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ABSTRACT: 

Bugs in digital logic have led to some significant security vulnerabilities.  Hardware bugs are 
particularly troublesome since they cannot be easily patched.  Additionally, if the bug is in the 
root of trust, all trust built upon it can be vulnerable.  Traditional testing either require a deep 
knowledge of the system, creative attack vectors and lots of human interaction.  This is not 
scalable as there are very few engineers that can wear the hat of a designer, a verification 
engineer, and a cybersecurity expert.  Hardware fuzzing is a relatively new research area in 
dynamic hardware testing. It has proven to be an effective method for discovering bugs, 
unexpected behaviors, and security vulnerabilities in software.  While hardware fuzzing is new 
to the hardware domain, it has a strong track record in software testing.   Fuzzing is a testing 
technique that randomly mutates the input data to uncover bugs or vulnerabilities in the design.  
It is especially good at finding corner cases that test engineers can not envision.  Another 
advantage over other dynamic testing techniques is that, if done well, deep knowledge of the 
design is not required.  Additionally, fuzzing scales well.  If the system is set up correctly, it can 
run unsupervised for weeks if necessary.  In this work, we propose using hardware fuzzing to 
improve the input vector generation for an information flow tracking tool.  To get reasonable 
throughput of test vectors, an emulator is targeted as the execution platform.  Efficient emulator 
execution has some specific requirements.  

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS: 

This seedling exploration was funded under the Digital Assurance for High Consequence 
Systems Mission Campaign (DAHCS MC) as a late start LDRD, running for approximately five 
months prior to the first fully funded year of the DAHCS MC. The DAHCS MC is a 7.5-year 
research portfolio created to develop the scientific foundation needed for rigorous, rapid, cost-
effective, generalizable digital assurance1 across high consequence systems2’ (HCS’) lifecycles. 
To create this foundation, the DAHCS MC aims to develop capabilities needed to understand 
systems-level implications of trade-offs against digital risk in high-consequence cyber-physical 
systems – across lifecycles and across digital abstraction levels – delivering a process and 
ecosystem to obtain empirical, ideally measurable, digital assurance of HCS, and ultimately 
enabling informed acceptance of digital risk. The DAHCS FY24 Late Start Call document [8] 

1 Digital assurance includes processes, measures, and/or controls applied to digital technologies to make sure that 
a system fulfills its intended purpose, even in the active adversarial cyber environment of today.
2 High consequence systems (HCS) serve a very specific purpose, or mission, where failure to meet the mission can 
result in unacceptable consequences.
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describes these definitions, goals, research roadmap, and other technical research context for this 
seedling LDRD in significantly more detail. 

This late start LDRD addresses the Scalable Analysis research need identified in the DAHCS 
MC 2024 Late Start Call. This work attempts to develop a scalable solution to test vector 
generation for verification of digital circuits.  The research and development (R&D) effort 
focused on improving the tools for controlling the digital risk in digital components of high 
consequence cyber-physical system.  

Bugs in digital logic have led to some significant security vulnerabilities.  Hardware bugs are 
particularly troublesome since they cannot be easily patched.  Additionally, if the bug is in the 
root of trust, all trust built upon it can be vulnerable.  Traditional testing either require a deep 
knowledge of the system, creative attack vectors and lots of human interaction.  This is not 
scalable as there are very few engineers that can wear the hat of a designer, a verification 
engineer, and a cybersecurity expert.  Additionally, each solution will be bespoke.  Hardware 
fuzzing is a relatively new research area in dynamic hardware testing. It has proven to be an 
effective method for discovering bugs, unexpected behaviors, and security vulnerabilities.  While 
hardware fuzzing is new to the hardware domain, it has a strong track record in software testing.   
It was even used to discover the Heartbleed bugs.  Fuzzing is a testing technique that randomly 
mutates the input data to uncover bugs or vulnerabilities in the design.  It is especially good at 
finding corner cases that test engineers can not envision.  Another advantage over other dynamic 
testing techniques is that, if done well, deep knowledge of the design is not required.  
Additionally, fuzzing scales well.  If the system is set up correctly, it can run unsupervised for 
weeks if necessary.  

