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ABSTRACT

Climate impacts have broad economic, health, political, and national security ramifications. So-
cietally relevant impacts are typically farther downstream, are the product of multiple interacting
processes, and can arise over small regions and timeframes because their sources are short-term and
localized. Short-term forcings (as can be seen in volcanic eruptions, climatic tipping points (e.g.,
the collapse of rainforests or the disappearance of sea ice), or in increasingly plausible climate
interventions) fundamentally possess low signal-to-noise and could benefit from accounting for
the multiple conditional processes through which a downstream impact arises. Under the Grand
Challenge LDRD CLDERA (CLimate impacts: Discovering Etiology thRough pAthways), we
have developed tools to enable downstream impact attribution from geographically and temporally
localized source forcings in the climate. CLDERA developed methods that can distinguish how a
localized source drives the climate system to respond with particular impacts. The how is embodied
in pathways — the spatio-temporally evolving chain of physical processes that connects a source to
a series of increasingly distant impacts. Novel analytic methods in pursuit of downstream impact
attribution were developed and demonstrated on simulations and observations of the 1991 eruption
of Mt. Pinatubo in the Philippines. As described within this report we have

* developed stratospheric expertise and aerosol modeling capabilities in E3SM,
* created original methods to detect and model pathways from source-to-impact, and
* advanced climate attribution through novel methods, cases, and approaches.

Further, CLDERA developed a tiered verification process consisting of controlled datasets to pro-
totype, verify, and refine the original method development. CLDERA increased Sandia’s footprint
in the climate analytics community and developed new climate collaborations whilst also creating
a cadre of climate analysts at Sandia. The products from CLDERA have been extensive with a
total of 9 journal articles published, 12 articles submitted and under review, and an additional 8
articles in preparation'. We have produced 1750 simulated years> and developed 9 code-bases.
This report details these accomplishments and serves as a summary of the work completed during
the CLDERA Grand Challenge.

Recommended Citation:

Diana Bull, Kara Peterson, Lyndsay Shand, Laura Swiler, Irina Tezaur, Ben K. Cook, Andrew Salinger, Clare Amann,
Bernadette Watts, Rob Leland, Luca Bertagna, Hunter Brown, Meredith Brown, Mauricio Campos, Max Carlson,
Kenny Chowdhary, Joseph Crockett, Warren Davis, Thomas Ehrmann, Robert Garrett, Katherine Goode, Mamikon
Gulian, Carole Hall, Graham Harper, Joseph Hart, James Hickey, Benjamin Hillman, Brent Houchens, Jose Gabriel
Huerta, Daniel Krofcheck, Justin Li, Indu Manickam, Kellie McClernon, Audrey McCombs, Jeffrey Nichol, Matthew
Peterson, Daniel Ries, Mark A. Smith, Andrea Staid, Andrew Steyer, James Derek Tucker, Benjamin Wagman, Jerry
Watkins, Christopher Wentland, Everett Wenzel, Robert Michael Weylandt, Andrew Yarger, Christiane Jablonowski,
Joseph Hollowed, Xiaohong Liu, Allen Hu, Bo Li, Sam Shi-Jun, Konstantinos Tsigaridis, Ram Singh, and Kate
Marvel. “CLimate impact: Determining Etiology through Pathways (CLDERA).” Technical Report. SAND2024-
XXX. September 2024, Sandia National Laboratories, Albuquerque NM.

LOur website https://www.sandia.gov/cldera/ will continue to be updated with publication information

2Data from the full E3SMv2-SPA simulation campaign including pre-industrial control, historical, and Mt. Pinatubo
ensembles will be hosted at Sandia National Laboratories with location and download instructions announced on
https://www.sandia.gov/cldera/e3sm-simulations-data/ when available.
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ACRONYMS & DEFINITIONS

ACC Anthropogenic Climate Change

AOA Age of Air tracer

AOD Aerosol Optical Depth
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BDC Brewer-Dobson circulation

BURDENSO04 Vertically integrated SO4 concentration (sulfate aerosols)

CaStLe Causal Space-Time Stencil Learning

CLDERA CLimate impacts: Discovering Etiology thRough pAthways Grand Challenge LDRD
CT CLDERA-Tools, available at https://github.com/sandialabs/cldera-tools
DAG Directed Acyclic Graph

DLM Dynamic Linear Model

EAST Explicit Aerosol Source Tagging
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E3SM Energy Exascale Earth System Model
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ENSO EI Nifio Southern Oscillation
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GHG Greenhouse Gas
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IPCC Intergovernmental Panel on Climate Change

ISML In-Situ Machine Learning for Intelligent Data Capture
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NLP Natural Language Processing

NOAA National Oceanic and Atmospheric Administration
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1. INTRODUCTION

Climate impacts have broad economic [ 166, 20], health [104], political [200], and national security
ramifications [120]. Beyond advancing science, discovery and quantification of the impact’s source
are needed to guide policy decisions that may ameliorate or establish liability for undesirable
impacts, as well as guide U.S. national security posture for impacts that may require response.
However, in highly coupled complex nonlinear systems, like the Earth’s climate, traditional un-
derstanding of causal relationships does not apply and many drivers may contribute to a detected
change or impact.

Detection establishes that a change has occurred while attribution ascribes a source as the cause
of that change [70]. Starting with assessment report 1 in 1990 [1], detection and attribution (DA)
has been a 30-year focus for the International Panel on Climate Change (IPCC). Much progress has
been made in climate change attribution that strives to identify impacts of long-term anthropogenic
climate change (ACC) through greenhouse gas emissions. The methods have addressed three
classes of attribution [18]: (i) attribution of changes in climate state variables to anthropogenic
activity (e.g., global mean temperature); (ii) assigning relative responsibility to different sectors,
activities, and entities that contribute emissions; and (iii) evaluation of the relative frequency and
severity of extreme events due to climate change. These attribution methods have two common
limiting characteristics. First, they require long-term records to identify a signal strength above
natural variability; in effect they assume the only causal factors are independent and include only
internal variability and the external forcing (e.g. ACC or solar radiation modification (SRM)).
Second, attribution requires positing source-impact pairs (as done in (i) and (ii)) that can only
notionally, not quantitatively, link a source through a series of cascading impacts (as done in (iii)
and sometimes (i)). By limiting evaluation to a single source-impact pair, these studies necessarily
exclude other important quantities which could increase certainty in attribution.

These characteristics make current attribution methods unsuitable for signals that are mired with
high variability like societally relevant impacts which are typically farther downstream or impacts
arising over small regions and timeframes because their sources are short-term and localized.
Downstream impacts like droughts, flooding, or crop yields are the product of multiple interacting
processes, and thus may require conditional attribution techniques to be successful (i.e. violating
both of the characteristics highlighted above). Short-term forcings (as can be seen in volcanic
eruptions, climatic tipping points (e.g., the collapse of rainforests or the disappearance of sea ice),
or in increasingly plausible climate interventions like SRM) fundamentally possess low signal-to-
noise and could benefit from accounting for the multiple conditional processes through which a
downstream impact arises.

The goal of CLDERA is to enable conditional attribution in the climate by developing quantitative
relationships (through multiple variables over space and time) between a climate forcing and its
downstream impacts.
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1.1. Approach

A primary focus of CLDERA is to develop methods that can distinguish Zow a localized source
drives the climate system to respond with particular impacts. The how is embodied in pathways
— the spatio-temporally evolving chain of physical processes that connects a source to a series of
increasingly distant impacts. Pathways combine evidence from multiple processes (or quantities
of interest) to strengthen connection between source and impact. The causal nature of these
relationships can be explored by employing the epidemiological framing present in the Bradford
Hill Criteria [74]: evaluating the sensitivity of response to source size, establishing the consistency
of the impact across scale and subject to mediators, and through demonstration that the impact is
specific to the source (i.e. through evaluation of other variables). With knowledge of pathways,
specific methods to then attribute the magnitude of source forcing to the detected impacts were
possible.

Novel analytic tools were developed and demonstrated on simulations and observations of the 1991
eruption of Mt. Pinatubo in the Philippines. Considered the 20th century’s second-largest volcanic
eruption [122], this event caused global climatic impacts, including decreases in near-surface
temperatures [132, 167], lower stratospheric temperature increases [93], precipitation [49, 179, 60,
7], and global sea-level [25], as well as increases in cirrus cloud cover [100, 197] and diffusivity
of incoming radiation [147, 140]. CLDERA focused on the surface and stratospheric temperature
impacts as well as on impacts to agricultural productivity.

CLDERA tailored the US DOE’s flagship Earth System Model (ESM), the Energy Exascale
Earth System Model (E3SM) [55], to simulate the chemical and microphysical evolution of the
volcanically erupted sulfur-dioxide gas into sulfate aerosols in the stratosphere [13]. Ensemble
analyses were used to evaluate the susceptibility of a pathway to initial conditions. Results from the
simulation campaign are presented in Section 3. Much research was performed under CLDERA
to advance the scientific understanding of stratospheric processes within E3SM and to evaluate the
effects of Mt. Pinatubo debated and further downstream impacts as presented in Chapter 7.

This simulation output and observations from the eruption were used to develop computational
analysis tools specifically designed to elucidate and represent pathways between the Mt. Pinatubo
forcing and a series of increasingly distant, but well documented, impacts in the Simulated Pathways
and Observed Pathways Thrusts. This is a source-to-impact forward mapping (light blue or red
cones) as seen in Figure 1-1. A key part of these approaches focused in dimension-reduced
approximations of the system dynamics used to deepen understanding of causal relationships.
The Simulated Pathway results are presented in Chapter 4 and the Observed Pathway results are
presented in Chapter 5.

The Attribution Thrust is retrospective by design, looking to ascribe the experienced impact to a
source magnitude. This is the impact-to-source inverse direction (green cone) as seen in Figure 1-1.
The Attribution Thrust results are presented in Chapter 6.

Table 1-1 provides a summary description of the various methods developed in CLDERA for
pathway identification and verification, detection of significant changes, and attribution of those
changes. These methods are described in more detail throughout this report, especially in Chap-
ters 4, 5, and 6.
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Simulated Pathways

SOURCE FORCINGS IN THE CLIMATE
S3I2YNOS INOY4 ONISIHY SLIVdINI

Figure 1-1. Representation of pathways (connective lines) from source to impacts with
process-nodes shown as diamonds. Simulated and observed pathways will be traced to impacts
(left to right); resulting data will then be used to attribute impacts back to the source (right to left).

Method in CLDERA Brief description

Random Forest Regression
(RFR)

Clustering

Multivariate Mining

Profiling

Echo State Network (ESN)

Dynamic Linear Model (DLN)

Space-Time Changepoint
Detection

Functional Changepoint
Detection

Data Fusion
Inverse Optimization

Causal Discovery

Multistep Conditional
Attribution

Generate feature pathway networks using RFR feature importance analysis

Detect changes by finding & tracking non-stationary variable clusters

Identify pathways by mining frequent multivariate cluster evolutions and extracting meaningful
sequences of events.

Dynamically detect and trace pathways through the E3SM software as the software executes (in
situ)

Quantify variable relationships and their evolution in time and space, as captured by a black-box
machine learning model (ESN)

Characterize multivariate relationships in terms of correlations which are allowed to vary across
space and time.

Detect changepoint in climate data over time and space as a function of distance from an event.

Detect changepoint in climate data from functional measurements over time and space.

Fuse data taken at different spatial and temporal resolutions.
Identify source characteristics given observations of downstream impacts

build a network that represents a system’s spatiotemporal causal dynamics

Identify fingerprints (features) and a multi-step approach which can detect and attribute
downstream (noisy) impacts from localized source forcings

Simulated Pathways

Simulated Pathways

Simulated Pathways

Simulated Pathways

Observed Pathways

Observed Pathways

Observed Pathways

Observed Pathways

Observed Pathways
Attribution
Attribution

Attribution

Table 1-1. Overview of methods developed and investigated under the CLDERA project.

Method robustness is central to CLDERA’s design and at the urging of our advisory boards (Internal
and External), CLDERA implemented a tiered verification approach. We generated verification
datasets with known and controlled patterns to quantitatively evaluate the efficacy of the data
analytic solutions. Synthetic datasets such as these can be used as a basis for quantitatively
evaluating methods which attempt to extract spatial and temporal patterns. Tiered verification,
which uses benchmark datasets of increasing complexity, was used by a variety of CLDERA
methods to identify and address weaknesses where appropriate, and provide quantitative evaluation
of the method accuracy before being applied on fully coupled ESM simulations. Synthetic and
idealized formulations have been constructed to test the accuracy and robustness of the tools
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before graduating and proving their capabilities on fully complex Mt. Pinatubo pathways. Tiered
verification will be discussed in Chapter 2.

1.2. Outcomes

We highlight important outcomes from CLDERA:

* CLDERA enabled multi-step attribution in the climate through development of new methods
that quantitatively assess pathways between a climate forcing and its downstream impacts.

* Under CLDERA, we developed a stratospheric prognostic aerosol capability in E3SM (v2-
SPA) which allows for evolution of volcanic aerosols and tagging and diagnostics of various
types of aerosols (volcanic, anthropogenic, etc.)

* We performed a massive E3SMv2-SPA simulation campaign, generating 400+ TB of data
encompassing source magnitude varying ensembles representing 1750 simulated years'.

* 7 0f 9 code-bases have been copyrighted and released with the remaining two under copyright
assertion.

* CLDERA increased Sandia’s footprint in the climate analytics community and developed
new climate collaborations.

* CLDERA created a cadre of climate analysts, with a team of more than 40 Sandians working
across three divisions and four universities. This represented significant workforce develop-
ment, as many of the CLDERA team had not worked in climate science previously.

* CLDERA developed a tiered verification process that can be utilized in other domains.
Simplified and controlled data sets were developed with key characteristics of the multi-step
pathways. These datasets were used to prototype, verify, and refine the CLDERA methods.

» As of the time of publication of this report, we have published 9 journal articles, submitted
12 articles which are under review, and are preparing an additional 8 articles?. Additionally,
CLDERA staff have given 79 conference presentations and posters and 17 invited talks.

CLDERA has advanced climate attribution science by identifying impacts from localized sources
and demonstrating current limits of attribution with respect to noisy downstream impacts. Further,
this work has developed state-of-the-art machine learning, reduced order modeling, and statistical
tools to elucidate and represent pathways, which are a foundational means for understanding
dependent causal-like relationships in many complex nonlinear systems.

New methods and tools developed through CLDERA offer a framework that can be translated to
other localized or episodic sources such as large wildfires, changes to ocean currents (e.g., Atlantic
Meridional Overturning Circulation), or climate interventions (e.g., stratospheric aerosol injection).

'Data from the full E3SMv2-SPA simulation campaign including pre-industrial control, historical, and Mt. Pinatubo
ensembles will be hosted at Sandia National Laboratories with location and download instructions announced on
https://www.sandia.gov/cldera/e3sm-simulations-data/ when available.

20ur website https://www.sandia.gov/cldera/ will continue to be updated with publication information
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The CLDERA methods could also be extended to understand and attribute impacts from tipping
points in the climate system.

With these new capabilities, Sandia will be able to:

* Advance climate science. This includes expanding the work from volcanic eruption impacts
to new problem sets (e.g., impacts from tipping points). It also includes improving the
predictive capabilities of ESMs using machine learning tools to formalize pathways and
cross-validate observational and simulation pathways.

* Analyze climate impacts. CLDERA methods support detection and attribution of impacts.
These tools can help advance the knowledge of the magnitude, timing, and location of ensuing
impacts, including an understanding of the minimum source magnitude necessary to identify
impacts.

* Motivate sound climate actions. CLDERA methods can provide decision support using
ESMs, potentially helping inform policies, agreements, regulations, and treaties. They could
also be used to help develop requirements for monitoring and measurement systems.
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2. TIERED VERIFICATION

The novel methods investigated in CLDERA are at the interface of statistics, machine learning,
and data science. These data analytic methods are a new area for much of the climate modeling
community with interpretability and explainability challenges. The large-scale spatio-temporal
climate data will challenge the capabilities of these data analytic methods.

A key framework to quantitatively assess performance of Earth System Models, ESMs, is the Model
Intercomparison Projects, MIPs, for which simulation and output design are specified ensuring
that spread in outcome between models is due to the characteristics of the models themselves.
The MIPs enable quantitative inter-model assessment of performance by standardizing simulation
inputs/design and outputs. They also serve to direct and focus refinements of models assumptions,
forcing response, parameterizations, and biases to achieve better model performance.

Just as ESMs embed key assumptions, have tunable parameterizations, and possess biases, so too
do many of the advanced tools used on climate datasets. MIPs play an important role for climate
models: they help climate modelers understand and expose issues relating to the key assumptions,
tunable parameterizations, and model biases. In a similar fashion, we argue that benchmark datasets
be developed to test the advanced spatiotemporal statistical and ML methods being developed for
climate datasets. For example, the most common technique used to identify natural modes in the
climate, PCA, has been shown to only be effective for one dominant mode [39]. [107] showed the
most common explainability technique for neural networks (gradient or smooth gradient methods)
failed when applied to an attribution benchmark dataset. [154] created a causality benchmark
platform in which the causal structure is known with high confidence to deepen trust in method
performance.

Advanced analytic techniques are increasingly applied to extract spatial and temporal patterns from
climate datasets. Traditional pattern identification techniques, like principal component analysis
mentioned above, also struggle with climate datasets, requiring preprocessing to obtain interpretable
patterns. Data analytic methods require significant expertise to produce interpretable results, in
part because there is a lack of canonical datasets with known structure and dynamics of increasing
realism and fidelity to test their efficacy.

In the first year of CLDERA, we recognized the need to develop a set of verification datasets
for which patterns can be controlled such that the efficacy of the methods can be quantitatively
evaluated. We set up a process to test the CLDERA methods on benchmark datasets of increasing
complexity, starting with relatively simple datasets with known relationships between variables
and working up the verification hierarchy to datasets of increasing complexity and realism. This
process is called “tiered verification.” The tiers for CLDERA are explained in Figure 2-1.
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TIER 4
Debated climate impacts

from Pinatubo

TIER 3

ATemperature i
(Strat. Vs. Surface) FY23-FY24

Pinatubo P1

FY22-FY23

TIER 1 FY22

Synthetic Tests

TIERED VERIFICATION: CONTROLLING PATTERNS
IN INCREASINGLY COMPLEX DATASETS

Figure 2-1. Representation of the levels of increasing complexity on which CLDERA methods were
demonstrated. The base tier, Tier 1, was designed to test the sensitivity of the methods and enable
proof-of-concept in operation. Tier 2 looked to establish the viability of the methods through an
idealized yet realistic representation of the eruption. Tier 3 was designed to prove the usefulness
of the methods through application on the fully coupled system. Finally insight can be achieved in
Tier 4 with application of the methods on more noisy, downstream, debated impacts.

