
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SAND24XX-XXXXR
LDRD PROJECT NUMBER: 235369
LDRD PROJECT TITLE: Hardware Fuzzing with An Emulator
PROJECT TEAM MEMBERS: Michael Haselman, Brett Weyer, Nancy Lau.

ABSTRACT:

Bugs in digital logic have led to some significant security vulnerabilities. Hardware bugs are
particularly troublesome since they cannot be easily patched. Additionally, if the bug is in the
root of trust, all trust built upon it can be vulnerable. Traditional testing either require a deep
knowledge of the system, creative attack vectors and lots of human interaction. This is not
scalable as there are very few engineers that can wear the hat of a designer, a verification
engineer, and a cybersecurity expert. Hardware fuzzing is a relatively new research area in
dynamic hardware testing. It has proven to be an effective method for discovering bugs,
unexpected behaviors, and security vulnerabilities in software. While hardware fuzzing is new
to the hardware domain, it has a strong track record in software testing. Fuzzing is a testing
technique that randomly mutates the input data to uncover bugs or vulnerabilities in the design.
It is especially good at finding corner cases that test engineers can not envision. Another
advantage over other dynamic testing techniques is that, if done well, deep knowledge of the
design is not required. Additionally, fuzzing scales well. If the system is set up correctly, it can
run unsupervised for weeks if necessary. In this work, we propose using hardware fuzzing to
improve the input vector generation for an information flow tracking tool. To get reasonable
throughput of test vectors, an emulator is targeted as the execution platform. Efficient emulator
execution has some specific requirements.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:

This seedling exploration was funded under the Digital Assurance for High Consequence
Systems Mission Campaign (DAHCS MC) as a late start LDRD, running for approximately five
months prior to the first fully funded year of the DAHCS MC. The DAHCS MC is a 7.5-year
research portfolio created to develop the scientific foundation needed for rigorous, rapid, cost-
effective, generalizable digital assurance1 across high consequence systems2’ (HCS’) lifecycles.
To create this foundation, the DAHCS MC aims to develop capabilities needed to understand
systems-level implications of trade-offs against digital risk in high-consequence cyber-physical
systems – across lifecycles and across digital abstraction levels – delivering a process and
ecosystem to obtain empirical, ideally measurable, digital assurance of HCS, and ultimately
enabling informed acceptance of digital risk. The DAHCS FY24 Late Start Call document [8]

1 Digital assurance includes processes, measures, and/or controls applied to digital technologies to make sure that
a system fulfills its intended purpose, even in the active adversarial cyber environment of today.
2 High consequence systems (HCS) serve a very specific purpose, or mission, where failure to meet the mission can
result in unacceptable consequences.

SAND2024-14685R

describes these definitions, goals, research roadmap, and other technical research context for this
seedling LDRD in significantly more detail.

This late start LDRD addresses the Scalable Analysis research need identified in the DAHCS
MC 2024 Late Start Call. This work attempts to develop a scalable solution to test vector
generation for verification of digital circuits. The research and development (R&D) effort
focused on improving the tools for controlling the digital risk in digital components of high
consequence cyber-physical system.

Bugs in digital logic have led to some significant security vulnerabilities. Hardware bugs are
particularly troublesome since they cannot be easily patched. Additionally, if the bug is in the
root of trust, all trust built upon it can be vulnerable. Traditional testing either require a deep
knowledge of the system, creative attack vectors and lots of human interaction. This is not
scalable as there are very few engineers that can wear the hat of a designer, a verification
engineer, and a cybersecurity expert. Additionally, each solution will be bespoke. Hardware
fuzzing is a relatively new research area in dynamic hardware testing. It has proven to be an
effective method for discovering bugs, unexpected behaviors, and security vulnerabilities. While
hardware fuzzing is new to the hardware domain, it has a strong track record in software testing.
It was even used to discover the Heartbleed bugs. Fuzzing is a testing technique that randomly
mutates the input data to uncover bugs or vulnerabilities in the design. It is especially good at
finding corner cases that test engineers can not envision. Another advantage over other dynamic
testing techniques is that, if done well, deep knowledge of the design is not required.
Additionally, fuzzing scales well. If the system is set up correctly, it can run unsupervised for
weeks if necessary.

In this work we explore the use of fuzzing to improve the input test vector generation for
information flow tracking. We modify an open source fuzzer (AFL++) to generate inputs for an
open-source AES core. While we did not fully get the pipeline implemented, we developed
enough to see the benefit and develop a path forward.