In this work we explore the use of fuzzing to improve the input test vector generation for 
information flow tracking.  We modify an open source fuzzer (AFL++) to generate inputs for an 
open-source AES core.  While we did not fully get the pipeline implemented, we developed 
enough to see the benefit and develop a path forward. 

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 
METHODOLOGY: 

Fuzzing
Fuzzing is a testing technique that randomly mutates the input data to uncover bugs or 
vulnerabilities in the design.  It is especially good at finding corner cases that test engineers can 
not envision.  Another advantage over other dynamic testing techniques is that, if done well, 
deep knowledge of the design is not required.  Additionally, fuzzing scales well.  If the system is 
set up correctly, it can run unsupervised for weeks if necessary.  Fuzzing was originally 
developed to test software.  As shown in Figure 1, fuzzing has three main components, initial 



input, the fuzzing software, and an instrumented executable. The initial input is generally a 
known good set of input test vectors such as images or network packets.  These are fed into the 
executable for the initial test.  The executable is compiled with the fuzzer to add coverage hooks.  
If the operating system detects a failure of the software, the fuzzer ceases operation.  Otherwise, 
the initial input is randomly mutated.  The mutated input is sent into the executable for testing.  
Assuming no failure, the fuzzer checks to see if the mutation increased the coverage of the code.  
Coverage in software is most commonly branch coverage.  If it did, the mutation is kept and fed 
into the next mutation cycle.  Otherwise, it is dropped, and a new mutation is attempted.  This 
continues until a failure occurs, the coverage is deemed adequate, or a set testing time has 
expired.  Software fuzzing has uncovered several software vulnerabilities including Heartbleed 
and Shellshock.

Figure 1.  General structure of fuzzing. 

AFL
AFLplusplus (AFL++) [9], the successor of American Fuzzy Lop (AFL), is a software fuzzer 
that is traditionally used to fuzz software binaries. AFL++ utilizes coverage-based fuzzing to 
monitor which areas a fuzzed binary is executing. This information allows the tracking of how 
inputs lead to specific binary behavior and facilitates the creation of a corpus—a database of 
inputs that cover the entire codebase. Although AFL++ can be used to in both black-box and 
white-box fuzzing applications, our discussion of AFL++ will focus on its ability achieve 
comprehensive codebase coverage.
 In AFL, iteration starts with initial manually generated seed inputs that are subsequently 
mutated. If those mutated inputs result in unusual changes in coverage, they are deemed 
interesting and stored into the corpus for further mutation. This process allows the AFL++ fuzzer 
to continually explore new code paths with feedback, thereby enhancing the likelihood of 
discovering unknown bugs and vulnerabilities.



Hardware Fuzzing
Hardware fuzzing is a relatively new research effort to apply software fuzzing methods to the 
verification of register transfer logic (RTL) such as Verilog or VHDL.  There are some 
challenges unique to hardware fuzzing though.  
Like software fuzzing, there are three main components of hardware fuzzing.  

1. A way to generate meaningful and valid inputs.  For a complex system that requires a 
series of inputs to initiate system or operate a bus for example, the input generator needs 
to adhere to a certain set of inputs for operation.  Truly random inputs will mostly lead to 
illegal inputs that don’t increase the overage.  Inversely, if there is no randomness and no 
deviation from the "protocol" then you might not find a certain set of bugs/vulnerabilities.

2. A way to monitor coverage.  Coverage must be defined.  Research has used bits toggle 
[6], mux coverage [3] and control registers [3] as the entities to monitor.  The coverage 
should feed back into the next round of input mutations to make it targeted.  If a mutation 
to the input increases the coverage, it is kept.  If not, the mutation is reversed from the 
input set.

3. A way to indicate failure.  For software this is generally a crash, but in hardware this can 
be difficult to detect.  Hardware doesn’t crash, but it “fails” in many ways. It can lock up, 
output incorrect results, leak secret data or error in many other undesirable ways.  There 
have been a couple of ways to monitor for “failures.”   The first method is to use 
assertions.  These are used in many methods of digital verification.  The other, and more 
preferred method is to compare the test results to a golden reference model.  This is 
called differential fuzzing.  Often this is an ISA emulator that was built to verify the 
processor design.  Another method to get a golden reference is to use a formally verified 
state machine.  Both methods can be used.  If the design engineer put assertions in the 
design during the implementation, these can be used to detect a certain set of know 
failures while the golden model can catch the corner cases.  A final method is to use an 
information flow tracking tool such as Cycuity’s Radix [2] detect information leakage.  