28



CLDERA developed simplified and controlled data sets to support tiered verification of the
CLDERA methods, as shown in Figure 2-1, with key characteristics of the multi-step attribu-
tion problem to refine methods, explore sensitivities, establish viability, and prove usefulness of
advanced methods. One advantage of a simpler problem is to understand why a solution may
be wrong or right. Each tier offers something new towards the goal. Verification is designed to
demonstrate capability and lower the risk of using advanced analytic methodologies (which have not
usually been tested extensively on geospatial data) for more complex problems. Our efforts toward
producing verification benchmarks are a first step. As the climate community increasingly relies
on advanced statistical inference and machine learning approaches, it is critical to develop common
testbeds with large numbers of benchmarks and synthetic datasets which can be widely shared and
used to understand the accuracy of the inferences about spatial patterns and relationships.

A brief description of each Tier level is given below.

2.1. Tier 1: Synthetic

The purpose of Tier 1 is to establish proof-of-concept for the various methods developed un-
der CLDERA. Synthetic datasets were used to: build methodological components, identify per-
formance characteristics of methods, test sensitivity of the methods, compare and contrast the
CLDERA approaches with state-of-the-art approaches, and highlight tradeoffs between methods.

In particular, for the inverse optimization and functional changepoint methods, CLDERA needed to
build the methdological components and ensure that they performed properly. The dynamic linear
model used synthetic data to test dimension reduction performance, and random forest regression
used Tier 1 to verify the role of intermediate steps. The CaStLe approach used synthetic datasets
for comparison with a state-of-the-art causal algorithm, and echo state neworks used Tier 1 dataset
to select between explainable/interpretable approaches and more general approaches which are not
as explainable. Overall, the Tier 1 synthetic datasets provided a helpful learning environment for
the CLDERA team to test out and prove feasibility of the methods. Examples of synthetic datasets
are outlined below.

2.1.1. Coupled Equations

A simple example of a verification problem to exhibit causal dynamics is a set of coupled equations
that show variables related to other variables at previous time points. Such a process is called
an autoregressive model; one with multiple variables as shown in Equation 2.1 is called a Vector
AutoRegressive model (VAR) in statistical terminology. The equations also define a structural
causal model in the terminology of causal dynamics. As a simple example, consider the following

VAR:
Wt = O.9Wt_] + 77}/1/

X; = 0.8X, 1 +0.4W,_ +0.2Z, 3+ ¥
Y, :=0.5Y%_1 +0.2X, 5 + 1"
Z,:=0.6Z,_1 +0.3Y,_ + 117

2.1
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where each n ~ N(0, 1) is b Gaussian noise. These relations form a causal model for simulated
realizations of this process.

The model in Equation 2.1 can easily be extended to include space: the variables W, X, Y, and Z
can have subscripts for both space and time. In this way, stochastic spatial processes with a known
trend and noise structure and known autoregressive relationships can be generated, representing
multivariate series with known relationships over space and time.

Several of the methods developed under CLDERA used VARS equations for the first tier of
verification. A nice example of developing a robust 2-D spatio-temporal data generator is described
in Section 2.1 of [125]. One challenge when creating spatio-temporal data is that it often becomes
non-stationary, but [125] describes a method to generate Gaussian neighborhood dependence
matrices which result in stable spatio-temporal dynamics.

2.1.2. Causal Relationships

Moving up the verification hierarchy, we describe another type of verification problem: canonical
partial differential equations (PDEs). VARs are discrete, linear models, whereas PDEs model
continuous, nonlinear dynamics. One example that was used to verify the CaStLe method is
Burgers’ equation [19], a PDE model of advective and diffusive transport.

We define Burgers’ equation in a 2D space as:

*u  0%u
—_— + —_—
ox2  0y?

Ou +u(a@ +,80—u) =¢(
dy

Py PP )+ f (2.2)

where « and g are advection coeflicients for the x and y directions, respectively, c is the diffusion
coeflicient, and f is a forcing term. This formulation was used to instantiate a Gaussian plume in
the plane, which advects in a specified angle and diffuses at a controlled rate.

Burgers’ equation is a useful benchmark environment because it is used to model a broad class of
physical phenomena, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow.
Any physical phenomena in which a quantity transports and diffuses in space can be modeled with
Burgers’ equation. Demonstrating performance with the model illustrates its applicability to a wide
array of application areas. In CLDERA, CaStLe was used to find the continuous advection angle
from gridded Burgers’ equation simulation data.

2.1.3. Gaussian Plume

Another PDE is the Gaussian plume model, which is commonly used to model advection of a plume.
The Gaussian plume model was developed primarily for verification of the inverse optimization
approach (see Section 6.1 and references therein), but other CLDERA methods used these datasets
for verification as well.

We briefly describe the plume model, to show how it was used to implement key features of the
Mt. Pinatubo plume advection while still remaining somewhat stylized and abstracted.
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The SO, Plume problem is as follows: we consider a model for atmospheric transport of sulfur
dioxide SO; in a rectangular region in space parametrized by longitudinal position x| and altitude
x2. We denote the concentration by u(xy, x2,?) at time . We take Ly, = 200 (km), L,, = 20 (km),
and generate u as the solution to the equations

3
8—?—KAM+V-Vu—Se2-Vu:R(u)+f on Q x [0,T]
Vu-n=0 on 0Q x [0,T]
u=>0 on Q x {0}

where « is the diffusion coefficient,
v = (vi(x1,x2,1),0)

describes the wind, with

2
vl(xl,xz,t) = (1 + 0.1 cos (6101))

6mxq . [4mxy . (TTXD
x (1 +0.2 cos (W) ~0.1sin (W)) (0.25 +3.75sin (—))

20
Se, = (0.5) = |0, S £502 &,
Y ’ ’ 3patmo Cs

describes the effect of the particles falling due to gravity with a terminal speed S, and

the term

R(u) = —yu

is the reaction function modeling chemistry with y being the e-folding time. We generate data
using the forcing term

(e - 5)2)

f(t,x1,x2) = z(t) exp (—100(x1 - 5)2) exp ( T

with forcing amplitude
z(t) = A1 exp (—A21)

to model SO, injection.
Note that the Gaussian plume model specifically includes terms such as the forcing magnitude (size
of the eruption), the atmospheric winds, and the reaction rate of SO, decay. These are key features

we need to identify, model, and account for in the various pathway and attribution methods. This
is why the Gaussian plume model was an important verification problem for CLDERA.

31



2.2. Tier 2: HSW-V

In the second tier, the CLDERA methods were tested and demonstrated on a simplified climate
model (HSW-V, which is described below). Tier 2 involved a different phase of learning: the
HSW-V was used to understand the sensitivity of CLDERA methods to data preparation, identify
issues with windowing and normalization (e.g. for fingerprinting), and explore the use of spatial
dimension reduction methods. Tier 2 led the inverse optimization team to identify that PCA was
insufficient and they pivoted to using radial basis functions (RBFs) for spatial dimension reduction.
For fingerprinting, Tier 2 also led to an understanding of the deficiencies of PCA and exploration
of other features to be used in attribution. For RFR and profiling, Tier 2 highlighted that graph
visualization with regional specificity presented significant visualization barriers.

The Tier 2 datasets also led to methodological developments. For changepoint methods, the HSW-V
datasets pushed the team to develop epidemic changepoint methods (where both the start and end
of a change are detected, not just the start). The HSW-V data was heavily used by the inverse
optimization team to explore advection dynamics with radial basis functions whose locations
progressed in time. The CaStLe method also explored spatial progression with HSW-V, and
algorithms from natural language processing (NLP) [3] were employed within cluster multivariate
mining, via association rule mining, on this data.

Since the HSW-V datasets were still somewhat abstracted, the lack of corresponding observational
data encouraged novel “in silico” model experiments and generation of ensemble methodologies,
especially for echo state networks and fingerprinting. Finally, the lack of a background signal
(confounding background aerosols) was helpful in some methods (e.g. inverse optimization) but
problematic for other methods (multivariate DLM, clustering and multivariate mining). Overall,
Tier 2 provided a necessary and valuable step in the verification hierarchy for method testing and
development.

2.2.1. Held-Suarez-Williamson-volcano

This section describes the Held-Suarez-Williamson-volcano (HSW-V) model configuration devel-
oped and utilized in CLDERA. The HSW-V configuration was run within the fully-coupled E3SM
simulation but is an idealized configuration that is more akin to an “atmosphere only model” with
no land topology and simplified boundary conditions from other components of E3SM. HSW-V
was a critical element of the tiered verification which allowed testing of the statistical and ML tools
for the detection of physical pathways in E3SM. Here we present a summary. The HSW-V model
development is described in detail in [77]:

* Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana
L. Bull, and Joseph L. Hart. “HSW-V v1.0: localized injections of interactive volcanic
aerosols and their climate impacts in a simple general circulation model.” Geoscientific
Model Development, 17, 5913-5938, https://doi.org/10.5194/gmd-17-5913-2024, 2024.

These idealized climate simulations were built upon the so-called Held-Suarez-Williamson [194]
model configuration with added volcanic forcings (called HSW-V, see [77]). Such an idealized
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E3SM configuration with reduced complexity provided a testbed for the CLDERA analysis tools
that were developed by the *Simulated Pathways’, ‘Observed Pathways’, and ‘Attribution’ thrusts.
The idea was to supply a controlled environment for the development and testing phases of some
CLDERA tools before they were applied to complex climate data from coupled E3SM simulations
with added aerosol chemistry.

Our goal was to design simpler E3SMv2 configurations with analytic, tunable, Mt. Pinatubo-like
volcanic eruptions and embedded prescribed physical pathways. This simpler HSW-V setup only
uses the atmospheric component of E3SM at a coarse horizontal resolution with approximately 200
km grid spacing and E3SMv2’s 72 vertical levels, utilizes a flat and dry earth without topography,
does not incorporate an annual cycle, and replaces E3SM’s complex physical parameterization
package with two simple forcing functions. The latter are Rayleigh friction below 700 hPa and
near the model top, as well as a Newtonian temperature relaxation towards a prescribed equilibrium
temperature. These two processes mimic the turbulence in the planetary boundary layer and the
solar radiation, respectively. Applying these forcings enables the model to run over multi-year
time scales while exhibiting a realistic atmospheric circulation [194]. For example, the HSW-V
climate has a realistic temperature distribution, exhibits the typical tropospheric zonal jets in the
midlatitudes, and has polar jets in the stratosphere. However, some aspects of the stratospheric
circulation are not represented, such as the annual cycle, the Quasi-Biennial Oscillation (QBO) in
the tropical stratosphere or Sudden Stratospheric Warmings (SSWs) in the polar regions. While
these processes could be added to the idealized setup, they were not the focus of the idealized
HSW-V configuration.

Our focus was on the inclusion of newly-developed and standalone parameterizations into E3SMv?2
with the Held-Suarez-Williamson (HSW) forcing to simulate an idealized injection, evolution,
and radiative forcing by stratospheric volcanic aerosols. These new parameterizations link aerosol
concentrations to the temperature field directly, and do not depend on the presence of other radiation
or chemistry packages to mediate the forcing effect. Specifically, our implementation injects sulfur
dioxide (SO») and ash with a specified vertical profile into the stratosphere, and makes use of simple
exponential decay functions for their removal. In particular, the e-folding decay times of 25 days
(for SO3) and 24 hours (for ash) were used. In addition, SO, underwent a chemical decay. This
chemical decay of SO, is modeled as a perfect conversion to a long-living sulfate aerosol which
persists in the stratosphere. All three species (SO,, ash and sulfate) are implemented as tracers in
E3SMv2’s model framework and are transported by the dynamical core’s advection algorithm. The
aerosols contribute simultaneously to local heating of the stratosphere and cooling of the surface by
a simple plane-parallel Beer—Lambert law applied on two zonally symmetric radiation broadbands
in the longwave and shortwave ranges. The implementation parameters can be tuned to produce
realistic temperature anomaly signatures of large volcanic events.

The particular implementation for the CLDERA team is shown in [77]. The chosen configuration
demonstrates that the E3SMv2 HSW-V runs mimic the volcanic eruption of Mt. Pinatubo in
1991. The idealized simulations contain a single isolated volcanic event against a statistically
uniform climate, where no background aerosols or other sources of externally forced variability
are present. In addition, ensemble simulations without a Mt. Pinatubo-like volcanic eruption were
conducted. These volcanic-eruption simulations and their no-eruption counterfactuals thereby
provided insight into the impact of the volcanic aerosols on the atmospheric circulation in a
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Figure 2-2. Tracer distributions at the 10 hPa pressure level, 10 days post-eruption. From left to
right are the log-scaled mixing ratios (dimensionless ratio of tracer mass to air mass, in kg/kg) for
volcanic ash, sulfur dioxide, and sulfate aerosol, respectively. Notes below each tracer label is that
tracer’s corresponding removal timescale.

controlled and therefore simpler environment. It made the HSW-V configuration a simpler-to-
understand tool for the development of CLDERA’s climate source-to-impact attribution methods,
and now has been suggested as general modeling strategy for other science teams in [77].

Figures 2-2 and 2-3 demonstrate a single simulation from the HSW-V model. Figure 2-2 shows
the evolution of the volcanic plume over the 10 days following a Pinatubo-like eruption near 15°N
and 120°E. Over this timescale, the volcanic ash has almost entirely been removed, and the SO,
is gradually being converted to a long-living sulfate aerosol. The plume has been transported
halfway around the globe, but has not yet established a zonally-symmetric distribution. Figure
2-3 shows the radiative forcing of the sulfate aerosols over 5 months post-eruption, as well as the
resulting temperature anomalies. The global-mean temperature forcing peaks at approximately
0.35 K/day near 30 hPa during the second month, which drives temperature anomalies of up to 3 K
throughout much of the stratosphere by the fifth month. A more detailed display and discussion of
the tuned temperature response in this model is shown in [77]. Finally, HSW-V runs were generated
with different volcanic forcing magnitudes (e.g. different sizes of Mt. Pinatubo). The ensembles
of varying magnitudes played a critical role in the development of the climate source-to-impact
pathways and the attribution methods in CLDERA.

2.3. Tier 3: Temperature changes from Mt. Pinatubo

Tier 3 involved fully-coupled modeling of the volcano using E3SM’s prognostic aerosol capability,
which is documented in Section 3.1. Tier 3 moved beyond the idealized volcano simulated in HSW-
V to a large-scale, realistic set of simulation ensembles that are described in Chapter 3. The goal
of Tier 3 was to both identify pathways from source (Mt. Pinatubo) to impact (surface temperature
changes or stratosphere temperature changes) and to attribute the temperature changes to the
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Figure 2-3. The global-mean forcing of temperature by volcanic aerosols in HSW-V from 3 hPa to
500 hPa over the first 5 months of evolution. The eruption occurs at day 15. Variables shown are
(top) the aerosol radiative heating rate and (bottom) the temperature anomaly, defined as the
difference between the volcanic simulation and the time-average of a 10-year HSW simulation with
no volcanic forcing.
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magnitude of the volcanic source forcing. Pathways from source to either surface or stratospheric
temperature changes are referred to as Pathway 1 by CLDERA.

Mt. Pinatubo’s impacts to temperature were documented in following SAND report:

* Thomas Ehrmann, Benjamin Wagman, Diana Bull, Benjamin Hillman, Joseph Hollowed,
Hunter Brown, Kara Peterson, Laura Swiler, Jerry Watkins, and Joseph Hart. “Identifying
Northern Hemisphere Stratospheric and Surface Temperature Responses to the Mt. Pinatubo
Eruption within E3SMv2-SPA.” Technical Report. SAND2024-12730. September 2024,
Sandia National Laboratories, Albuquerque NM. [35]

Tier 3 covers much of the method development and demonstrations covered in this report, Chapters
4-6. Several lessons were learned in CLDERA based on the Tier 3 datasets. We learned that
having a range of source magnitudes (e.g. hypothetical Pinatubos of different sizes) was critical
for our methods. This range supports the dose-response formalism in the Bradford-Hill causality
framework (e.g. larger dose leads to a larger response). Tier 3 also enabled methodologies for
handling intra-ensemble variability (especially for fingerprinting and inverse optimization). The
certainty of statements about temperature impacts, even in the case of a hammer like Mt. Pinatubo,
are difficult to make. Bayesian approaches, which result in probabilistic statements, help. Tier 3
datasets facilitated Bayesian approaches in inverse optimization, multi-step conditional attribution,
and multivariate dynamic linear models. Finally, the realism of the Tier 3 datasets showed how
autocorrelations can dominate interpretations (e.g., from RFR, multivariate DLM) and necessitated
addressing autocorrelation.

2.4. Tier 4: Debated impacts from Mt. Pinatubo

The final tier of CLDERA’s tiered verification process is the identification of pathways, detection
of changes, and attribution of impacts that are either further downstream than the P1 pathway
temperature impacts and/or noisier with more uncertainty (e.g. lower signal-to-noise ratio). These
noisier, debated impacts include Mt. Pinatubo’s impact on agricultural productivity, its effect on
the south Asian monsoon, and its effect on cirrus cloud formation. The agricultural productivity
impact is discussed in Section 7.8. This impact was addressed through standard climate scientist
approaches and also with conditional multi-step attribution approaches. The south Asian monsoon
impact is discussed in Section 7.7 and was addressed by the Echo State Network approach. The
final impact of Mt. Pinatubo on cirrus cloud changes is discussed in Section 7.6. Overall, the Tier
4 datasets and impact analysis did prove more challenging. There is still much work to be done in
multivariate analysis of subtle changes in climate impacts in the face of significant noise in climate
dynamics.
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3. SIMULATION CAMPAIGN

A major component of the CLDERA project was a simulation campaign generating coupled climate
model ensembles for the years around the Mt. Pinatubo eruption. These ensembles were designed
for use in developing novel methods to detect, model, and attribute impacts from the eruption.
For this effort we have used the U.S. Department of Energy’s Energy Exascale Earth System
Model (E3SM) version 2 [55]. E3SMv2 is a fully coupled global model that includes atmosphere,
ocean, ice, and land components. The E3SMv2 atmosphere model resolves the stratosphere and
contains process models for clouds and aerosols, which are important components for modeling
large volcanic eruptions. However, the released version of E3SMv2 prescribes the radiative impacts
of volcanic aerosols from historical eruptions, like Mt. Pinatubo, rather than evolving the volcanic
stratospheric aerosols directly. For CLDERA, we required the capability to modify the mass of the
Mt. Pinatubo eruption for our analyses, which necessitated implementing a prognostic volcanic
aerosol capability in the code to evolve SO, gas from the eruption into sulfate aerosols. The
new implementation, denoted E3SMv2-SPA, modifies aerosol microphysics to accurately simulate
stratospheric volcanic aerosols and was validated against observational data as described in [13].