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY:

Fuzzing
Fuzzing is a testing technique that randomly mutates the input data to uncover bugs or
vulnerabilities in the design. It is especially good at finding corner cases that test engineers can
not envision. Another advantage over other dynamic testing techniques is that, if done well,
deep knowledge of the design is not required. Additionally, fuzzing scales well. If the system is
set up correctly, it can run unsupervised for weeks if necessary. Fuzzing was originally
developed to test software. As shown in Figure 1, fuzzing has three main components, initial

input, the fuzzing software, and an instrumented executable. The initial input is generally a
known good set of input test vectors such as images or network packets. These are fed into the
executable for the initial test. The executable is compiled with the fuzzer to add coverage hooks.
If the operating system detects a failure of the software, the fuzzer ceases operation. Otherwise,
the initial input is randomly mutated. The mutated input is sent into the executable for testing.
Assuming no failure, the fuzzer checks to see if the mutation increased the coverage of the code.
Coverage in software is most commonly branch coverage. If it did, the mutation is kept and fed
into the next mutation cycle. Otherwise, it is dropped, and a new mutation is attempted. This
continues until a failure occurs, the coverage is deemed adequate, or a set testing time has
expired. Software fuzzing has uncovered several software vulnerabilities including Heartbleed
and Shellshock.

Figure 1. General structure of fuzzing.

AFL
AFLplusplus (AFL++) [9], the successor of American Fuzzy Lop (AFL), is a software fuzzer
that is traditionally used to fuzz software binaries. AFL++ utilizes coverage-based fuzzing to
monitor which areas a fuzzed binary is executing. This information allows the tracking of how
inputs lead to specific binary behavior and facilitates the creation of a corpus—a database of
inputs that cover the entire codebase. Although AFL++ can be used to in both black-box and
white-box fuzzing applications, our discussion of AFL++ will focus on its ability achieve
comprehensive codebase coverage.
 In AFL, iteration starts with initial manually generated seed inputs that are subsequently
mutated. If those mutated inputs result in unusual changes in coverage, they are deemed
interesting and stored into the corpus for further mutation. This process allows the AFL++ fuzzer
to continually explore new code paths with feedback, thereby enhancing the likelihood of
discovering unknown bugs and vulnerabilities.

Hardware Fuzzing
Hardware fuzzing is a relatively new research effort to apply software fuzzing methods to the
verification of register transfer logic (RTL) such as Verilog or VHDL. There are some
challenges unique to hardware fuzzing though.
Like software fuzzing, there are three main components of hardware fuzzing.

1. A way to generate meaningful and valid inputs. For a complex system that requires a
series of inputs to initiate system or operate a bus for example, the input generator needs
to adhere to a certain set of inputs for operation. Truly random inputs will mostly lead to
illegal inputs that don’t increase the overage. Inversely, if there is no randomness and no
deviation from the "protocol" then you might not find a certain set of bugs/vulnerabilities.

2. A way to monitor coverage. Coverage must be defined. Research has used bits toggle
[6], mux coverage [3] and control registers [3] as the entities to monitor. The coverage
should feed back into the next round of input mutations to make it targeted. If a mutation
to the input increases the coverage, it is kept. If not, the mutation is reversed from the
input set.

3. A way to indicate failure. For software this is generally a crash, but in hardware this can
be difficult to detect. Hardware doesn’t crash, but it “fails” in many ways. It can lock up,
output incorrect results, leak secret data or error in many other undesirable ways. There
have been a couple of ways to monitor for “failures.” The first method is to use
assertions. These are used in many methods of digital verification. The other, and more
preferred method is to compare the test results to a golden reference model. This is
called differential fuzzing. Often this is an ISA emulator that was built to verify the
processor design. Another method to get a golden reference is to use a formally verified
state machine. Both methods can be used. If the design engineer put assertions in the
design during the implementation, these can be used to detect a certain set of know
failures while the golden model can catch the corner cases. A final method is to use an
information flow tracking tool such as Cycuity’s Radix [2] detect information leakage.