One challenge in hardware fuzzing that doesn’t exist in software fuzzing is interfacing software 
to hardware.  Fuzzers are currently written in software and fuzzing techniques have become 
incredibly advanced in the software verification domain. They support many coverage metrics, 
and they are highly efficient at testing software implementations. With a lack of fuzzer 
implementations in the hardware space, we needed to rely on works previously developed for the 
software world. This allowed us to take advantage of the long history of fuzzing research and 
optimizations, but it increased the complexity of the testing process—testing no longer remained 
solely in the hardware simulation domain.  Using an existing software based fuzzer requires a 
way to move date between the software and RTL simulator or emulation.  This is generally 
accomplished using the direct programming interface (DPI) available in SystemVerilog.  The 
SystemVerilog DPI is basically an interface between SystemVerilog and a foreign programming 
language, in particular the C language. It allows the designer to easily call C functions from 
SystemVerilog and to export SystemVerilog functions, so that they can be called from C.



There are three ways researchers have proposed to fuzz the RTL.

1. Convert the RTL to software using something like Verilator [7].  This has limitations on 
the type of RTL that can be converted (i.e., only synthesizable).  This means that 
assertions traditional RTL testbenches cannot be used.  The upside of converting the RTL 
to software is that it can then be driven with software.  This is helpful as it is much easier 
to code the mutation, and coverage logic in software.  Additionally, it runs faster than 
traditional RTL simulation.  

2. Run in a simulator [3].  The benefit of using a simulator such as Modelsim is that this 
toolchain is very familiar to RTL designers.  It also supports assertions and complex test 
infrastructure, even if it isn’t synthesizable.  The downside is that it runs many orders of 
magnitudes slower than hardware.   

3. Run in prototyping hardware such as a FPGA [10].  This has the benefit of faster 
execution.  Unfortunately, the limitations make it not feasible for fuzzing. The lack of 
visibility makes calculating coverage impossible and it is difficult to detect failures at a 
fine grain.    

We propose a solution that takes advantage of both the software and the simulation solution.  We 
have access to a Siemens Strato Veloce Emulator.  This computer can accelerate RTL 
simulations up to 1000x.  It also supports all the advanced verification techniques such as 
assertions.  To support software input we will use some previous work our group did with the 
direct programming interface (DPI). DPI allows C programs to control SystemVerilog 
testbenches.

Information Flow Tracking
Information flow tracking (IFT) [1] is a dynamic RTL verification technique that is especially 
well suited at detecting confidentiality and integrity failures in RTL digital designs.  IFT tools 
are designed to track data as it flows around a design.  It achieves this by tagging instances of 
data and tracks where it flows throughout execution.  For security use cases, the data is generally 
a secure asset such as an encryption key.  During execution, if the “tainted” data ever reaches a 
location that has been deemed insecure, a failure results.  The taint is preserved through any 
transformation of the data, so even if the secure data is combined with other data, the result is 
also tainted.  This guards against simple reverse engineering of the secret data.  The tool also 
allows for exceptions to the rules.  For example, during encryption operations, the key will taint 
the resulting cyphertext.  Since it is known that the encryption operation is secure, this path can 
be excluded.  The leading commercial IFT is a tool called Radix from Cycuity.
Figure 2 shows and example of a scenario where IFT can be used to secure a design.  In this 
design, there is a key that should be kept secret.  For confidentiality, an external attacker should 
not be able to read the key in debug mode.  Additionally, for integrity, the attacker should also 
not be able to overwrite or modify the key.  



Figure 2.  Example of IFT tracking a security key to verify it can not be accesses by an external 
attacker.

The steps to use the Radix tool is outlined below.
1. Define the security requirements.

• Secure Asset – efuse key
• Objective –  no access allowed
• Attack Surface/Boundary – ports on device (JTAG, UART, SPI, etc)
• Conditions where security policy would be relevant – debug mode

2. Write out the security requirements.
• “The efuse key cannot be accessed via JTAG when the DUT (device under 

test) is in debug mode”
3. Write down Radix rules in the rule syntax.