With E3SMv2-SPA developed, longer-term coupled climate simulations were performed that con-
firmed that the changes to stratospheric aerosols did not change the average climate in E3SMv?2.
This verification and the procedure for the prognostic aerosol implementation are described in
Section 3.1. After validation and verification of E3SMv2-SPA, a series of historical simulations
that include years surrounding the Mt. Pinatubo eruption in June of 1991 were completed. The
simulations can be divided into three simulation sets that differ in terms of the length of the sim-
ulations, the initialization procedure, and the addition of new diagnostic capabilities. The first
set, full variability, was initialized in 1985, which is long enough before the eruption to result in
ensemble members that are independent in the context of climate mode variability at the time of
the eruption in June of 1991. This set is described in Section 3.2 and each ensemble includes both
a Mt. Pinatubo-sized eruption of 10 Teragrams (Tg) of SO, and a corresponding counterfactual
(CF) with no eruption. The second set, limited variability, was initialized in June 1991 with a run
that most closely resembled the actual climate conditions at the time of the Pinatubo eruption and
is described in Section 3.3. The final set, limited variability with source tagging, is described in
Section 3.4 and uses the same initialization procedure as the limited variability set, but incorporates
additional diagnostic capabilities to distinguish between different aerosol sources in the simulations.
The new diagnostic capabilities are are described in Section 3.5. This ensemble set also includes
members with varying eruption magnitudes from 0 Tg to 15 Tg. An overview of the simulation sets
are provided in Table 3-1 and more complete descriptions are included in the following sections.
In all cases the simulations were run with the standard E3SMv2 low-resolution configuration that
combines 110 km atmosphere, 165 km land, and 30-60 km ocean and sea ice.

The E3SMv2-SPA simulation ensembles (full variability, limited variability, and limited variability
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Simulation Set Years # Ensembles | Description
(Total)
Pre-industrial Control 100, perpetual 1(1) « Initialized from E3SMv2 piControl simulation.
1850 « For verification that E3SMv2-SPA maintains climate of E3SMv2.
Historical 1850-2014 2(2) « Initialized from E3SMv2-SPA piControl.
« For verification of transient simulation with E3SMv2-SPA.
Full Variability 1985-1998 15 (30) « Initialized January 1985 from E3SMv2-SPA historical. Each
(1991-1998 CF) ensemble member has perturbed initial condition.
« Includes Pinatubo 10Tg SO, and counterfactual 0Tg SO,.
Limited Variability June 1991 — 1998 6 (12) « Initialized in June 1991 from E3SM-SPA ensemble with best fit
to climate mode observations at time of Pinatubo.
* Includes Pinatubo 10Tg SO, and counterfactual 0Tg SO,.
Limited Variability, Mass June 1991 — 1998 15 (120) « Initialized in June 1991 from E3SM-SPA ensemble with best fit
varying with Tagging to climate mode observations at time of Pinatubo.
« Mass variation: 0, 1, 3, 5, 7, 10, 13, 15Tg SO,.
« Includes tagged aerosols and radiation diagnostics.
Limited Variability, Altitude | June 1991 — 1998 2 (6) « Initialized from E3SMv2-PA historical June 1988.
varying with Tagging « Altitude variation: 16-18, 20-22, 22-24 km.
* Includes tagged aerosols and radiation diagnostics.

Table 3-1. Overview of simulation ensemble sets from E3SMv2-SPA generated under the CLDERA
project.

with tagging) include default output for the ocean and sea ice for the transient historical water cycle
case (WCYCL20TR). For the atmosphere and land we created catered lists with additional variables
for daily and higher temporal resolutions that were designed for analysis of Mt. Pinatubo impacts.
The outputs were selected based on comparison with the Arise-SAI output fields (Appendix A in
[144]) along with atmospheric and land process expertise. The outputs for this simulation campaign
are described in Appendix A.

3.1. Prognostic Volcanic Aerosol Implementation in E3SMv2

Contributing Authors: Hunter Brown (8931), Benjamin Wagman (8931), Xiaohong Liu (Texas
A & M University), Allen Hu (Texas A & M University), Kara Peterson (1442)

In historical simulations with the standard released E3SMv?2 light extinction from stratospheric
volcanic eruptions is prescribed from the GloSSAC reanalysis data set [176] based on satellite
measurements. Under this configuration volcanic aerosols are not explicitly modeled and there
is no ability to modify characteristics of an historical eruption in a simulation. The main goal
of the CLDERA project has been to develop novel detection and attribution methods using the
Mt. Pinatubo eruption as an exemplar. To more fully understand the impacts of Mt. Pinatubo
and how the impacts change as a function of eruption strength it was necessary to implement a
prognostic volcanic aerosol formulation in E3SMv2. In the prognostic formulation, the sulfate
aerosol precursor, SO,, is emitted in the stratosphere and undergoes chemical reactions to form
sulfate aerosol. This implementation was critical for constructing impact pathways that include the
chemical and microphysical evolution of volcanic aerosols.

In E3SMv2, aerosol evolution in the atmosphere is modeled with the four-mode Modal Aerosol
Model (MAM4) microphysics package [99]. In this package all aerosol species are represented by
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three size modes along with a forth mode representing freshly emitted black carbon and organic
carbon from combustion. The modal distributions of aerosols evolve based on nucleation (aerosol
formation), evaporation (size reduction), condensation and coagulation (size growth), and dry/wet
deposition (aerosol removal). MAM4 had been designed to accurately model tropospheric aerosol
evolution, but is not configured to accurately model the evolution of massive injections of SO, in
the stratosphere from volcanic eruptions.

The modified code developed under the CLDERA project, E3SMv2-SPA (Stratospheric Prognostic
Aerosol), includes enhancements to MAM4 that improve the stratospheric aerosol representation
without degrading the representation of tropospheric aerosols or the modeled climate [13]. The
major modifications to the code include (1) allowing aerosol growth from the accumulation to coarse
mode in the stratosphere to increase aerosol size following volcanic eruptions and (2) adjustment
of the coarse-mode and accumulation mode size distribution to increase aerosol lifetime.
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Figure 3-1. Stratospheric sulfate burden (Tg of the sulfur mass contribution) for E3SMv2-SPA, the
standard E3SMv2 with prescribed stratospheric aerosol forcing (E3SMv2-presc), a version of
E3SMv2 with prognostic aerosols before the SPA modifications (E3SM-PA), a full-chemistry climate
model with prognostic volcanic aerosols (CESM2-WACCM), observational data from SAGE-1 and
the High Resolution Infrared Radiation Sounder (HIRS).

To validate the implementation, atmospheric simulations with E3SMv2-SPA were run from 1990 to
1993 covering the Mt. Pinatubo eruption. The prescribed extinction from GloSSAC data was turned
off and volcanic SO, emissions from the VolcanEESMv3.11 data set [121] including modifications
from [115] were used as input. This data set provides emissions from historical eruptions and
in the 1990-1993 period this includes eruptions from Mt. Pinatubo, Cerro Hudson, Spurr, and
Lascar volcanoes. Results from E3SMv2-SPA were compared with observations of sulfate burden,
aerosol optical depth, top-of-atmosphere radiative flux, and aerosol size distributions. Results
were also compared with version 2 of the Community Earth System Model (CESM2) [28] and
the Whole Atmosphere Community Climate Model version 6 (WACCMO6) [47], which uses a
similar microphysical treatment to E3SMv2 for prognostic aerosols, but includes full atmospheric
chemistry.

Results for aerosol burden and aerosol optical depth are shown in Figures 3-1 and 3-2. In both cases
the E3SMv2-SPA implementation matches well with both observational data and the full-chemistry
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prognostic aerosol model (CESM2-WACCM).
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Figure 3-2. Stratospheric aerosol optical depth over the ocean and across latitudes 60S - 60N from
E3SMv2-SPA, the standard E3SMv2 with prescribed stratospheric aerosol forcing (E3SMv2-presc),
a version of E3SMv2 with prognostic aerosols before the SPA modifications (E3SM-PA), a
full-chemistry climate model with prognostic volcanic aerosols (CESM2-WACCM), and
observational data from AVHRR.

After validating the E3SMv2-SPA code modifications, fully coupled simulations were performed
to investigate the effect of E3SMv2-SPA modifications on the modeled climate in E3SMv2. The
first simulation was a one-hundred year long pre-industrial control simulation, which uses constant
reference year 1850 forcing for inputs that include greenhouse gas emissions, solar irradiance,
and aerosols and is designed to investigate the equilibrium climate. The E3SMv2-SPA model
was initialized from year 101 of the E3SMv2 500-year pre-industrial control simulation [55] and
used averaged volcanic SO, emissions from the VolcanEESMv3.11 data set over the years 1850-
2014 following [115]. Several quantities including global average top-of-atmosphere (TOA) net
radiation and surface temperature were evaluated to ensure that E3SMv2-SPA maintains a stable
climate under this forcing. Results demonstrated that E3SMv2-SPA has a near-zero net TOA
radiation (shown in Figure 3-3 in comparison with E3SMv2) and near-constant surface temperature
with average value matching E3SMv2.

In addition to the pre-industrial control simulation, two historical simulations from 1850 to 2014
were run with E3SMv2-SPA that used transient historical forcings for greenhouse gas emissions,
solar irradiance, and other inputs along with SO, emissions from historical volcanic eruptions
from the VolcanEESMv3.11 data set. The first historical simulation was initialized from year 61
of the E3SMv2-SPA pre-industrial control simulation. A second historical simulation was run
that included additional atmospheric diagnostic tracers. In order to spin up the tracers before the
beginning of the historical simulation, ten extra years of the pre-industrial control simulation were
run with the tracers and the historical was initialized from year 111 of the extended simulation.
Results from both historical simulations compared well with the five released historical ensembles
from E3SMv2 as shown in Figure 3-4.

More details on the prognostic volcanic aerosol implementation in E3SMv2-SPA and validation
against observational data sets are documented in [13]:

40



—— Vv2.LR.piControl
—— CLDERA.piControl

mean = -2.47e-02 mean = -5.00e-02
trend = -3.91e-04 trend = -1.29e-05

0.5 1

o A __.u\thH WI.\HM( ui..Hl

A T

RESTOM [wW/m2]

T T T T T T
0 100 200 300 400 500
Time [year]

—— V2.LR.piControl
—— CLDERA.piControl

mean = 1.37e+01 mean = 1.37e+01
trend = 2.09e-04 trend = -5.44e-05

TREFHT [C]

ool ]
. MWH M "HIHl.HH lt“HHl

Time [year]

Figure 3-3. Global average top-of-model net radiation (W/m?) (left) and reference height (surface)
temperature (° C) for the E3SMv2 pre-industrial control simulation in grey and the E3smv2-SPA
pre-industrial control simulation in red. Results demonstrate that the modifications in
E3SMv2-SPA maintain a stable climate with pre-industrial control forcing with an average surface
temperature the same as E3SMv2 and near-zero net top-of-model radiation.

* Brown, H. Y., Wagman, B., Bull, D., Peterson, K., Hillman, B., Liu, X., Ke, Z., and Lin,
L.: Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2
using observations after the Mount Pinatubo eruption, Geosci. Model Dev., 17, 5087-5121,
https://doi.org/10.5194/gmd-17-5087-2024, 2024 .

The E3SMv2-SPA code is available to download from https://github.com/sandialabs/
CLDERA-E3SHM.
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Figure 3-4. Global average top-of-model net radiation (W/m?) and reference height (surface)
temperature (° C) for the five E3SMv2 historical ensembles in grey and the E3smv2-SPA historical
simulations in red and blue. The E3SMv2-SPA historical simulations match the spread of the
E3SMv2 historical simulations well.

3.2 Full Variability Simulations

Contributing Authors: Benjamin Wagman (8931), Hunter Brown (8931), Jerry Watkins (8734),
Tom Ehrmann (8931), Ben Hillman (8931), Kara Peterson (1442), Diana Bull (8931)

The initial set of Mt. Pinatubo ensembles, denoted full variability or fullvar, were designed
to maximize the natural variability at the time of the Mt. Pinatubo eruption in June of 1991.
The simulations were initialized from January 1985 of the second historical ensemble with each
ensemble member having a small ( 10~'%) random atmospheric temperature perturbation. The
initialization procedure allowed time for the ocean and atmosphere modes to become independent
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by the time of the eruption. A total of 15 ensemble members were generated in this configuration
running from 1985 to 1998.

In addition to the historical Mt. Pinatubo ensemble members, 15 corresponding counterfactual
ensembles with no eruption were generated. Each member of the counterfactual set was initialized
in January of 1991 from the corresponding Mt. Pinatubo ensemble with no perturbation so that
the coupled simulations are bit-for-bit until the time of the eruption. The counterfactual ensemble
provided a means to isolate impacts from the Mt. Pinatubo eruption by subtracting simulated fields
in the counterfactual ensemble member from the field in the corresponding ensemble member
with the Mt. Pinatubo eruption. This process is illustrated in Figure 3-5 where the difference in
global averaged fields for the Mt. Pinatubo surface and stratospheric temperature pathways are
shown in relation to the corresponding counterfactual. The fields include aerosol optical depth,
net shortwave flux at top of model, net longwave flux at top of model, clear sky downwelling
surface flux, and stratospheric temperature at 50 hPa, and reference height temperature. The time
of the Mt. Pinatubo eruption is designated with the red dashed line and the figures demonstrate
that the simulations and counterfactuals match before the eruption and after the eruption occurs
the Mt. Pinatubo simulation and corresponding counterfactual begin to diverge. Strong signals of
the eruption are seen in the aerosol optical depth, clear sky downwelling shortwave radiation, and
stratospheric temperature where the impact anomaly is far from zero.

Fullvar simulations were utilized in the following research:

* Daniel Ries, Katherine Goode, Kellie McClernon, and Ben Hillman. “Using feature im-
portance as exploratory data analysis tool on earth system models.” Submitted to GMD
Special Issue: Theoretical and computational aspects of ensemble design, implementa-
tion, and interpretation in climate science, July 2024. The review preprint is avialable at:
https://gmd.copernicus.org/preprints/gmd-2024-133/ [145]

* Thomas Ehrmann, Benjamin Wagman, Diana Bull, Benjamin Hillman, Joseph Hollowed,
Hunter Brown, Kara Peterson, Laura Swiler, Jerry Watkins, and Joseph Hart. “Identifying
Northern Hemisphere Stratospheric and Surface Temperature Responses to the Mt. Pinatubo
Eruption within E3SMv2-SPA.” Technical Report. SAND2024-12730. September 2024,
Sandia National Laboratories, Albuquerque NM. [35]

* Benjamin M. Wagman, Hunter Brown, Joe Hollowed, Diana Bull, Tom Ehrmann, Ben
Hillman, Laura Swiler, Kara Peterson. “Does prognostic volcanic aerosol enhance climate
variability in Earth System Model simulations of volcanic eruptions?” SAND2024-127250.
September 2024, Sandia National Laboratories, Albuquerque NM. [183]

3.3. Limited Variability Simulations

Contributing Authors: Benjamin Wagman (8931), Hunter Brown (8931), Jerry Watkins (8734),
Tom Ehrmann (8931), Ben Hillman (8931), Kara Peterson (1442), Diana Bull (8931)

In contrast to the full variability simulation set, the limited variability ensembles were designed to
provide a set of simulations that have less internal variability and to match as closely as possible the
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Figure 3-5. Selected global averaged monthly fields for the full variability ensemble set. For each
variable the counterfactual is subtracted to define an impact anomaly. The dark black line is the
average of the first ten ensemble members with the 2 o spread indicated by the gray shading. The
time of the eruption is indicated with the red dashed line.

observed climate at the time of the Mt. Pinatubo eruption. For this ensemble set we initialized the
runs on June 1, 1991, approximately two weeks before the eruption, which enables the simulations
to diverge at the synoptic scale while still preserving the more slowly evolving climate modes
by the time of the eruption. To identify a suitable initial condition we considered June 1 values
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of select climate modes from years 1986-1996 from the second historical run and four ensemble
members from the full variability ensemble, which provided 55 possible initial conditions. Two
main climate modes were identified as being of particular interest in determining the appropriate
initial conditions: the EI-Nifio Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation
(QBO). For ENSO we used the NINO3.4 Index to determine the phase of ENSO and the monthly-
averaged mean temperature within the NINO3.4 domain to determine the trend in ENSO. For the
QBO we used the daily-averaged zonal mean zonal wind between 5°N and 5°S at 50 hPa and 25
hPa. We used two levels for the QBO to capture the vertical structure of the oscillation and ensure
that the full phase of the QBO is represented. For the ocean data we used the historical archives
of sea-surface temperature used as forcing in E3SM, and for the atmospheric data we used the
Modern-Era Retrospective analysis for Research and Applications (MERRA-2) reanalysis. Plots of
the monthly averaged NINO3.4 Index and the daily QBO at 50 hPA over time for the full variability
and limited variability ensembles are shown in Figure 3-6. The limited variability modes from both
ENSO and QBO are generally well-aligned for the first year after the eruption.

Quantity of Interest | Observed Data Source Simulated
June 1, 1991 Value June 1, 1991 Value
Nino3.4 2.7 E3SM Ocean Forcing | 1.82
Data
Nino 3.4 Trend 0.185/month E3SM Ocean Forcing | -0.585/month
QBO at 50 HPa 10.01 m/s MERRA-2 3.21 m/s
QBO at 25 HPa -22.33 m/s MERRA-2 -7.09 m/s

Table 3-2. Selection criteria from observational data sources for Nino3.4 and QBO climate modes in
limvar initialization compared with simulation values used for initialization.

In Figure 3-7 the difference in monthly global averaged fields for the Mt. Pinatubo surface and
stratospheric temperature pathways are shown in relation to the corresponding counterfactual for
the limited variability ensemble. The time of the eruption is again indicated by a red dashed line.
In this case, the ensemble members start just 15 days after the eruption.

