
SANDIA REPORT
Printed September 2024

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

The Essence of Cryptol : A Denotational
Cryptol Interpreter in Coq for Foundational
Assurances for Quantum Resistant
Cryptosystems
Zach Sullivan, Philip Johnson-Freyd, and Jon Aytac

SAND2024-13620

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state
or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
Systems of the utmost consequence need a means to establish authenticity of software and data.
Cryptosystems implement authentication, but can be vulnerable to cryptographic and implemen-
tation attacks. With the threat of quantum cryptographic attacks, “post-quantum” cryptosystems
(PQCs) must be henceforth used in these systems. However, the new cryptography needs new
ways to, rigorously and machine-checkably, prove systems free of vulnerabilities. We propose a
retargetable capability to rapidly instantiate proven correct postquantum cryptosystems through
novel proof-carrying synthesis and proof-automation technique, extending those proven successful
on existing systems. This capability is crucial to meeting the cryptographic requirements for future
high-consequence systems.
Since specifications for high consequence cryptography are presently captured in a domain specific
language known as Cryptol. While this can enable convenient fully automated reasoning about
Cryptol specificaitons and implementations via the Software Analysis Workbench (SAW), Cryptol
has expressivity gaps, so that cryptosystems with probabilistic programming features like Falcon
cannot be fully expressed in the language. Moreover, SAW’s automation fails for programs and
specificaitons with inductive and recursive structure, as in the Sphincs+ PQC. Finally, Cryptol
and SAW together represent some 200,000 lines of unverified Haskell, so that the any guarantees
about high consequence cryptography are presently contingent on a large, unverified, yet trusted
computing base.
The first step of the larger project of agile, assured crpytography is therefore to provide a formal,
mechanized semantics for Cryptol, so that the specifications expressed by cryptographers in Cryptol
can be reasoned about and compiled into performant implementations with a foundational, machine
checkable certificate of correctness.
This report describes our work on this first step, culminating in the design of a certified denotational
interpreter, in Coq, for core Cryptol.

3

This page intentionally left blank.

4

CONTENTS

Acknowledgement . 5

Summary . 9

Acronyms & Definitions . 11

1. Introduction . 13
1.1. Motivation: The Need for Agile and Assured Post Quantum Cryptography 13

1.1.1. The Needs of the Mission and the State of the Art . 13
1.1.2. Cryptol Specs for PostQuantum Cryptography and the Shortcomings of

Cryptol and SAW . 14
1.1.3. A Certified Denotational Interpreter for Cryptol: Why? 16
1.1.4. A Certified Denotational Interpreter for Cryptol: Why Isn’t There Already

One? . 17

2. What is.... Cryptol? . 19
2.0.1. Simplifying Observations on the Core Semantics of Cryptol 19
2.0.2. Core Cryptol: Syntax . 21
2.0.3. Core Cryptol: Reduction Rules . 23

3. A Denotational Cryptol Interpreter . 27
3.1. Models of Recursion: Domains . 27
3.2. Making Use of the Simplicity of Cryptol . 29
3.3. Modeling Recursino in Coq Through NonConstructive Reasoning 30

4. Future Work . 33
4.0.1. Filling in Any Gaps . 33
4.0.2. A Frontend . 33
4.0.3. Certifying Compilation . 34
4.0.4. Certified Compilation . 34
4.0.5. Probabilistic programming language . 34
4.0.6. Codata types . 35

5. Conclusion . 37

References . 39

5

This page intentionally left blank.

6

SUMMARY

The possibly imminent threat of quantum computing demands the deployment of new quantum
resistant cryptography to authenticate software and data, both in high consequence systems and
in infrastructure. Presently, the specification and assurance of these new cryptosystems relies on
Cryptol and SAW.

Cryptol is a domain specific language for expressing cryptography specifications, which features
the parametric polymorphism, type constraints, and recursion necessary to specify post quantum
cryptosystems like Sphincs+. However, while it is the language of choice for the formalization of
cryptography, there is no formalization of its semantics- certainly not one encompassing these key
features, and certainly not one which has been mechanized. Morevoer, it suffers some expressivity
gaps. The specification of lattice cryptosystems like Falcon require probabilistic programming
language features, so much so that key fragments of the Falcon specificaiton are left empty.

The assurance of high consequence cryptogrpahy relies on SAW, a Software Analysis Workbench.
However, this analysis comes without any machine checkable certificate of soundness, so the entire
enterprise suffers from what Ken Thompson called the problem of trusting trust. Moreover, the
automation fails to produce results for recursive specifications, such as those in Sphincs+.

We present, here, a design for a certified, denotational Cryptol interpreter which translates Cryptol
programs into the mathematics they describe. In the near term, these mathematical specifications
may then be used in machine checkable proofs of security and functional correctness in a full
spectrum proof assistant. In the long run, the mechanized semantics developed here can serve as
the foundation for certified compilation of Cryptol into machine language or hardware.

7

This page intentionally left blank.

8

ACRONYMS & DEFINITIONS

Cryptol a domain specific language for specifying cryptographic algorithms

Coq a full spectrum proof assistant

Denotational Interpreter A program translating a source language into equivalent programs in
the host language - in our case, the host language will be the mathematics of domains we’ve
constructed in Coq.

Recursion a recursive definition invokes itself

Parametric Polymorphism Ad hoc polymorphism overloads the definition of an expression or
operation to apply to many types, but promises no relationship between the meanings of the
operation at different types. Parametric polymorphism defines expressions and functions so
that they be applied over at all possble types with essentially the same behavior at all types.

Type Constraints An expression or function carrying a type constraint is applied only at types
satisfying the constraint.

Domains A Scott domain is a mathematical model of recursion.

9

This page intentionally left blank.

10

1. INTRODUCTION

1.1. Motivation: The Need for Agile and Assured Post Quantum Cryptography

1.1.1. The Needs of the Mission and the State of the Art

Next generation cryptosystems for high consequence applications must be invulnerable against
cryptographic and implementation attacks for their often decades-long lifespans. At such timescales,
systems must withstand attacks by yet-to-be-realized, crypto-relevant quantum computers. But
quantum-resistant algorithms are still in flux. In the past years, new cryptographic attacks were
discovered for every NIST-approved PQC algorithm family, dramatically reducing their security
guarantees. To control risk, we need a capability to rapidly deploy new, proven-correct cryptography
implementations as we respond to emerging challenges from cryptographic attack, threat model,
and device physics.

Presently, in most applications, the strongest level of assurance is to validate cryptographic primi-
tives with respect to Cryptol reference implementations. Not only does this formal approach provide
higher assurance, it also makes qualification substantially cheaper and faster, as a single formal
artifact covers all possible cases. Cryptosystems come in parametric families - e.g., for SPHINCS+,
the parameters are the Winternitz parameter, the height of the hypertree, the number of layers, the
number of trees, the number of leaves, and the choice of hash function. One of the wise design
decisions of the Cryptol language is to support the specification of entire families of cryptosystems
via parametric polymorphism.

