.21)

=

𝑚∑︁
𝑗=1

(
𝜆𝐵0 + 𝜆𝐵1

)(
𝜆𝐵0 + 𝜆𝐵1

)2 , (5.22)

=
𝑚(

𝜆𝐵0 + 𝜆𝐵1

) (5.23)

Equations 5.19 and 5.23 show that as the number of bins (𝑚) decreases, so does the Fisher
information associated with each rate parameter. Figure 5-4 shows this behavior empirically for a
few datasets, but the remainder of the plots can be found in Appendix A.3.

(a) Fisher information for the rate parameter
of Ba133 on July 2022

(b) Fisher information for the rate parameter
of U232&Ba133 on July 2022

Figure 5-4. Figures 5-4a, and 5-4b display the change in the Fisher information associated with the
rate parameter as the size of each bin is increased. The list-mode data associated with these plots

was collected in July 2022.
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6. PROBABILISTIC CLASSIFIER MODEL

In this section, we introduce a probabilistic framework for RIID based on the well-established
Poisson process representation of radioactive decay. The detection of radioactive isotopes that we
are interested in involves collecting list-mode data, recording individual decay events
characterized by both time stamps and energy levels. Given this data and random nature of
radioactive decay, the Poisson process provides a natural mathematical model to describe the
temporal behavior of such events.

Specifically, a Poisson process is a stochastic process that models the occurrence of events
happening independently and at a constant average rate. This definition aligns with the underlying
physics of radioactive decay, where the number of decays in a given time interval follows a
Poisson distribution, and the time between decay events follows an exponential distribution. In the
context of RIID, where multiple isotopes may be present along with background radiation, we can
model the total number of observed decay events as a superposition of independent Poisson
processes, each corresponding to a different isotope or background source.

By leveraging this Poisson process framework, we formulate a probabilistic classifier for RIID that
aims to identify the most likely isotope(s) present in the observed data. This classifier is based on
the observed interarrival times of events and energy levels, which are unique signatures for
different isotopes. Using maximum likelihood estimation (MLE) techniques, we can infer the
parameters governing the rate of decay and the energy distributions for each isotope. Given a new
sequence of decay events, the classifier computes the likelihood of the observed data under each
possible isotope hypothesis and selects the isotope with the highest likelihood as the predicted
source of radiation.

6.1. Background: Poisson Processes

In this section, we first provide a formal description of a Poisson process, before explaining how it
served as the foundation for our probabilistic classification models for RIID.

Definition 1. A time-homogeneous Poisson process {𝑁𝑡}𝑡≥0 with rate 𝜆 > 0 is a stochastic
process with values in N≥0 satisfying:

1. P(𝑁0 = 0) = 1.

2. The independent increment property: Given any choice 𝑛 ∈ N and
0 ≤ 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑛, the random variables
𝑁𝑡0 , 𝑁𝑡1 − 𝑁𝑡0 , 𝑁𝑡2 − 𝑁𝑡1 , 𝑁𝑡3 − 𝑁𝑡2 , . . . , 𝑁𝑡𝑛 − 𝑁𝑡𝑛−1 are independent.
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3. For any 0 ≤ 𝑠 < 𝑡, 𝑛 ∈ N0

P(𝑁𝑡 − 𝑁𝑠 = 𝑛) =
(𝜆(𝑡 − 𝑠))𝑛𝑒−𝜆(𝑡−𝑠)

𝑛!
.

The number of events in [𝑠, 𝑡], 𝑁𝑡 − 𝑁𝑠 is a Poisson random variable of mean 𝜆(𝑡 − 𝑠), i.e.,
𝑁𝑡 − 𝑁𝑠 ∼ Poi(𝜆(𝑡 − 𝑠)), which can be shown to be equivalent in distribution to 𝑁𝑡−𝑠.

Markov Property

A stochastic process 𝑁𝑡 taking values in some countable set N is Markov if and only if, for any
sequence of 0 ≤ 𝑡1 < 𝑡2 < · · · < 𝑡𝑛 and any 𝑠0, 𝑠1, . . . , 𝑠𝑛 ∈ N

P(𝑁𝑡𝑛 = 𝑠𝑛 |𝑁𝑡𝑛−1 = 𝑠𝑛−1, . . . , 𝑁𝑡0 = 𝑠0) = P(𝑁𝑡𝑛 = 𝑠𝑛 |𝑁𝑡𝑛−1 = 𝑠𝑛−1).

Due to the Poisson Process’s independent increment property, it is easy to see that for any
𝑠0, . . . , 𝑠𝑛 ∈ N≥0 and 0 ≤ 𝑡1 < 𝑡2 < · · · < 𝑡𝑛

P(𝑁𝑡𝑛 = 𝑠𝑛 |𝑁𝑡𝑛−1 = 𝑠𝑛−1, . . . , 𝑁𝑡0 = 𝑠0) = P(𝑠𝑛 − 𝑠𝑛−1events in(𝑡𝑛−1, 𝑡𝑛])
= P(𝑁𝑡𝑛 = 𝑠𝑛 |𝑁𝑡𝑛−1 = 𝑠𝑛−1),

so that the Poisson Process is a Markov Process.

Interarrival time distribution

Given a Poisson process 𝑁𝑡 ∼ Poi(𝜆𝑡), let (𝑋1, . . . , 𝑋𝑛) := 𝑋1:𝑛 be the interarrival times for the
first 𝑛 events such that 𝑁𝑋1 = 1, 𝑁𝑋1+𝑋2 = 2, . . . 𝑁𝑋1+...,𝑋𝑛 = 𝑛. Now consider, for 𝑡 > 0,

P(𝑋1 > 𝑡) = P(no events in[0, 𝑡]) = P(𝑁𝑡 = 0) = 𝑒−𝜆𝑡 .

𝑃(𝑋1 > 𝑡), also known as the survival function of 𝑋1 implies the following cumulative
distribution function (CDF) for 𝑋1:

P(𝑋1 ≤ 𝑡) = 1 − P(𝑋1 > 𝑡) = 1 − 𝑒−𝜆𝑡 ,

which is recognized as the CDF for an exponential distribution with rate parameter 𝜆, i.e.,
𝑋1 ∼ Exp(𝜆).

Given 𝑋1 = 𝑡1, we can consider

P(𝑋2 > 𝑡 |𝑋1 = 𝑡1) = P(no events in(𝑡1, 𝑡1 + 𝑡] |𝑋1 = 𝑡1)
= P(𝑁𝑡1+𝑡 − 𝑁𝑡1 = 0|𝑋1 = 𝑡1)
= P(𝑁𝑡 = 0)
= 𝑒−𝜆𝑡 ,

yielding 𝑋2 ∼ Exp(𝜆). Repeating this derivation for all remaining 𝑋 𝑗 ∈ 𝑋1:𝑛, we see that the
interarrival times of a Homogeneous Poisson Process (HPP) are exponentially distributed with
rate parameter 𝜆.
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Superposition

A HPP 𝑁𝑡 ∼ Poi(𝜆𝑡) has moment generating function (mgf)
E(𝑒𝑠𝑁𝑡 ) = ∑∞

𝑛=0
𝑒𝑠𝑛𝑒−𝜆𝑡 (𝜆𝑡)𝑛

𝑛! = 𝑒−𝜆𝑡−𝜆𝑡𝑒
𝑠 ∑∞

𝑛=0
𝑒−𝜆𝑡𝑒

𝑠 (𝜆𝑡𝑒𝑠)𝑛
𝑛! = exp(−𝜆𝑡 (1 − 𝑒𝑠).

For 𝑛 independent HPPs 𝑁1
𝑡 ∼ Poi(𝜆1𝑡), . . . , 𝑁𝑛𝑡 ∼ Poi(𝜆𝑛𝑡), the summed quantity 𝑁𝑡 =

∑𝑛
𝑖=1 𝑁

𝑖
𝑡

has the mgf

E(𝑒𝑠
∑𝑛
𝑖=1 𝑁

𝑖
𝑡 ) = Π𝑛

𝑖=1E(𝑒
𝑠𝑁 𝑖𝑡 )

= Π𝑛
𝑖=1 exp(−𝜆𝑖𝑡 (1 − 𝑒𝑠)

= exp

(
−𝑡

𝑛∑︁
𝑖

𝜆𝑖 (1 − 𝑒𝑠)
)
,

which is recognized as the mgf of a Poisson distribution with rate 𝜆 =
∑𝑛
𝑖 𝜆𝑖. Hence,

𝑁𝑡 =
∑𝑛
𝑖=1 𝑁

𝑖
𝑡 ∼ Poi(𝑡∑𝑛

𝑖=1 𝑁
𝑖
𝑡 ).

Inhomogeneity

For a time inhomogeneous Poisson processes {𝑁𝑡}𝑡≥0 with integrable rate function 𝜆(𝑡) > 0, one
can show that

P(𝑁𝑡 − 𝑁𝑠 = 𝑛) =
Λ𝑛 (𝑠, 𝑡)𝑒−Λ(𝑠,𝑡)

𝑛!
,

where Λ(𝑠, 𝑡) :=
∫ 𝑡

𝑠
𝜆(𝑢)𝑑𝑢.

6.2. Modeling list-mode data

In RIID, we collect list-mode data that contains events or decays, as a tuple: a time stamp with a
discretized energy measured by the detector. A gamma ray detector records the data
{(𝐸 (𝑇𝑖), 𝑇𝑖)}𝑛𝑖=1, where the 𝑇𝑖 denotes the time-stamp of the 𝑖th event (decay) and is such that
𝑇𝑖 > 𝑇𝑗 for 𝑗 < 𝑖. Given 𝑇𝑖 = 𝑡, the random variable 𝐸 (𝑡) measures the (discrete) energy recorded
by the detector at time 𝑡 and takes values in N. However, the true energies are continuous in
nature.

In an arbitrary environment with 𝐾 ≥ 0 isotopes and background, all 𝐾 + 1 sources are assumed to
host environments in which gamma rays can be emitted randomly, but independently between
each source. We assume that the gamma-ray detector is able to pick up on decays emitted from
any of the 𝐾 + 1 sources, yet is unable to differentiate between sources at the time of measurement
collection. To formalize this assumption, let us denote 𝑁0

𝑡 ∼ Poi(𝜆0𝑡) as the HPP denoting
background decay counts, and 𝑁 𝑖𝑡 ∼ Poi(𝜆𝑖𝑡) as the HPP denoting decay counts from the 𝑖th
(𝑖 = 1, . . . , 𝐾) isotope present.