Limvar simulations were utilized in the following research:

¢ Meredith G. L. Brown, Matt Peterson, Irina Tezaur, Kara Peterson, and Diana Bull. “Random
Forest Regression Feature Importance for Climate Impact Pathway Detection.” Submitted to
Journal of Computational and Applied Mathematics, September 2024. [16]

e Warren L. Davis, Max Carlson, Irina Tezaur, and Diana Bull. “Spatio-temporal Multi-
variate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts.” Intended
submission to Journal of Computational and Applied Mathematics, September 2024. [31]

* Thomas Ehrmann, Benjamin Wagman, Diana Bull, Benjamin Hillman, Joseph Hollowed,
Hunter Brown, Kara Peterson, Laura Swiler, Jerry Watkins, and Joseph Hart. “Identifying
Northern Hemisphere Temperature Responses to the Mt. Pinatubo Eruption through Limited
Variability Ensembles.” Submitted to Climate Dynamics, September 2024. [36]

* Thomas Ehrmann, Benjamin Wagman, Diana Bull, Benjamin Hillman, Joseph Hollowed,
Hunter Brown, Kara Peterson, Laura Swiler, Jerry Watkins, and Joseph Hart. “Identifying
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Figure 3-6. Timeseries of NINO3.4 index and QBO at 50 hPA for six full variability (left) and limited
variability (right) ensembles. The limited variability initialization results in smaller spread in the
climate modes over the first year.

Northern Hemisphere Stratospheric and Surface Temperature Responses to the Mt. Pinatubo
Eruption within E3SMv2-SPA.” Technical Report. SAND2024-12730. September 2024,
Sandia National Laboratories, Albuquerque NM. [35]

* Daniel Ries, Kellie McClernon, Thomas Ehrmann, and Diana Bull. “Using Spatio-Temporal
Feature Importance to Identify Drivers of Indian Monsoon after the Mount Pinatubo Erup-
tion.” SAND2024-125810. September 2024, Sandia National Laboratories, Albuquerque

NM. [146]

¢ Hollowed, J., Jablonowski, C., Ehrmann, T., Hillman, B., ... “Volcanic Aerosol Modification
of the Stratospheric Circulation in E3SMv2 Part I: Wave-Mean Flow Interaction.” To be
submitted to Climatic Dynamics by October 2024. [76]

» Krofcheck, D., Crockett, J., Peterson, K., Li, J., Bull, D. “Volcanic stratospheric aerosol
injection may buffer against global ecohydrological impacts of hotter and drier climates.” To
be submitted December 2024. [89]
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Figure 3-7. Selected global averaged monthly fields for the limited variability ensemble set. For
each variable the counterfactual is subtracted to define an impact anomaly. The dark black line is
the average of the six ensemble members with the 2 o spread indicated by the gray shading. The

time of the eruption is indicated with the red dashed line.
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3.4. Limited Variability Simulations with Aerosol Tagging and Eruption Mass
Variation

Contributing Authors: Benjamin Wagman (8931), Hunter Brown (8931), Jerry Watkins (8734),
Tom Ehrmann (8931), Ben Hillman (8931), Kara Peterson (1442), Diana Bull (8931)

The final set of simulation ensembles uses the same initialization procedure as the Limited Vari-
ability ensemble and included varying mass eruptions along with additional diagnostic tools. In
order to understand the limits of detection and attribution a set of 15 ensembles with eruption
magnitudes of 1, 3, 5,7, 13, and 15 Tg in addition to the 0 Tg counterfactual and 10 Tg standard Mt.
Pinatubo eruption were completed. For each of these ensembles additional diagnostics including
tagging of the Mt. Pinatubo aerosols to distinguish from background aerosols and radiation calls
that separate out the Mt. Pinatubo contributions to radiative fluxes were performed as described in
Sections 3.5.1 and 3.5.2.

In figure 3-8, plots of monthly global averaged fields for the first 12 ensemble members are
shown. The effects of the mass variation are apparent in the figures where each color represents
an ensemble of mass values with the bold line the ensemble average difference. The aerosol
optical depth, clear sky downwelling radiation, and stratospheric temperature show relatively clear
delineations between the eruption masses. In the other fields, however, there is much overlap
between the different eruption magnitudes illustrating the challenges in attributing a source to a
particular impact in the climate.

As for the full variability and original limited variability ensemble set, this varying magnitude
ensemble set was designed to have the paired counterfactual and eruption simulations be bit-for-bit
the same before the eruption. To achieve this, care was taken to run corresponding ensembles on the
same computing cluster, either Perlmutter at NERSC, Boca at SNL, or Flight at SNL. Due to changes
in the operating system of Boca, ensemble 2 15Tg and ensemble 3 5Tg and 15Tg are non-BFB after
timestep 6 when compared with other simulations in their respective ensembles. These simulations
were run after the TOSS4 RHEL-8 system upgrade on the Boca computing cluster which upgraded
compilers and other E3SM third party libraries. This difference impacts the analysis at early times,
but after the first year the variability between ensemble and counterfactual is in line with other
ensemble members.

An additional issue was found in ensemble 10, where the simulations were run on a new cluster,
Flight, and included modified initial conditions to add the ST80 tracer (discussed in Section 7.2.
This was due to an error when modifying the initial condition to add a revised ST80 tracer that also
caused changes to the initial surface air pressure (PS). A revised simulation was performed that
fixed the problem for the 10Tg simulation (it was run without the revised ST80 tracer). However,
the majority of the ensemble 10 simulation suite run on flight does possess this issue. Again, like
ensemble 2 and 3 over long time frames, the ensemble 10 simulation suite does not look out of
sample.

Lastly, comparisons of the 10 Tg eruptions at early times showed that ensemble members 11 and 12
(especially 11) seem to be outliers in the first month for daily aerosol distributions when compared
with the first nine ensemble members. These were also simulated on Flight, but careful inspection of
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Figure 3-8. Selected global averaged monthly fields for the mass varying limited variability
ensemble set. For each variable the counterfactual is subtracted to define an impact anomaly. The
bold lines indicate the ensemble mean for a given mass variation.

initialization files showed no cause. At later times, all ensemble members show similar variability
in monthly global averaged fields (Figure 3-8).

Limvar simulations and the variable source magnitudes were utilized in the following research:
* Christopher R. Wentland, Michael Weylandt, Laura P. Swiler, Thomas S. Ehrmann, Diana

Bull. Probabilistic multi-step attribution for short-term climate forcings. Submitted to
Journal of Climate, Aug. 2024. This manuscript is available on arXiv: https://doi.org/
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10.48550/arXiv.2409.01396. [191]

* Joseph Hart, Indu Manickam, Mamikon Gulian, Laura Swiler, Diana Bull, Thomas Ehrmann,
Hunter Brown, Benj Wagman, and Jerry Watkins. Stratospheric aerosol source inversion:
Noise, variability, and uncertainty quantification, submitted to Journal of Machine Learning
for Modeling and Computing. This manuscript is available on arXiv, https://doi.org/
10.48550/arXiv.2409.06846. [66]

 Jerry Watkins, Luca Bertagna, Graham Harper,Andrew Steyer, Irina Tezaur, and Diana Bull.
“Entropy-based feature selection for capturing impacts in Earth system models with extreme
forcing.” Submitted to Journal of Computational and Applied Mathematics, September
2024. [187]

* Li, J., Wentland, C., Swiler, L, Peterson, K., Weylandt, M., Krofcheck, D., Wagman, B., Bull,
D. “Attributing Mt. Pinatubo in spatial patterns of vegetation response.” To be submitted
November 2024. [94]

¢ Hollowed, J., Jablonowski, C., Ehrmann, T., Hillman, B., ... “Volcanic Aerosol Modification
of the Stratospheric Circulation in E3SMv2 Part II: Tracer Sensitivity.” To be submitted by
December 2024. [75]

3.5. Strategies for Isolating Mt. Pinatubo Impacts

Contributing Authors: Hunter Brown (8931), Benjamin Wagman (8931), Ben Hillman (8931)

3.5.1. Aerosol Tagging

A variety of atmospheric aerosol and gas-phase species are tracked within E3SM from their emis-
sion/formation to their removal from the atmosphere. These species are typically an amalgamation
of all sources in the atmosphere (e.g., the sulfate aerosol tracer represents contributions from
anthropogenic and natural sources). The addition of a source specific tracer typically requires
modifications to the underlying source code, the species namelists, and the chemical formulas - an
editing of hundreds of lines of code. The ‘aerosol tagging’ method adapts the source code to allow
for a less invasive method for doing this, whereby the user can specify new source-specific aerosol
species via the model runscript with minimal changes to the namelist files. This method applies
to the aerosol species sulfate (SO4), black carbon (BC; i.e., soot), primary (i.e., directly emitted)
organic aerosol/matter (POA or POM), and secondary (i.e., formation from gas phase precursors)
organic aerosol (SOA). The different tagged species are determined by the user-specified emission
files, which should sum to the total global emissions of that species. These tags are active tracers,
meaning that they are affected by, and effect changes in, atmospheric radiation and dynamics.

The tagging code, referred to as the Explicit Aerosol Source Tagging (EAST) system in the
literature, was originally incorporated in E3SMv1 [201] and was ported into E3SMv2 as a part of
CLDERA. EAST provides a method for exploring climate sensitivity to different emission source
regions and emission sectors within a single, physically consistent model simulation. In EAST,
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the model applies the same physical, chemical, and dynamical processes to each additional aerosol
source species. Contrast this with traditional emission sensitivity approach, whereby a single
source emission is removed in a counterfactual simulation and the difference is taken between this
simulation and the default to infer differences in aerosol contributions. The counterfactual method
becomes computationally expensive with multiple source regions (analogous to tagged species
in our case), requiring additional model simulations for each separate sources. It also assumes
a linear response to emission perturbation [185, 201], which will introduce uncertainty due to
internal variability across model simulations which can lead to nonlinear dynamical responses.
The improved computational efficiency of E3SMv2 compared to E3SMv1 [55] makes EAST ideal
for our version of E3SM as the addition of multiple tracer species will have a smaller impact on
computational cost than in CESM or E3SMv1.

EAST has been used extensively to explore aerosol source contributions to pollution and radiative
impacts over a variety of receptor regions. Early work with this code looked at the source contri-
bution of BC burden and direct radiative forcing in the Arctic using the Community Earth System
Model (CESM) [185]. A sulfate tagging capability was later added to CESM to explore source-
apportionment of global forcing of SO4 [202]. This was followed by the inclusion of SOA and
POA tags in CESM [203], allowing for the inclusion of tagged brown carbon (i.e., light absorbing
POA) and its impacts on snow albedo [14].

In CLDERA we design our tagging experiments to separate atmospheric sulfate contributions
into three sources: Pinatubo, Cerro Hudson, and all other contributions (i.e., anthropogenic, off-
gassing surface volcanic emissions, and ocean contributions from dimethyl sulfide (DMS)). The
other taggable species BC, POM, and SOA are treated as a single global source (same as the
default model). Tagging tracks all sulfate mass diagnostics as well as the sulfate gas precursor
emissions of sulfur dioxide (SO;) and the intermediary gas-phase sulfuric acid (H,SO4). It also
tracks sulfate contribution to visible aerosol optical depth - a measure of aerosol opacity to visible
wavelengths of light in the atmosphere which depends on sulfate aerosol number concentration,
incident wavelength of light, and particle size. To isolate the source specific (e.g., Pinatubo or
Hudson) impact on atmospheric radiation balance, tagging must be used in conjunction with the
model radiation diagnostic capability.

Tagged simulation output was utilized in the following research:

* Joseph Hart, Indu Manickam, Mamikon Gulian, Laura Swiler, Diana Bull, Thomas Ehrmann,
Hunter Brown, Benj Wagman, and Jerry Watkins. Stratospheric aerosol source inversion:
Noise, variability, and uncertainty quantification, submitted to Journal of Machine Learning
for Modeling and Computing. This manuscript is available on arXiv, https://doi.org/
10.48550/arXiv.2409.06846. [66]

3.5.2. Radiation Diagnostics

E3SM has the capability to make separate, parallel radiation calculations that can be customized
to include or exclude certain aerosol tracers. This process is illustrated in Figure 3-9. All of these
radiation calls include the impacts of clouds and greenhouse gases (GHGs). The removal of all
aerosols gives an aerosol-free background (i.e., impacts only from GHGs and clouds) which can
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be used to calculate an aerosol only forcing (i.e., direct aerosol forcing) when it is subtracted from
the default radiation call (contributions from GHGs, all aerosol, and clouds) ([48] and references
therein). Since the radiation calls are run in parallel, the aerosol forcing is the true forcing in the
model because the atmospheric dynamics and microphysics are identical across radiation calls.
For the same reasons that tagging is beneficial to the calculation of aerosol tracer contributions,
these radiation diagnostics are more accurate than the traditional method for calculating an aerosol
forcing which relies on a difference between a default simulation and a counterfactual simulation (see
Figure 3-10. Separate simulations can exhibit different atmospheric dynamics, which introduces
uncertainty in the results, and this uncertainty is not present in radiation diagnostic differences

resulting in a cleaner signal.
Model output

°
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Figure 3-9. The radiation diagnostics procedure in E3SM where additional calls to the radiation
model are performed with specific aerosol sources removed.

Aerosol tagging [201] allows for preferential removal of specific species and source aerosol contri-
butions to the radiation calls, allowing for a source specific understanding of aerosol contributions.
For example, removal of the tagged Pinatubo aerosol from the radiation call means that the differ-
ences between the default radiation call and this results in the Pinatubo-only impacts on atmospheric
radiation. The Pinatubo flux (Fp;,) is derived from the difference between the atmosphere radia-
tion flux diagnostic from the default radiation call (F) and the radiation call neglecting Pinatubo
(F noPin):

Fpin = F — Fuopin (3.1)

A note on the difference between the [48] method and our own: they have an additional counter-
factual simulation run to determine change in flux due to anthropogenic aerosol, denoted by A. So
their calculations are

Fanthro = A(F - Fnoaerasol), (32)

where the delta is a difference between the default and no anthropogenic emission counterfactual
simulations. This is necessary for their simulations because they are unable to isolate the anthro-
pogenic sources from other natural sources of aerosol. We can isolate sources with tagging, so we
don’t require the A term.
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Change in Radiation Diagnostics (only Pinatubo)
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Figure 3-10. The radiation diagnostics provide a capability to isolate the effects of the Mt. Pinatubo
eruption on radiation fields like Flux of Shortwave Downwelling radiation at the Surface (FSDS) and
provides a clearer signal than what is produced subtracting a counterfactual simulation.
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4, SIMULATED PATHWAYS THRUST

The simulated pathways thrust under CLDERA has focussed on developing a fundamentally new and
blended computational and information science approach to discovering, confirming and explaining
connective relationships within the climate system, referred to herein as source-impact pathways.
The thrust has produced three complementary approaches for source-impact pathway detection,
each described in more detail in the following subsections: (1) Random Forest Regression (RFR), (ii)
Profiling, and (iii) Clustering/Multi-Variate Data Mining. Whereas subthrusts (i) and (iii) are purely
data-driven in that they operate on a set of pre-generated data, subthrust (ii) performs pathways-
tracking analyses in-situ while running E3SM, and is the only in-situ method developed under
CLDERA. As depicted in Figure 4-1, the three simulated pathways subthrusts are synergistic: both
methods developed and data generated under one subthrust may be utilized by the other subthrusts.
Pathways identified by the simulated pathways thrust have several use cases. Since pathways provide
insight into the possible downstream impacts of a climate source, they can be helpful in detection.
They can additionally be helpful in attribution by employing the epidemiological framing present
in the Bradford Hill Criteria [74] which may be investigated in future work.

Data

E3SM Simulations ‘L

Data Data Data
i N
Sub-thrust 1: i
R::ric;;n Sub-thrust 2: | Sub-thrust 3: |
Regression Profiling Clustering &
- ‘ multivariate
\ : . data mining

< Component feature generation & clusters |

Figure 4-1. lllustration showing organization of the simulated pathways thrust

4.1. Random Forest Regression (RFR)
Contributing Authors: Meredith Brown (8931), Matt Peterson (1441), Irina Tezaur (8734), Kara

Peterson (1442), Diana Bull (8931).

The goal of the RFR subthrust is to use time-series data to create a directed graph comprised of nodes
and edges, in which the nodes represent features of interest and the edges represent relationships
between these features. These relationships are directional, weighted and have a time lag associated
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with them. Once a graph is fully constructed, it can be used to trace out source-impact “pathways”,
defined as the interactions of a set of variables in space-time due to an external forcing, within the
provided time-series data (in our case, climate data).

Rather than utilizing RFR for classification or regression tasks (the most common use case for RFR)
[159], we propose a fundamentally new pathway identification RFR-based workflow, summarized
in Figure 4-2 [15]. This workflow consists of three key steps: (i) train random forest (RF) regressors
on a set of spatio-temporal features of interest, (ii) calculate their pairwise feature importances, and
(i11) translate these feature importances into a weighted pathway network (i.e., a weighted directed
graph), which can be used to trace out and rank interdependencies between climate features and/or
modalities. One unique capability of our approach is that, once a pathway network graph has been
constructed using RFR and feature importance, it can be queried to answer questions such as “what
is the most direct source-impact path?”” and “what is relative strength of a given pathway?”. Other
strengths of the method include its low computational cost and its ability to discover pathways from
(either simulated or observed) data.

\

/ Calculate Pairwise Feature\ ( \
Convert to

Pathway
Graph

Importance Values
(inputs x outputs)

Train Individual
Random Forests
For each Output

\G P - €P

1
@ [ Inputs ][ Outputs ]
@ Time t-1, t-2, ¢
\_ Y, Lags t-3,...

Figure 4-2. Visual depiction of the RFR-based pathway construction approach.

Timeseries Data/Features

In the first step of our workflow, for each spatio-temporal feature of interest, we train an individual
RF with the outputs given by the feature of interest at time # and the inputs are all the features
at previous time steps/lags, e.g., [t — 1, — 2,¢t — 3, ...]. This provides insight into relationships
between different features of interest as well as the time lags at which these relationships occur.