A language ad hoc polymorphism allows an expression to have many different implementations for
different types, e.g. as in the operator overloading by which plus might have type plus : int → int →
int as well as plus : float → float → float. However, ad hoc polymorphism is counterproductive for
cryptography. Cryptosystem descriptions have parametric polymorphism, so that their behaviors
are essentially the same at all possible parameter types. However, these parameters aren’t allowed
to be completely arbitrary- there are relations on the parameters, specifying those combinations
of parameters for which the cryptosystem can provide some security guarantees. Where Sphincs+
specifications are polymorphic in the following parameters:

𝑛 : the security parameter in bytes.

𝑤 : the Winternitz parameter

ℎ : the height of the hypertree

𝑑 : the number of layers

𝑘 : the number of trees in the Forest of Random Subsets.

11

𝑡 : the number of leaves of a Forest of Random Subsets tree.

The parameters are restricted to have specific kinds and satisfy specific type constraints:

parameter
type h : #
type constraint (fin h)
type d : #
type constraint (d >= 2, h%d == 0, h/d >= 1)
// the following constraint is needed because
// h - h/d bits should define a tree address
type constraint (3*4*8 >= h - h/d)
type k : #
type constraint (fin k, k >= 1)
// instead of t, we consider a = log t as the parameter since
// it is a that is instantiated.
type a : #
type constraint (fin a, a >= 1)

Thus a cryptographer can use Cryptol’s support for parametric polymorphism and type constraints
to specify an entire family of cryptosystems, and use SAW’s automation to get almost instant results
about correctness properties of the specification, or about the equivalence of an implementation to
the specification with some particular choice of parameters.

However, in practice, this means implementations and reference specifications are iteratively refac-
tored in an effort to make their equivalence tractable for as much of the primitive as possible. This
iterative, by-hand process dominates the deployment time for new cryptosystems, and prevents
agile responses to new challenges. Moreover, it can only prove bit-wise equivalences, and cannot
leverage algebraic reasoning to make parametric families of equivalences tractable. Crucially, it
can’t reason about cryptographic properties.

Worse still, Cryptol’s automated reasoning often fails for the correctness and equivalence of recur-
sive programs. Since postquantum cryptosystems are recursive, Cryptol therefore fails precisely for
those cryptosystems for which, by virtue of their novelty, complexity, and consequence, the need
for formal assurances is most dire, and the only present recourse is to certification of cryptography
implementations via the slower, more expensive, incomplete means of testing.

1.1.2. Cryptol Specs for PostQuantum Cryptography and the Shortcomings of
Cryptol and SAW

1.1.2.1. Sphincs+

Helpfully, Galois has written a Cryptol refrerence specification for the NIST approved Post Quantum
Cryptosystems. Focusing on the signature algorithms in particular, we find reference specifications
for Spincs+, Kyber − CRYSTALS, and FALCON, expressing not only the abstract, parametric

12

specifications not only of the cryptographic primitives for these systems, but also some simple
correctness properties about these specificaitons.

For instance, a signature algorithm should be able to validate as authentic messages signed with its
key (for brevity, let’s call this the dogfood property). Cryptol’s automation succeeded at proving
this simple correctness property for the Winternitz One Time Signature, or wots.

wotsCorrectness : [n]Byte -> [n]Byte -> Address -> [n]Byte -> Bit
property wotsCorrectness SKseed PKseed ADRS M = (pk == pk_sig) where
pk = wots_PKgen(SKseed, PKseed, ADRS)
sig = wots_sign(M, SKseed, PKseed, ADRS)
pk_sig = wots_pkFromSig(sig, M, PKseed, ADRS)

Remarkably, SAW checks this properly successfully! Sphincs+ is a postquantum cryptosystem for
securely signing many messages given one secure wots. Can SAW check the dogfood property for
Sphincs+?

CorrectnessSPHINCSPlus: ([n]Byte, [n]Byte, [n]Byte) -> Bit
property CorrectnessSPHINCSPlus(SKseed, SKprf, PKseed) = spx_verify‘{10}(M, SIG, PK)
where
(SK, PK) = spx_keygen(SKseed, SKprf, PKseed)
M = zero
SIG = spx_sign‘{10}(M, SK)

In fact, this fails- where the signature validation check passes for the underlying wots, Cryptol − SAW
cannot prove the same signature validation correctness property for Sphincs+.

Known Issues
- The Correctness of the overal SHPINCS+ primitive is currently failing
although correctness of its intermediate WOTS passes.

Why does the automation fall over for Sphincs+ when it succeeded for wots? The answer is
recursion. Classical hash-based signature algorithms construct signatures for multiple messages
through Merkle trees with one-time signature key pairs on their leaf nodes. Moder signature schemes
like XMSS and Sphincs+ are both stateless and more efficient, achieving greater cryptographic
security with smaller parameters through the use of hypertrees, trees of trees linked together through
one-time signatures. As this english language description suggests, hypertrees are highly inductive
types, so the algorithm which walks over them and computes signatures is recursive:

treehash : ([n]Byte, [32], Integer, [n]Byte, Address) -> [n]Byte
treehash(SKseed, s, z, PKseed, ADRS) =
if z == 0 then
- leaf case
wots_PKgen(SKseed, PKseed, ADRS0)

13

else
- internal node case
H(PKseed, ADRS’, hashL # hashR)
where
ADRS0 = setKeyPairAddress(setType(ADRS, WOTS_HASH), toInteger(s))
ADRS’ = setTreeHeight(setTreeIndex(
setType(ADRS, TREE), toInteger(s >> z)), z)
z’ = z - 1
hashL = treehash(SKseed, s, z’, PKseed, ADRS)
hashR = treehash(SKseed, (s + (1<<z’)), z’, PKseed, ADRS)

The red term treehash is defined (via the blue terms hashL and hashR) in terms of itself. SAW has
difficulty reasoning about general recursion, and so can’t prove even the simple dogfood property,
let alone reason about the equivalence of an implementation of the Sphincs+ primitive to its
specificaiton.

1.1.3. A Certified Denotational Interpreter for Cryptol: Why?

Thus our initial motivation is to circumvent the limitations of SAW by interpreting Cryptol into
Coq. Such an interpreter could be used

1. in game-based security proofs to reason about the properties of these specifications,

2. as specifications of cryptographic primitives to be used in program logics to reason about the
equivalence of implementations to specifications, and,

3. by the same token as item 2., to ground compiler correctness theorems for certified compila-
tion of Cryptol programs.

observation 1 Since the role of a program logic is to prove an imperative program implements a
function specification, task 2 motives us to choose a denotational interpreter, mapping terms Cryptol
terms into their denotations as mathematics.

observation 2 Since Cryptol programs like Sphincs+ and FALCON are recursive, and, so, possibly
non-terminating, the category of mathematical objects in which our denotations will reside will
be the category of pointed Scott domains. As we will briefly recount later, this is the category
providing a model of recursion.

observation 3 All of these usecases are about equivalences, so, when we say that we would like a
certified Cryptol compiler, we mean that we would like machine checkable proof certificates about
the equivalence of the notion of equivalence implemented in the compiler’s reduction semantics
to the notion of equivalence implemented in our denotational semantics. But what about our
denotational semantics would we like to prove? When we eventually implement a certified Cryptol
interpreter (in the preceding list, task 3.), we will implement a reduction semantics- a collection of
rewriting rules describing the operational semantics of compilation. We will then be able to prove

14

whether the notions of equality given by this reduction semantics is equivalent to that implemented
by our denotational semantics. This amounts to the following three properties about the reduction
and denotaitonal semantics:

1. Compositionality: When two terms have equal denotation, they should have equal denotation
when envoked in any well-formed context.