Given current methods and literature for RIID, particularly that standard temporal models of
radioisotope decay are continuous time Markov Processes with distinct half lives (or rates of
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decay) per distinct isotope, each of the 𝐾 + 1 sources is assumed to have a unique signature in both
energy and time. Conversely, having a unique signature in time implies that the Poisson Process
generating the decay counts for each of the 𝐾 + 1 sources has a distinct rate, i.e.,
𝜆0 ≠ 𝜆1 ≠ · · · ≠ 𝜆𝐾 .

As such, we model event (decay) counts recorded by the detector over time via the process
𝑁𝑡 =

∑𝐾
𝑖=0 𝑁

𝑖
𝑡 , where 𝑁 𝑖𝑡 ∼ Poi(𝜆𝑖). By the HPP superposition property, we have that any recorded

event (decay) follows

𝑁𝑡 ∼ Poi

(
𝐾∑︁
𝑖=0

𝜆𝑖𝑡

)
. (6.1)

Further, the interarrival times 𝑋1, . . . 𝑋𝑛 of decays counted by 𝑁𝑡 follow 𝑋𝑖 ∼ Exp(∑𝐾
𝑘=0 𝜆𝑘 ). The

interarrival times are related to the time stamps of the first 𝑛 events 𝑇0, . . . , 𝑇𝑛 (with 𝑇0 = 0) via

𝑋𝑖 = 𝑇𝑖 −
∑︁
𝑗<𝑖

𝑇𝑗 .

6.2.1. Parametric modeling

To model the energies 𝐸 , we first note that the Breit-Wigner probability distribution [16] is often
used to model the energy spectrum of gamma-rays emitted from excited nuclear states.
Specifically, this distribution is a continuous probability distribution that describes the density of
spectral lines arising from energy-level transitions in atomic nuclei. In this context, the following
parameters are utilized to specify this parametric distribution:

• Peak Energy 𝐸0: The peak energy representing the median energy value of the spectral line,
corresponding to the energy of the transition responsible for the gamma ray emission.

• Full Width at Half Maximum (Γ): This quantity represents the width of the spectral line at
half of its maximum height, characterizing the spread of energies around the median energy.

With 𝐸0, Γ, the (continuous) probability of the gamma-ray detector measuring an energy 𝑒 from
an isotope follows:

𝑝𝐸 (𝑒) =
Γ/2𝜋

(𝑒 − 𝐸0)2 + (Γ/2)2 , (6.2)

which can be seen as a Cauchy distribution

𝑝𝐸 (𝐸) =
1

𝜋
(
Γ
2
) [

1 +
(
𝐸−𝐸0
Γ/2

)2
] , 𝐸 ∈ R

with location parameter 𝐸0 and scale parameter Γ/2. In practice since 𝐸 ≥ 0, the range can be
restricted provided the normalization constant is updated.
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To model discrete energies as they are collected from the detector, one can either use the density
in Equation 6.2 and compute the cumulative distribution between the discretized intervals to
obtain the probabilities of falling within each discretized bin or utilize a discrete version of the
Cauchy distribution [17]:

𝑝𝐸 (𝑒) =
tanh(𝛾𝜋)

𝜋

(
𝛾

𝛾2 + (𝑒 − 𝐸0)2

)
, 𝑒 ∈ Z, 𝛾 > 0,

by setting 𝛾 = Γ/2.

6.2.2. Nonparametric modeling

While there are a substantial number of methods that exist for modeling energies with parametric
probability distributions, non-parametric methods also exist. Despite not having “closed form”
representations, non-parametric models are flexible enough to capture underlying nuances in the
data and are often much quicker to fit than their parametric counterparts.

One of the most famous non-parametric models is the histogram. A histogram estimates the
probability density function (PDF) of a random variable by dividing the data range into a set of
bins, where the height of each bin is proportional to the number of data points that fall within the
bin. Mathematically, given a sample of data points {𝑥1, 𝑥2, . . . , 𝑥𝑛}, the histogram estimator for
the probability density function 𝑓 (𝑥) is defined as:

𝑓 (𝑥) = 1
𝑛ℎ

𝑛∑︁
𝑖=1

1

(𝑥𝑖 − 𝑥
ℎ

)
,

where: 𝑛 is the total number of data points, ℎ is the width of the bins (often called the bandwidth),
1 and is the indicator function in which 1(𝐴) = 1 if 𝐴 is true, and is zero otherwise.

The flexibility of the histogram lies in its ability to represent arbitrary shapes of the underlying
distribution without assuming a specific parametric form. However, this flexibility comes at the
cost of sensitivity to the choice of bin width ℎ, which controls the smoothness of the estimate. A
smaller ℎ leads to a more detailed, but potentially noisier, estimate, while a larger ℎ produces a
smoother, but possibly less accurate, representation of the underlying distribution.

Beyond the simple histogram, more advanced non-parametric density estimation methods exist,
such as kernel density estimation (KDE) [18], which can provide smoother approximations by
using continuous kernels instead of the discrete bins of a histogram.

Whether parametric or nonparameteric, we assume each of the 𝐾 isotopes and background
radiation present invokes a mixture distribution of energies from their aggregated energy spectra.
Specifically, in the presence of 𝐾 isotopes and background, the energy collected by the detector
during a decay event follows

𝑝𝐸 (𝑒) =
𝐾∑︁
𝑖=0

𝜋𝑖𝑝𝐸𝑖 (𝑒), (6.3)
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where we model

𝑝𝐸0 (𝑒) =
𝐵∑︁
𝑏=1

𝑝𝑏
𝑒−𝛼𝑏𝛼𝑒

𝑏

𝑒!
,

to denote a Poisson mixture model of 𝐵 components representing 𝐵 background peak energies,
each with mean 𝛼𝑏, 𝑏 ∈ {1, . . . , 𝐵}, and where

∑𝐵
𝑏=1 𝑝𝑏 = 1. Further, for 𝑖 > 0 𝑝𝐸𝑖 (𝑒; Γ𝑖, 𝐸 𝑖0)

denotes the full width at half maximum and peak (median) energies of isotope 𝑖 ∈ {1, . . . , 𝐾}.
Finally, the 𝜋𝑖s such that

∑𝐾
𝑖=1 𝜋𝑖 = 1, provide probabilities of each of the 𝐾 + 1 sources randomly

emitting a recorded decay event.

6.2.3. Marked point process setup

A marked point process (E,T ,P) denotes random counting measure N defined on E × T,
where:

• T is the underlying point process representing the locations of the points,

• E is the set of possible marks,

• P is the probability distribution of the marks,

• N(𝐵 × 𝐴) denotes the number of points of T in 𝐴 ⊂ T with marks in 𝐵 ⊂ E, and

• For any finite collection of pairwise disjoint sets {(𝐵𝑖, 𝐴𝑖) | 𝑖 ∈ N}, the random variables
N(𝐵𝑖 × 𝐴𝑖) are independent.

We define the marked list-mode point process as (T , E, 𝑝𝐸 ) ∈ R≥0 × Z+, defined by the set of
marks that have probability measure 𝑝𝐸 , E attached to each event in R≥0. A marked point process
(T , E, 𝑝𝐸 ) on R≥0 × Z+ is characterized by its conditional intensity function (CIF) 𝜆∗(𝑡, 𝑒), such
that for each 𝑡 ∈ R≥0 and 𝑒 ∈ Z+, 𝜆∗(𝑡, 𝑒) > 0 represents the intensity at temporal location 𝑡 with
energy 𝑒. It satisfies

𝜆∗(𝑡, 𝑒) = lim
𝛿𝑡→0
𝛿𝑒→0

E[N (𝑡 + 𝑑𝑡, 𝑒 + 𝑑𝑒) − N (𝑡, 𝑒) |H𝑡]
𝛿𝑡𝛿𝑒

,

where H𝑡 denotes the history of the process (i.e., all joint events that have occurred before time 𝑡).
Specifically, the CIF specifies the expected number of points of T in an infinitesimal
neighborhood of 𝑡 with mark 𝑒 given the past history of the process up to time 𝑡, H𝑡 .

To define the CIF of the list-mode marked process, we note that

𝜆∗(𝑡, 𝑒) = 𝑝𝐸 (𝐸 ; 𝑡)𝜆̄(𝑡),

where 𝑝𝐸 (𝐸 ; 𝑡) denotes the probability of observing mark energy 𝑒 given time-stamp 𝑡, and 𝜆̄(𝑡)
denotes the CIF of the temporal point process only.
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6.2.4. Likelihood Functions

The likelihood function of parameters 𝜽 = {(𝜋𝑖, 𝜆𝑖, (𝜃)𝑝𝐸𝑖 )}
𝐾
𝑖=0 or the list-mode marked point

process (T , E, 𝑝𝐸 ) observed over a finite time interval [0, 𝑇] and yielding data D = {(𝑒𝑡𝑖 , 𝑡𝑖)}𝑛𝑖=1
is

L(𝜽 |D, 𝐾, 𝐵) =
𝑛∏
𝑖=1

(
𝐾∑︁
𝑘=0

𝜋𝑘 𝑝𝐸𝑘 (𝑒𝑖)
)
𝜆̄(𝑡𝑖) exp

(
−

∫ 𝑡𝑖+1

𝑡𝑖

𝜆̄(𝑢) 𝑑𝑢
)

=

𝑛∏
𝑖=1

(
𝐾∑︁
𝑘2=0

𝐾∑︁
𝑘1=0

𝜋𝑘1𝜆𝑘2 𝑝𝐸𝑘1
(𝑒𝑖)

)
exp

(
−(𝑡𝑖 − 𝑡𝑖−1)

𝐾∑︁
𝑘2=0

𝜆𝑘2

)
(6.4)

ℓ(𝜽 |D, 𝐾, 𝐵) =
𝑛∑︁
𝑖=1

log

(
𝐾∑︁
𝑘2=0

𝐾∑︁
𝑘1=0

𝜋𝑘1𝜆𝑘2 𝑝𝐸𝑘1
(𝑒𝑖)

)
− (𝑡𝑖 − 𝑡𝑖−1)

𝐾∑︁
𝑘2=0

𝜆𝑘2 ,

=

𝑛∑︁
𝑖=1

log

(
𝐾∑︁
𝑘2=0

𝐾∑︁
𝑘1=0

𝜋𝑘1𝜆𝑘2 𝑝𝐸𝑘1
(𝑒𝑖)

)
− 𝑥𝑖

𝐾∑︁
𝑘2=0

𝜆𝑘2 , (6.5)

with 𝑡0 = 0 and 𝑥𝑖 denoting the 𝑖th interarrival time. Equation 6.5 will be referred to as the
unbinned log-likelihood function.