• Confidentiality:  dut.secure_efuse.key =/=> dut.jtag.$all_outputs 
unless(dut.debug_mode == 0)

• Integrity: dut.jtag.$all_inputs when (dut.debug_mode == 1) =/=> 
dut.secure_efuse.key

Note that the only required step in this flow is to write the Radix rules.  The preceding steps are 
done to help define the security rules and ideally are a part of the device security plans or 
requirements.  The confidentiality rule in this test checks that the key that is in the secure_efuse 
module shall not flow to any of the outputs in the jtag module unless debug_mode equals “0”.  
The integrity rule can be interpreted in a similar manner.
After the security rules are written, they are compiled into the design as a security monitor.  The 
security monitor tracks the simulation or emulation and signifies a pass/fail of each rule.  It also 
shows how the violation occurred via a graphical trace of the taint.  
Like all dynamic RTL verification tools, IFT performs only as well as the input test vectors it is 
supplied with.  This makes it a good candidate to apply fuzzing to.  Additionally, the IFT tool 
defines the failure modes in the security rules and coverage is easier to define then in generic 



RTL verification.  For these reasons, we chose to target IFT for our initial hardware fuzzing 
effort. 
Coverage in IFT is a much smaller problem to solve then in general RTL verification.  The only 
signals that are of concern in the design are signal that the secure asset can possibly connect to.  
Of course, signals that can be read by the processor can in theory connect to most of the rest of 
the design, but in practice secure assets, such as encryption keys, are restricted to isolated areas 
for security reasons.  Additionally, there is generally a security boundary that enforces the 
security of the asset.  This can be the output of a module or a multiplexor.  The security 
boundary is the coverage that matters in IFT.  

The graphic in Figure 3 illustrates how coverage is calculated in IFT. The RTL can be statically 
analyzed to identify all the signals the source can “taint” (shown in purple) on the way to the 
destination.  The vertical line indicates the security boundary that is designed to be the boundary 
of where the secret is controlled.  The nodules on the boundary line indicate the possible 
connections at the boundary.  Therefore, good coverage would be when all the nodes are tainted.  
It is also possible that some of the nodes cannot be tainted (yellow area) because flow control 
does not allow the source to travel there.  In this illustration, it would be a failure for the 
“tainted” data to reach the purple area.  

Figure 3.  Coverage diagram for IFT.  



Figure 4 shows an example of the RTL and schematic of a security boundary.  In this example, the case 
statement is turned into a multiplexor.  The signal data_in_f1 is the secure asset in this case.  The 
multiplexor mux_2 is where the secure mode is controlled but all the data is controlled at the 
wide_select_3_6 multiplexor so this is where secure boundary is set, and the coverage is monitored.  
The secure mode signal should also added to the coverage metrics since that is what controls the secure 
mode.  

Figure 4.  Schematic and RTL view of a boundary.  In this circuit, the wide_select_3_6 multiplexor is 
the security boundary.  Note that mux_2 controls secure mode, but the data arrives via 
wide_select_3_6 multiplexor. 

Our approach
There are four main components to the developed fuzzing process:

1. The AFL++ fuzzer process mutates inputs and executes the target program.
2. The AFL++ target program takes inputs from fuzzer process, drives HW simulation, and 

passes results back to fuzzer process.
3. The hardware simulation takes inputs from target program and executes the DUT.
4. The simulation tracks coverage and violations in the DUT and sends them back to the 

target program.

The AFL++ fuzzer process will exist for the lifetime of the testing procedure. This is what uses 
the coverage and violation feedback to make an informed decision on which inputs made 



meaningful progress in verifying the design under test. Additionally, this fuzzer process is also 
responsible for mutating the inputs to be passed to the hardware simulation.
In the (simplified) process of normal AFL++ software verification:

1. The fuzzer process mutates the inputs.
2. The fuzzer process passes the inputs to the target program.
3. The target program is executed with the inputs and tracks coverage.
4. The target program terminates and reports the results back to the fuzzer process.
5. Jump to step 1. 