2. Soundness: When the reduction semantics reduces a term to a value, the denotation of the
term should equal the denotation of the value.

3. Adequacy: When a term of type of basekind is equal in denotation to a value, the reduction
semantics should run that term to that value.

1.1.4. A Certified Denotational Interpreter for Cryptol: Why Isn’t There Already One?

For the past decade, Cryptol specifications have served as the foundation of the assurance story for
high-consequence cryptography. We were surprised that we could find in the literature neither a
formalization of Cryptol’s semantics nor a denotational interpreter. Galois does have a repository
(https://github.com/GaloisInc/cryptol-semantics) implementing a mechanized big step semantics,
however it falls short of providng a suitable solution for our purposes. Specifically, they did not
solve the following three problems:

1. They didn’t implement a semantics for type constrained parametric polymorphism.
Parametric polymorphism and type constraints are subtle features of the language, and are
key to the interpretation of cryptography specifications - and they are not implemented in the
reference interpreter.

2. They didn’t implement a semantics for recursive Cryptol: Since they have committed to
a big-Step semantics, their seman- tics can’t help us reason about possibly non-terminating,
recursive Cryptol programs like Sphincs+.

3. They did not implement a certified interpreter: They helpfully implement a big step se-
mantics via eval_type and eval_expr. However, the interpreter in Interp.v is unimplemented,
and, so, they provide no certified interpreter. But this is not as grave as the next point.

.

In a sense, it isn’t so surprising Galois didn’t provide a solution to the above three problems:
searching the literature, we could not find a reference solving all three of the above problems!
This, in turn, isn’t so surprising, since this would require first solving the following technical
challenges:

1. Since we would like to run our interpreter, we would like to be able to extract from a con-
structive Coq definition of the denotational interpreter into a program. If the terms by which
we prove the well-formedness of our interpreter can be, by finitely many rewrites, rewritten
to a normal form, than the normalization-by-evaluation lets us extract a runnable program
from our proofs. However, our interpreter needs to provide a denotation for possibly non-
terminating programs, so our denotational semantics takes values in the category of pointed

15

domains. If we were to define these constructively, this would entail defining coinductive
terms with non-terminating rewriting sequences, which are by necessity not normalizable.
Thus we must solve a difficult technical problem:

Problem 1 How can we extract a denotational interpreter of possibly non-terminating pro-
grams?

2. The second difficult technical problem:

Problem 2 How can we design a certified denotational interpreter for parametric polymor-
phism with type constraints?

This problem could have been as large as a certified denotational interpreter of SystemFC,
that is, the problem of designing a certified denotational interpreter for all of Haskell.

In subsequent chapters we will describe the design decisions which allow us to solve these problems
for Cryptol.

16

2. WHAT IS.... CRYPTOL?

2.0.1. Simplifying Observations on the Core Semantics of Cryptol

Cryptol has three base kinds.

1. A numeric base kind #. Types of this base kind are type level N★, the extended natural
numbers.

2. a type-like base kind ★. Types of this base kind are bits, integers, and rationals.

3. a base kind Prop of propositions. This kind allows Cryptol to express proof irrelevant con-
straints.

Arbitrary kinds are constructed inductively as functions amongst these kinds. For instance, if you
ask Cryptol the type of the type constraint Literal,

Cryptol> :type ‘(Literal)
...
Inferred: # -> * -> Prop

Thus Literal is a type constraint constraining the type in the second argument to be the type level
extended natural given in the first argument. This has some the surprising upshot that extended
naturals are interpreted by Cryptol as qualified type schemes, e.g.

Cryptol> :type 2
2 : {a} (Literal 2 a) => a

This behavior arises since, given a term, Cryptol’s type inference is simultaneously inferring
generalizations to polymorphic type schema with type constraints.

Cryptol> let twoPlusXY (a, b) = a + ab where ab = a*b
Cryptol> :type twoPlusXY
twoPlusXY : {a} (Ring a) => (a, a) -> a

As the extended naturals are type schemes, so too are operations on the naturals. E.g. addition:

Cryptol> :type (+)
(+) : {a} (Ring a) => a -> a -> a

One can even define constrained type schema parametrized not only by type but by constraint, as
in the following example

type constraint PredSyn (a : *) (p:Prop) = (Zero a, Cmp a, p)

17

This seems to suggest the possibilty of higher-order constraints! Indeed, type inference on the above
definition gives:

Main> :type ‘(PredSyn)
[error] at <interactive>:5:9--5:16:
Incorrect type form.
Expected: a numeric type
Inferred: * -> Prop -> Prop

However, the interpreter only allows accepts the parametrizing constraint to be an atomic con-
straint:

someFunc : {a} (PredSyn a (Logic a)) => a
someFunc = ~zero

Main> :type someFunc
someFunc : {a} (Zero a, Cmp a, Logic a) => a

Thus we can’t actually express arbitrary type constraints- rather, we can only express lists/conjunc-
tions of constraints built from a finite collection of constructors. This dramatically simplifies the
situation!

observation 4 Thus Cryptol can be thought of as a language with parametric polymorphic and
type constraints, but whose constraints can only be conjunctions/lists of constraints built from a
fixed collection of constructors.

Moreover, inspection of the source reveals there is only a fixed collection of derivations of those
predicates. That is,

observation 5 Moreover, we observe that there is only a fixed collectionof axioms.

Not only are the constraints restricted to lists of atomic propositions, the types are also limited:

observation 6 User defined types can be, at most, records built out of a fixed collection of type
constructors, and function of such types.

We will make all this precise in the subsequent section, but the intuition is that

observation 7 Cryptol is as if Haskell were restricted to a fixed collection of typeclasses, and user
defined types were restricted to be type synonyms. That is, Haskell with a fixed class context, and
with no type level recursion, only term level recursion.

This observation will greatly simplify the denotational interpreter.

18

2.0.2. Core Cryptol: Syntax

The core language of Cryptol is essentially Haskell but with a fixed class context. The core Cryptol
syntax is as follows:

𝑥, 𝑦, 𝑧 ∈ Variable
𝛼, 𝛽 ∈ Type Variable
𝛼, 𝛽 ∈ Normal Type Variable

A,B,C ∈ Constructor
A,B,C ∈ Normal Constructor

L, L𝑁 , L𝑇 ∈ ConstraintConstructor
𝑛 ∈ N

𝜅 ∈ Base Kind ::= ★ Standard Types
| # Numeric

𝜅 ∈ Kind ::= 𝜅

| 𝜅 → 𝜅

𝜅𝛾𝑁 ∈ Numeric Constraint Kind ::= 𝜖 |# :: 𝜅𝛾𝑁
𝜅𝛾𝑇 ∈ Type Constraint Kind ::= 𝜖 | ★ :: 𝜖 | 𝜅 :: 𝜅𝛾𝑇
𝜅𝛾 ∈ Constraint Kind ::= 𝜖 :: 𝜅 :: 𝜅𝛾