In this application, exact times of events are typically not known as the time domain itself is
binned. When the interarrival times are not known exactly, i.e., instead of having knowledge of
{𝑡𝑖}𝑛𝑖=1, we have {(𝑛𝑖, 𝐵𝑖)}𝑚𝑖=1, which provides the number of events per bin of length 𝐵𝑖. In this
case, the likelihood function is based on the Poisson counts in each bin, which are independent
due to the independent increment property of the Poisson distribution:

L(𝜽 |D, 𝐾, 𝐵) =
𝑚∏
𝑗=1

(
(𝜆𝐵)𝑛 𝑗 𝑒−𝜆𝐵

𝑛 𝑗 !

𝑛 𝑗∏
𝑖=1

(
𝐾∑︁
𝑘=0

𝜋𝑘 𝑝𝐸𝑘 (𝑒𝑖)
))

(6.6)

=

𝑚∏
𝑗=1

©­­«
(∑𝐾

𝑘=0 𝜆𝐵𝑘

)𝑛 𝑗
𝑒−

∑𝐾
𝑘=0 𝜆𝐵𝑘

𝑛 𝑗 !

𝑛 𝑗∏
𝑖=1

(
𝐾∑︁
𝑘=0

𝜋𝑘 𝑝𝐸𝑘 (𝑒𝑖)
)ª®®¬ (6.7)

ℓ(𝜽 |D, 𝐾, 𝐵) =
𝑚∑︁
𝑗=1

(
𝑛 𝑗 log

(
𝐾∑︁
𝑘=0

𝜆𝐵𝑘

)
−

𝐾∑︁
𝑘=0

𝜆𝐵𝑘 − log(𝑛 𝑗 !) +
𝑛 𝑗∑︁
𝑖=1

log

(
𝐾∑︁
𝑘=0

𝜋𝑘 𝑝𝐸𝑘 (𝑒𝑖)
))
, (6.8)

Here, 𝑚 is the number of bins, 𝑛 𝑗 is the count of events in the 𝑗-th bin, 𝐵 is the length of the each
bin, 𝑒𝑖 represents the 𝑖-th energy observation within the 𝑗-th bin, and 𝜆𝐵𝑘 = 𝜆𝑘𝐵. Equation 6.8
will be referred to as the binned log-likelihood function.
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6.3. Probabilistic Classification

In this section, we detail how the binned and unbinned likelihoods can be used to facilitate our
novel probabilistic classifier of isotopes from list-mode data.

6.3.1. Dataset and Set Definitions

In the following, we assume that for 𝐾 isotopes, we have: 1) data from the background only, i.e.,
D0 = {(𝑒0

𝑡𝑖
, 𝑡0
𝑖
)}𝑛

0
𝑇

𝑖=1, where 𝑛0
𝑇
= |D0 | denotes the number of observations from the background

over time period 𝑇 , and 2) data from the same background obtained with isotope 𝑘 as
D𝑘 = {(𝑒𝑘𝑡𝑖 , 𝑡

𝑘
𝑖
)}𝑛

𝑘
𝑇

𝑖=1, over the same time period 𝑇 . In general, we define a dataset containing
background and some combination of the 𝐾 isotopes 𝐴 ⊆ {1, . . . , 𝐾} as D𝐴 . Due to the general
observation process being a superposition of background and isotopes’ (in 𝐴) processes, it is
highly challenging to separately classify each observation as coming from either background or
specific isotope from a single dataset D𝐴. In the following, we see that to estimate the parameters
𝜽𝑘 for isotope 𝑘 ∈ 𝐴, a hierarchical set of datasets D0, D𝐴, D𝐴′ , ... (where 𝐴′ ⊂ 𝐴 with
|𝐴′| = 𝐾 − 2, 𝐴 ⊂ {1, . . . , 𝐾} with |𝐴| = 𝐾 − 1, and so forth, are required to be collected. For each
non-empty subset 𝐴′ ⊂ 𝐴 with |𝐴′| = |𝐴| − 1, we require a dataset D𝐴′ that provides data for
background and the isotopes in 𝐴′. Additionally, for each 𝐴′, we require at least one dataset D𝐴′′

for every non-empty subset 𝐴′′ ⊂ 𝐴′. This hierarchical data requirement ensures that we can
accurately estimate the parameters for each isotope in 𝐴, by disentangling the contributions of
each isotope and the background to the observed counts.

6.3.1.1. Energy Distribution Estimation

For a general dataset D, the joint log-likelihood of energy counts and timestamps follows:

ℓ(𝜽 |D, 𝐾) =
𝑛∑︁
𝑖=1

log

(
𝐾∑︁
𝑘2=0

𝐾∑︁
𝑘1=0

𝜋𝑘1𝜆𝑘2 𝑝𝐸𝑘1
(𝑒𝑖)

)
− 𝑥𝑖

𝐾∑︁
𝑘=0

𝜆𝑘 ,

where 𝑥𝑖 := 𝑡𝑖 − 𝑡𝑖−1 and 𝑡−1 := 0. Since the energies and timestamps are modeled as independent
random variables, the above log-likelihood can be maximized separately to obtain estimates of the
parameters regulating the temporal and energy distributions.

6.3.1.2. Background Spectra Subtraction and Renormalization

To accurately classify isotopes in the presence of background radiation, we employ a method of
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spectral background subtraction and renormalization. Specifically, while the probability
distribution of energies is a mixture:

𝑝𝐸 (𝑒) =
𝐾∑︁
𝑖=0

𝜋𝑖𝑝𝐸𝑖 (𝑒)

that includes background, the raw observed energy counts over time period 𝑇 are unnormalized.
As such, if 𝑛𝑇 observations {𝑒𝑖}𝑛𝑇𝑖=1 have been collected by time 𝑇 , the unnormalized (raw)
distribution follows:

𝑝∗𝐸 (𝑒) =
𝑛𝑇∑︁
𝑖=1

1(𝑒𝑖 = 𝑒),

where 1(𝑒𝑖 = 𝑒) = 1 if observation 𝑒𝑖 = 𝑒 and is zero otherwise. For continuous energy values, we
elect to compute the unnormalized density of energies via the nonparametric histogram density
approximator:

𝑝∗𝐸 (𝑒) =
𝑛𝑇∑︁
𝑖=1

𝐻

( 𝑒 − 𝑒𝑖
ℎ

)
,

where 𝐻 denotes the kernel and ℎ the bandwidth or smoothing parameter. Typical kernels include
uniform, triangle, and Gaussian, and can be chosen such that the domain of the distribution
satisfies constraints of the parameter, i.e., that 𝐸 > 0. We choose this nonparametric method over
other parametric models, discussed earlier, to reduce the number of parameters, and thus reliance,
of the energies in studying the inclusion of temporal data on RIID.

We assume that pure background counts can be collected over time interval 𝑇 to determine 𝑝∗
𝐸0
(𝑒).

With this assumption, when a single isotope is present (i.e., 𝐾 = 1), measurements over the same
time interval 𝑇 can be collected to determine 𝑝∗

𝐸 |𝐾=1(𝑒), which include counts from both the
isotope and background. When obtaining data over the same time period 𝑇 , therefore, we have:

𝑝∗𝐸1
(𝑒) = 𝑝∗

𝐸 |𝐾=1(𝑒) − 𝑝
∗
𝐸0
(𝑒).

Assuming dataset collection over time intervals for multiple isotopes and background, this idea
can then be extended to 𝐾 isotopes by iteratively subtracting the background and already
identified isotopic contributions. Specifically, for each isotope 𝑗 in the presence of 𝐾 isotopes, the
unnormalized probability can be expressed as:

𝑝∗𝐸 𝑗 (𝑒) = 𝑝
∗
𝐸 |𝐾=𝑘 (𝑒) −

𝑘∑︁
𝑖=0
𝑖≠ 𝑗

𝑝∗𝐸𝑖 (𝑒),

where 𝑝∗
𝐸 |𝐾=𝑘 (𝑒) is the observed energy distribution for the mixture of background and 𝐾 isotopes

over the time interval 𝑇 , and 𝑝∗
𝐸𝑖
(𝑒) are the previously identified energy distributions for

background and other isotopes. This approach generalizes the subtraction and renormalization
process to arbitrary 𝐾 isotopes.

For a finite number of observations 𝑛𝑇 from 𝑝∗
𝐸 |𝐾=1(𝑒), we can ensure that 𝑝∗

𝐸1
(𝑒) ≥ 0 by setting

any negative values to zero. However, as 𝑛𝑇 → ∞, this practice becomes redundant.
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More generally, for 𝐾 = 𝑘 isotopes and 0 < 𝑗 ≤ 𝑘 , we can write:

𝑝∗𝐸 𝑗 (𝑒) = 𝑝
∗
𝐸 |𝐾=𝑘 (𝑒) −

𝑘∑︁
𝑖=0
𝑖≠ 𝑗

𝑝∗𝐸𝑖 (𝑒). (6.9)

Once computed, normalization can be pursued to obtain the estimated probability densities:

𝑝𝐸0 (𝑒) =
𝑝∗
𝐸0
(𝑒)∑

𝑒∈E 𝑝
∗
𝐸0
(𝑒) , 𝑝𝐸 𝑗 (𝑒) =

𝑝∗
𝐸 𝑗
(𝑒)∑

𝑒∈E 𝑝
∗
𝐸 𝑗
(𝑒) , 𝑝𝐸 |𝐾=𝑘 (𝑒) =

𝑝∗
𝐸 |𝐾=𝑘 (𝑒)∑

𝑒∈E 𝑝
∗
𝐸 |𝐾=𝑘 (𝑒)

,

where 𝑗 > 0, and with the notion that the sums become integrals if the obtained energies are
continuous.