In step two of our approach, pairwise relationships between features of interest are quantified using
feature importances, obtained via a post-processing step applied to the RF model. We chose to
use the SHapley Additive exPlanation (SHAP) method [160] for calculating feature importances,
as several recent studies have shown that SHAP values can achieve better results for assessing
feature importance in machine learning models than other metrics for various problems of interest

56



[109, 186, 33]. Additionally and importantly, SHAP proved to be a computationally efficient metric
for our analysis.

The final step of our workflow is to use feature importance information data to create a directed
graph between the various inputs/outputs. Each node in the graph represents a feature of interest,
and each edge represents a directed relationship between any two features of interest (see the right
panel of Figure 4-2). The edge will contain two pieces of information: the SHAP value and the
associated time lag. To identify the strongest relationships, we prune out edges having a SHAP
value below a predetermined threshold; see [15] for more details.

The new RFR workflow for pathway identification described above was verified using three in-
creasingly complex benchmark problems: (i) a set of synthetic coupled equations, (ii) the Held
Suarez Williamson-Volcano (HSW-V) test case [77], an idealized atmosphere-only configuration
of version 2 of the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SMv2)
with simplified physics/topography and a point source aerosol injection representing a volcanic
eruption, and (iii) a fully coupled E3SMv?2 simulation of the 1991 eruption of Mount Pinatubo in
the Philippines.

It was demonstrated in [15] that our RFR-based workflow is able to correctly identify the surface
cooling and stratospheric pathways for the Mount Pinatubo exemplar (iii). In the surface cooling
pathway, which we focus on here for the sake of brevity, an increase in aerosol optical depth
(AEROD_v) leads to a decrease in the amount of shortwave radiation reaching the surface (FSDSC),
followed by a lowering of the temperature at the surface (TREFHT). Our RFR-based analysis was
consistent with these known processes. The strongest connections are those that go into the
Subtropical North FLNTC from AEROD_v in both latitudinal bands and from Tropical FLNTC.
In addition to intra-zonal band relationships (e.g., AEROD_v— FLNTC), we also see some cross-
band connections, many of which show a dependence of a Subtropical band variable on a Tropical
band variable. These relationships are expected, as they demonstrates a general northward flowing
direction from the Tropics to the Subtropical North, which follows the evolution of the volcanic
plume that was observed after the Mount Pinatubo eruption. The time lags associated with many
of the relationships uncovered are on the order of 21-36 days, which is consistent with the time it
took for the aerosols from Mount Pinatubo to encircle the globe. More results, including for the
surface cooling pathway, can be found in [15]:

¢ Meredith G. L. Brown, Matt Peterson, Irina Tezaur, Kara Peterson, and Diana Bull. “Random
Forest Regression Feature Importance for Climate Impact Pathway Detection.” Submitted
to Journal of Computational and Applied Mathematics, September 2024. https://arxiv.
org/html/2409.16609v1

4.1.1. Lessons learned

Applying our new RFR-based workflow to the CLDERA tiered verification problems led to many
refinements in the underlying algorithm, including insights into how to window the data around
the eruption and normalize each input globally per feature to be between 0 and 1 or —1 and 1.
We additionally learned that feature importance-based pruning is essential, as, without pruning,
pathway graphs have too many edges, making them uninterpretable.
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In applying our approach to actual climate data from HSW-V and Mount Pinatubo simulations, we
discovered that the most dominant edges invariably corresponded to “self lags”, i.e., the analysis
revealed that most variables were primarily dependent on themselves at the previous time. These
relationships make physical sense, but can make the identification of non-trivial pathways more
difficult. The domination of self lags between variables was particularly evident when we applied
our method to the HSW-V data, where we were looking for pathways containing just two nodes:
aerosol optical depth and temperature. We hypothesize that this result can be circumvented by
including more intermediary variables to our analysis.

Lastly, when applying our method to realistic climate data (HSW-V and Pinatubo), we commonly
observed edges appearing in both directions between two features where we only expected an edge
in a single direction. At first, we believed that these relationships were erroneous; however, upon
further inspection and discussion with climate experts, we concluded that our approach is likely
picking up on some hidden feature dependencies between variables. For example, a “back edge”
from TREFHT to AEROD_v may be explained by the fact that surface temperature can potentially
impact winds (a variable not included in our analysis), which can in turn impact AEROD_v and
aerosol spread. Again, we conjecture that adding more intermediary variables to our analysis can
help us reconcile our results with the underlying dynamics.

4.1.2. Future research directions

The following research tasks would be of interest towards continuing to refine our RFR-based
pathway approach.

* Instead of performing a fixed windowing of the data [15], one could consider employing
sliding time windows, which could provide better insight into the temporal system-wide
dynamics and allow us to avoid the algorithm picking out primarily self lags.

* Thus far, we have applied our method to data averaged globally as well as by latitudinal
bands. Future work should look at more regional analyses, e.g., by performing averaging
over IPCC regions [82].

* The relationships identified by our RFR-based approach are correlative. As such, they are
not guaranteed to be causal. A very useful future research endeavor would be to apply some
kind of causal analysis to the pathway graphs produced by our approach, so as to pick out
causal vs. correlative edges.

4.2. Profiling

Contributing Authors: Andrew Steyer (1442), Luca Bertagna (1446), Graham Harper (1442),
Jerry Watkins (8734), Irina Tezaur (8734), Diana Bull (8931).

The profiling subthrust under CLDERA performs in-situ coanalysis of E3SM model variables for
source-impact pathway identification. The main contributions of profiling are: (i) the development
of a lightweight and efficient open-source software library known as CLDERA-Tools (https:
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//github.com/sandialabs/cldera-tools), and (ii) a mathematical framework and associated
algorithm for identifying pathways, represented as time-dependent directed acyclic graphs (DAGs),
from high-frequency time-series data available in-situ while running E3SM.

CLDERA-Tools (CT) is a C++ library designed to perform in-situ coanalysis in a host application
(in this case, E3SM), with the goal of minimizing the amount of code that needs to be added to
the application. CT works by calculating and tracking a set of user-specified quantities of interest
(QOls), e.g., global max/min/average, zonal means, regional/masked integrals (possibly weighted),
vertical integrals (possibly weighted), horizontal integrals and more. The user must additionally
provide a set of baseline data (e.g., data from a previously-run counterfactual simulation). Anoma-
lies are flagged by comparing QOIs computed within the code using CT to this baseline using
bounds tests and Z-scores (see [172] for more detail). Importantly, these comparisons are done
in-situ while running an E3SM simulation. All inputs to CT are conveniently specified in a yaml
file created by the user.

During model initialization, CT interfaces are called to “register” the model variables that will be
needed during the QOIs calculation. Besides the metadata (name, layout, data type, etc.), the user
can also provide a pointer to the area of memory where the variable is stored, allowing CT to access
the model data at run time without any additional memory movement. If the variable is computed
at runtime in temporary arrays, data will have to be copied over to CT at every time iteration. At
runtime, CT will compute all the QOIs at once, and store them in an internal database, which can
also be dumped to a file via PnetCDF (https://parallel-netcdf.github.io).

As mentioned earlier, profiling represents pathways as time-dependent DAGs where nodes in the
DAG correspond to QOIs and edges in the graph represent relationships between QOIs (informed
by e.g., subject matter expertise and/or problem dynamics), with the direction of the edges denoting
the flow of impacts. Our approach starts with a so-called base-DAG Gp = (Vp, Ep) consisting
of a set of r-vertices V = {v;}]_, with node v; corresponding to the QOI Q, and a set of edges
E ={e;} }‘.:1 determined by assumed relationships between QOIs. These hypothesized relationships
are informed by subject matter expertise (e.g., increases in tracer concentrations causes increases
in aerosol optical depth). Associated to each node v; is a (potentially time-dependent) bounds test
T1.m, taking Boolean values in {0, 1}, that determines when a node will be active (7;,, = 1) or
inactive (17, = 0) with m representing the model time-step. A pathway DAG G = {G, %:0 is
time-dependent DAG where at each time-step m the DAG G,,, = (V,, E;y) is comprised of a set of
vertices V,, C V and set of edges E,, C E i.e. is a subgraph of the base-DAG. For more details on
this algorithm, the reader is referred to [172].

4.2.1. Verification on HSW-V test case

We demonstrated the efficacy and efficiency of CLDERA-Tools using the idealized HSW-V test
case [77] in the following article [172] and that is summarized below:

* Andrew Steyer, Luca Bertagna, Graham Harper, Jerry Watkins, Irina Tezaur, and Diana
Bull. “In-situ data extraction for pathway analysis in an idealized atmosphere configuration
of E3SM.” Submitted to Computing in Science & Engineering, August 2024. https:
//arxiv.org/abs/2408.04099
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In [172] we show the added cost of running HSW-V with CLDERA-Tools in-situ analysis. In
this study we take mean additional run-time of a 10 member ensemble running E3SM with in-situ
analysis enabled tracking 7, 35, 175, or 875 QOIs corresponding to integrated value of a model field
in the stratosphere over a zonal region and compare to the mean value of a 10 member ensemble
not tracking any QOIs to measure the percent added run-time. Percent added cost was minimal
(Iess than 2%) for runs tracking 175 QOIs or fewer and only about 12.5% when tracking 875 QOIs.
See Section 5.1 of [172] for more details.

In our pathway analysis, we considered five model fields: stratospheric SO2 concentration (SO2),
stratospheric SO4 concentration (SUL), aerosol optical depth (AOD), stratospheric temperature
(T), and surface temperature (ST) on four zonal regions (equatorial (e), subtropical north (s),
temperature north (t), and polar north (p)). From these fields and regions, we defined the following
QOIs, denoted by Q(x): Q € {SO2,SUL, AOD, T,ST}. Here, x € {e,t,s,p}, so that Q(x) is the
integrated value of a given QOI over the horizontal region x (and over the vertical region defined
by the stratosphere for SO2, SUL, and T). To try to answer the question of “how long can you go?”
— that is, how small can the eruption be to be detectable? — we performed our analysis not only on
a simulation of the Mt. Pinatubo eruption, but also on two variants of the Mt. Pinatubo eruption,
in which 5 Tg and 20 Tg of sulfur were released into the stratosphere.

We constructed pathway DAGs based on the above QOIs using Algorithm 1 from [172]. The bounds
tests used to add/remove nodes from the pathway DAG in our analysis (see Algorithm 1 in [172])
were defined in terms of the expected maximum concentration for SO2(x), SUL(x), and AOD(x)
(since these variable have zero concentration in the eruption-free counterfactual), as well as in terms
of a Z-score computed for the variables T(x) and ST(x). The mean and standard deviation of this
Z-score were calculated from the standard deviation of a counterfactual ensemble. We considered
four values for the Z-score, 0.75, 1.0, 1.5, and 2.0, corresponding to experiments Ex1, Ex2, Ex3
and Ex4, respectively. For more details regarding these experiments, as well as visuals of the key
results the reader is referred to Section 5 of [172]. QOlIs are typically active sooner and for a longer
time-interval in runs with larger eruption mass, in line with expectations. There is an amount of
variability, in particular for the first activation time in the 5 Tg eruption ensemble for AOD(e), T
and ST. Experiments which are more sensitive (i.e. smaller Z-score values) correspond to T(x)
and ST(x) (x=e,s,t,p) becoming active sooner and for longer time-intervals in line with physical
expectations. SO2(p) does not typically become active since most SO2 reacts into SO4 before it
has been transported to the polar regions.

4.2.2. Verification on Pinatubo surface heating pathway in E3SMv2-SPA

Next, we apply our method to a fully-coupled simulation of Mt. Pinatubo performed using E3SMv2-
SPA, and two perturbed mass variants of this eruption. We consider five model fields: vertically
integrated SO4 concentration (BURDSO4), net long-wave flux at the top of the model (FLNT),
clearsky downwelling solar flux at surface (FSDSC), vertically integrated stratospheric temperature
(T), and near-surface temperature (TREFHT). To define QOIs we take the zonally integrated values
of these fields in the four northerly zones: (equatorial (e), subtropical north (s), temperature north
(t), and polar north (p)). We denote by Q(x) the integrated value of field Q over the zonal region
x where Q =BURDSO4,FLNT,FSDSC,TREFHT,T and x =e,s,t,p. This leads to the P1 pathway
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(see Figure 4-3) where SO4 impacts both FLNT and FSDSC which then impact T and TREFHT,
respectively. For bounds testing, we use the Z-score test for each QOI where a variable is set to
be active if its Z-score is above 1 and then set to be inactive if its Z-score subsequently falls under
0.5. We consider 9 member limited variability ensembles of eruption runs with eruption masses of
5 Tg, 10 Tg, and 15 Tg. As for the HSW-V analysis in the previous section, we look at the mean
and standard error for both the first time and total time a given variable is active.

Results for our pathway analysis are in Figures 4-4 through 4-7. For the equatorial and subtropical
north regions, QOIs become active sooner and for longer time-intervals. In the temperate and polar
north regions, this is not always the case (e.g. in Figure 4-4 the first time TREFHT(¢) becomes
active is always sooner for the 10 Tg eruption runs than for the 15 Tg eruption runs). We suspect that
increased internal variability relative to the HSW-V simulations results in this non-ideal behavior.

BURDSOA4(t) @ ﬁ
| @ 0
BURDSOA4(s)

BURDSO4(e) @H

Figure 4-3. Visualization of the Pinatubo stratospheric and surface temperature pathways
hypothesized in E3SMv2-SPA.

4.2.3. Entropy-based feature selection

The high frequency data generated by CT suffers from two problems: high variability and high
dimensionality. In particular, pathway DAGs created by our algorithm can be extremely large
and complex, making them difficult to analyze/interpret. In an effort to mitigate this problem, we
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Figure 4-4. Pinatubo temperature pathways: first activation times with error bars denoting the
standard error (mean and standard error taken with respect to the 9 member ensemble
corresponding to an eruption mass of 5,10,15 Tg) for BURDSO2, FSDSC, TREFHT.
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Figure 4-5. Pinatubo temperature pathways: total activation times with error bars denoting the
standard error (mean and standard error taken with respect to the 9 member ensemble
corresponding to an eruption mass of 5,10,15 Tg) for BURDSO2, FSDSC, TREFHT in all four zones.

63



First time BURDSO4(p) is active First time FLNT(p) is active First time T(p) is active

> 55.0 —
30
T 35 52.5
29
50.0
28 T
30 47.5
27
T 45.0
26
2 425
2 40.0
- 20 i
24 1 375
23 1 1 350
5Tg 10Tg 15Tg 155 Tg 10Tg 15Tg 5Tg 10Tg 15Tg
First time BURDSOA4(t) is activ: First time FLNT(t) is active First time T(t) is active
T T 45
20 T |40 -
40
19 38
35
18 36
30
17 34
25
32 1
16
iR 20
1 30 i
15( ) - ) ) ) ) ) )
5Tg 10 Tg 15Tg 5Tg 10 Tg 15Tg 5Tg 10 Tg 15Tg
First time BURDSO4(s) is active First time FLNT(s) is active First time T(s) is active
- 55 -
50
17 T 50
45
16 45
40
40
15
35
35
14 30
25 B
13l 30
o 420
5Tg 10'Tg 15Tg 5Tg 10'Tg 15Tg 5Tg 10'Tg 15Tg
First time BURDSO4(e) is active 24 First time FLNT(e) is active First time T(e) is active
14.5 _ T 42
22
14.0 | 40
135 20 38
13.0 36
18
125 34
120/ 16 1 32
115 o - 30
5Tg 10Ty 15Tg 579 10Ty 15Tg 5Tg 10Ty 15Tg

Figure 4-6. Pinatubo temperature pathways: first activation times with error bars denoting the
standard error (mean and standard error taken with respect to the 9 member ensemble
corresponding to an eruption mass of 5,10,15 Tg) for BURDSO2, FLNT, T.
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Figure 4-7. Pinatubo temperature pathways: total activation times with error bars denoting the
standard error (mean and standard error taken with respect to the 9 member ensemble
corresponding to an eruption mass of 5,10,15 Tg) for BURDSO2, FLNT, T.

65



developed an entropy-based feature selection method that attempts to focus on the most important
features related to a given source-to-impact pathway. The novelty in the method is in its use of
cross-fuzzy entropy [199] and changepoint detection to isolate regions of constant entropy when
comparing data from an ensemble with the source (in our case, the eruption) to a counterfactual
ensemble (an ensemble without the eruption). Here, entropy refers to a measure of regularity
and synchronicity between the two signals. A publication on our new entropy-based approach is
currently in preparation [187]:

 Jerry Watkins, Luca Bertagna, Graham Harper,Andrew Steyer, Irina Tezaur, and Diana Bull.
“Entropy-based feature selection for capturing impacts in Earth system models with extreme
forcing.” Submitted to Journal of Computational and Applied Mathematics, September
2024.

In this paper, we were able to detect a statistically significant decrease in temperate north near
surface air temperature between April and November of 1992 and construct a dependency graph
with direct connections to aerosol optical depth and solar flux at the surface from the eruption.

4.2.4. Lessons learned

The primary challenge encountered by the profiling subthrust stemmed from the fact that the
pathway DAGs produced by our methods can be incredibly complex, making them very difficult
to interpret. Our efforts in developing the entropy-based feature selection approaches described
in Section 4.2.3 and [187] are a promising mitigation that has the potential to simplify pathway
analysis and interpretation.

A positive lesson learned from this work was our discovery that profiling using CT does not
introduce significant overhead to an E3SM simulation being run. It was unknown that this would
be the case a priori.

4.2.5. Future research directions

We are currently extending CT to the E3SM Land Model (ELM), towards using this tool to study
the impact of volcanic eruptions on agriculture and crop production. This work is in support of a
new FY25 LDRD project, which will use profiling and CT to develop optimal SAI-based controls
and study their impact on the temperature.

We envision other future applications of profiling and CT, including:

* in-situ monitoring and real-time manipulation of internal model variables within the E3SM
on the native model grid;

* studying the impacts of climate intervention strategies by using CT to modify internal model
variables;

* applying causal analysis approaches to DAGs produced by profiling, so as to distinguish
correlative relationships from causal ones.
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4.3. Clustering and multivariate data-mining

Contributing Authors: Max Carlson (8734), Warren Davis (1441), Irina Tezaur (8734), Diana
Bull (8931)

The clustering and multivariate data mining subthrust under CLDERA developed a new cluster-
ing and data miniming-based methodology for detecting impacts and identifying source-impact
pathways using (simulated or observed) climate data. Our work in this area leveraged algorithms
developed in a synergistic ASCR-funded project known as In-Situ Machine Learning for Intelligent
Data Capture (ISML) [161].