𝜏 ∈ Type ::= C 𝜏0 · · · 𝜏𝑛
| 𝛼

𝜏 ∈ Normal Type ::= C 𝜏0 · · · 𝜏𝑛
| 𝛼

𝛾 ∈ Constraint ::= L𝑁𝜏 |L𝑇𝜏
𝛾 ∈ Normal Constraint ::= L𝑁𝜏 |L𝑇𝜏
𝜌 ∈ Constrained Type ::= 𝜏 |𝛾 ⇒ 𝜌

𝜎 ∈ Polytypes ::= 𝜏 |∀𝛼 : 𝜅.𝜎

𝜋 ∈ Selector ::= 𝑛 | 𝑥
𝑀, 𝑁, 𝐿 ∈ Expression ::= [𝑀0, . . . , 𝑀𝑛] : 𝜏 List

| (𝑀0, . . . , 𝑀𝑛) Tuple
| {𝑥0 = 𝑀0, . . . , 𝑥𝑛 = 𝑀𝑛} Record
| 𝑀.𝜋 Projection
| {𝑀 : 𝜏; 𝜋 = 𝑁} Update
| if 𝑀 then 𝑁 else 𝐿
| case 𝑀 of {A0 → 𝑀0, . . . ,A𝑛 → 𝑀𝑛}
| 𝑥 Variable
| Λ𝛼::𝜅. 𝑀 Type Abstraction
| 𝑀 𝜏 Type Application
| 𝜆𝑥:𝜏. 𝑀 Term Abstraction
| 𝑀 𝑁 Term Application
| 𝑀 where 𝑥 = 𝑁 Let binding
| 𝜇𝑥.𝑀 recursion

19

The normal type constructors mentioned above are as below:

Array : ★→ ★→ ★

Bit : ★

Float : # → # → ★

Fun : ★→ ★→ ★

Inf : #
Integer : ★

IntMod : # → ★

Nat : N → ★

Rational : ★

Seq : # → ★→ ★

Tuple : ∀𝑛 : N.nKind n
Record : ∀𝑙𝑠 : list name, 𝑙𝑠 → recordKind

In the core language of Cryptol, the numeric Type operations are simply operators on numeric
types:

(+) : # → # → #
(−) : # → # → #
(×) : # → # → #
(/) : # → # → #
(%) : # → # → #
(ˆ) : # → # → #

width : # → #
min : # → # → #
max : # → # → #
⌈−⌉% : # → # → #
⌈−⌉/ : # → # → #

LenFromThenTo : # → # → # → #

Of course, these operations are only partially defined on type level extended naturals. We do not in-
troduce in the core language the type constraints restricting them to their proper domain of definition,
since those are introduced via the compilation of the library https://github.com/GaloisInc/cryptol/blob/master/lib/Cryptol.cry.
For instance, for subtraction, we have the constraints:

primitive type
{m : #, n : # }
(fin n, m >= n) =>
m - n : #

.

As these type declarations are evaluated into the constraint environment Σ (see the reduction rules
below), the numeric type operations become suitably constrained type schema.

The Type Constraint Constructors:

20

Literal : # → ★→ Prop
LiteralLessThan : # → ★→ Prop

FLiteral : # → # → # → ★→ Prop
Zero : ★→ Prop

Logic : ★→ Prop
Ring : ★→ Prop

Integral : ★→ Prop
Field : ★→ Prop

Round : ★→ Prop
Eq : ★→ Prop

Cmp : ★→ Prop
SignedCmp : ★→ Prop

We observe that, for open prgrams, it should be

numeric constraint constructors

ValidFloat : # → # → Prop
Equal : # → # → Prop

Unequal : # → # → Prop
GreaterThanOrEq : # → # → Prop

Fin : # → Prop
Prime : $ → Prop

2.0.3. Core Cryptol: Reduction Rules

𝜏 ∈ NormalMonotype := C𝑁 𝜏0 · · · 𝜏𝑛
| 𝛼 : ★

𝛾𝑇 ∈ NormalTypeConstraint := 𝐿𝑇𝜏

𝛾𝑁 ∈ NormalNumericConstraint := 𝐿𝑁𝜏

Δ ∈ KindEnvironments ::= 𝜖 |Δ, 𝛼 : 𝜅
Γ ∈ TypeEnvironments ::= 𝜖 |Γ, 𝑥 : 𝜏
Θ ∈ PolyTypeEnvironments ::= 𝜖 |Θ, 𝜎 : Λ𝛼 : 𝜅
Σ ∈ ConstraintEnvironment ::= 𝜖 |Σ, 𝛾𝑇

21

Θ|Γ|Δ|Σ ⊢ 𝜎 : 𝜅

𝛼 : 𝜅 ∈ Δ

Θ|Γ|Δ|Σ ⊢ 𝛼 : 𝜅
𝐶 : 𝜅

Θ|Γ|Δ|Σ ⊢ 𝐶 : 𝜅

Θ|Γ|Δ|Σ ⊢ 𝜏1 : 𝜅1 → 𝜅2 Θ|Γ|Δ ⊢ 𝜏2 : 𝜅1 Θ|Σ |= 𝜏1@𝜏2

Θ|Γ|Δ|Σ ⊢ 𝜏1𝜏2 : 𝜅

(⇒ 𝐸)
Θ|Γ|Δ|Σ ⊢ 𝜌 : 𝛾 ⇒ 𝜏 Θ|Σ |= 𝑒 : 𝛾

Θ|Γ|Δ|Σ ⊢ 𝜌𝑒 : 𝜏

(⇒ 𝐼)
Θ|Γ|Δ|Σ, 𝑒 : 𝛾 ⊢ 𝜌 : 𝜏
Θ|Σ ⊢ 𝜆𝑒 : 𝛾.𝜌 : 𝛾 ⇒ 𝜏

(Λ𝐸)
𝑥 ∈ Λ𝑡𝑠.(L 𝑡𝑠) ⇒ 𝜏 Θ|Σ ⊩ (L 𝑇𝑠)

Θ|Γ|Δ|Σ ⊢ 𝑥@𝑇𝑠 = 𝜏[𝑇𝑠/𝑡𝑠]