The exercise of background spectra subtraction and renormalization is important for two reasons.
First, it is necessary to remove background noise (counts that do not come from an isotope
required to be detected), to determine the raw energy spectra of an isotope that could then be
matched, and therefore detected, in future experiments. Second, in order to classify if a sequence
of counts contains a specific isotope, the mixing proportions {𝜋𝑖}𝐾𝑖=0 in the mixture density (given
in Equation 6.3) are required to be estimated.

In particular, with the above methodology, the mixing proportions can be directly estimated by
minimizing the difference between the normalized mixture density and the weighted sum of the
background and isotope densities. Denoting:

𝝅 =
(
𝜋1 𝜋2 . . . 𝜋𝐾

)
,

as the vector of isotope mixing proportions with 𝜋0 = 1 − ∑𝐾
𝑗=1 𝜋 𝑗 , the least squares estimate 𝝅̂ of

𝝅 can be computed via:

𝝅̂ = arg min
𝝅

(
𝑝𝐸 |𝐾=𝑘 (𝑒) −

𝐾∑︁
𝑖=0

𝜋𝑖𝑝𝐸𝑖 (𝑒)
)2

.

6.3.1.3. Temporal Process Estimation

Specifically, by defining the temporal process of counts in dataset D𝐴 as 𝑁 𝐴
𝑡 , we have from

Equation 6.1 that:

𝑁 𝐴
𝑡 ∼ Poi

([
𝜆0 +

∑︁
𝑘∈𝐴

𝜆𝑘

]
𝑡

)
.

By further defining X𝐴 = {X𝑛
𝐴
}𝑁

𝐴
𝑡

𝑛=1 as the random interarrival sequence from dataset D𝐴 and
x𝐴 = {𝑥𝑛

𝐴
} |D𝐴 |
𝑛=0 its realization, we have that:

𝑋
𝑗

𝐴
∼ Exp

(
𝜆0 +

∑︁
𝑘∈𝐴

𝜆𝑘

)
.
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With access to the correct datasets, therefore, we can estimate 𝜆0 and 𝜆𝑖 for each 𝑖 ∈ 𝐴 via
exponential MLE recursions. For any 𝑛 ≥ 0, we define the set 𝐴𝑛 = {𝑖1, 𝑖2, . . . , 𝑖𝑛} for
𝑖1, . . . , 𝑖𝑛 ∈ 𝐴, and 𝑖1 ≠ · · · ≠ 𝑖𝑛, with data x𝑛 ∈ D𝐴𝑛 . We can recursively estimate every temporal
rate in 𝐴 via:

𝜆̂𝐴𝑛 = x̄−1
𝐴𝑛

x𝑛 ∈ D𝐴𝑛 , 𝐴𝑛 = {𝑖1, 𝑖2, . . . , 𝑖𝑛}, 𝑖1, . . . , 𝑖𝑛 ∈ 𝐴, 𝑖1 ≠ · · · ≠ 𝑖𝑛,

𝜆̂𝑖𝑛 = 𝜆̂𝐴𝑛 −
©­«𝜆̂0 +

𝑛−1∑︁
𝑗=1
𝜆̂𝑖 𝑗

ª®¬ ,
𝜆̂0 = x̄−1

0 x0 ∈ D0,

where x̄𝐴 =
∑𝑛𝑇𝐴
𝑖=1 𝑥

𝑖
𝐴
/𝑛𝑇𝐴 denotes the sample mean of the interarrival times x𝐴.

Putting all of the above steps, we can compute the log-likelihood per isotope 𝑘 This recursive
estimation of the energy distributions for each isotope in 𝐴, and of the mixing proportions
concludes parameter estimation across different isotopes and datasets.

6.3.1.4. Classification of an Unknown Sequence

Once we have obtained maximum likelihood estimates (MLEs) for the temporal rates {𝜆̂𝑖}𝐾𝑖=1 and
their corresponding energy distributions 𝑝𝐸0 (𝑒), 𝑝𝐸1 (𝑒), . . . , 𝑝𝐸𝐾 (𝑒) from training sequences
obtained via the hierarchical structure of datasets, we can classify a new sequence of observations
Dnew =

{
(𝑒′
𝑖
, 𝑥′
𝑖
)
}𝑛
𝑖=1 as belonging to one of 𝐾 isotopes or purely background.

Specifically, given the newly observed sequence of decay events, the likelihood of the sequence
can be computed for each isotope 𝑘 ∈ {1, 2, . . . , 𝐾}, using the trained model parameters. The
total log-likelihood for isotope 𝑘 ∈ {1, .., 𝐾} combines the contributions of both the energy and
time distributions:

ℓ𝑘 (D𝑛𝑒𝑤 |𝜽̂𝑘 ) =
𝑛′∑︁
𝑖=1

log
(
𝑝𝐸 ′ (𝑒′𝑖)

)
− 𝑥′𝑖 (𝜆̂𝑘 + 𝜆0),

where 𝜽̂𝑘 = {𝜆̂0, 𝜆̂𝑘 , 𝑝𝐸0 (𝑒), 𝑝𝐸𝑘 (𝑒)} for all 𝑒 ∈ E, 𝑝𝐸 ′ (𝑒′
𝑖
) = 𝜋̂0𝑝𝐸0 (𝑒′𝑖) + 𝜋̂𝑘 𝑝𝐸𝑘 (𝑒′𝑖) with

𝜋̂𝑘 = 1 − 𝜋̂0, 𝑥′
𝑖

:= 𝑡′
𝑖
− 𝑡′

𝑖−1 and 𝑡′−1 := 0.

The sequence is then classified as originating from isotope 𝑘∗, where

𝑘∗ = arg max
𝑘∈{1,...,𝐾}

ℓ𝑘 (D𝑛𝑒𝑤 |𝜽̂𝑘 ),

meaning that the model selects the isotope with the highest likelihood given the observed energy
and time sequence. We note that this method is equivalent to normalizing the log-likelihoods for
each class to obtain a class probability. This approach therefore ensures that the most probable
isotope responsible for the decay events in the test dataset is identified, taking both the temporal
patterns and the energy spectrum into account.
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Trivially, one can therefore classify isotopes based on either sole energy or temporal information
via

𝑘∗𝑒 = arg max
𝑘∈{1,...,𝐾}

𝑛′∑︁
𝑖=1

log
(
𝑝𝐸 ′ (𝑒′𝑖)

)
𝑘∗𝑡 = arg max

𝑘∈{1,...,𝐾}
−

𝑛′∑︁
𝑖=1

𝑥′𝑖 (𝜆̂𝑘 + 𝜆0),

respectively.

6.4. The Extended 𝛼 Model: Incorporating Signal-to-Noise Ratio (SNR)

Up until now, we have assumed that the test datasets contain list-mode sequences of decay events
acquired in the same manner as that of the training dataset. However, this characteristic is an
idealistic assumption that is, in practice, violated when collecting data from any given area. This
violation is due to the fact that for testing, the source location is generally unknown, and thus the
event counts, and potentially energy distributions, are likely to differ.

In this section, we extend the Poisson process model introduced earlier by incorporating a random
component 𝛼 that accounts for the Signal-to-Noise Ratio (SNR). The SNR reflects changes in the
environment, such as varying distances between the radioactive source and the detector, which
affect the observed decay rates. To account for this variability, we introduce a scaling factor 𝛼 that
modifies the decay rates for each isotope to adjust for changes in SNR during test conditions.

6.4.1. Model Description with 𝛼

As before, let 𝜆𝑖 denote the decay rate for isotope 𝑖 as estimated from the training data under fixed
conditions, such as a constant distance from the detector. In real-world scenarios, the observed
decay rate 𝜆′

𝑖
may vary due to fluctuations in SNR. We model this variation by introducing the

scaling factor 𝛼, which modifies the rate as follows:

𝜆′𝑖 = 𝛼𝜆𝑖,

where (𝛼 > 0) is a random variable representing the SNR effect. Higher (𝛼) values correspond to
higher SNR (closer detector-source distance), while lower 𝛼 values correspond to lower SNR
(further detector-source distance).

6.4.1.1. Bayesian MAP Inference for (𝛼)

Since 𝛼 can be highly variable, a Bayesian approach is necessary to represent any prior
information one may have of 𝛼 (e.g. that 𝛼 ≈ 1) and to account for these uncertainties in a
probabilistically just manner. In this manner, instead of marginalizing over 𝛼, i.e., integrating the
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likelihood over all values of 𝑎𝑙 𝑝ℎ𝑎, which can lead to overly averaged likelihoods sensitive to the
choice of prior, we estimate 𝛼MAP (the maximum a posteriori estimate) for each test sequence. To
achieve this estimation, we place a prior distribution on 𝛼 and maximize the posterior distribution
for each test sequence to find 𝛼MAP.

Priors on (𝛼)

We use a prior distribution on 𝛼 to capture the expected variability in SNR. Since 𝛼 > 0, common
choices for the prior could include:

• Log-Normal Prior: Suitable for modeling multiplicative variations in 𝛼:

𝛼 ∼ Log-Normal(𝜇𝛼, 𝜎2
𝛼),

where 𝜇𝛼 and 𝜎2
𝛼 are the mean and variance of log(𝛼). With this prior, known expected

values of 𝛼, e.g. 𝛼 ≈ 1 can be easily incorporated by setting the prior mean and variances
accordingly.

• Gamma Prior: Useful for skewed distributions of 𝛼, where the SNR tends to cluster
around certain values:

𝛼 ∼ Gamma(𝑘𝛼, 𝜃𝛼),

where 𝑘𝛼 is the shape parameter and 𝜃𝛼 is the rate parameter. Again, these hyperparameters
can be set according to any prior knowledge one may have of the level of SNR.

Posterior Likelihood and 𝛼MAP

Given the test data Dtest = {(𝑒′
𝑖
, 𝑡′
𝑖
)}𝑛′
𝑖=1, we compute the posterior distribution of 𝛼 using the

likelihood of the observed data under isotope 𝑘:

𝑝(𝛼 |Dtest, 𝜽𝑘 ) ∝ 𝑝({(𝑒′𝑖, 𝑡′𝑖 |𝜽𝑘 )}|𝛼)𝜋(𝛼).