Our approach begins by breaking up the spatial grid on which a dataset is defined into so-called
“analysis partitions”, and calculating reduced representations of the data known as “signatures”
within each partition (see Figure 1 in [31]). The simplest example of a signature is a variable average.
Whereas the primary goal of ISML was to identify anomalies in the data by comparing signatures
with each other, here the objective was to track the spatio-temporal evolution of non-stationary
variable clusters. Toward this effect, we performed a k-means clustering over each variable’s
signature independently using data over all spatial locations, timesteps and, when applicable,
ensemble members. To ensure rigor and explainability, we clustered the data over several values of
k, and determined the most stable value using metrics such as intra-cluster distance and the adjusted
rand index; for details, please see [31]. After a stable number of clusters k was determined, each
variable was clustered independently, and multivariate groupings of clusters were analyzed. We
demonstrated that the prevalence of certain cluster patterns can provide insight into impacts within
the underlying climate data. For instance, a dataset from a simulation in which the Earth is generally
warmer (e.g., under the ICC’s RCP-8.5 emissions scenario) is likely to have a larger number of
clusters corresponding to higher temperatures. By tracking the number of hotter vs. cooler clusters
in time and performing statistical 7-tests to compare these cluster counts/histories with those in an
analogous counterfactual simulation, detection is possible using our approach.

Our next step following detection is actual pathway identification. In [31], we demonstrated that
this is possible by: (i) mining frequent multivariate cluster evolutions in space and time, and (ii)
comparing cluster evolution patterns in an ensemble of Pinatubo simulations to their counterfactual
analogs to identify statistically significant differences. The first step can be done efficiently by
utilizing algorithms from natural language processing (NLP) [3]. While our approach has the
potential to discover pathways “from scratch”, we found that such pathways are difficult to verify
given the sheer number of cluster evolution patterns that are typically identified. To circumvent this
challenge, we worked with climate subject matter experts to: (i) postulate several pathways expected
to be present in the data, (i1) translate these pathways into rules that can be mapped to specific
cluster evolution patterns, and (iii) use our approach to confirm the presence of these pathways in
the relevant data. In addition to finding pathways, our approach enables us to investigate the precise
locations of a particular pattern evolution, and visualize it on a geospatial map.

More details on our approach, including results for the Pinatubo stratospheric heating pathway, can
be found in [31]:
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e Warren L. Davis, Max Carlson, Irina Tezaur, and Diana Bull. “Spatio-temporal Multi-
variate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts.” Intended
submission to Journal of Computational and Applied Mathematics, September 2024.

4.3.1. Lessons learned

Most of the methodologies developed under the clustering and multivariate data-mining subthrust
are not computationally expensive. Calculating the stability scores can be expensive, but these
calculations only have to be done once per variable at the beginning, and do not need to be recal-
culated for the inference steps. The most expensive part of our workflow is the extraction/mining
of the cluster evolution patterns. Not only are the patterns themselves potentially an exhaustive
enumeration of cluster IDs per state variable, but the evolutions of the patterns is also a combina-
torial explosion. While we were able to make the data mining part of our approach more efficient
through the use of the NLTk library, the sheer volume of patterns identified within our data was
intractable to interpret/analyze. As a result, we focused our analysis in [31] on using our approach
in a confirmatory rather than an exploratory manner.

4.3.2. Future research directions

This research presents a significant advancement in our capability to find statistically significant
differences in pattern dynamics within climate simulations. However, as implemented in this
project, the approach is currently used primarily for confirmatory analyses. There is a great
opportunity to use these capabilities for discovery, where we mine the pattern evolutions and then
extract those that are statistically significant for subject matter expert (SME) review. If the evolution
patterns discovered are unknown to climate SMEs but physically plausible, they have the potential
to inform climate science. If the evolution patterns are not physically plausible, our approach
can be used to identify biases or bugs within the climate model used to generate the data used in
the analysis. This latter case might be particularly effective when observational data is available
and can be included in our analysis. The feasibility of using our methods for discovery would
depend on having the time and resources to combat the curse of dimensionality mentioned above,
and the availability of possible alternative approaches mining the pattern evolutions (e.g., different
conceptual representations, different data structures, distributed processing, etc.).
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5. OBSERVED PATHWAYS THRUST

Similar to the Simulated Pathways Thrust, the Observed Pathways Thrust focused on developing
novel statistical approaches to discovering, confirming and explaining relationships within the
climate system with the specific focus of confirming the temperature source-impact pathways for
most methods. The main difference under this thrust was that the focus was on observational
datasets where only one “replicate” of the system is available. This requires us to leverage methods
that strongly rely on the spatial and temporal dependency structures. The goal of the developed
methods was to identify meaningful quantitative relationships between the multiple variables along
the pathway which included aerosol optical depth, radiative flux and temperature, described further
in the next section. Again, similar to the simulated pathways thrust, the method developed under
the observational thrust can also be applied to simulated data and have uses beyond those which are
highlighted here. Two primary methods resulted from this work: (1) Feature Importance applied
to Echo State Networks (ESN-FI), a multi-variable method which considered a single predictor
and multiple independent variables within a nonlinear machine learning model called an echo state
network and (2) a Multivariate Space-Time Dynamic Model (MV-STDM), a multivariate approach
which considered multiple predictors while assuming a simplified space-time evolution of the
processes. Both approaches successfully identified known relationships and provide unique ways
of interpreting the relationships between the multiple climate processes as they evolve over space
and time.

In addition to these pathway motivated methods, two novel changepoint detection methods were
developed under this thrust. As opposed to anomalies, a change point refers to a change in the
underlying data generating mechanism. In practice, this usually means detecting a statistically
significant change in the mean or variance of the observed processes. Prior to this work, state of the
art change point methods have assumed change points in spatial data occur at the same time rather
than sequentially as is the case with many atmospheric events such as a volcanic eruption. The
methods developed under CLDERA are the first to allow for spatially-varying change points.

Lastly, due the multimodal nature of true observational data, e.g. from ground sensors or space-
based monitoring, a data fusion effort was also a part of this thrust. Multiple methods for data
fusion were compared including a multivariate tensor approach, an integrated nested Laplace
approximation (INLA) approach [21], a multiresolution Gaussian process model [LatticeKrig, 129]
and SSDF[123]. Further, this thrust demonstrated the importance of accounting for differences in
the support of each data type, e.g. the different spatial resolutions that each data set is collected
over.

The remainder of this chapter summarize the data used under this thrust, followed by an overview
of each novel method developed along with outcome highlights and summaries of published, under
review or in progress manuscripts that resulted from this work.
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5.1. Observational Data

Methods under this thrust were applied to at least two data tiers of the tiered verification method:
either synthetic or HSW-V dataset and at least one observational dataset. The echo state network
approach described in section 5.2 was additionally applied the E3SM ensemble to compare results
with observational data. For the temperature pathway, reanalysis data from Modern-Era Retrospec-
tive analysis for Research and Applications, Version 2 (MERRA-2) was used as the “observational"
dataset to test all methods. Specifically, the following MERRA-2 variables were considered: aerosol
optical depth [TOTEXTTAU, 51], shortwave radiative flux [SWTNT, 52], longwave radiative flux
[LWTUP, 52], stratospheric temperature at 50mb [T050, 50] and surface temperature measured 2m
above the surface [T2M, 53]. Most methods used coarsened data at 7.5 degree resolution working
with a 48 x 24 longitude-latitude grid at monthly time steps. The functional changepoint method
detailed in section 5.5 was the only method to consider daily time steps. Only the data fusion
methods considered true observations such as temperature data collected by the TOVS instrument
aboard NOAA satellites in orbit during the time of the eruption.

5.2. Echo State Network

Contributing Authors: Daniel Ries (5574), Katherine Goode (5573), Kellie McClernon (5573)

The development of algorithmic techniques for quantifying relationships between source and im-
pact variables related to a climate event (i.e., a climate pathway) could help inform policy decisions.
Machine learning may provide an approach to understanding relationships between climate vari-
ables associated with such a climate event. We explore the use of echo state networks (ESN) to
characterize a climate pathway associated with the 1991 volcanic eruption of Mount Pinatubo in
the Philippines, which acts as a natural occurrence of an stratospheric aerosol injections (SAI). In
particular, we consider the relationships between the variables of sulfur dioxide, aerosol optical
depth (AOD), and stratospheric temperature associated with the eruption of Mount Pinatubo. This
climate variable pathway has been well-studied, so we can compare our results to the relationships
previously described in the literature. See [57] for the full details associated with these methods
and analyses.

ESNs are a machine learning algorithm intended for temporal and spatio-temporal data that pro-
vide improved computational efficiency compared to recurrent and convolutional neural networks.
However, ESNs lack interpretability, which is crucial for understanding how model inputs relate
to outputs. We propose two methods for computing feature importance (FI) with ESNs for spatio-
temporal data: spatio-temporal permutation feature importance (stPFI) and spatio-temporal zeroed
feature importance (stZFI). Both methods “adjust" (permute or set to 0) input variables of interest
over a block of times and quantify the effect on the predictive performance of the model. The FI
values provide insight into how much an input variable contributes to the predictions over time.

Simulated datasets are used to evaluate the two FI methods. The datasets each contain one input
variable with a known relationship to the response variable and a suprious input variable. The
study builds confidence in the FI approach, showing that stZFI effectively identifies the importance
of across varying noise levels and block sizes, while stPFI is more prone to detecting spurious
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importance. Future work could explore data with more complex non-linear relationships to further
validate these findings.

The analysis of the Mount Pinatubo climate variables is implemented using Modern-Era Retrospec-
tive Analysis for Research and Applications, Version 2 (MERRA-2) data. We train ESNs to forecast
stratospheric temperature one month ahead given lagged values of AOD and stratospheric tempera-
ture. All variables contain monthly values on a 24x48 equally spaced latitude and longitude lattice
from 1980-1995. By starting with data from 1980, the eruption of a second volcano is included:
the 1982 volcanic eruption of El Chichén in southeast Mexico. A total of 25 ESNs are trained to
account for random variability in the models. stPFI and stZFI are applied separately for the input
variables of AOD and stratospheric temperature with a block size of 6 (i.e., how important are the
previous six months for forecasting one month ahead?). Figure 5-1 shows the feature importance
values. The results show that the importance of AOD for forecasting stratospheric temperature
increases after the eruptions of both El Chichén and Mount Pinatubo, which agree with previous
climate science research and supports the capabilities of the approach.

AOD Stratospheric Temperature
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stPFI

0.04

0.84

SIZFl (), |

0.04 ]

1980 1985 1990 1995 1980 1985 1990 1995
Date

Figure 5-1. Feature importances on MERRA-2 data with a block size of 6. The gray vertical dashed
line indicates the eruption of El Chichén, and the black vertical dashed line indicates the eruption
of Mount Pinatubo.

5.2.1. Model Validation

The usefulness of conclusions drawn from stZFI [57] are dependent on the inherent usefulness of
the ESN model on which they are predicated. Ensuring a good model fit is crucial before using
stZFI. For example, [57] used the repeated hold-out approach when fitting the ESN to MERRA-2
data of the Mount Pinatubo eruption. Repeated hold-out assumes the objective is forecasting and
creates sequentially smaller testing sets from the end of the time series. However, when the analysis
goal is to capture variable relationships rather than forecast, an ideal testing set would contain the
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event of interest - here an eruption. With observational data, we cannot obtain such a test set since
we only have one instance. Climate model simulations, because they can be replicated, offer a way
to create ideal training and testing sets for such analyses. [112] compares a new model validation
metric, replicate cross-validation, which uses replicates from climate models, with repeated hold-
out. This paper applies the two metrics under consideration to the idealized climate model HSW-V
[77] to explore the potential of using climate replicates to inform the development and assessment
of statistical techniques for observational data.

We consider the pathway of using aerosol optical depth, stratospheric temperature (50mb), and sur-
face temperature to predict future surface temperatures. Hyperparameters for the ESN, as detailed
in [57], are tuned using replicate cross-validation across the 5 HSW-V replicates. Performance
of the replicate cross-validation (CV) metric and the repeated hold-out method are assessed for
HSW-V replicate 1 with 100 ensembled ESNs. Figure 5-2 shows that the RMSE on the hold-out
test set provides a conservative approximation to the replicate CV in the absence of replicates, i.e.
observational data. The replicate CV is still preferable since it provides an measure of performance
on a new data set. [112] also applied stZFI across all HSW-V ensembles, but results are omitted
here as they are similar to the conclusions drawn from MERRA-2 data in [57]. See [145] for stZFI
on HSW-V presented by latitude instead of globally.

Further details on model development and validation can be found in [57, 112]:

* K. Goode, D. Ries, and K. McClernon, “Characterizing climate pathways using feature
importance on echo state networks”, Stat. Anal. Data Min.: ASA Data Sci. J. 17 (2024),
el1706. https://doi.org/10.1002/sam.11706

* McClernon, Kellie. Goode, Katherine. Ries, Daniel. “A comparison of model validation
approaches for echo state networks using climate model replicates”. Spatial Statistics. 2024.
https://doi.org/10.1016/j.spasta.2024.100813

5.2.2. Feature Importance & ESMs

Earth system models (ESMs) provide a wealth of information for climate scenarios which have
not been observed. This includes the generation of counterfactuals which omits the occurrence of
an event. This is particularly useful for a major event like Mount Pinatubo’s eruption, because it
serves as an exemplar for a stratospheric aerosol injection (SAI). ESMs also generate ensembles to
capture variability across the climate system. From a statistical perspective, these can be thought of
as independent replicates. However, ESMs generate large quantities of data which can be difficult
to understand and make conclusions. The stZFI method developed by [57] can not only be used
as an inferential tool, but also as an exploratory tool. As an exploratory data analysis (EDA) tool,
stZFI can provide much richer insights into the interrelationships of variables the ESM outputs
compared to simple statistics like means and correlations. Although machine learning models
have become popular in the climate science community, they are often used as predictive models
rather than explanatory or exploratory tools. As [178] points out, “the ultimate objective of using
a neural network can also be the interpretation of what the network has learned rather than the
output itself”. This helps motivate the development and application of an machine learning EDA
tool whose purpose is discovery rather than prediction.
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Replicate and Hold-out Cross Validation on Replicate 1
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To illustrate the potential of stZFI as an EDA tool we use the 1991 Mount Pinatubo eruption as an
exemplar for a SAI event. ESM data from E3SM “fullvar” and MERRA-2 reanalysis data are used
to showcase the method. We explore two temperature pathways: using aerosol optical depth, long-
wave upwelling radiation, and stratospheric temperature at S0mb to forecast future stratospheric
temperature at S0mb, and aerosol optical depth, short-wave downwelling cloud free radiation, and
surface temperature at 2m to forecast future surface temperature at 2m. Data is monthly from
1991-1998. Additionally, we explore using stZFI on a simpler ESM that has a single climate driver:
a synthetic injection of aerosols. We refer to these data as HSW-V, and they serve as a simple
test case. Echo state networks as described in [57] are used, with hyperparameters selected and
predictive performance assessed using replicate cross-validation [112]. Global feature importance
for the input variables is calculated over time to see the importance of each input on the model’s
ability to predict the output on a global scale. [145] also introduced a new regional stZFI metric
that shows the regional impacts of the input variables on the output variable. This new metric
allows scientists working with ESMs to quickly understand the regional effects of global events.

Summarizing results across the three data sets, the main takeaways were:

e Aerosols had the most consistent FI results. In all cases, there was a clear increase in stZFI
for predicting temperatures immediately after the SAI, which decreases over time.

* Radiative flux variables associated with E3SM and MERRAZ2 had relatively similar FI trends.
For long-wave radiative flux, there was no clear trend in FI with values close to 0 across all
times when predicting stratospheric temperatures. For short-wave radiative flux, there was a
slight increase in FI after the SAI when predicting surface temperatures.

» Temperature Fl values agreed between HSW-V and E3SM but differed from MERRAZ2 results.
With stratospheric temperatures, the HSW-V and E3SM results showed a clear increase in FI
after the SAI, but the MERRA?2 results showed a noisy possible increase in FI. With surface
temperatures, the HSW-V and E3SM results showed no FI trends, but the MERRA?2 results
showed a steadily increasing trend in FI.

The stZFI results can be used to point to new hypotheses and research directions. For example,
the upward trend in stZFI for T2M is unlikely due to Mount Pinatubo alone, and could lead to
additional research. Another example suggested by the latitudinal contribution plots is the question
of how the latitude of an SAI event will affect its impacts. It also could help find areas where
climate models do not match observational data. stZFI shows the variables a model is using, and
when, in order to predict. Therefore, discrepancies between a climate model and observational data
could point modelers to relationships a ESM is not currently capturing.

A full explanation of the data, model and results can be found in [145]:

* Daniel Ries, Katherine Goode, Kellie McClernon, and Ben Hillman. “Using feature im-
portance as exploratory data analysis tool on earth system models.” Submitted to GMD
Special Issue: Theoretical and computational aspects of ensemble design, implementa-
tion, and interpretation in climate science, July 2024. The review preprint is avialable at:
https://gmd.copernicus.org/preprints/gmd-2024-133/
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Figure 5-3. Latitudinal contributions to stZFl for E3SM and MERRA-2 for models predicting T050.
Note importance scales are different for E3SM and MERRA-2. Vertical dashed lines denote the
June 15, 1991 Mount Pinatubo eruption.

5.2.3. Regional Feature Importance

While the global climate variable pathways of the Mount Pinatubo eruption are well-known, many
regionally specific impacts are unknown or under debate, prompting the need to develop methods
that can identify regional changes in climate variable relationships. [57] developed an explainability
metric, stZFI, that quantifies the importance of globally defined variables on predicting global
stratospheric temperature. [145] presented the metric in terms of the location-specific contributions
to stZFI and showed stZFI average by latitude. We extend the ESN methodology to allow for
regional stZFI that quantifies the importance of regionally defined variables on the response and
aggregate the stZFI location-specific contributions by region [113]. Thus we are able to make
inferences about the relative importance of a regionally-specific covariate process on the response
at a specified location. We apply the idea of tiered verification, using increasingly complex data
sets, to validate our method.