One challenge in hardware fuzzing that doesn’t exist in software fuzzing is interfacing software
to hardware. Fuzzers are currently written in software and fuzzing techniques have become
incredibly advanced in the software verification domain. They support many coverage metrics,
and they are highly efficient at testing software implementations. With a lack of fuzzer
implementations in the hardware space, we needed to rely on works previously developed for the
software world. This allowed us to take advantage of the long history of fuzzing research and
optimizations, but it increased the complexity of the testing process—testing no longer remained
solely in the hardware simulation domain. Using an existing software based fuzzer requires a
way to move date between the software and RTL simulator or emulation. This is generally
accomplished using the direct programming interface (DPI) available in SystemVerilog. The
SystemVerilog DPI is basically an interface between SystemVerilog and a foreign programming
language, in particular the C language. It allows the designer to easily call C functions from
SystemVerilog and to export SystemVerilog functions, so that they can be called from C.

There are three ways researchers have proposed to fuzz the RTL.

1. Convert the RTL to software using something like Verilator [7]. This has limitations on
the type of RTL that can be converted (i.e., only synthesizable). This means that
assertions traditional RTL testbenches cannot be used. The upside of converting the RTL
to software is that it can then be driven with software. This is helpful as it is much easier
to code the mutation, and coverage logic in software. Additionally, it runs faster than
traditional RTL simulation.

2. Run in a simulator [3]. The benefit of using a simulator such as Modelsim is that this
toolchain is very familiar to RTL designers. It also supports assertions and complex test
infrastructure, even if it isn’t synthesizable. The downside is that it runs many orders of
magnitudes slower than hardware.

3. Run in prototyping hardware such as a FPGA [10]. This has the benefit of faster
execution. Unfortunately, the limitations make it not feasible for fuzzing. The lack of
visibility makes calculating coverage impossible and it is difficult to detect failures at a
fine grain.

We propose a solution that takes advantage of both the software and the simulation solution. We
have access to a Siemens Strato Veloce Emulator. This computer can accelerate RTL
simulations up to 1000x. It also supports all the advanced verification techniques such as
assertions. To support software input we will use some previous work our group did with the
direct programming interface (DPI). DPI allows C programs to control SystemVerilog
testbenches.

Information Flow Tracking
Information flow tracking (IFT) [1] is a dynamic RTL verification technique that is especially
well suited at detecting confidentiality and integrity failures in RTL digital designs. IFT tools
are designed to track data as it flows around a design. It achieves this by tagging instances of
data and tracks where it flows throughout execution. For security use cases, the data is generally
a secure asset such as an encryption key. During execution, if the “tainted” data ever reaches a
location that has been deemed insecure, a failure results. The taint is preserved through any
transformation of the data, so even if the secure data is combined with other data, the result is
also tainted. This guards against simple reverse engineering of the secret data. The tool also
allows for exceptions to the rules. For example, during encryption operations, the key will taint
the resulting cyphertext. Since it is known that the encryption operation is secure, this path can
be excluded. The leading commercial IFT is a tool called Radix from Cycuity.
Figure 2 shows and example of a scenario where IFT can be used to secure a design. In this
design, there is a key that should be kept secret. For confidentiality, an external attacker should
not be able to read the key in debug mode. Additionally, for integrity, the attacker should also
not be able to overwrite or modify the key.

Figure 2. Example of IFT tracking a security key to verify it can not be accesses by an external
attacker.

The steps to use the Radix tool is outlined below.
1. Define the security requirements.

• Secure Asset – efuse key
• Objective – no access allowed
• Attack Surface/Boundary – ports on device (JTAG, UART, SPI, etc)
• Conditions where security policy would be relevant – debug mode

2. Write out the security requirements.
• “The efuse key cannot be accessed via JTAG when the DUT (device under

test) is in debug mode”
3. Write down Radix rules in the rule syntax.

• Confidentiality: dut.secure_efuse.key =/=> dut.jtag.$all_outputs
unless(dut.debug_mode == 0)

• Integrity: dut.jtag.$all_inputs when (dut.debug_mode == 1) =/=>
dut.secure_efuse.key

Note that the only required step in this flow is to write the Radix rules. The preceding steps are
done to help define the security rules and ideally are a part of the device security plans or
requirements. The confidentiality rule in this test checks that the key that is in the secure_efuse
module shall not flow to any of the outputs in the jtag module unless debug_mode equals “0”.
The integrity rule can be interpreted in a similar manner.
After the security rules are written, they are compiled into the design as a security monitor. The
security monitor tracks the simulation or emulation and signifies a pass/fail of each rule. It also
shows how the violation occurred via a graphical trace of the taint.
Like all dynamic RTL verification tools, IFT performs only as well as the input test vectors it is
supplied with. This makes it a good candidate to apply fuzzing to. Additionally, the IFT tool
defines the failure modes in the security rules and coverage is easier to define then in generic