This cycle repeats for the duration of the testing procedure, and each time the target program is 
executed, a new process is created. This means the target program has a limited lifetime, unlike 
the AFL++ fuzzer process and hardware simulation. To facilitate cooperation between the 
hardware simulation and software fuzzer, we needed to develop a new fuzzing protocol which 
synchronized the interactions and data transfer between the fuzzer process and the hardware 
simulation.
To integrate a software fuzzer with the hardware simulation process, we needed to integrate a 
method to measure coverage and security violations and develop an interface where the 
simulation and fuzzer could repeatably (in a loop) communicate inputs, coverage and violation 
feedback, and functional results. Additionally, this all needed to be done in a synchronized 
manner to avoid mangling data due to race conditions between the independent hardware 
simulation process and the fuzzer process.
It is important to note that in our implementation of this hardware fuzzer, the persistent AFL++ 
fuzzer process does not communicate directly with our hardware simulation. That is the 
responsibility of the AFL++ target program. AFL++ requires the fuzzer target to be a binary 
which has been instrumented for tracking coverage. This is something that cannot be done in the 
hardware simulation, so we needed to create a small C program—our AFL++ target—to act as a 
bridge between the AFL++ fuzzer process and the hardware simulation.
The solution we developed is depicted in Figure 5.



Figure 5.  Architecture of our hardware fuzzing pipeline.

In the (simplified) process for using AFL++ to verify hardware:
1. Hardware simulation begins with the IFT software attached.
2. Hardware simulation initializes the C environment.
3. Hardware simulation waits for input.
4. AFL++ fuzzer process begins.
5. Fuzzer process mutates the inputs.
6. Fuzzer process forks the target program and passes in generated inputs.
7. Target program attaches to the hardware simulation through DPI interface.
8. Target program drives the inputs to the hardware simulation.
9. Target program computes expected functional output while waiting for response from 

hardware simulation.
10. Hardware simulation passes generated outputs, coverage metrics, and violation status to 

the target program.
11. Target program passes coverage metrics to the fuzzer process.
12. Target program compares the generated outputs to the expected.
13. Target program reports error/violation status to the fuzzer process.
14. If fuzzing not complete, jump to step 5, else continue to 15.
15. Hardware simulation de-initializes C environment.
16. Hardware simulation terminates.

Steps 5 to 13 repeat in a cycle until the testing procedure is complete.
The entire time this is running, the Radix tooling (our IFT software) is diligently tracking the 
hardware simulation and generating the coverage metrics and security property violation status.  
The hardware simulation then reports this information to the fuzzer target and it is passed 
through back to the fuzzer process. The IFT tooling only interacts with the hardware simulation, 



then the hardware simulation is responsible for reporting the coverage results back to the fuzzer. 
The Radix tool does not have any direct interaction with the fuzzer process or fuzzer target.
To start the fuzzing process, the hardware simulation, through DPI calls, initializes the C runtime 
environment. It creates a shared memory region, which the fuzzer target can attach to in order to 
transfer data between the simulation and the fuzzer target in a synchronized manner. The shared 
memory region holds mutexes, condition variables, status codes, and data structures that 
accommodate the transfer of data to and from the device under test. It is important the hardware 
simulation be the maintainer of this C runtime environment, because the fuzzer target has a 
limited lifetime.
After the C runtime is initialized, the SystemVerilog testbench, in a loop, performs the following 
actions:

1. Retrieve test inputs from shared memory.
2. Perform the test.
3. Write results into shared memory.
4. Signal to the target program that computation is complete, and results are available.

The target program is responsible for passing generated inputs from the fuzzer process to the 
simulation. In the current state of the project, the target program is responsible for generating the 
test inputs which it then passes to the simulation. This will be the case until the fuzzer is fully 
integrated. When executed, the target program obtains the mutex for the shared memory, 
randomly generates test data and maps that data into the shared memory region, then signals that 
data has been committed. To retrieve the test inputs, the SystemVerilog testbench obtains the 
mutex for the shared memory, then conditionally waits (releasing the mutex) until the target 
program signals that data has been committed to the shared memory region. It is important that 
the simulation is started before the fuzzer to mitigate an initial race condition here.
At this point, the simulation is executing and tracking information flows with the provided 
inputs. At the same time, the target program is responsible for generating expected results. In the 
example scenario we have developed, these expected results are obtained from a C 
implementation of the AES algorithm. These expected results should only pertain to the 
functional performance of the design.
Once the simulation is complete, the simulation obtains the mutex for the shared memory region, 
writes the computed results into the shared memory, and signals the target program that 
processing is complete. The target program conditionally waits for the processing complete 
signal and reads the results of the simulation process (functional, IFT violation status, and 
coverage results). The target program then compares the expected and actual functional results 
and notifies the fuzzer of the status of this comparison. The target program also passes along the 
IFT violation status and coverage results to the fuzzer.