Verification data sets assessed in [113] were simulated spatio-temporal Gaussian processes (GP)
where the response GP was linearly related to one covariate GP with random noise, HSW-V [77],
and E3SMv2 “fullvar" [13]. The listenr package [58] was used to fit the ESN and calculate
stZFI. The key results on each data set were:

* Linear model stZFI correctly assigned zero importance to extraneous covariate not related

to the response and illustrated the effect of the signal-to-noise ratio on the noisiness of the
importance function.
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Importance of Latitude Band for Location Forecast
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Figure 5-4. Contributions to stZFl shown by response latitude band along the vertical axis for
regional features from E3SM predicting stratospheric temperature. Shading represents stZFI + 1
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Pinatubo eruption. (Long wave radiation (FLNT) excluded for clarity of presentation.)

76



* HSW-V feature importance results showed the method is able to identify the timing of
increases in AOD by latitude and reflect the relative strength of tropical temperature on
predicting temperature in other latitudes.

* E3SMv?2 captured the relative importance of AOD and stratospheric temperature, where AOD
as the driver of temperature increases is most important. Temperate north AOD importance
strengthened in accord with the spread of aerosols around September 1991 out from the
origin of the injection, Figure 5-4.

Overall, the importance metric over time agreed with the temporal evolution of the underlying data
generating mechanism and was able to identify the relative importance of regional processes on
the response. The method showed its ability to faithfully capture changes over time in the regional
variable relationships suggesting its usefulness for assessing changing dynamics resulting from
either natural climate instigators (e.g. volcanic eruptions or potentially ENSO) or artificial climate
mitigation strategies, such as SAI or cloud seeding.

Further details on this research can be found in [113]:

* McClernon, Kellie, Ries, Daniel, and Goode, Katherine. “Verifying regional feature impor-
tance on echo state networks for climate pathways.” SAND2024-124040. September 2024,
Sandia National Laboratories, Albuquerque NM.

5.3. Dynamic Linear Model

Contributing Authors: Lyndsay Shand (5573), J. Gabriel Huerta (5573), Robert Garrett (5573)

A Multivariate Space-Time Dynamic Linear Model (MV-STDM) was developed to characterize
the multivariate and the dynamic nature of climate impacts following the Mt. Pinatubo eruption,
a natural analog for stratospheric aerosol injection. Full details of the framework with results
are presented in [45] and here we provide a summary of the key contributions of this work
to the CLDERA-LDRD project. The goal was to formulate a statistical spatio-temporal model
that performs well for interpolation/prediction of spatio-temporal fields with multiple variables
while capturing multivariate relationships. Additionally, the model can quantify the contribution
of increased AOD levels to changes in stratospheric and surface temperature with associated
uncertainty quantification. The model was implemented in a Bayesian framework, and use efficient
radial basis function representations as in [27]. The basis function coefficients vary spatially over a
spatial grid domain and temporally via Dynamic Linear Models as in [192] with a transition matrix
A. The variability between state transitions (basis function coefficients) is modeled via a spatial
autoregressive matrix. Implementation of the MV-STDM was implemented in R and C++ and is
available at github.com/garretrc/MV-STDM. Please see [45] for full details of the method and
results:

e Garrett, R., Shand, L. and Huerta, J. G.. A Multivariate Space-Time Dynamic Model for

Characterizing the Atmospheric Impacts Following the Mt. Pinatubo Eruption. Submitted
to Environmetrics August 2024.
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Figure 5-5. Graphical representation of how the evolution matrix of the MV-STDM model operates
over a spatial grid domain. The observed data corresponds to spatial fields from MERRA-2 for July
1991 and August 1991 at a 24 x 48 spatial grid resolution. In this case, the resolution for the basis
function coefficients of the RBFs is 42.

The multivariate space-time dynamic model (MV-STDM) involves a high-dimensional parametric
representation which is handled thru a sparse representation of the transition matrix A which
makes the model tractable. This matrix accounts for correlation in multiple output variables while
borrowing information from other variables for prediction. The elements of the basis functions are
defined over a spatial resolution grid, so a sparse representation of A captures the dependence of a
specific variable in terms of all variables at a previous time point, but only for the same location
of each basis grid point. A graphical representation of how A is structured is provided in Figure
5-5 illustrating a model transition from July 1991 to August 1991 where the resolution of the basis
coeflicients was set to 42 basis functions.

For model implementation and fitting, a Bayesian framework was considered via a Markov Chain
Monte Carlo MCMC) algorithm. The MCMC produces ensembles of model parameters (posterior
distribution samples) that provide full uncertainty quantification of the MV-STDM and relies on
a Kalman Smoother approach. The MCMC algorithm was verified to work properly on synthetic
data sets as described in Section 4 of [45]. A representation of how model fit works is presented
in 5-6, where the model fit is broken into the observed data, the estimated spatial mean process
and the model residuals. The model fit is illustrated for August 1991 and December 1994, two and
forty-one months after Mt. Pinatubo’s eruption.
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Figure 5-6. Model Fit broken down into observed data Y;, mean process U, and residuals ¢, , 2 and
41 months after eruption.

5.3.1. Results

For our main application, we studied three different climate variables that had notable observed
changes following the Mt. Pinatubo eruption. These variables include aerosol optical depth (AOD),
upwelling longwave radiation (LWR), and stratospheric temperature measured at S0mb (T50). This
collection of variables represents an important interaction between atmospheric processes following
the eruption, where the influx of stratospheric aerosols absorbed a greater than usual amount of
outgoing longwave (infrared) radiation, leading to global stratospheric warming which reached up
to 3°C near the equator. We obtain each variable from the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2). For AOD, we obtain the total aerosol extinction
aerosol optical thickness variable at a 550 nm wavelength, or the product labeled TOTEXTTAU.
For LWR, we obtain the upwelling longwave flux at top of atmosphere variable, measured in W/m?,
or LWTUP. Finally, for stratospheric temperature, we obtain the air temperature at a pressure level
of 50 mb, labeled as T50. A few preprocessing steps were applied to prepare the data for the
model. First, the spatial fields for each variable and time point are regridded to a 24 x 48 spatial
grid through spatial averaging. Because our approach is focused on understanding multivariate
relationships rather than providing fine-scale spatial predictions, this lower resolution helps to
keep the dimension of our data reasonable while still capturing long range spatial trends. Second,
we subset a twelve year time period of 1984-1995, centered around the 1991 eruption, to have a
sufficient number of time points with which to estimate our model parameters. Lastly, to isolate
the effects of the eruption from typical spatial or seasonal trends, we convert the observations for
each variable into standardized anomalies. The far left and far right panels of Figure 5-5 show the
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MERRA-2 spatial fields for AOD, LWTUP and T50 for July 1991 and August 1991 respectively at
a 24 x 48 spatial grid resolution. Additionally, Figure 1 in [45] shows these anomalies over four
3-month periods before and after the eruption.

For the application to MERRA-2 , [45] provided interpretation of the estimated transition A matrix
and studied the model’s predictive performance for stratosphere temperature while answering to the
question, if the MV-STDM provides better predictions than simpler univariate approaches. Figure
5-5 present the estimates of the model’s autocorrelation coefficient matrix A projected onto the
basis function space. Notable aspects of this figure are that strong positive autocorrelation in almost
all regions is present, especially between 30°S and 30°N (diagonal blocks of the matrix). Also
AOD has a positive impact on T50 in many regions, especially in the mid-upper latitudes (row 3,
col 1 of Figure 5-5). We tested our model’s performance in predicting stratospheric temperatures
over North America for a three-year period following the eruption (August 1991-July 1994). This
region is shown in Figure 5-8, and covers the area bounded by 155°W to 35°W longitude and 5°S to
80°N latitude. This holdout set represents a large missing block of observations in both space and
time for a single variable and thus highlighted the benefit of our multivariate model for predicted.

We focus on three submodels for predictive comparisons. First, we consider the full MV-STDM
with all three variables (AOD, LWR, T50). Then, to evaluate our model’s utility as a (univariate)
spatiotemporal dynamic model, we fitted a second model for only the T50 anomalies. Lastly, we
consider a simplified univariate model where we constrain A = I, again for T50 only. We denote
these three models as “Multivariate”, “Univariate”, and “Univariate-Random Walk”, respectively.
The top panel of Figure 5-9 shows the values of the continuous rank probability score (CRPS) for
each month from August 1991 to July 994, while the bottom panel shows the root mean squared
prediction errors (RMPSE) for the the same time scale. Overall, the MV-STDM outperforms
simpler models when there is incomplete spatial/ temporal information, as is the case for some
observational data. Other variables, especially AOD are important for prediction when spatial
information is lacking.

5.3.2. Relative Strengths and Limitation Assessment

The MV-STDM is capable of discovering pathways from observed or simulated data and it allows
processing of multivariate output but can also be applicable to single variable output. The model
provides estimation of an interpretable multivariate autocorrelation matrix that can support the
understanding of spatial interactions of the variables of interest. The model has very good predictive
performance and provides uncertainty quantification thru a Bayesian framework. In terms of
limitations, the MV-STDM is relatively slow computationally for model fitting in comparison to
the Echo State Network (ESN) model. The model’s autocorrelation matrix is not time-varying.
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Figure 5-8. Map of the holdout set of observations for stratospheric temperature (T50). The gray
region represents the region over which observations are excluded for the August 1991-July 1994
time period when fitting the model. These observations are later used to assess the model’s
predictive performance. The anomalies shown in the map are for August 1991
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Figure 5-9. Predictive performance for the three submodels on the stratospheric temperature
holdout set shown in Figure 5-8. Results are presented for each month from August 1991 through
July 1994. The top panel contains the continuous ranked probability score, or CRPS, while the
bottom panel contains the root mean squared prediction error, or RMSPE, for each month.

Different colors are used to represent each submodel.
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5.3.3. Follow-on work

We identified three areas for future work: (1) Apply the MV-STDM to output of climate model
simulations to assess the impact of internal variability in the interactions between variables of
interest, (2) Assess the similarity of multivariate interactions in climate models versus the same
interactions found in observational data and (3) Consider alternative Kalman smoother algorithms
to improve on the computational efficiency for model fitting of the MV-STDM.

5.4. Space-Time Change Point Detection

Contributing Authors: Lyndsay Shand (5573), Bo Li and Samantha Shi-Jun (University of Illinois,
Urbana-Champaign)

Significant events such as volcanic eruptions can have global and long-lasting impacts on climate.
These global impacts, however, are not uniform across space and time. Understanding how the Mt.
Pinatubo eruption affects global and regional climate is of great interest for predicting the impact
on climate due to similar events as well as understanding the possible effect of the Stratospheric
Aerosol Injections proposed to combat climate change. While many studies illustrated the impact
of the Pinatubo eruption on a global scale, studies at a fine regional scale are scarce. We propose a
novel Bayesian spatially-varying changepoint detection and estimation method to trace the impact
of Mt Pinatubo eruption on regional climate. Our approach takes into account the diffusing nature
and spatial correlation of the climate changes attributed to the volcanic eruption.

Our approach departs from conventional methods by modeling changepoints as a spatial process and
further allowing time-after-event of the changepoints to increase with the spatial distance from the
event origin. By taking into account the spatial correlation of the data and the anticipated diffusion
of the observed impact from the event location, our method is demonstrated to be more effective in
capturing the spatial patterns of climate impacts associated with the SAI events. Since our focus
is solely on tracing the impact of the Mt. Pinatubo eruption, we consider at most one change after
the eruption. Compared to [106], our method extends their model by allowing for spatially-varying
changepoints. Furthermore, our approach performs both detection and estimation of changepoint
at each location rather than only the estimation. Lastly, while most traditional methods focus on
the mean shift, our method can detect changes in either the mean or variance, thus offering greater
flexibility. For a detailed description of our model, see [164]:

» Samantha Shi-Jun, Lyndsay Shand, Bo Li. “Tracing the impacts of Mount Pinatubo eruption
on global climate using spatially-varying changepoint detection.” Accepted Annals of Applied
Statistics. September 2024. This manuscript is available on arXiv: https://arxiv.org/
abs/2409.08908

5.4.1. Results

Here, we highlight the results on the MERRA-2 reanalysis data. We apply our method to monthly
stratospheric aerosol optical depth (AOD) and latitudinal surface temperature data from 1985 to
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1995 to detect and estimate changepoints following the 1991 Mt. Pinatubo eruption. The AOD
data is over a 48 X 16 grid on the sphere excluding latitudes below 60¢ircS and above 60°N. The
temperature data is aggregated over 24 equally spaced latitude bands from 90°S to 90°N.

Figure 5-10(a) shows the heatmap of estimated changepoints. Our model detects a changepoint at
all locations, with estimated values ranging from Jun 1991 to Sep 1991. The estimated changepoints
show a pattern driven more by latitude than longitude, with the earliest changepoints predominantly
occurring along latitudes 3.5°S through 34°N. Figure 5-11 shows the time series of aerosol after
preprocessing and the mean estimates from our model. The estimated changepoints for locations
near the latitude of Mt. Pinatubo (15°N) coincide with the month of the eruption, while the
changepoints for locations further north or south occur several months later.

(a) (b)
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Figure 5-10. (a) Heatmap of detected changepoints for AOD. Darker color indicates earlier change.
(b) Heatmap of estimated change amount. Darker color indicates larger magnitude of change. The
red diamond marks the location of Mt. Pinatubo.

Figure 5-13 shows the estimated process means before and after a detected changepoint by latitude.
Our method detects changepoints for all latitudes in the range (56°S — 49°N) except for latitudes
18.5°S,26.5°N, and 34.0°N. No changepoints were detected in the southern (86°S — 63.5°S) and
northern (56.5°N — 86.5°N) ends of the globe. The posterior probability of having no changepoint
ranges from 0 to 0.0112 for detected latitudes and 0.7955 to 0.9986 for the undetected latitudes.
The detected changepoints range from Sep 1991 - May 1992.

5.4.2. Ongoing work

The methods discussed in the report uses a Metropolis-Hastings sampling for the changepoints and
an N X N covariance matrix generated from exponential covariance function, which is not scalable
when N is large. We are currently developing a scalable changepoint detection method for large
spatial data on a sphere. The new method uses a latent model for the changepoint process and a
covariance function based on Whittle-Matérn SPDE for more efficient sampling. Figure 5-12 shows
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Figure 5-11. Time series of (a) aerosol data after preprocessing and (b) posterior mean of x; and
o (s, 1), zoomed in to years 1991 — 1993. The color represents the latitude of their location. The blue,
yellow and red vertical lines mark the average value of the changepoints in latitude bands
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Figure 5-12. Heatmap of detected changepoints Table 5-1. Summary of detected dates
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a preliminary result on the stratospheric AOD data on 360 x 180 grid. The grey areas indicate that
no changepoints were detected. Table 5-1 shows the summary of detected changepoints. Most of
the locations have changepoints in the months July to September 1991.
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Figure 5-13. Estimated process mean (red llines) before and after a detected changepoint for
surface temperature separated by latitude. The black lines are latitudinal mean temperature series
after preprocessing. The posterior distribution of the changepoints are overlayed at the bottom of

each plot.

5.5. Functional Change Point Detection

Contributing Authors: J. Derek Tucker (5573), Drew Yarger (5573), Carole Hall (5573)
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Changepoint detection is a vital tool in the application of climate data analysis. Numerous types of
climate observation data are most properly represented by functional timeseries, implying a need
for accurate changepoint detection methods applicable to functional timeseries data. Such data
taken at a global scale often contain both spatial heterogeneity and dependence as well as phase
(time) misalignment. In this report, we present methods which can detect spatially-dependent
changepoints while allowing different estimates of change time and change strength depending on
location. Additionally, we provide extensions to this spatially-predicted model which controls for
phase variability among observations. Our methods provide the ability to detect a single change, or
control for epidemic changes (where a “return-to-normal” change is more likely to be detected than
the initial change). We showcase results analyzing the June 1991 eruption of Mt. Pinatubo, where
our methods demonstrate the ability to accurately detect both single and epidemic changepoints even
in the presence of strong seasonal variability. We find that our spatially-predicted model improves
the detection of relevant changepoints versus methods which do not take spatial information into
account, and we find that controlling for phase variability helps to control the false discovery rate
during the detection process.

We present a collection of methods for the purpose of detecting changepoints in global-level
climate data. These methods have the ability to detect changepoints in circumstances where the
impacts from a large, local perturbation (such as a volcanic eruption) can lead to heterogeneous
effects across the globe in terms of impact time and intensity. In this report, we detail two
novel methods—one which detects changepoints taking into account spatial dependencies and
heterogeneity, and another which extends this approach to also handle phase (time) variability in
data (a.k.a. elastic extension model)—and present resulting detected changes focusing on the June,
1991 eruption of Mt. Pinatubo in the Philippines. our methods can detect spatially-heterogeneous
changepoints—that is, changes that may occur at different times across locations when caused by the
same event, and may have different extents of change. We have demonstrated that the combination
of these features in a changepoint detection procedure can help us detect changes due to localized
events on global scale, which can be a challenging problem due to the complexity of climate
processes. Methods were applied to datasets of various complexity following the tiered verification
process: real climate observations for a time period around the eruption (from the MERRA-2
climate reanalysis), simplified climate model output (using the Held- Suarez-Williamson volcano
model or HSW-V), as well as simulated, spatially-dependent data.

This method separates itself from the changepoint method discussed in 5.4 in that the data is treated
as functional data, i.e. each year as a function of daily values. Thus, the detected changepoint
is at a coarser timescale - detected annually - but the phase variability, which is ignored by prior
change point methods, in addition to the amplitude variability is accounted for. As an example, we
show stratospheric temperature data from the MERRA-2 climate reanalysis at a specific location,
represented as a functional time series in Figure 5-14.

5.5.1. Results

When applying our methods to the simulation results, we found that spatially predicting using
score-based test statistics increases our changepoint detection ability, and multiple testing correc-
tions helped to control the FDR. The use of four or five principal components during the changepoint
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Figure 5-14. MERRA-2 climate reanalysis data presented as a functional time series at 115°E and
10°N.

estimation process in the simulation study yielded better results than using three principal compo-
nents in the case where spatial dependence is introduced in the simulation model.

The HSW-V study showed that the use of spatially-predicted test statistics increased power of
detection versus when we computed test statistics at locations independently. We also found
that the epidemic version of our spatially-predicted model was highly useful in ensuring that our
method was not inadvertently detecting “return-to-normal” changes while neglecting the source
event’s changes.