(∀𝐸)
Θ|Σ ⊢ 𝜌 : Λ𝑡.𝜏

Θ|Σ ⊢ 𝜌𝛼 : [𝛼/𝑡]𝜎

(∀𝐼)
Θ|Σ ⊢ 𝜌 : 𝜏 𝑡 : freshName

Θ|Σ ⊢ 𝜆𝑡.𝜌 : Λ𝑡.𝜏

Θ, 𝛼 : 𝜅 |Σ ⊢ 𝜎 : 𝜅
Θ|Σ ⊢ ∀Λ : 𝜅.𝜎 : 𝜅

(𝜇)
Θ|Γ, 𝑥 : 𝜏 |Δ|Σ ⊢ 𝑀 : 𝜏

Θ|Γ|Δ|Σ ⊢ 𝜇𝑥.𝑀 = [𝜇𝑥 .𝑀/𝑥]𝑀 : 𝜏

22

Θ|Γ|Δ|Σ ⊢ 𝛾 : Constraint

Θ|Γ|Δ|Σ ⊢ 𝜏1 : 𝜅1 → 𝜅2 𝑃 |Δ : 𝜏2 : 𝜅1

Θ|Γ| |Δ|Σ ⊢ 𝜏1@𝜏2 : Constraint

𝐿 : 𝜅𝑙 → Constraint Θ|Γ|Δ|Σ ⊢ 𝜏𝑙 : 𝜅𝑙
Θ|Σ ⊢ 𝐿𝜏𝑙 → Constraint

⊩ Zero Bit ⊩ Zero Integer

⊩ 𝑛 : N ⊩ 𝑛 ≥ 1
⊩ Zero IntMod𝑛 ⊩ Zero Rational

Δ|Γ ⊩ 𝑒 : Type Δ|Γ ⊩ 𝑝 : Type Σ |Θ|Γ|Δ ⊩ psValidFoat 𝑒 𝑝

Σ |Θ|Γ|Δ ⊩ Zero (Float 𝑒 𝑛)
Δ|Γ ⊩ 𝑎 : Type Δ|Γ ⊩ 𝑏 : Type Σ |Θ|Γ|Δ ⊩ pZero 𝑏

Σ |Θ|Γ|Δ ⊩ Zero (Seq 𝑎 𝑏)

Δ|Γ ⊩ 𝑎 : Type Δ|Γ ⊩ 𝑏 : Type Σ |Θ|Γ|Δ ⊩ pZero 𝑏

Σ |Θ|Γ|Δ ⊩ Zero (Fun 𝑎 𝑏)
Δ|Γ ⊢ 𝑒𝑠 : [Type] Σ |Θ|Γ|Δ ⊩ ∀𝑒 ∈ 𝑒𝑠.pZero 𝑒

Σ |Θ|Γ|Δ ⊩ Zero (Tuple 𝑒𝑠)

⊩ Logic Bit
Δ ⊩ 𝜏1 : # Δ ⊩ 𝜏2 :: ★ Σ |Logic 𝜏2

Δ|Γ|Σ ⊩ (Seq 𝜏1 𝜏2)

Δ ⊩ 𝜏1 : # Δ ⊩ 𝜏2 : # Logic 𝜏2

⊩ Logic (𝜏1 → 𝜏2)

𝑛 : N Δ|Γ|Θ ⊩
∏

𝜏𝑠:{𝑚 |𝑚<𝑛}
(𝜏𝑠 𝑖) : ★ Σ |Θ|Γ|Δ ⊩ ∀𝑚 < 𝑛.Logic(𝜏𝑠 𝑚)

Σ |Θ|Γ|Δ ⊩ Logic(Tuple 𝑛 𝜏𝑠)

Δ|Γ ⊩ 𝑙𝑠 : listrecord_field Δ|Γ ⊩ (𝜏𝑠 𝑙𝑠) : 𝜏 Δ ⊩ 𝜏 : ★ Σ |Θ|Γ|Δ ⊩ Logic(𝜏𝑠 𝑙𝑠)
Σ |Θ|Γ|Δ ⊩ Logic(Record 𝑙𝑠 𝜏𝑠)

23

⊩ Ring Integer

Δ|Θ|Σ ⊢ 𝑎 : # Σ |Θ|Γ|Δ ⊩ (Fin𝑎) Δ|ΓΘ|Σ ⊩ (GreaterThanOrEq 𝑎 (Nat 1))
Σ |Θ|Γ|Δ ⊩ Ring IntMod 𝑎

Γ|Θ ⊢ 𝑎 : # Γ|Θ ⊢ 𝑏 : # Σ |Θ|Γ|Δ ⊩ (ValidFloat 𝑎 𝑏)
Σ |Θ|Γ|Δ ⊩ Ring (Float 𝑎 𝑏)

Γ|Θ ⊢ 𝑎 : # Σ |Θ|Γ|Δ ⊩ (Fin𝑎)
Σ |Θ|Γ|Δ ⊩ Ring (Seq 𝑎 𝐵𝑖𝑡)

Γ|Θ ⊩ 𝑎 : # Γ|Θ ⊩ 𝑏 : # Γ|Θ ⊩ 𝑎 ≠ Bit Σ |Θ|Γ|Δ ⊩ Ring 𝑏

Σ |Θ|Γ|Δ ⊩ Ring Seq 𝑎 Bit
· · ·

Δ ⊢ Σ

Δ ⊢ 𝜖
Δ ⊢ Σ Σ |Δ ⊢ 𝛾

Δ ⊢ Σ, 𝛾

Δ|Σ ⊢ Γ

Σ |Δ ⊢ 𝜖
Δ|Σ ⊢ Γ Δ|Σ ⊢ 𝜎 : ★

Σ |Δ ⊢ Γ, 𝑥 : 𝜎

Σ |Θ|Γ|Δ : Γ ⊢ 𝑀 : 𝜎

(𝑣𝑎𝑟)
(𝑥 : 𝜎) ∈ Γ

Σ |Θ|Γ|Δ ⊢ 𝑥 : 𝜎

(𝑤ℎ𝑒𝑟𝑒)
Σ |Θ|Γ|Δ ⊢ 𝑀1 : 𝜎 Σ |Θ|Γ, 𝑥 : 𝜎 ⊢ 𝑀2 : 𝜏

Σ |Θ|Γ ⊢ 𝑀2 where 𝑥 = 𝑀1 : 𝜏

(→ 𝐸)
Σ |Θ|Γ|Δ ⊢ 𝑀 : 𝜏′ → 𝜏 Σ |Θ|Γ|Δ ⊢ 𝑀2 : 𝜏′

Σ |Θ|Γ|Δ ⊢ 𝑀1𝑀2 : 𝜏

(→ 𝐼)
Σ |Θ|Γ, 𝑥 : 𝜏′|Δ ⊢ 𝑀 : 𝜏

Σ |Θ|Γ|Δ ⊢ 𝜆𝑥 : 𝜏′.𝑀 : 𝜏′ → 𝜏

(𝜇)
Θ|Γ, 𝑥 : 𝜏 |Δ|Σ ⊢ 𝑀 : 𝜏

Θ|Γ|Δ|Σ ⊢ 𝜇𝑥.𝑀 = [𝜇𝑥 .𝑀/𝑥]𝑀 : 𝜏

24

3. A DENOTATIONAL CRYPTOL INTERPRETER

A denotational interpreter encodes the interpreted language in the host language. Since our goal is
to give a semantics, the host language will be mathematics. Since we want to capture term-level
recursion, this will be the mathematics of Scott domains, encoded in Coq in a manner we will
descrirbe a bit later.

The point of our efforts is to interpret Cryptol programs into domains in order to reason about their
behavior and their behavioral equivalences. If we later have the opportunity to develop a certified
Cryptol compiler, the language will finally have a reduction semantics, instantiated by a collectino
of rewriting rules with some nice properties.1

When we say that our future Cryptol compiler will be certified, we mean that there will be ma-
chine checkable proof certificates that the notion of equivalence implemented in our denotational
semantics is equivalent to the notion of equivalence carried by our reduction semantics.

We described Cryptol’s grammar in the preceding chapter, and the reduction rules presented there
give a transition relation →, whose transitive closure we write as⇝. In terms of these, writing the
denotation implemented in our interpreter as ⟦−⟧, we can state the three properties we will show
of our future compiler.