RTL verification. For these reasons, we chose to target IFT for our initial hardware fuzzing
effort.
Coverage in IFT is a much smaller problem to solve then in general RTL verification. The only
signals that are of concern in the design are signal that the secure asset can possibly connect to.
Of course, signals that can be read by the processor can in theory connect to most of the rest of
the design, but in practice secure assets, such as encryption keys, are restricted to isolated areas
for security reasons. Additionally, there is generally a security boundary that enforces the
security of the asset. This can be the output of a module or a multiplexor. The security
boundary is the coverage that matters in IFT.

The graphic in Figure 3 illustrates how coverage is calculated in IFT. The RTL can be statically
analyzed to identify all the signals the source can “taint” (shown in purple) on the way to the
destination. The vertical line indicates the security boundary that is designed to be the boundary
of where the secret is controlled. The nodules on the boundary line indicate the possible
connections at the boundary. Therefore, good coverage would be when all the nodes are tainted.
It is also possible that some of the nodes cannot be tainted (yellow area) because flow control
does not allow the source to travel there. In this illustration, it would be a failure for the
“tainted” data to reach the purple area.

Figure 3. Coverage diagram for IFT.

Figure 4 shows an example of the RTL and schematic of a security boundary. In this example, the case
statement is turned into a multiplexor. The signal data_in_f1 is the secure asset in this case. The
multiplexor mux_2 is where the secure mode is controlled but all the data is controlled at the
wide_select_3_6 multiplexor so this is where secure boundary is set, and the coverage is monitored.
The secure mode signal should also added to the coverage metrics since that is what controls the secure
mode.

Figure 4. Schematic and RTL view of a boundary. In this circuit, the wide_select_3_6 multiplexor is
the security boundary. Note that mux_2 controls secure mode, but the data arrives via
wide_select_3_6 multiplexor.

Our approach
There are four main components to the developed fuzzing process:

1. The AFL++ fuzzer process mutates inputs and executes the target program.
2. The AFL++ target program takes inputs from fuzzer process, drives HW simulation, and

passes results back to fuzzer process.
3. The hardware simulation takes inputs from target program and executes the DUT.
4. The simulation tracks coverage and violations in the DUT and sends them back to the

target program.

The AFL++ fuzzer process will exist for the lifetime of the testing procedure. This is what uses
the coverage and violation feedback to make an informed decision on which inputs made

meaningful progress in verifying the design under test. Additionally, this fuzzer process is also
responsible for mutating the inputs to be passed to the hardware simulation.
In the (simplified) process of normal AFL++ software verification:

1. The fuzzer process mutates the inputs.
2. The fuzzer process passes the inputs to the target program.
3. The target program is executed with the inputs and tracks coverage.
4. The target program terminates and reports the results back to the fuzzer process.
5. Jump to step 1.

This cycle repeats for the duration of the testing procedure, and each time the target program is
executed, a new process is created. This means the target program has a limited lifetime, unlike
the AFL++ fuzzer process and hardware simulation. To facilitate cooperation between the
hardware simulation and software fuzzer, we needed to develop a new fuzzing protocol which
synchronized the interactions and data transfer between the fuzzer process and the hardware
simulation.
To integrate a software fuzzer with the hardware simulation process, we needed to integrate a
method to measure coverage and security violations and develop an interface where the
simulation and fuzzer could repeatably (in a loop) communicate inputs, coverage and violation
feedback, and functional results. Additionally, this all needed to be done in a synchronized
manner to avoid mangling data due to race conditions between the independent hardware
simulation process and the fuzzer process.
It is important to note that in our implementation of this hardware fuzzer, the persistent AFL++
fuzzer process does not communicate directly with our hardware simulation. That is the
responsibility of the AFL++ target program. AFL++ requires the fuzzer target to be a binary
which has been instrumented for tracking coverage. This is something that cannot be done in the
hardware simulation, so we needed to create a small C program—our AFL++ target—to act as a
bridge between the AFL++ fuzzer process and the hardware simulation.
The solution we developed is depicted in Figure 5.

Figure 5. Architecture of our hardware fuzzing pipeline.