Here, 𝜋(𝛼) denotes the prior density of 𝛼, and
𝑝({(𝑒′

𝑖
, 𝑡′
𝑖
|𝜽𝑘 ) ∝ (𝜋𝑘 𝑝𝐸𝑘 (𝑒′𝑖) + 𝜋0𝑝𝐸0 (𝑒′𝑖)) (𝜆0 + 𝛼𝜆𝑘 ) exp(−𝑥′

𝑖
(𝜆0 + 𝛼𝜆𝑘 )), which is based on the

modified decay rates. Subsequently, this posterior can be maximized to obtain 𝛼MAP, i.e.,

𝛼MAP = arg max
𝛼
𝑝(𝛼 |{(𝑒′𝑖, 𝑡′𝑖)}),

which is computed for each new test sequence under the previously obtained MLEs 𝜽̂ from the
training data only.
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6.4.1.2. Posterior Density and Classification

Once 𝛼MAP is estimated, we can compute the posterior density for a new test sequence using
𝛼MAP. This process transforms the log-likelihood of a new sequence Dnew = {(𝑒′

𝑖
, 𝑡′
𝑖
)}𝑛′
𝑖=1} under

isotope 𝑘 from:

ℓ𝑘 (Dnew |𝜽̂𝑘 ) =
𝑛′∑︁
𝑖=1

log
(
𝜋̂𝑘𝛼MAP𝑝𝐸𝑘 (𝑒′𝑖) + 𝜋̂0𝑝𝐸0 (𝑒′𝑖)

)
− 𝑥′𝑖 (𝛼MAP𝜆̂𝑘 + 𝜆̂0),

where 𝜽̂𝑘 = {𝜆̂0, 𝜆̂𝑘 , 𝑝𝐸0 (𝑒), 𝑝𝐸𝑘 (𝑒)}, to the new form:

ℓ𝑘 (Dnew |𝜽̂𝛼,𝑘 ) = log 𝜋(𝛼MAP) +
𝑛′∑︁
𝑖=1

log
(
𝜋̂𝑘𝛼𝑝𝐸𝑘 (𝑒′𝑖) + 𝜋̂0𝑝𝐸0 (𝑒′𝑖)

)
− 𝑥′𝑖 (𝛼MAP𝜆̂𝑘 + 𝛼MAP𝜆̂0),

where 𝜽̂𝛼,𝑘 now includes 𝛼̂MAP, and 𝜋(𝛼MAP) represents the prior evaluated at 𝛼MAP.

The updated parameter set for isotope 𝑘 is now:

𝜽̂𝛼,𝑘 = {𝛼̂MAP, 𝜆̂0, 𝜆̂𝑘 , 𝑝𝐸0 (𝑒), 𝑝𝐸𝑘 (𝑒)},

for all 𝑒 ∈ E.

6.4.1.3. Classification Procedure

For a new sequence in Dnew, the final classification is performed by computing the updated
log-likelihood for each isotope 𝑘 using the estimated 𝛼MAP and selecting the isotope with the
highest log-likelihood:

𝑘∗ = arg max
𝑘∈{1,...,𝐾}

ℓ𝑘 (Dnew |𝜽̂𝛼,𝑘 ).

This approach allows us to incorporate the variability due to SNR while retaining a discriminative
classification criterion based on the MAP estimate of 𝛼. By doing so, we avoid the averaging over
𝛼, which can lead to sensitivity to the prior, and instead focus on the most probable value of 𝛼
given the observed data.
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7. CLASSIFIER ANALYSIS

Using the original probabilistic classification models described in Chapter 6 and the different
datasets described in Chapter 4, several experiments were conducted to determine whether
temporal information in the form of interarrival times between events provides some benefit over
solely using energy information for the classification of radiological source material. Interarrival
time is defined as the length of time in microseconds that has passed between the previous event
and the current event. In each experiment, the first 100 seconds of list-mode data from each
dataset was ignored. This exclusion was done because the first 60 seconds of data generally
represent collection setup time. In each experiment 100,000 consecutive events were kept for each
source in the datasets relevant to that experiment. Seventy-percent (70,000) of the events from
each source were placed in a training set. Each test set varied based on the experiment that was
being conducted, but the size of each test set remained the same across experiments. Only 3,333
samples from each source were used in each test set. Each sample was comprised of 100 events.
Additionally, the accuracy results that are displayed in Table 7-1 represent the accuracy of the
model when the model’s predicted class is the class with the maximum likelihood value.

Information about the different experiments and the results related to them are provided below.
Each experiment represents the use of a different training and test set. We note here that the
combination source U-232+Ba-133 was considered as a single isotope1 so that individual isotope
classification as described in Section 6.3 could be conducted.

Experiment 1: July 2022
In this experiment the July 2022 dataset was used for training and testing. As mentioned in
Chapter 4 this dataset includes events collected from background, Y-88, Cs-137, U-232, Ba-133,
and U-232+Ba-133. The test set for each source was derived from the 30,000 events that were not
used in the training set. In this way, the test set and the training set come from the same data
distribution.

Experiment 2: April 2024
In this experiment the April 2024 dataset was used for training and testing. As mentioned in
Chapter 4 this dataset includes events collected from background, U-232, Ba-133, and
U-232+Ba-133. The test set was derived in a similar way as to that described for Experiment 1. In
this way, the test set and the training set come from the same data distribution.

1Classification of multiple isotopes in an individual sample is seen as an exciting extension of the probabilistic
classifier we have developed, but is beyond the scope of this preliminary work that will be studied in the future.

59



Experiment 3: D1 to D1
In this experiment the D1 dataset collected in August 2024 was used for training and testing. As
mentioned in Chapter 4 this dataset includes events collected from background, Y-88, Cs-137,
Ba-133, and Cs-137+Ba-133. The test set was derived in a similar way as to that described for
Experiment 1. In this way, the test set and the training set come from the same data distribution.
This arrangement also means that the distances at which the sources are placed is remaining
constant from the training set to the test set.

Experiment 4: D1 to D2
In this experiment the D1 dataset collected in August 2024 was used for the training set whereas
the D2 dataset collected in August 2024 was used for the test set. As mentioned in Chapter 4 this
dataset includes events collected from background, Y-88, Cs-137, Ba-133, and Cs-137+Ba-133.
The test set for each source was derived from 30,000 events found in the D2 dataset for each
source. Therefore, the test set and the training set come from two different data distributions. This
arrangement also means that the distances at which the sources are placed is increasing from the
training set to the test set.

Experiment 5: D2 to D1
In this experiment the D2 dataset collected in August 2024 was used for the training set whereas
the D1 dataset collected in August 2024 was used for the test set. As mentioned in Chapter 4 this
dataset includes events collected from background, Y-88, Cs-137, Ba-133, and Cs-137+Ba-133.
The test set for each source was derived from 30000 events found in the D1 dataset for each
source. Therefore, the test set and the training set come from two different data distributions. This
arrangement also means that the distances at which the sources are placed is decreasing from the
training set to the test set.

Experiment 6: D2 to D2
In this experiment the D2 dataset collected in August 2024 was used for training and testing. As
mentioned in Chapter 4 this dataset includes events collected from background, Y-88, Cs-137,
Ba-133, and Cs-137+Ba-133. The test set was derived in a similar way as to that described for
Experiment 1. In this way, the test set and the training set come from the same data distribution.
This arrangement also means that the distances at which the sources are placed is remaining
constant from the training set to the test set.

Experiment 7: Mix to Mix
In this experiment the D1 and D2 datasets collected in August 2024 were combined and then used
to create the training and test set. As mentioned in Chapter 4 this dataset includes events collected
from background, Y-88, Cs-137, Ba-133, and Cs-137+Ba-133. The test set for each source was
derived from 30,000 events found in the combined dataset for each source. Therefore, the test set
and the training set come from a combination of two different data distributions. This
arrangement also means that the training and test sets are representative of the two different
distances at which events were collected for each source.
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Accuracy Results
Experiment: Time Model Energy Model Energy & Time

Model
1: July 2022 0.7107 0.5498 0.6565
1-𝛼: July 2022 0.7018 0.5498 0.6200
2: April 2024 0.8774 0.3890 0.6898
3: D1 to D1 0.4850 0.7368 0.8249
3-𝛼: D1 to D1 0.3334 0.5436 0.8479
4: D1 to D2 0.1787 0.3864 0.5307
4-𝛼: D1 to D2 0.3333 0.4782 0.7504
5: D2 to D1 0.2509 0.6636 0.7404
5-𝛼: D2 to D1 0.3333 0.8799 0.9936
6: D2 to D2 0.5101 0.5476 0.7451
6-𝛼: D2 to D2 0.3333 0.8372 0.9699
7: Mix to Mix 0.5037 0.6249 0.7488
7-𝛼: Mix to Mix 0.3333 0.6442 0.9201

Table 7-1. The table displays the accuracy results that were obtained for each experiment.

7.1. Discussion of Experimental Results

In Table 7-1, we present experimental results of all datasets when trained and tested on the initial
probabilistic classifier developed, and the extended 𝛼 model that incorporates variabilities in the
SNRs between training and testing datasets.

These results show that regardless of the experiment that was conducted, the dual energy and time
models always outperformed the energy models (i.e., the spectral analyses only) in terms of
accuracy. However, the benefit that can be attributed to adding temporal information to the model
varies based on the experiment that was conducted, mainly due to each isotope’s distinct decay
parameters. For example, some of the success of the time models of experiments 1 and 2 may be
due to the models’ reliance on the count rate as a way of differentiating classes. Experiments 3
and 6 are intended to reduce the model’s ability to rely on count rates by ensuring that during the
collection process each source is positioned at a distance from the detector that forces the count
rates between different sources to be similar. The similarity between these count rates could
explain why the time models for experiments 3 and 6 perform worse than those for experiments 1
and 2. Under experiments 4 and 5 there is an additional drop in performance, which may be
attributed to the fact that the training and test sets have a different distribution from each other.
Within each training and test set of experiments 4 and 5 the count rate was controlled in the same
way as described for experiments 3 and 6. Additionally, D2 represents counts that were collected
for sources held farther away from the detector than the sources in D1. This difference means that
in experiment 4 the training set represents data that has a higher source to background ratio than
the test set whereas in experiment 5 the opposite is true. Therefore, the difference in performance
between the models in experiment 4 and experiment 5 may be attributed to the shift in the data
distribution between the training and test sets. However, using the extended 𝛼 model that
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Predicted Class
Class of Interest Other Class

Actual Class Class of Interest a b
Other Class c d

Table 7-2. This table defines the values that are used to calculate sensitivity and specificity.

specifically integrates uncertainties in SNRs between training and testing sets results in a much
more powerful classifier that overcomes the drawbacks of the initial classifier, as presented from
the results of experiments 3–6. Additionally, implementation on the first experiment shows only a
slight change in the estimated classes between either model, highlighting the potential power of
the extended model in varied, and potentially highly complex, data collection scenarios.