1. Compositionality: When two terms have equal denotation, they should have equal denotation
when envoked in any well-formed context,i.e. ⟦𝑀⟧ = ⟦𝑀′⟧ ⇒ ∀⟦C[𝑀]⟧ = ⟦C[𝑀′]⟧;

2. Soundness: When the reduction semantics reduces a term to a value, the denotation of the
term should equal the denotation of the value,i.e. 𝑀 ⇝ 𝑉 ⇒ ⟦𝑀⟧ = ⟦𝑉⟧;

3. Adequacy: When a term is equal in denotation to a value, the reduction semantics should
run that term to that value, i.e. ∀𝜏 : 𝜅.⟦𝑀⟧ = ⟦𝑉⟧ ∈ ⟦𝜏⟧ ⇒ 𝑀 ⇝ 𝑉 .

This denotation ⟦−⟧ will map the parametrically polymorphic, type constrained Cryptol terms into
some target semantic category... but which one?

3.1. Models of Recursion: Domains

We ned a way to model recursive function types. That is, we need objects D which is isomorphic
to its function types D → D:

D = D → D.

1While Cryptol’s general, term-level recursion means there will be a possibly non-terminating fragment of Cryptol,
there will be a terminating fragment, for which we may prove strong normalization and confluence.

25

Where can we find such objects? They can’t be sets, since the only set 𝑆 whose cardinality ∥𝑆∥
is the same as the cardinality |𝑆𝑆 | = |𝑆 | |𝑆 | of the set of functions from that set 𝑆 to itself is the
singleton set 𝑆 = {•}. If we would like a non-trivial solution, we must look elsewhere.

Definition 1 𝜔 − 𝐶𝑃𝑂 is a set and a partial order on that set:

(𝑆, ⊑)

and
∀{𝑑𝑖 ∈ 𝑆}𝑖∈N

such that ∀𝑖, 𝑑𝑖 ⊑ 𝑑𝑖+1 and ∃𝑈{𝑑𝑖} is the least upper bound of that chain.

These are the most basic thing in denotational semantics of recursive languages.

A morphism 𝑓

𝑓 : (𝑆, ⊑) → (𝑇, ⊑′)
is a function 𝑓 : 𝑆 → 𝑇 such that ∀𝑥 ⊑ 𝑦 𝑓 (𝑥) ⊑ 𝑓 (𝑦) and ∀{𝑑𝑖}𝑖∈N and 𝑓 (𝑈{𝑑𝑖}) = 𝑈{ 𝑓 (𝑑𝑖)}𝑖∈N.
i.e. monotonic and preserves limits.

remark 1 Its terminal object will be the element with one element. There is only one choice of
partial orders. This order on products looks like

(𝑎, 𝑏) ⊑ (𝑎′, 𝑏′)

iff
𝑎 ⊑ 𝑎′ and 𝑏 ⊑ 𝑏′.

What is the exponential? We order pointwise. That is,

𝑓 ⊑ 𝑔 ⇐⇒ ∀𝑥, 𝑓 (𝑥) ⊑ 𝑔(𝑥)

So,
𝑇, ⊑(𝑆,⊑)= { 𝑓 : 𝑆 → 𝑇 | 𝑓 is Scott-Continuous}.

These least-upper-bounds (lub)s are preserved, i.e. 𝑈{ 𝑓𝑖}(𝑥) = 𝑈{ 𝑓𝑖 (𝑥)}.

There exists a non-trivial D : 𝜔 − CPO such that D � DD

Define
D0 = {⊥,⊤, 𝐹}

D𝑖+1 = DD𝑖

𝑖

This is a chain because we can define

𝑢𝑝𝑖 : D𝑖 → D𝑖+1

26

𝑑𝑜𝑤𝑛𝑖 : D𝑖+1 → D𝑖

𝑢𝑝0(𝑥) = 𝑦 ↦→ 𝑥

𝑢𝑝𝑖+1 = 𝑑𝑜𝑤𝑛𝑖 =⇒ 𝑢𝑝𝑖

𝑑𝑜𝑤𝑛0(𝑓) = 𝑓 (⊥)

𝑑𝑜𝑤𝑛𝑖+1(𝑓) = 𝑢𝑝𝑖 =⇒ 𝑑𝑜𝑤𝑛𝑖

This is like defining a function by a taylor series expansion.

Lemma 1 ∀𝑖, 𝑑𝑜𝑤𝑛𝑖𝑢𝑝𝑖 = id𝐷𝑖
and 𝑢𝑝𝑖 · 𝑑𝑜𝑤𝑛𝑖 ⊑ id𝐷𝑖+1 .

Define a product
D = Π𝑖∈ND𝑖 | ∀𝑖, 𝑑𝑜𝑤𝑛(D𝑖+1) = D𝑖 .

We then get by universal property,

D D

D0 D1 D2 . . .

we get that D ≃ DD. To capture partiality, we can lift from the category 𝜔 − CPO to the pointed
category 𝜔 − CPO⊥ by adjoining to each domain a bottom, and by taking as functions bottom
preserving Scott continuous functions.

3.2. Making Use of the Simplicity of Cryptol

Giving a semantics to languages with parametric polymorphism and type constraints can be quite
involved. The classic work of Wadler and Blott[16] translates constraints into dictionary arguments,
while the classic work of Jones[8] translates such a language into a calculus with explicit evidence
abstraction and application.

27

Since Cryptol is essentially Haskell with a fixed class context, type level normalization by evaluation
produces normal instances of a polytype/type scheme 𝜎 can be given inductively by

⌊𝜏⌋ = {𝜏} (3.1)

⌊𝛾 ⇒ 𝜌⌋ =
{
⌊𝜌⌋ if ⊩ 𝛾
∅ otherwise

(3.2)

⌊∀𝑡.𝜎⌋ =
⋃

𝜏∈Normal Type
⌊[𝜏/𝑡]𝜎⌋ (3.3)

Such an inductive derivation of normalized constraints is implemented in the constraintderivation
definition found in our core semantics core.v included in the appendix.

The simplifying observations of Cryptol allow our semantic category to be Set indexed collection
of 𝜔 − CPO⊥’s, or type frames- that is, a T⟦−⟧ : NormalTypes → 𝜔 − CPO⊥ such that

1. ∀𝜏 ∈ Normal Type.Ttype⟦𝜏⟧ is an interpretation of 𝜏 as a non-empty set.

2. ∀𝜁 = Γ |Δ ⊢ 𝑀 : 𝜏 and Γ compatible environment 𝜂, Tterm⟦𝜁⟧𝜂 is the interpretation of 𝑀 in
Ttype⟦𝜏⟧.