In the (simplified) process for using AFL++ to verify hardware:
1. Hardware simulation begins with the IFT software attached.
2. Hardware simulation initializes the C environment.
3. Hardware simulation waits for input.
4. AFL++ fuzzer process begins.
5. Fuzzer process mutates the inputs.
6. Fuzzer process forks the target program and passes in generated inputs.
7. Target program attaches to the hardware simulation through DPI interface.
8. Target program drives the inputs to the hardware simulation.
9. Target program computes expected functional output while waiting for response from

hardware simulation.
10. Hardware simulation passes generated outputs, coverage metrics, and violation status to

the target program.
11. Target program passes coverage metrics to the fuzzer process.
12. Target program compares the generated outputs to the expected.
13. Target program reports error/violation status to the fuzzer process.
14. If fuzzing not complete, jump to step 5, else continue to 15.
15. Hardware simulation de-initializes C environment.
16. Hardware simulation terminates.

Steps 5 to 13 repeat in a cycle until the testing procedure is complete.
The entire time this is running, the Radix tooling (our IFT software) is diligently tracking the
hardware simulation and generating the coverage metrics and security property violation status.
The hardware simulation then reports this information to the fuzzer target and it is passed
through back to the fuzzer process. The IFT tooling only interacts with the hardware simulation,

then the hardware simulation is responsible for reporting the coverage results back to the fuzzer.
The Radix tool does not have any direct interaction with the fuzzer process or fuzzer target.
To start the fuzzing process, the hardware simulation, through DPI calls, initializes the C runtime
environment. It creates a shared memory region, which the fuzzer target can attach to in order to
transfer data between the simulation and the fuzzer target in a synchronized manner. The shared
memory region holds mutexes, condition variables, status codes, and data structures that
accommodate the transfer of data to and from the device under test. It is important the hardware
simulation be the maintainer of this C runtime environment, because the fuzzer target has a
limited lifetime.
After the C runtime is initialized, the SystemVerilog testbench, in a loop, performs the following
actions:

1. Retrieve test inputs from shared memory.
2. Perform the test.
3. Write results into shared memory.
4. Signal to the target program that computation is complete, and results are available.

The target program is responsible for passing generated inputs from the fuzzer process to the
simulation. In the current state of the project, the target program is responsible for generating the
test inputs which it then passes to the simulation. This will be the case until the fuzzer is fully
integrated. When executed, the target program obtains the mutex for the shared memory,
randomly generates test data and maps that data into the shared memory region, then signals that
data has been committed. To retrieve the test inputs, the SystemVerilog testbench obtains the
mutex for the shared memory, then conditionally waits (releasing the mutex) until the target
program signals that data has been committed to the shared memory region. It is important that
the simulation is started before the fuzzer to mitigate an initial race condition here.
At this point, the simulation is executing and tracking information flows with the provided
inputs. At the same time, the target program is responsible for generating expected results. In the
example scenario we have developed, these expected results are obtained from a C
implementation of the AES algorithm. These expected results should only pertain to the
functional performance of the design.
Once the simulation is complete, the simulation obtains the mutex for the shared memory region,
writes the computed results into the shared memory, and signals the target program that
processing is complete. The target program conditionally waits for the processing complete
signal and reads the results of the simulation process (functional, IFT violation status, and
coverage results). The target program then compares the expected and actual functional results
and notifies the fuzzer of the status of this comparison. The target program also passes along the
IFT violation status and coverage results to the fuzzer.

The fuzzer; having access to the functional, coverage, and IFT violation status results; takes the
information it receives and 1) updates its global coverage metrics, 2) reports any IFT violations
or functional errors to the designer, and 3) computes the next mutation for the fuzzer to pass to
the target program so that the simulation process may continue.

RESULTS AND DISCUSSION:

The current implementation of our hardware fuzzing approach has achieved a significant portion
of the project targets. We have demonstrated that the hardware simulation process, using
commercially available tools, can be designed an instrumented in such a way that 1) we can have
a software-based program driving the inputs to the simulation, 2) the simulation can be
implemented to have repeating, synchronized interaction with the software program (a
requirement for fuzzing), 3) information flow tracking tools can serve as an alternative for an
Operating System when it comes to capturing “violations” in a design, and 4) using coverage-
based fuzzers is a viable alternative to existing constrained random verification techniques. This
last point is assessable from a cumulation of points 1-3.
The code base developed now provides all the necessary interfaces for integration with a
software fuzzing tool. The target program successfully drives the simulation, and the simulation
successfully runs and reports back to the target program the functional results, violation status,
and coverage metrics. These are the only pieces of information which are needed to integrate our
system with a software fuzzing platform. That integration, however, is still a work in progress.
The AFL++ platform has been developed over a period of nearly 10 years, first as an open-
source project backed by Google (then called AFL), and now by a dedicated group of researchers
who continue to add and update features as their own research projects require. It is a highly
complex set of code which will require more effort to fully integrate with our hardware-focused
platform.
Most of the difficulty surrounding the integration of AFL++ is due to its software-focused design
when operating on the existing coverage metrics reporting system. AFL++ has three major
components: 1) the fuzzer platform, 2) the forkserver, and 3) the instrumented compiler. It is
points 2 and 3 which complicate our integration. When utilizing AFL++ to aide in the
verification of a software program, the first step is to compile the target software program with
AFL++’s modified gcc compiler—afl-gcc or afl-g++ for the simple usage of AFL++. This
compiler is responsible for integrating the coverage metric system into the compilation process.
Each basic block in the program (a set of sequential instructions no jump/branch/call instruction
goes into or out of) is injected with additional instructions that update the coverage map which is
used to track the execution path (trace) of a single execution of the target program. Each basic
block is instrumented with the equivalent of the code in Figure 6.

Figure 6. https://aflplus.plus/docs/technical_details/

As the program executes, specific indexes in the coverage map (shared_mem in Figure 6) are
incremented to demonstrate that a specific chain of basic blocks have been reached. The index
that is incremented is computed by: the current basic block’s random ID XORed with the
previously executed basic block’s random ID right shifted by 1. This process allows the fuzzer to
track how many times the provided set of inputs hits a specific sequence of basic blocks (with
some collisions occurring), which allows the fuzzer to determine whether the current inputs are
adequately advancing coverage. This process is depicted in Figure 6.
The approach that AFL++ takes to coverage integration is not feasible in a hardware system,
because this technique requires a sequential process, where hardware is inherently highly
parallelized. So, AFL++’s coverage system must be modified so that the fuzzer and forkserver
processes accept alternate implementations of coverage metrics. And this is the work that is
ongoing.
One of the stated objectives of developing a hardware fuzzing platform is to minimize the degree
of device-specific expertise required to begin the verification process. In an ideal fuzzing system,
one would only need to modify 1) the beginning input corpus for the fuzzer (a few initial test
cases so the fuzzer does not have to guess the structure of the input data), 2) the simulation-to-
target program shared memory interface to accommodate different input and result data
specifications, and 3) the Radix information flow tracking rules which specify what a “violation”
is. With this setup, a verifier would only need to have: an understanding of reliability and
security principles, the port map, and brief interactions with a member of the design team to
begin the fuzzing process.
With the currently available tooling, however, the changes required to begin the verification
process are more complicated. The information flow tracking tool we have utilized is responsible
for tracking both the violation status and the coverage achieved in the design. Defining violation
properties requires an understanding of reliability and security principles for a specific
architecture, and with minimal interaction with a designer, can be tailored to a specific
implementation of an architecture relatively quickly and with no modification to the testbench or
design code. Integrating the coverage tracking mechanism, however, requires a more significant
understanding of the Radix-S tooling and requires potentially significant modifications to the
testbench, depending on how many properties are being tracked at the same time. Ideally, we
could make this a boilerplate process, but this does not currently exist.

ANTICIPATED OUTCOMES AND IMPACTS:

In this work, a software to hardware pipeline was implemented with and IFT tool. Changes to an
existing open source fuzzer were architected and some of the changes were implemented. The
final integration was not completed though.
The next steps complete the whole pipeline are:

1. Completing integration of fuzzer.
a. The easiest path forward is to integrate with AFL++. This may not be the best

long-term solution as AFL++ is designed for software fuzzing and has a lot of
features that are not necessary for this application.

2. Automating coverage metric extraction.
a. Currently, finding the security boundary is a manual process. It may be possible

to automate this process through static analysis of the design and security rules.
3. There are some optimizations that could be performed on the DPI interface to improve

the performance.
a. There is some work required to make the DPI more generic. The current

implementation has mid-level integrations for the current design, so a new design
would need to strip components out before useable for other designs.

b. To track coverage for a 32-bit register requires a significant amount of memory
(2^32 bits: 512MB). Current integration tracks coverage in 8-bit register chunks
because of significantly lower memory requirements (4 x 2^8 bits: 128B for a 32-
bit value). Are there techniques that could improve memory performance?