7.2. Receiver Operating Characteristic Curves

Receiver operating characteristic (ROC) curves are a tool used for assessing the performance of a
binary classifier, comparing the performance of binary classifiers, and establishing a threshold
likelihood value at which a data point is said to belong to a specific class [19]. The ROC curve
typically has sensitivity on the 𝑦-axis and specificity or the false positive rate (FPR) on the 𝑥-axis.
Sensitivity is defined as the ratio of the number of observations that were correctly associated to
the class of interest by the model to the total number of observations that belong to the class of
interest. On the other hand, specificity is defined as the ratio of the number of observations that
were correctly associated to the class that was not of interest by the model to the total number of
observations that do not belong to the class of interest [20]. Using Table 7-2, sensitivity and
specificity can be defined as shown in equations 7.1 and 7.2.

Sensitivity =
𝑎

𝑎 + 𝑏 (7.1)

Specificity =
𝑑

𝑐 + 𝑑 (7.2)

The letters shown in Table 7-2 can be defined as follows: 𝑎 is the number of true positives, 𝑏 is the
number of false negatives, 𝑐 is the number of false positives, and 𝑑 is the number of true
negatives.

The nonparametric ROC curve is then obtained by calculating the sensitivity and specificity for a
given binary classifier at several threshold values. The threshold values are not displayed on the
ROC curve, but higher threshold values mean that a larger likelihood value is needed in order for
the model to classify an observation as the class of interest. This notion in turn means that higher
threshold values usually result in a higher specificity and a lower sensitivity. Thus, sensitivity and
specificity values associated with higher threshold values will be found closer to the lower left
corner of the ROC curve, whereas the opposite is true for lower threshold values.

Often the area underneath the ROC curve (AUC) is used as a way to summarize the curve and as a
way of comparing classifiers. The AUC, unlike the error rate or accuracy, is independent of the
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threshold value [21]. Let 𝑝 = 𝑃 (𝑥𝑖 = 0|𝑥𝑖 = 1) be the estimated probability of incorrectly
assigning a randomly chosen member of one class to another class and 𝑞 = 𝑃 (𝑥𝑖 = 0|𝑥𝑖 = 0) be the
estimated probability of correctly assigning a randomly chosen member of the other class, then the
AUC can be defined as the probability that 𝑝 is smaller than 𝑞 [21]. Therefore, better performing
models are associated with larger AUC values and AUC values range between 0 and 1 [20].
Examples of the ROC curves that were generated and their associated AUC values are shown in
Figure 7-1. Additional ROC curves may be found in Appendix A.4. These AUCs and ROC curves
were calculated by considering the class of interest as one class and putting all other classes into a
second class. In this way, every ROC curve and AUC value only represents a two class scenario.

(a) Experiment 1: ROC for model
performance on Ba133

(b) Experiment 1: ROC for model
performance on U232 & Ba133

Figure 7-1. Figures 7-1a and 7-1b display the ROCs associated with the performance of the time,
energy, and energy & time models on different sources. The list-mode data associated with these

plots was collected in July 2022.

Since AUC is only applicable to situations where there are only two classes, additional analysis
was conducted using the 𝑀 measure presented in [21], which is the average of all pairwise AUCs
and can be calculated as shown in equation 7.3. In equation 7.3, 𝑠 represents the number of
classes and 𝐴𝑈𝐶𝑖 𝑗 represents the pairwise AUC between the 𝑖𝑡ℎ and 𝑗 𝑡ℎ classes. It is important to
note that these pairwise AUCs are different from the AUCs shown in Figure 7-1 and those found
in Appendix A.4. The 𝑀 measure is also referred to as the “multi-class AUC" [22].

𝑀 =

∑
𝑖≠ 𝑗 𝐴𝑈𝐶𝑖 𝑗

𝑠 (𝑠 − 1) (7.3)

The results presented in Table 7-3 and the ROC curves and AUC values found in Appendix A.4
indicate that the energy & time model outperforms the energy model in every experiment that
both 1) did not involve a change in the distribution of the data between the training and test set,
and 2) did involve a change in distribution (see Figures A-20, A-21 and A-16 in Appendix A.4).
These results highlight the flaw in the algorithm presented in Section 6.3, which exploits the
proportion of background that is present in the signal for testing. When the proportion of
background present in the signal changes between the training set and the test set, the extended 𝛼
model, which accounts for the SNR (different distances), has seemed to overcome the flaws of the
first model and provide accurate classification.
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Multi-class AUC Results
Experiment: Time Model Energy Model Energy & Time Model
1: July 2022 0.9454 0.9105 0.9644
2: April 2024 0.9742 0.4845 0.9774
3: D1 to D1 0.7905 0.9614 0.9772
4: D1 to D2 0.5676 0.9171 0.9077
5: D2 to D1 0.5934 0.9167 0.9146
6: D2 to D2 0.8197 0.9313 0.9599
7: Mix to Mix 0.8049 0.9462 0.9662

Table 7-3. The multi-class AUC results computed for each experiment and model type.

7.3. McNemar’s Test

The classifier results seem to indicate that a model that uses both interarrival time and energy
channels in order to classify the sources outperforms a model that only uses energy channels. In
order to determine whether the two classifiers are significantly different from each other,
McNemar’s Test is used. McNemar’s test has been used and is frequently recommended as a
nonparametric test for comparing the accuracy or error rate of two classifiers [23, 24].

Classifier 2
Wrong Correct

Classifier 1 Wrong w x
Correct y z

Table 7-4. The matrix associated McNemar’s Test.

In order to understand McNemar’s test and how it is applied for comparing two classifiers,
consider first the matrix in Table 7-4. In Table 7-4, 𝑤 represents the number of samples that were
incorrectly classified by both classifiers, 𝑥 represents the number of samples that were correctly
classified by classifier 2 and incorrectly classified by classifier 1, 𝑦 represents the number of
samples that were incorrectly classified by classifier 2 and correctly classified by classifier 1, and 𝑧
represents the number of samples that were correctly classified by both classifiers. Therefore, if
𝑊 , 𝑋 , 𝑌 , and 𝑍 represent the random variables associated with the counts 𝑤, 𝑥, 𝑦, and 𝑧, and 𝑚 is
the total number of samples (i.e., 𝑚 = 𝑊 + 𝑋 + 𝑌 + 𝑍), then the error rates for classifier 1 and
classifier 2 are 𝑝1 = 𝑊+𝑋

𝑚
and 𝑝2 = 𝑊+𝑌

𝑚
, respectively. Thus, a null hypothesis that states that both

error rates are equal, is equivalent to a null hypothesis that states that 𝑝𝑋 = 𝑝𝑌 . Let 𝑛 = 𝑋 + 𝑌 ,
then it can be shown that

𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(
𝑛, 𝑝 =

𝑋

𝑋 + 𝑌

)
,

which means that 𝑋 follows a binomial distribution with parameters 𝑛 and 𝑝, where 𝑛 represents
the number of events in both 𝑋 and 𝑌 and 𝑝 represents the probability that an event is in category
𝑋 [11]. Then, the null and alternative hypotheses associated with McNemar’s test are as follows:

𝐻0 : 𝑝 =
1
2

𝐻1 : 𝑝 >
1
2

(7.4)
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In hypothesis testing, there are two types of errors that are monitored: type 1 error and type 2
error. Type 1 error is defined as the error associated with rejecting the null hypothesis when the
null hypothesis is true and type 2 error is defined as the failure to reject the null hypothesis when
the alternative hypothesis is true. For the above hypothesis test, type 1 error can be defined as
stating that the error rate for classifier 1 is larger than the error rate for classifier 2 when in fact
both have the same error rate. On the other hand, type 2 error can be defined as failing to claim
that the error rate for classifier 1 is greater than the error rate for classifier 2 when this inequality is
actually true. Since our hypothesis is that including temporal information in our model is
beneficial, we consider our energy-based model to be classifier 1 and the model that includes both
energy and temporal information to be classifier 2. The next step in the hypothesis testing process
was to set the maximum allowable type 1 error rate, which is also referred to as the level of
significance, 𝛼. In order to stick to convention, we decided to set 𝛼 = 0.05 [11]. Table 7-5 shows
the P-values that were obtained for each of the respective experiments that were conducted. In this
case, a P-value can be interpreted as the probability of observing at least 𝑥 samples that were
incorrectly classified by the energy model and correctly classified by the model that includes
energy and temporal information given that 𝑝 = 1

2 . Therefore, under the hypothesis test in
Equation 7.4, the smaller the P-value the more significant the difference between the two
classifiers. This difference would indicate that the energy model performs significantly worse than
the model that includes temporal and energy data. Equation 7.5 shows the equation that was used
to calculate the P-values that are displayed in Table 7-5.

P-value =

(
1
2

)𝑛 𝑛∑︁
𝑖=𝑥

(
𝑛

𝑖

)
(7.5)

The results presented in Table 7-5 indicate that under each experiment the error rate for the energy
model is significantly larger than the error rate for the energy & time model. These results seem to
indicate that it is beneficial too include temporal information for the classification of radioactive
material.

McNemar’s Test Results
Experiment: P-value
1: July 2022 ∼ 0
2: April 2024 ∼ 0
3: D1 to D1 ∼ 0
4: D1 to D2 ∼ 0
5: D2 to D1 ∼ 0
6: D2 to D2 ∼ 0
7: Mix to Mix ∼ 0

Table 7-5. Results of running McNemar’s test to compare the error rate of the model that used both
the energy and temporal information to the model that only used energy information for

classification for each experiment.