The fuzzer; having access to the functional, coverage, and IFT violation status results; takes the 
information it receives and 1) updates its global coverage metrics, 2) reports any IFT violations 
or functional errors to the designer, and 3) computes the next mutation for the fuzzer to pass to 
the target program so that the simulation process may continue.

RESULTS AND DISCUSSION: 

The current implementation of our hardware fuzzing approach has achieved a significant portion 
of the project targets. We have demonstrated that the hardware simulation process, using 
commercially available tools, can be designed an instrumented in such a way that 1) we can have 
a software-based program driving the inputs to the simulation, 2) the simulation can be 
implemented to have repeating, synchronized interaction with the software program (a 
requirement for fuzzing), 3)  information flow tracking tools can serve as an alternative for an 
Operating System when it comes to capturing “violations” in a design, and 4) using coverage-
based fuzzers is a viable alternative to existing constrained random verification techniques. This 
last point is assessable from a cumulation of points 1-3.
The code base developed now provides all the necessary interfaces for integration with a 
software fuzzing tool. The target program successfully drives the simulation, and the simulation 
successfully runs and reports back to the target program the functional results, violation status, 
and coverage metrics. These are the only pieces of information which are needed to integrate our 
system with a software fuzzing platform. That integration, however, is still a work in progress. 
The AFL++ platform has been developed over a period of nearly 10 years, first as an open-
source project backed by Google (then called AFL), and now by a dedicated group of researchers 
who continue to add and update features as their own research projects require. It is a highly 
complex set of code which will require more effort to fully integrate with our hardware-focused 
platform.
Most of the difficulty surrounding the integration of AFL++ is due to its software-focused design 
when operating on the existing coverage metrics reporting system. AFL++ has three major 
components: 1) the fuzzer platform, 2) the forkserver, and 3) the instrumented compiler. It is 
points 2 and 3 which complicate our integration. When utilizing AFL++ to aide in the 
verification of a software program, the first step is to compile the target software program with 
AFL++’s modified gcc compiler—afl-gcc or afl-g++ for the simple usage of AFL++. This 
compiler is responsible for integrating the coverage metric system into the compilation process. 
Each basic block in the program (a set of sequential instructions no jump/branch/call instruction 
goes into or out of) is injected with additional instructions that update the coverage map which is 
used to track the execution path (trace) of a single execution of the target program. Each basic 
block is instrumented with the equivalent of the code in Figure 6.



Figure 6. https://aflplus.plus/docs/technical_details/

As the program executes, specific indexes in the coverage map (shared_mem in Figure 6) are 
incremented to demonstrate that a specific chain of basic blocks have been reached. The index 
that is incremented is computed by: the current basic block’s random ID XORed with the 
previously executed basic block’s random ID right shifted by 1. This process allows the fuzzer to 
track how many times the provided set of inputs hits a specific sequence of basic blocks (with 
some collisions occurring), which allows the fuzzer to determine whether the current inputs are 
adequately advancing coverage. This process is depicted in Figure 6.
The approach that AFL++ takes to coverage integration is not feasible in a hardware system, 
because this technique requires a sequential process, where hardware is inherently highly 
parallelized. So, AFL++’s coverage system must be modified so that the fuzzer and forkserver 
processes accept alternate implementations of coverage metrics. And this is the work that is 
ongoing.
One of the stated objectives of developing a hardware fuzzing platform is to minimize the degree 
of device-specific expertise required to begin the verification process. In an ideal fuzzing system, 
one would only need to modify 1) the beginning input corpus for the fuzzer (a few initial test 
cases so the fuzzer does not have to guess the structure of the input data), 2) the simulation-to-
target program shared memory interface to accommodate different input and result data 
specifications, and 3) the Radix information flow tracking rules which specify what a “violation” 
is. With this setup, a verifier would only need to have: an understanding of reliability and 
security principles, the port map, and brief interactions with a member of the design team to 
begin the fuzzing process.
With the currently available tooling, however, the changes required to begin the verification 
process are more complicated. The information flow tracking tool we have utilized is responsible 
for tracking both the violation status and the coverage achieved in the design. Defining violation 
properties requires an understanding of reliability and security principles for a specific 
architecture, and with minimal interaction with a designer, can be tailored to a specific 
implementation of an architecture relatively quickly and with no modification to the testbench or 
design code. Integrating the coverage tracking mechanism, however, requires a more significant 
understanding of the Radix-S tooling and requires potentially significant modifications to the 
testbench, depending on how many properties are being tracked at the same time. Ideally, we 
could make this a boilerplate process, but this does not currently exist.