3. ∀ applications of an element of 𝜏 → 𝑣 to an element of 𝜏, T𝜏,𝑣 : Ttype⟦𝜏 → 𝑣⟧×Ttype⟦𝜏⟧ →
Ttype⟦𝑣⟧

4. ∀ 𝑓 , 𝑔 ∈ Ttype⟦𝜏 → 𝑣⟧, if, ∀𝑥 ∈ Ttype⟦𝜏⟧, T𝜏,𝑣 (𝑓 , 𝑥) = T𝜏,𝑣 (𝑔, 𝑥), then 𝑓 = 𝑔

5. Tterm⟦−⟧ and T𝜏,𝑣 are such that

a) If 𝜁 derives Γ ⊢ 𝑥 : 𝜏, then T⟦𝜁⟧𝜂 = 𝜂(𝑥)

b) If 𝜁𝑀𝑁 derives Γ ⊢ 𝑀𝑁 : 𝑣, 𝜁𝑀 derives Γ ⊢ 𝑀 : 𝜏 → 𝑣, and 𝜁𝑁 derives Γ ⊢ 𝑁 : 𝜏, then
T⟦𝜁𝑀𝑁⟧𝜂 = T𝜏,𝑣 (T⟦𝜁𝑀⟧𝜂, T⟦𝜁𝑁⟧𝜂) = T⟦𝜁𝑀⟧(𝜂[𝑥 ↦→ 𝑑])

Then we can give the semantics of a polytype/type scheme as simply

Tscheme⟦𝜎⟧ =
∏
𝜏∈⌊𝜎⌋

Ttype⟦𝜏⟧ (3.4)

The Coq listing implementing the key, difficult part of this approach- the normalization by
evaluation- can be found in the appendix.

3.3. Modeling Recursino in Coq Through NonConstructive Reasoning

An entirely constructive definition of the category 𝜔 −CPO can be given coinductively, as initially
described by Capretta[4] and implemented in Coq by Benton[1]. However, the definition of the
lifting monad, whose Kleisli category gives the category 𝜔 − CPO⊥ of pointed domains, requires
the use of corecursive, non-terminating terms.

28

Reasoning about the equivalence of corecursive types in Coq is particularly dangerous, since one
can lose subject reduction and so soundness if one isn’t careful. Thus we would like an alternative,
nonconstructive definition of pointed domains.

Of course, we would like more than mere soundness - we would like to make reasoning about
prpogram equivalences as simple and tractable as possible. Since Coq has decidable typechecking,
definitional equalities are the easiest means of showing equivalences. We can win more definitional
equalities if any two proofs of a proposition were equal, that is, if our propositions were proof irrel-
evant. In Coq, the type of propositions, Prop, is inhabited by proofs. Recently, a new type, SProp,
was introduced into the type theory, whose inhabitants are mere propositions. We’ve built an entire
type system for tracking proof irrelevance, so that we can ensure no dependencies of proof irrele-
vant properties on proof relevant properties, culminating in the library NonConstructiveDefinitions
appearing in our definition of Domains.

Record Poset : Type := poset_Type :> Type; poset_Order :: Order poset_Type; poset_IsPartialOrder_SProp : in_SProp (IsPartialOrder poset_Order) .
#[export] Instance poset_IsPartialOrder NCR : NonConstructiveReasoning (P : Poset)
: IsPartialOrder (poset_Order P).

THis allows, among other things, more convenient proofs of the Kleene fixpoint theorem

Theorem kleene_fixpoint : forall P : OmegaCpoWithBottom (f : P ->c P), f (fixpoint f) = fixpoint f.
Proof using NCR.
intros. unfold fixpoint.
pose proof (@continuous NCR P P f (Continuous_IsContinuous P P f) (unwind_Monotonic f)).
simpl in *.
rewrite -> H.
assert ((unwind_Monotonic f >>m f) = (add1_Monotonic >>m unwind_Monotonic f)).

apply equality_of_monotonic. apply functional_extensionality. intro. simpl. reflexivity.
symmetry.
pose proof lub_upper_chain_unchainged P (unwind_Monotonic f).
simpl in *.
assumption.

Qed.
End Fixpoints.

29

This page intentionally left blank.

30

4. FUTURE WORK

4.0.1. Filling in Any Gaps

In this LDRD, we have formalized core Cryptol, but there remain some important features worth
formalizing. Notably, we have not yet provided a semantics for Cryptol’s module system. We have
forseen the architectural changes needed to accomodating modules - this will involve formalizing
the satisfaction of constraints for open Cryptol terms, where constraints become monotonically
more satisfiable as the environment instantiating the module become more definite.

We can capture this Kripke monotonicity by wrapping our constraint predicates in the associated
modalities. For instance, where we have presently

Definition normalize_constraint
(kindEnv : kind_env)
(c : top_constraint kindEnv)
(H : constraint_vars_satisfy (supported_var kindEnv) c)
: normal_constraint.

We should expect

Definition normalize_constraint
(kindEnv : kind_env)
(c : top_constraint kindEnv)
(H : constraint_vars_satisfy (supported_var kindEnv) c)
: possibility_wrapped normal_constraint.

where

Variant possibility_wrapped (S : Set) : Set :=
| conditionally : S -> possibility_wrapped S
| never : possibility_wrapped S
| always : possibility_wrapped S.

4.0.2. A Frontend

We would like to write a frontend which consumes raw Cryptol. Since the Cryptol is total Haskell,
we should be able to extract much if our frontend from Cryptol’s existing Haskell frontend.

31

4.0.3. Certifying Compilation

We would like to compile (the terminating fragment of) Cryptol into Coq’s Gallina programming
language, along with a proof of contextual equivalence via logical relations between Cryptol and
Coq programs.

4.0.4. Certified Compilation

The work we have presented here solves a key gap in the assurance story for high consequence
cryptography, but, as we will briefly explain below, high consequence applications may require
still more agility.

Each algorithm comes in a parametric family – e.g., for SPHINCS+, the parameters are the Winter-
nitz parameter, the height of the hypertree, the number of layers, the number of trees, the number
of leaves, the security parameter, as well as a choice of hash function. [3] Sets of parameters are
selected for different applications based on their security level, itself based on estimates of the time
an adversary must invest to defeat the cryptosystem with probability of some lower bound.

Unfortunately, every single candidate has been since shown to be susceptible to new crypto-
graphic attacks reducing, sometimes dramatically, the effective security level for the blessed
parameters[2][11][5]. Even SPHINCS+ (the least mathematically adventurous candidate) has been
shown to be vulnerable to attack[12]. Thus it becomes crucial to heed NSM-10’s “emphasis on cryp-
tographic agility” to “allow for seamless updates for future cryptographic standards” in response
to new cryptographic attacks[3][14].

The State of the Art (SOTA) for high-assurance cryptography lacks the parametricity, flexibility,
and automation to provide the agility necessary to rapidly re-develop, re-optimize, and re-certify
postquantum cryptography in response to the emergence of new challenges from new cryptographic
attacks, new threat models, or new device physics, forcing an unacceptable trade off between risk
to deployment schedule and to cybersecurity.

We would therefore like to ultimately take entire families of post-quantum cryptosystems, expressed
as parametric Cryptol specifications, and compile these specifications into performant, correct-by-
construction implementations. This would facillitate an agile response to new mission demands and
new threats, compiling implementations which would be deployable and proven correct as soon as
specified.

Thus we anticipate the otherwise contradictory needs of cryptographic agility and foundational
assurance to be resolved by certified compilation of all of Cryptol into machine languages with
formal semantics like CLite or, possibly, some future variant of Koika or Kami.