Power Analysis
In order to ensure that the McNemar’s tests were able to properly discriminate between the null
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and alternative hypotheses, we analyzed the power function for each test [11]. The plots of the
power function show how the probability of rejecting the null hypothesis changes as the number of
observations that were incorrectly labeled by the energy model and correctly labeled by the energy
& time model increases. An increase in 𝑝 represents an increase in the number of observations
that were incorrectly labeled by the energy model and correctly labeled by the energy & time
model. Figure 7-2 shows a couple examples where the McNemar’s test is shown to be fairly
sensitive to the change in 𝑝. These results were present in all plots of power as a function of 𝑝.
The other power plots can be found in Appendix A.5. These results provide evidence to our claim
that the tests were able to effectively discriminate between the null and alternative hypotheses.

(a) Experiment 2: Power At Several Values
For 𝑝

(b) Experiment 5: Power At Several Values
For 𝑝

Figure 7-2. Figures 7-2a and 7-2b display the power of the McNemar’s test associated with the
stated experiment as the value of the 𝑝 parameter is increased.
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8. CONCLUSION

In this work we asked two simple questions, what is the nature of the temporal domain information
of list-mode gamma-ray data and is that temporal domain information beneficial to the application
of radioisotope identification. We began with a hypothesis that Hidden Markov Models may be a
beneficial method for utilizing temporal information in classifying radioactive sources given the
close similarities to the properties of HMMs and the properties of radiation decay chain physics.
However, we quickly realized through application and discussion with subject matter experts that
this approach would be impractical, if not impossible, to implement. We confidently conclude that
HMMs are not a good tool to employ for radiation data sets in the task of RIID.

We took a deep dive into understanding the nature of the time domain content of our list-mode
datasets. We looked at several methods of discovering temporal correlations via Pearson’s
correlation, Spearman rho, autocorrelation, and crosscorelation methods. All these experiments
concluded with finding no evidence of correlations between the time and/or energy space of our
radiation datasets. We also investigated distributional analysis of our data sets, specifically
looking at box plots to identify characteristics of the data sets that may lead to discernible
discriminators between radioactive sources. These experiments indicated that the distributions of
interarrival times are relatively stable across consistent collection windows and that these
distributions do show meaningful differences across radioactive sources. Variations in the
distributions for the same source did occur when collection windows increased or decreased.

Further, we looked at Shannon and Fisher information theory analysis of our datasets. Specifically
we wanted to know if there was a measurable quantification of information loss when moving from
list-mode data to spectral data. Our results indicate a positive affirmation of this hypothesis in both
the definitions of Shannon Information and Fisher Information. This affirmation is a strong result
to quantify as it is a precursor support to our ultimate question of the benefits of the temporal
domain information. Knowing that there is a quantifiable amount of information loss, we were
well prepared to investigate methods for exploiting this information in the application of RIID.

To provide supportive evidence to the usefulness of temporal information for RIID, we devised a
probabilistic classification method that could use temporal information and energy information
alone, or both combined. Given that the classifier is the same, and the nature of the data is the
only thing changing, we establish an experiment that can determine if the inclusion of temporal
information improves the performance of RIID. Our classifier is based on distributional estimates
of the temporal and energy domain data.Through adequately defined testing and training datasets,
we rigorously assessed the performance of our classifier under interarrival time data only, spectral
data only, or both, through the use of ROC curves, McNemar tests, and analysis of the power
function for each test. The results concluded that in all cases, it was always more performant to
include temporal domain information when classifying. For any case in which it was not more
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performant to include temporal information, the performance differences between a spectral only
classifier and the combination classifier was negligible.

The results of this study are promising and support future investigation into temporal information
understanding and methods of utilizing temporal domain information for RIID applications.
GADRAS[14] algorithms and modeling are the defacto standard for RIID today and has been in
constant development and improvement for nearly 40 years. Our effort was a $100k funded effort
spread out over 9 months. We do not, rightfully so, claim any comparison or improvements over
GADRAS; we do, however, provide evidence and support to the potential benefit of including
temporal domain information into RIID algorithms. We think we have shown sufficient evidence
to warrant future investigation and hope that this research will lead to new methods, or extensions
of current methods, augmented by temporal information that can improve RIID for the broader
community of constituents.
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9. FUTURE WORK

The body of work presented here was a first step in providing a rigorous understanding of the
temporal domain information of radiological list-mode data collected from radiation sensors for
applications of interest to the National Security Programs Investment Area. Our results provide a
foundation for continued efforts in better leveraging the temporal domain information that we have
identified. We feel we have provided a deeper understanding of the nature of list-mode radiation
data and provided a foray into finding better temporal metrics and methods of leveraging temporal
domain information for radioisotope identification applications. With that the following is a list of
next steps that could be taken to continue this research forward (in no particular order):

1. Determining an effective sample size for the time domain of each dataset.

2. Extension of the probabilistic classifier to the task of source separation

3. Exploring other metrics besides interarrival time to develop discriminate features for use in
a classifier

4. Applying the methods of this work to non-stationary sources

5. Investigating the use of event-based machine learning techniques, such as stable state-space
modeling, for the analysis of list-mode data.

6. Apply real list-mode data to the N4PA spiking neural algorithm for RIID to determine if the
event-based temporal algorithm performs similarly on list-mode data.

7. Extend the classifier framework to higher dimensional representations of the list-mode data
as a means of better discriminating the temporal information content of the source.
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APPENDIX A. Full Results from Data Analysis and Classifier
Experiments

A.1. Box Plots

(a) Distributions of Interarrival Times of
Background on July 2022

(b) Distributions of Interarrival Times of
Y88 on July 2022

(c) Distributions of Interarrival Times of
Cs137 on July 2022

(d) Distributions of Interarrival Times of
U232 on July 2022

(e) Distributions of Interarrival Times of
Ba133 on July 2022

(f) Distributions of Interarrival Times of
U232 & Ba133 on July 2022

Figure A-1. Figures A-1a, A-1b, A-1c, A-1d, A-1e, and A-1f display the change in the distribution of
interarrival times associated with background, Y88, Cs137, U232, Ba133, and the combination of
U232 and Ba133 as the 20s window over which the sample was collected changed. The list-mode

data associated with these plots was collected in July 2022.
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(a) Distributions of Interarrival Times of
Background on July 2022

(b) Distributions of Interarrival Times of
Y88 on July 2022

(c) Distributions of Interarrival Times of
Cs137 on July 2022

(d) Distributions of Interarrival Times of
U232 on July 2022

(e) Distributions of Interarrival Times of
Ba133 on July 2022

(f) Distributions of Interarrival Times of
U232 & Ba133 on July 2022

Figure A-2. Figures A-2a, A-2b, A-2c, A-2d, A-2e, and A-2f display the change in the distribution of
interarrival times associated with background, Y88, Cs137, U232, Ba133, and the combination of
U232 and Ba133 as the size of the sampling window changed from 20s (left) to 0.2s (right). The

list-mode data associated with these plots was collected in July 2022.
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(a) Median of Interarrival Times of
Background on July 2022

(b) Median of Interarrival Times of Y88 on
July 2022

(c) Median of Interarrival Times of Cs137 on
July 2022

(d) Median of Interarrival Times of U232 on
July 2022

(e) Median of Interarrival Times of Ba133 on
July 2022

(f) Median of Interarrival Times of U232 &
Ba133 on July 2022

Figure A-3. Figures A-3a, A-3b, A-3c, A-3d, A-3e, and A-3f display the change in the median of the
distribution of interarrival times associated with background, Y88, Cs137, U232, Ba133, and the

combination of U232 and Ba133 as the sampling window changes. The list-mode data associated
with these plots was collected in July 2022.
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(a) IQR of Interarrival Times of Background
on July 2022

(b) IQR of Interarrival Times of Y88 on July
2022

(c) IQR of Interarrival Times of Cs137 on
July 2022

(d) IQR of Interarrival Times of U232 on
July 2022

(e) IQR of Interarrival Times of Ba133 on
July 2022

(f) IQR of Interarrival Times of U232 &
Ba133 on July 2022

Figure A-4. Figures A-4a, A-4b, A-4c, A-4d, A-4e, and A-4f display the change in the interquartile
range of the distribution of interarrival times associated with background, Y88, Cs137, U232,

Ba133, and the combination of U232 and Ba133 as the sampling window changes. The list-mode
data associated with these plots was collected in July 2022.
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(a) Median of Interarrival Times of
Background on July 2022

(b) Median of Interarrival Times of Y88 on
July 2022

(c) Median of Interarrival Times of Cs137 on
July 2022

(d) Median of Interarrival Times of U232 on
July 2022

(e) Median of Interarrival Times of Ba133 on
July 2022

(f) Median of Interarrival Times of U232 &
Ba133 on July 2022

Figure A-5. Figures A-5a, A-5b, A-5c, A-5d, A-5e, and A-5f display the change in the median of the
distribution of interarrival times associated with background, Y88, Cs137, U232, Ba133, and the
combination of U232 and Ba133 as the length of the sampling window changes from 20s (left) to

0.2s (right). The list-mode data associated with these plots was collected in July 2022.
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(a) IQR of Interarrival Times of Background
on July 2022

(b) IQR of Interarrival Times of Y88 on July
2022

(c) IQR of Interarrival Times of Cs137 on
July 2022

(d) IQR of Interarrival Times of U232 on
July 2022

(e) IQR of Interarrival Times of Ba133 on
July 2022

(f) IQR of Interarrival Times of U232 &
Ba133 on July 2022

Figure A-6. Figures A-6a, A-6b, A-6c, A-6d, A-6e, and A-6f display the change in the interquartile
range of the distribution of interarrival times associated with background, Y88, Cs137, U232,

Ba133, and the combination of U232 and Ba133 as the length of the sampling window changes from
20s (left) to 0.2s (right). The list-mode data associated with these plots was collected in July 2022.
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A.2. Shannon Entropy Plots

(a) Shannon Entropy for Binning of
Background on July 2022

(b) Shannon Entropy for Binning of Ba133
on July 2022

(c) Shannon Entropy for Binning of Cs137
on July 2022

(d) Shannon Entropy for Binning of U232
on July 2022

(e) Shannon Entropy for Binning of U232 &
Ba133 on July 2022

(f) Shannon Entropy for Binning of Y88 on
July 2022

Figure A-7. Figures A-7a, A-7b, A-7c, A-7d, A-7e, and A-7f display the sShannon entropy associated
with the binning of background, Ba133, Cs137, U232, the combination of U232 and Ba133, and Y88,

respectively. The list-mode data associated with these plots was collected in July 2022.
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(a) Shannon Entropy for Binning of
Background on April 2024