ANTICIPATED OUTCOMES AND IMPACTS: 

In this work, a software to hardware pipeline was implemented with and IFT tool.  Changes to an 
existing open source fuzzer were architected and some of the changes were implemented.  The 
final integration was not completed though. 
The next steps complete the whole pipeline are:

1. Completing integration of fuzzer.
a. The easiest path forward is to integrate with AFL++.  This may not be the best 

long-term solution as AFL++ is designed for software fuzzing and has a lot of 
features that are not necessary for this application.

2. Automating coverage metric extraction.
a. Currently, finding the security boundary is a manual process.  It may be possible 

to automate this process through static analysis of the design and security rules.
3. There are some optimizations that could be performed on the DPI interface to improve 

the performance.
a. There is some work required to make the DPI more generic.  The current 

implementation has mid-level integrations for the current design, so a new design 
would need to strip components out before useable for other designs.

b. To track coverage for a 32-bit register requires a significant amount of memory 
(2^32 bits: 512MB). Current integration tracks coverage in 8-bit register chunks 
because of significantly lower memory requirements (4 x 2^8 bits: 128B for a 32-
bit value). Are there techniques that could improve memory performance?

Finally, to get the performance required for a reasonable throughput of test vectors, the 
simulation of RTL needs to be migrated to an emulator.  This has its own challenges.  An 
emulator is essentially a custom accelerator for RTL simulation.  Like all other compute 
accelerators, the best performance gains are achieved when the traffic between the software and 
the accelerator is minimized, and the accelerator can compute for long periods of time without 
software intervention. The current fuzzing pipeline is not architected in this manner.  The time 
taken to move failure, coverage and mutated inputs back and forth would require the emulator to 
stall.  This would likely reduce most of the possible gains of fuzzing on the emulator.  There are 
a few solutions that we will be investigating. The first possible solution is to make sure each 
“batch” job of test vectors is large enough to dominate the overall compute time.  Another option 
is to speculatively execute mutations before the coverage results are received.  This way, the next 
set of inputs would be ready for execution immediately after the completion of another.  
Mutations that did not result in increased coverage would need to be rolled back on future 
iterations of the fuzzer.  A more radical approach would be to implement the fuzzer in the RTL 
testbench. In the emulator, the testbench can run on the emulator. This would eliminate the need 
to send data back and forth from software.  



One shortcut that this work took to get a pipeline working was using a simple DUT that had 
simple inputs that required little synchronization.  One challenge in fuzzing large digital systems 
is the need for synchronization on many different inputs.  For example, a large SOC will require 
inputs for software as well as inputs from the many peripherals to properly verify the system.  
There has been a lot of debate if this is possible in a fuzzing solution.  While this may be solved 
by future research in the community, it is unlikely to be a scalable solution.  For critical 
components of DAHCs, fuzzing may a good solution though.  DAHCs requires another level of 
vigor for verification and components such as encryption cores would require extra scrutiny.  
Tools like fuzzing and IFT can be an integral part of the verification process for systems as such.

CONCLUSION: 

Hardware fuzzing has a lot of promise but also a lot of hurdles to become a viable and scalable 
verification technique as it has been in the software community.  In this work we demonstrated 
that a software to hardware pipeline to facilitate fuzzing is possible and we outline the steps to 
integrate an open source fuzzing into this pipeline.  Finally, we proposed methods to achieve the 
necessary speedups required by using an emulator. This work has laid the foundation for future 
work in using hardware fuzzing to rigorously validate RTL for digital components in DAHCS.
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