4.0.5. Probabilistic programming language

FALCON is a Learnnig With Errors (LWE) based post-quantum cryptosystem promising extremely
high effective security parameters at lower cost. However, the cryptosystem parameters upon which

32

the security guarantees most strongly relie are the covariance of a gaussian distribution over a lattice
over a finite field. That distribution is produced by a recursive gaussian sampler. Therefore, the
equivalence of an implementation to the sampling algorithm is of paramount importance.

However, in Galois’s reference Cryptol spec for parametrized FALCON, the specification given for
the fast fourier sampler is the zero function:

ffSampling : k, n (ispoweroftwo k n) => ([2](FFT n), falconTree k) -> [2](FFT n)
ffSampling(t, T) = z where

[t0, t1] = t
z = [z0, z1]
z0 = zero
z1 = zero

. Thus Cryptol seems to fall short in expressing the LWE based cryptography specifications. An
extension of Cryptol with probabilistic programming language features would not only allow
the expression of such specifications, but moreover provide a foundation for reasoning about
the implementations with respect to their contextual equivalence as probabilistic programs to
the specification[17]. This would provide a separation of concerns allowing implementations the
freedom to implement sampling and conditioning optimally with respect to their given resources,
as opposed to imposing implementation details in the specificaiton, as is the case for the reference
KYBER − Crystals spec.

4.0.6. Codata types

Another limitation in Cryptol is that it can only express the specifications of cryptographic prim-
itives- that is, the mathematical functions underlying the cryptosystem. However, to specify a
cryptosystems in general requires, more than this, a specification of a cryptographic protocol, a
temporal specification of the reactive behavior of devices participating in the protocol.

Cryptol lacks the expressivity needed to describe the streams of behaviors admitted by the protocol.
The specification of such streams of behaviors can be expressed, not through inductive data types,
but through coinductive codata types[6]. The addition of codata types to Cryptol would then allow
the specification of entire cryptographic protocols.

33

This page intentionally left blank.

34

5. CONCLUSION

We’ve described in this report how we solved the two main technical problems described in the
introduction.

• Problem 3 How can we design a certified denotational interpreter for parametric polymor-
phism with type constraints?

Solution 1 We normalize the constraint derivations appearing in Cryptol type scheme into
a set of derivations of normalized consrtraints, so that the semantics of a polytype is given
as a product of type frames over a finite collection of ground types.

• Problem 4 How can we extract a denotational interpreter of possibly non-terminating pro-
grams?

Solution 2 To capture the semantics of general recursion, we give a nonconstructive defini-
tion of domains, using our own in-house type system for proof irrelevance.

The ideas behind these solutions are implemented in the software artifacts, core.v and omega − CPO.v
we’ve included in the appendix. Our development implements as software artifacts the lessons we’ve
learned along the way:

1. The essence of Cryptol: We’ve learned quite a bit about what Cryptol is. While this may
sound trivial, given the existence of papers and manuals colloquially describing Cryptol,
the precise definition of the Cryptol language isn’t a settled question, even to experts. There
are issues, only a couple years old, in Galois’s Cryptol repository, in which the developers
uncover surprising behavior from their Cryptol interpreter when presented with higher-props
and higher-kinds in their type schemes. Our work codifies the essence of Cryptol.

2. A Convenient Semantics for Cryptol: We learned that the key features Cryptol features
needed for postquantum cryptography, namely, parametric polymorphism, type constraints,
and term-level recursion- could nonetheless be given a simple semantics in terms of type
frames indexed by a set of ground types.

3. Convenient Category of Nonconstructive Domains : We learned how to safely define a
nonconstructive theory of pointed domains in Coq, made all the more powerful and convenient
through proof irrelevance.

35

This page intentionally left blank.

36

REFERENCES

[1] Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain theory and denotational
semantics in coq. In Theorem Proving in Higher Order Logics: 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings 22, pages 115–130.
Springer, 2009.

[2] Ward Beullens. Breaking rainbow takes a weekend on a laptop. In Annual International
Cryptology Conference, pages 464–479. Springer, 2022.

[3] Joseph R Biden Jr. Improving the nation’s cybersecurity. Executive order, 14028, 2021.

[4] Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer
Science, 1, 2005.

[5] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages
423–447. Springer, 2023.

[6] Paul Downen, Zachary Sullivan, Zena M Ariola, and Simon Peyton Jones. Codata in action.
In European Symposium on Programming, pages 119–146. Springer International Publishing
Cham, 2019.

[7] Galois. A central repository for specifications of cryptographic algorithms in cryptol, 2024.
accessed September 2024.

[8] Mark P Jones. Qualified types: theory and practice. Number 9. Cambridge University Press,
2003.

[9] Jeffrey R Lewis and Brad Martin. Cryptol: High assurance, retargetable crypto develop-
ment and validation. In IEEE Military Communications Conference, 2003. MILCOM 2003.,
volume 2, pages 820–825. IEEE, 2003.

[10] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
May 1998.

[11] Daniel Apon Matzov, Daniel J Bernstein, Carl Mitchell, Léo Ducas, Martin Albrecht, and
Chris Peikert. Improved dual lattice attack, 2022.

[12] Ray Perlner, John Kelsey, and David Cooper. Breaking category five sphincs+ with sha-256.
In International Conference on Post-Quantum Cryptography, pages 501–522. Springer, 2022.

[13] Rolf Riesen. How to be conformant. Psychology Today and Tomorrow, 784(3):121–130,
2002.

37

[14] Bruce Schneier. Nist’s post-quantum cryptography standards competition. IEEE Security &
Privacy, 20(5):107–108, 2022.

[15] John E. Smith. On the use of dry erase markers in science. Journal of Pen and Pencil,
784(3):121–130, 2002.

[16] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 60–76, 1989.

[17] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. Contextual
equivalence for a probabilistic language with continuous random variables and recursion.
Proceedings of the ACM on Programming Languages, 2(ICFP):1–30, 2018.

38

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Formal Methods Working Group 8741/2 wg-formal-methods-general@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

Hardcopy—Internal

Number of
Copies Name Org. Mailstop

1 L. Martin, LDRD Office 1910 0359

39

Sandia National Laboratories is
a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of Sandia
LLC, a wholly owned subsidiary
of Honeywell International Inc.,
for the U.S. Department of
Energy’s National Nuclear
Security Administration under
contract DE-NA0003525.

	Summary
	Acronyms & Definitions
	Introduction
	Motivation: The Need for Agile and Assured Post Quantum Cryptography
	The Needs of the Mission and the State of the Art
	Cryptol Specs for PostQuantum Cryptography and the Shortcomings of Cryptol and SAW
	A Certified Denotational Interpreter for Cryptol: Why?
	A Certified Denotational Interpreter for Cryptol: Why Isn't There Already One?

	What is.... Cryptol?
	Simplifying Observations on the Core Semantics of Cryptol
	Core Cryptol: Syntax
	Core Cryptol: Reduction Rules

	A Denotational Cryptol Interpreter
	Models of Recursion: Domains
	Making Use of the Simplicity of Cryptol
	Modeling Recursino in Coq Through NonConstructive Reasoning

	Future Work
	Filling in Any Gaps
	A Frontend
	Certifying Compilation
	Certified Compilation
	Probabilistic programming language
	Codata types

	Conclusion
	References