(b) Shannon Entropy for Binning of Ba133
on April 2024

(c) Shannon Entropy for Binning of U232
on April 2024

(d) Shannon Entropy for Binning of U232 &
Ba133 on April 2024

Figure A-8. Figures A-8a, A-8b, A-8c, and A-8d display the Shannon entropy associated with the
binning of background, Ba133, U232, and the combination of U232 and Ba133, respectively. The

list-mode data associated with these plots was collected in April 2024.
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(a) Shannon Entropy for Binning of
Background on August 2024

(b) Shannon Entropy for Binning of Y88 on
August 2024 D1

(c) Shannon Entropy for Binning of Cs137
on August 2024 D1

(d) Shannon Entropy for Binning of Ba133
on August 2024 D1

(e) Shannon Entropy for Binning of Cs137 &
Ba133 on August 2024 D1

Figure A-9. Figures A-9a, A-9b, A-9c, A-9d, A-9e display the Shannon entropy associated with the
binning of background, Y88, Cs137, Ba133, and the combination of Cs137 and Ba133, respectively.
The list-mode data associated with these plots was collected in August 2024 with D1 representing

the set of distances at which the data was collected.
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(a) Shannon Entropy for Binning of Y88 on
August 2024 D2

(b) Shannon Entropy for Binning of Cs137
on August 2024 D2

(c) Shannon Entropy for Binning of Ba133
on August 2024 D2

(d) Shannon Entropy for Binning of Cs137 &
Ba133 on August 2024 D2

Figure A-10. Figures A-10a, A-10b, A-10c, and A-10d display the Shannon entropy associated with
the binning of Y88, Cs137, Ba133, and the combination of Cs137 and Ba133, respectively. The

list-mode data associated with these plots was collected in August 2024 with D2 representing the
set of distances at which the data was collected.
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A.3. Fisher Information Plots

(a) Fisher information for the rate
parameter of Background on July 2022

(b) Fisher information for the rate
parameter of Y88 on July 2022

(c) Fisher information for the rate
parameter of Cs137 on July 2022

(d) Fisher information for the rate
parameter of U232 on July 2022

(e) Fisher information for the rate parameter
of Ba133 on July 2022

(f) Fisher information for the rate parameter
of U232&Ba133 on July 2022

Figure A-11. Figures A-11a, A-11b, A-11c, A-11d, A-11e, and A-11f display the change in the Fisher
information associated with the rate parameter as the size of each bin is increased. The list-mode

data associated with these plots was collected in July 2022.
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(a) Fisher information for the rate
parameter of Background on April 2024

(b) Fisher information for the rate
parameter of U232 on April 2024

(c) Fisher information for the rate parameter
of Ba133 on April 2024

(d) Fisher information for the rate parameter
of U232&Ba133 on April 2024

Figure A-12. Figures A-12a, A-12b, A-12c, and A-12d display the change in the Fisher information
associated with the rate parameter as the size of each bin is increased. The list-mode data

associated with these plots was collected in April 2024.
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(a) Fisher information for the rate
parameter of Background on August 2024

(b) Fisher information for the rate
parameter of Y88 on August 2024 D1

(c) Fisher information for the rate
parameter of Cs137 on August 2024 D1

(d) Fisher information for the rate
parameter of Ba133 on August 2024 D1

(e) Fisher information for the rate parameter
of Cs137&Ba133 on August 2024 D1

Figure A-13. Figures A-13a, A-13b, A-13c, A-13d, and A-13e display the change in the Fisher
information associated with the rate parameter as the size of each bin is increased. The list-mode
data associated with these plots was collected in August 2024. The source data was collected at

the distances associated with dataset D1.
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(a) Fisher information for the rate
parameter of Y88 on August 2024 D2

(b) Fisher information for the rate
parameter of Cs137 on August 2024 D2

(c) Fisher information for the rate
parameter of Ba133 on August 2024 D2

(d) Fisher information for the rate
parameter of Cs137&Ba133 on August 2024

D2

Figure A-14. Figures A-13a, A-13b, A-13c, and A-13d display the change in the Fisher information
associated with the rate parameter as the size of each bin is increased. The list-mode data

associated with these plots was collected in August 2024. The source data was collected at the
distances associated with dataset D2.
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A.4. ROC curves and AUC values

(a) Experiment 1: ROC for model
performance on Y88

(b) Experiment 1: ROC for model
performance on Cs137

(c) Experiment 1: ROC for model
performance on U232

(d) Experiment 1: ROC for model
performance on Ba133

(e) Experiment 1: ROC for model
performance on U232 & Ba133

Figure A-15. Figures A-15a, A-15b, A-15c, A-15d, and A-15e display the ROCs associated with the
performance of the time, energy, and energy & time models on the different sources. The list-mode

data associated with these plots was collected in July 2022.
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(a) Experiment 1: ROC for 𝛼-model
performance on Y88

(b) Experiment 1: ROC for 𝛼-model
performance on Cs137

(c) Experiment 1: ROC for 𝛼-model
performance on U232

(d) Experiment 1: ROC for 𝛼-model
performance on Ba133

(e) Experiment 1: ROC for 𝛼-model
performance on U232 & Ba133

Figure A-16. Figures A-16a, A-16b, A-16c, A-16d, and A-16e display the ROCs associated with the
performance of the time, energy, and energy & time models on the different sources using the
extended 𝛼 model. The list-mode data associated with these plots was collected in July 2022.
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(a) Experiment 2: ROC for model
performance on U232

(b) Experiment 2: ROC for model
performance on Ba133 on April 2024

(c) Experiment 2: ROC for model
performance on U232 & Ba133

Figure A-17. Figures A-17a, A-17b, and A-17c display the ROCs associated with the performance of
the time, energy, and energy & time models on the different sources. The list-mode data

associated with these plots was collected in April 2024.
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(a) Experiment 3: ROC for model
performance on Y88

(b) Experiment 3: ROC for model
performance on Cs137

(c) Experiment 3: ROC for model
performance on Ba133

(d) Experiment 3: ROC for model
performance on Cs137 & Ba133

Figure A-18. Figures A-18a, A-18b, A-18c, and A-18d display the ROCs associated with the
performance of the time, energy, and energy & time models on the different sources. The test and
training data associated with these plots is list-mode data that was collected in August 2024 at the

D1 distances.
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(a) Experiment 4: ROC for model
performance on Y88

(b) Experiment 4: ROC for model
performance on Cs137

(c) Experiment 4: ROC for model
performance on Ba133

(d) Experiment 4: ROC for model
performance on Cs137 & Ba133

Figure A-19. Figures A-19a, A-19b, A-19c, and A-19d display the ROCs associated with the
performance of the time, energy, and energy & time models on the different sources. The test data
associated with these plots is list-mode data that was collected in August 2024 at the D2 distances

whereas the training set was collected at the D1 distances.

(a) Experiment 4: D2 to D1 ROC for 𝛼-model
performance on Y88, Cs137 and Ba133

(b) Experiment 4: D1 to D2 ROC for 𝛼-model
performance on on Y88, Cs137 and Ba133

Figure A-20. Figures A-20a and A-20b display the ROCs associated with the performance of the
time, energy, and energy & time models on the different sources with the inclusion of 𝛼. The test
data associated with these plots is list-mode data that was collected in August 2024 at the D1/D2

distances whereas the training set was collected at the D2/D1 distances.
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(a) Experiment 4: Mixed ROC for 𝛼-model
performance on Ba133

(b) Experiment 4: Mixed ROC for 𝛼-model
performance on Cs137 & Ba133

(c) Experiment 4: Mixed ROC for 𝛼-model
performance on Y88

Figure A-21. Figures A-21a, A-21b and A-21c display the ROCs associated with the performance of
the time, energy, and energy & time models on the different sources with the inclusion of 𝛼. The
test and training data associated with these plots is list-mode data that was collected in August

2024 using the mixed distances.
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(a) Experiment 5: ROC for model
performance on Y88

(b) Experiment 5: ROC for model
performance on Cs137

(c) Experiment 5: ROC for model
performance on Ba133

(d) Experiment 5: ROC for model
performance on Cs137 & Ba133

Figure A-22. Figures A-22a, A-22b, A-22c, and A-22d display the ROCs associated with the
performance of the time, energy, and energy & time models on the different sources. The test data
associated with these plots is list-mode data that was collected in August 2024 at the D1 distances

whereas the training set was collected at the D2 distances.
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(a) Experiment 6: ROC for model
performance on Y88

(b) Experiment 6: ROC for model
performance on Cs137

(c) Experiment 6: ROC for model
performance on Ba133

(d) Experiment 6: ROC for model
performance on Cs137 & Ba133

Figure A-23. Figures A-23a, A-23b, A-23c, and A-23d display the ROCs associated with the
performance of the time, energy, and energy & time models on the different sources. The test and
training data associated with these plots is list-mode data that was collected in August 2024 at the

D2 distances.
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(a) Experiment 7: ROC for model
performance on Y88

(b) Experiment 7: ROC for model
performance on Cs137

(c) Experiment 7: ROC for model
performance on Ba133

(d) Experiment 7: ROC for model
performance on Cs137 & Ba133

Figure A-24. Figures A-24a, A-24b, A-24c, and A-24d display the ROCs associated with the
performance of the time, energy, and energy & time models on the different sources. The test and

training data associated with these plots is a mixture of list-mode data that was collected in August
2024 at the D2 distances and at the D1 distances.
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A.5. Power Analysis Plots

(a) Experiment 1: Power At Several Values
For 𝑝

(b) Experiment 2: Power At Several Values
For 𝑝

(c) Experiment 3: Power At Several Values
For 𝑝

(d) Experiment 4: Power At Several Values
For 𝑝

(e) Experiment 5: Power At Several Values
For 𝑝

(f) Experiment 6: Power At Several Values
For 𝑝

(g) Experiment 7: Power At Several Values
For 𝑝

Figure A-25. Figures A-25a, A-25b, A-25c, A-25d, A-25e, A-25f, and A-25g display the power of the
McNemar’s test associated with the stated experiment as the value of the 𝑝 parameter is increased.
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