Finally, to get the performance required for a reasonable throughput of test vectors, the
simulation of RTL needs to be migrated to an emulator. This has its own challenges. An
emulator is essentially a custom accelerator for RTL simulation. Like all other compute
accelerators, the best performance gains are achieved when the traffic between the software and
the accelerator is minimized, and the accelerator can compute for long periods of time without
software intervention. The current fuzzing pipeline is not architected in this manner. The time
taken to move failure, coverage and mutated inputs back and forth would require the emulator to
stall. This would likely reduce most of the possible gains of fuzzing on the emulator. There are
a few solutions that we will be investigating. The first possible solution is to make sure each
“batch” job of test vectors is large enough to dominate the overall compute time. Another option
is to speculatively execute mutations before the coverage results are received. This way, the next
set of inputs would be ready for execution immediately after the completion of another.
Mutations that did not result in increased coverage would need to be rolled back on future
iterations of the fuzzer. A more radical approach would be to implement the fuzzer in the RTL
testbench. In the emulator, the testbench can run on the emulator. This would eliminate the need
to send data back and forth from software.

One shortcut that this work took to get a pipeline working was using a simple DUT that had
simple inputs that required little synchronization. One challenge in fuzzing large digital systems
is the need for synchronization on many different inputs. For example, a large SOC will require
inputs for software as well as inputs from the many peripherals to properly verify the system.
There has been a lot of debate if this is possible in a fuzzing solution. While this may be solved
by future research in the community, it is unlikely to be a scalable solution. For critical
components of DAHCs, fuzzing may a good solution though. DAHCs requires another level of
vigor for verification and components such as encryption cores would require extra scrutiny.
Tools like fuzzing and IFT can be an integral part of the verification process for systems as such.

CONCLUSION:

Hardware fuzzing has a lot of promise but also a lot of hurdles to become a viable and scalable
verification technique as it has been in the software community. In this work we demonstrated
that a software to hardware pipeline to facilitate fuzzing is possible and we outline the steps to
integrate an open source fuzzing into this pipeline. Finally, we proposed methods to achieve the
necessary speedups required by using an emulator. This work has laid the foundation for future
work in using hardware fuzzing to rigorously validate RTL for digital components in DAHCS.

REFERENCES:
[1] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood and R. Kastner, "Theoretical analysis of gate level
information flow tracking," Design Automation Conference, Anaheim, CA, 2010, pp. 244-247.

[2] https://cycuity.com/solutions/.

[3] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim and B. Lee, "DifuzzRTL, “Differential Fuzz Testing to Find CPU
Bugs”, 2021 IEEE Symposium on Security and Privacy (SP)”, San Francisco, CA, 2021 pp. 1286-1303.

[4] Timothy Trippel and Kang G. Shin and Alex Chernyakhovsky and Garret Kelly and Dominic Rizzo and
Matthew Hicks, “Fuzzing Hardware Like Software”, 31st USENIX Security Symposium, Boston, MA, 2022, pp.
3237-3254.

[5] W. Fu, O. Arias, Y. Jin and X. Guo, "Fuzzing Hardware: Faith or Reality? Invited Paper, "2021 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH), AB, Canada, 2021, pp. 1-6.

[6] H. Siemen, J. Lienke and G. Gläser, "Hot Fuzz: Assisting verification by fuzz testing microelectronic hardware,"
2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to
Circuit Design (SMACD), Funchal, Portugal, 2023, pp. 1-4.

[7] T. Tripple, K. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo and M. Hicks, “Fuzzing Hardware Like Software,”
Proceedings of the 31st USENIX Security Symposium, 2022, Boston, MA, pp. 3237-3254.

[8] https://sandialabs.sharepoint.com/sites/DAHCS/SitePages/FY24-Late-Start-LDRD-Call.aspx.

[9] https://aflplus.plus/

[10] K. Laeufer, J. Koenig, et al. “RFUZZ: Coverage-directed Fuzz Testing of RTL on FPGAs,” IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), San Diego, CA, 2018, pp. 1–8, 2018.

https://sandialabs.sharepoint.com/sites/DAHCS/SitePages/FY24-Late-Start-LDRD-Call.aspx
https://aflplus.plus/