In the MERRA-2 reanalysis study, we have to handle variability stemming from natural seasonality,
as well as more complex, long-term trends. Figure 5-15 shows the p-values and detected start and
end points for each changepoint detected applied to MERRA-2 stratospheric temperatures. Darker
colors indicate a significant epidemic changepoint is detected. We can see an average increase in
stratospheric temperature around 0.25 — 1.6 K after 1989, and then after 1991, we see an average
decrease in stratospheric temperature, implying that a “return to normal” change is detected in this
case. To see more results and discussion related to the epidemic changepoint model, see [204].
The elastic extension to the spatially-predicted changepoint model provided results consistent with
those of the original spatially-predicted model when applied to the MERRA-2 reanalysis data. One
difference between these two models we emphasize, however, is the tendency for p-values calculated
using our elastic pipeline to be consistently higher than those calculated using the original model.
The original model then detected more changepoints than did the elastic extension of the model.
Since the use of elastic metrics in functional data analysis helps prevent over-estimation of functional
distances due to nuisance phase variation [182], we suggest that the use of our elastic extension
can help control the FDR in the changepoint detection process on global climate data which may
contain phase variation.

Detailed method descriptions, results of all versions of this model, as well as an evaluation of
different testing metric considerations are summarized in [61].

Implementation of the elastic functional changepoint detection has been added to the fdasrvf
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Figure 5-15. (Left) Unadjusted epidemic p-values from the original model. (Right) Mean average
change estimate for the original epidemic changepoint model for all locations by year of detected
change.

package available in both R [181] and Python [180].

Further details on the research can be found in [182, 204, 61]:

* Tucker, J. D., & Yarger, D. (2023). Elastic functional changepoint detection of climate impacts
from localized sources. Environmetrics, €2826. https://doi.org/10.1002/env.2826

* Drew Yarger and J. Derek Tucker. “Detecting changepoints in globally-indexed functional
time series.” Submitted to Evironmetrics, August 2024. This manuscript is available on
arXiv: https://arxiv.org/abs/2308.05915.

 Carole Hall, J. Derek Tucker, and Drew Yarger. “Elastic Changepoint Detection for Globally-
indexed Functional Time Series Data with Climate Applications.” SAND?2024-12470.
September 2024, Sandia National Laboratories, Albuquerque NM.

5.6. Data Fusion

Contributing Authors: Audrey McCombs (5574), Justin Li (8732), J. Gabriel Huerta (5573),
Lyndsay Shand (5573), Jimmy Hickey (5573), Mauricio Campos (5574)

5.6.1. A Tensor Approach

One increasingly common approach to dealing with the increasing availability and volume of
remote-sensing datasets is data fusion, which combines disparate observations together to produce
a single higher quality and more complete data product. The many available techniques apply across
many different fields, varying based on the modality of the data and the underlying model used to
combine the data. For Earth Science, techniques often process images taken using different imaging
instrumentation or handle observations for a single quantity of interest. While the emphasis on these
multispectral and hyperspectral approaches does contribute to improved quality and coverage for
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imaging observations, there is a far larger set of observational data with the different spatio-temporal
coverage to be explored.

Here, we instead present a tensor-based method that exploits the correlation across different quan-
tities of interest, with the assumption that the variables related to one another via an underlying
common spatial pattern. While tensors have been used for data completion and fusion in other
domains, we have not seen significant applications for Earth Science. Notably, we show that the
tensor structure suits the variables representing quite disparate physical phenomenon by first us-
ing MERRA-2 reanalysis data to have a ground truth for evaluating the fitness of this approach.
Then, we extend the implementation to study its utility with changing regimes of data availability
which occur frequently in the Earth Science domain which leads to illustrating its use with real
observational data from two different satellite instruments.

We also thank Danny Dunlavy (1462) for his input and guidance on the tensor implementation. He
is credited as a co-author on our paper which is in preparation [95]:

e Justin D. Li, Audrey McCombs, Daniel Dunlavy, Gabriel Huerta, Lyndsay Shand, "Exploring
Multivariate Tensor Data Fusion and Completion.” To be submitted to Special issue of Remote

Sensing: Spatiotemporal Fusion of Multi-Source Remote Sensing Data and Its Applications.
October 2024.

5.6.1.1. Results

For a tensor-based method to succeed, the data must share common underlying spatio-temporal
structure. We can construct a 3D tensor, with the different variables, time, and the collapsed
latitudes and longitudes as space as the dimensions. However, do the different quantities of interest,
aerosol optical depth (AOD, equivalent to AOT for thickness, depending on the dataset), radiative
flux, and temperature, which measure entirely different phenomenon, exhibit sufficiently coherent
patterns of behavior? Using MERRA-2 data, we first confirm that our assumptions are satisfied for
this tensor-based method with successful fusion across the different data variables to reconstruct
with reasonable fidelity the original reanalysis data.

Moving to real observational data, although these are more processed data products (level 3 and
level 4) and we apply downscaling for computational tractability, we use:

* AOD from the Advanced Very High Resolution Radiometer (AVHRR). As a NOAA Climate
Data Record (CDR), AVHRR AOD benefits from further post-processing and combines data
across multiple instruments.

* Radiative flux, in the form of outgoing longwave radiation (OLR), collected by the TIROS
Operational Vertical Sounder (TOVS) aboard NOAA-11. The data includes both morning
and evening passes, which we handle as two different variables rather than try to collapse
into a single daily value.

* Surface temperature (TREF) collected in the same way as OLR by NOAA-11 TOVS.

* Stratospheric temperature at 50 hPa (T50) collected in the same way as OLR by NOAA-11
TOVS.
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Figure 5-16. Results from the tensor data fusion approach using real observed data, for a single
day (July 25, 1991) with the observations shown on the top row and the fused product on the
bottom row. Each column shows one of the variables, highlighting the morning pass TOVS OLR
(left), the morning pass TOVS TREF (middle), and the daily observation for AVHRR AOD (right). The
red triangle marks the location of Mt. Pinatubo.

Applying our tensor-based method, we produce spatially and temporally complete products covering
for all variables. Figure 5-16 show the observed data in the top row for three of the variables (the
morning / AM pass for OLR and TREF, and AOD), where the occurrence of incomplete observations
is especially prominent for AOD (right). The bottom row shows the output from our approach,
where the fused product has been reconstructed with complete coverage across the spatial and
temporal dimensions to impute values to the missing regions. The modeled values show good
overall agreement with the locations where observations occurred, although with a higher degree
of spatial smoothness. While AOD shows the same behavior, it presents a more challenging
component as AVHRR does not include any measurements over land, due to limitations in the
sensor and the algorithm. As such, the values in the fused product here show non-meaningful,
saturated values.

Because the tensor method models the underlying behavior through the decomposed tensor compo-
nents, each component can be individually examined as well. Figure 5-17a shows three components,
with different total contributions to the data fusion product, along the three different dimensions.
The different components exhibit different degrees of correlation between variables, with differing
temporal patterns including varying amounts of seasonal effects, and markedly different spatial pat-
terns. The components themselves could be further examined, to assess how well the phenomenon
of interest might be specifically represented, or matching them to modes and oscillations.

Another way to evaluate the results, though less absolutely representative than the same assessment
conducted over the complete MERRA-2, is to examine the errors against the given observations to
see if the data fusion is overall faithful to the input data. Figure 5-17b shows the median absolute
error (blue) across space for each time point, for the seven total variables. The values show largely
similar and consistent behavior over time, with some potential seasonal effects. For example,
AVHRR AOD uncertainties are given as +/—0.2 which captures the range in errors here. Because
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the two instruments have different coverage, we also show the number of points (green) used for
the error calculation.

Because the AOD results show such poor results in filling in values over land, with nearly complete
saturation, we conduct one further test using different sampling configurations with MERRA-2
data to highlight the impact of data availability in formulating the task of data fusion using the
tensor-based method. Because AVHRR never has observations over land, due to the sensor and the
retrieval algorithm, there are no points available for correlating between variables when learning
the tensor components. If we hypothesize additional datasets generated by new algorithmic data
processing capabilities capable of retrieving measurements over land (such as Deep Blue, though
with more completeness), the tensor method could then infer the correlations between variables
and the trends over time from more data-dense time periods to better predict values from earlier
time periods without any data.

Figure 5-18 shows that this is feasible with a simulated scenario with MERRA-2 data (1st row),
where no values are collected over land before May 1993 and land values are retrieved after May
1993 (2nd row). If no land data was ever collected, the data fusion reconstruction (3rd row) shows
obvious errors over land. (The behavior differs from with real observed data, likely due to the better
overall coverage with the synthetic MERRA-2 sampling.) In contrast, this partial land sampling
reconstruction using the values observed after May 1993 (4th row) show marked improvement.
Under normal conditions, the reconstructed AOD matches the original well (right column) even
in the earlier time period without data (left column). Only when there is no data and a larger
disturbance is occurring does the reconstruction break down to some extent, such as around the
Pinatubo eruption (middle column).

5.6.1.2. Relative Strengths and Limitation Assessment

The tensor-based data fusion method is capable of combining different observations from different
instruments for different, but related, physical phenomenon. This leverages correlations between
variables to improve the data in-filling due to the different instruments’ coverage and capabilities.
Relying purely on the input data, without a physics-based model, the tensor fusion produces
complete estimates across the defined times and spaces, with a demonstration of its application on
real observed data. The proof-of-concept also shows that this method will be useful across regimes
of different data and for intelligently in-filling times when little to no data is available.

At this time, the work has several limitations, which could be addressed with future work. The
time for computing the tensor decomposition will scale with larger dimensions and more coverage.
To avoid excessive computation times, the current work downscaled the data. Higher spatial and
temporal resolutions and longer durations will require longer time to complete. More fundamentally,
this approach does not currently handle different resolutions, nor does it address conflicting values
at the same location from two different instruments. It is a data fusion technique across variables
rather than between instruments for a single variable.
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Figure 5-18. Demonstrating a constructed scenario using MERRA-2 data which combines time
periods with different data availability. The (1st row) original data is (2nd row) sampled with
observations being retrieved over land after May 1993. Data fusion reconstruction results when
(3rd row) no land is ever retrieved is shown for comparison with the results using this (4th row)
partial sampling. All plots are set to the same color scale, with the red triangle marking the location
of Mt. Pinatubo. The three columns show the data and results for three different times, three years

(left) before and (right) after and (middle) at the time of eruption.
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5.6.1.3. Follow-on work

There are several directions for immediate and more extended follow-on work: (1) Contribute the
developed tensor code to Sandia’s Python tensor toolbox (pyttb), (2) Assess the scalability of the
approach with higher resolution data and longer time durations, and (3) Develop extensions to
handle multiple sampling resolutions and multiple inputs for the same variable. We note that this
method should also generalize to other Earth Science and general applications and would consider
demonstration on other exemplars to be valuable for supporting additional data processing tasks for
other mission needs.

5.6.2. A Statistical Approach

The fusing of spatial datasets is becoming more common as the availability of remote-sensing
datasets grows. Fusing two or more spatial datasets has the potential to produce more accurate
estimates of natural processes than modeling each dataset separately. Data fusion is currently
practiced in a variety of fields, including climate science, ecology, oceanography, and soils science.
For the CLDERA project, fusing temperature datasets produced a spatio-temporally complete
observational dataset with uncertainty quantification to support near-real-time data analysis and
pathway attribution. While fusing different datasets has advantages, care must be taken when
fusing data collected over different spatial scales, since datasets with different spatial supports have
different statistical properties. Using areal and point data as an example, areal data (such as remote
sensing satellite data) has an added element of uncertainty compared to point data (such as field
observations) due to the fact that the values reported are aggregates of information collected over
an area, rather than actual measurements at a point in space. Ignoring this added uncertainty results
in too-liberal estimates of prediction errors.

5.6.2.1. The change of support problem

Appropriately accounting for different spatial supports in spatial statistical modeling is known as the
change of support problem (COSP). The classic reference is [59] who survey the statistical issues
associated with inferring a spatial process at one resolution from data at a different resolution. Since
that seminal paper, a rich literature has developed introducing different approaches and modeling
techniques for addressing the COSP. The extensive literature and highly technical nature of the
different methodologies, however, can lead to confusion and frustration in practitioners whose goal
is to fuse different datasets in a way that is sensitive to the statistical issues, but who cannot afford
to invest in a thorough understanding of the entire field. In this paper we focus primarily on two
different methodologies that are implemented in computational tools written for the open-source
statistical programming language R [142]. Specifically, we describe and implement COSP models
using the R packages FRK [205] and R-INLA [97]. This study provides practitioners with an
understanding of the statistical issues associated with the COSP, and a detailed primer on two tools
available for appropriately quantifying uncertainty in spatial models from fused datasets. Our goal
is to provide an accessible entrée into the topic that will improve uncertainty quantification from
fused datasets across a wide range of scientific fields.
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Figure 5-19. lllustration of change of support problem (COSP).

The term “change of support problem” actually refers to several different problems that crop up
when we infer a spatial process at one resolution from data at a different resolution. Examples
of problems associated with change of support include the modifiable areal unit problem and the
ecological fallacy [59]. In this study, we specifically focus on one form of the COSP: the added
uncertainty that must be accounted for when combining an areal dataset with a point dataset. The
problem is illustrated in Figure 5-19a. On a spatial field made up of 36 areas with the values
specified in each area, the mean over the spatial field is 5.4 and the standard deviation of values is
2.8. If we aggregate the field into nine groups of four areas each by taking the mean of the four areas
in each group, the mean over the spatial field does not change. However, the standard deviation
of the values across the field is reduced, from 2.8 to 1.6. This is a well-known phenomenon in
statistics: the variability in a population of individuals is higher than the variability of means
calculated from subgroups of the population.

The error associated with a point dataset, in which values represent a measurement at a specific
place, is known as measurement error. For our purposes, measurement error captures the error
associated with recording a measurement, and can be caused by operator variability, imprecision
and/or bias in the measurement instrument, environmental effects, etc. An areal dataset also
contains measurement error, but the values reported in an areal dataset include an additional source
of uncertainty not present in the point dataset; specifically, the error associated with the aggregation
of information over the area. For example, if a satellite dataset reports a temperature value of 310
K over the area between 46 and 45 degrees west and 22 and 23 degrees north, any specific point in
that 1 degree-by-1 degree area may or may be 310 K. The difference between the actual (unknown)
temperature at a specific location (e.g., exactly 45.2 degrees longitude and 22.4 degrees latitude)
and the temperature reported in the dataset is due to the fact that the reported value is an aggregate
of all the information gathered over the 1 degree-by-1 degree area. It is this added error due to
aggregation that we refer to as the COSP in this study.

It is tempting (and easy) to ignore the extra uncertainty due to aggregation when combining point
with areal datasets. In the TOVS dataset we use in this study, temperature values are collected over
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Figure 5-20. True standard deviations (black) and prediction standard errors from a model run as
point data (orange) and a model run as areal data (teal).

1 degree-by-1 degree areas and reported at a specific longitudes and latitudes, namely, the centroids
of the areas. The choice of centroid, however, is arbitrary—any point in the area would serve to
identify the area on the globe as long as the choice is documented for practitioners. However,
computational tools will happily accept the specified longitude and latitude and treat the value as
if it was a point observation (Figure 5-19b). This is a mistake, for the reasons discussed above.

Figure 5-20 demonstrates the modeling result when areal data is modeled incorrectly as point data,
and when it is modeled correctly as areal data. This figure was produced using the LatticeKrig
package in R [129], in which a simulated areal dataset was modeled using the standard package
functions, (i.e., the areal data was modeled as point data), then modeled accounting for the areal
nature of the data using custom functions that numerically integrate over an area. The simulated
dataset was created by coarsening a high-resolution spatial field of 20,000 points into 72 areas, by
averaging the point values in each of the 72 areas. The standard deviation of the true simulated
values (the variability associated with each area) was compared to the prediction standard error for
each model. The prediction uncertainty reported from the point model is significantly lower than
the prediction uncertainty from the areal model, and while the uncertainty in the areal model is
still smaller than the actual variability in the data, it is closer to the true variability relative to the
uncertainties from the point data model.

5.6.2.2. Modeling tools

Figure 5-20 was produced using custom functions that will require development before they can be
released for general use. However, two published R packages account for the COSP natively: FRK
and R-INLA. The FRK package implements a fixed rank kriging modeling framework as a spatial
random effects model, in which a spatially-correlated mean-zero random process is decomposed
using a linear combination of spatial basis functions with random weights (linear coefficients)
plus a mean-zero error term that captures small-scale variation. The random process is modeled
using a spatial covariance function that is always nonnegative definite and can be constructed so as
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to approximate standard families of spatial covariance functions. The conceptual machinery that
allows the model to account for change of support is the basic areal unit (BAU), a discretization,
or “tiling,” of the spatial domain into a large number of small, non-overlapping areas. The model
is implemented on the tiled surface and predictions are made at the level of the BAU. Each areal
datum includes at least one (and usually more) BAU, while each point datum falls into a single
BAU. Model predictions, with reported uncertainty, are made at the BAU level over the entire
spatial domain. A full mathematical description of the model and details of model estimation are
included in [206]

The second package that natively accounts for change of support is R-INLA, the R implementation of
the integrated nested Laplace approximation (INLA) approach. INLA is a method for approximate
Bayesian inference that can be applicable for latent Gaussian Markov random fields (GMRFs).
The model involves a three-stage Bayesian hierarchical structure in which the observables y are
described as conditionally independent given some latent parameters 7 which define a latent GMRF
with a Matérn covariance matrix and hyperparameters 6. Prior distributions on 6 specify the final
stage of the hierarchical model. A mathematical description of the INLA model and computational
details of estimation procedures are in [149]. Computationally, the INLA model constructs a
triangulation over the spatial domain, and a projection matrix that maps the observation locations
to the triangulation nodes. It is the structure of the projection matrix that accounts for different
spatial supports from different datasets. Each row in the projection matrix represents an observation,
while each column represents a triangulation node. For a point observation, at most 3 columns
in that row contain non-zero entries, associated with the nodes surrounding the observation point
and weighted by distance from the node to the point. For areal data, all triangulation nodes that
fall within the area have non-zero entries and values are a function of the number of nodes in the
area. The model is implemented at the triangulation nodes, but predictions (with uncertainty) can
be made at any arbitrary location in the spatial domain.

In this paper, we compare the performance of these two packages using three global temperature
datasets: 1) Observational data (Figures 5-21a and 5-21b): an observational dataset from January 1,
1991 that combines point-level radiosonde data (instrument carried on a weather balloon) from the
Integrated Global Radiosonde Archive (IGRA), with areal data at a 1 degree latitude-by-1 degree
longitude scale from the TIROS Operational Vertical Sounder (TOVS) on NOA A weather satellites;
2) Simulated observational data (Figure 5-21c): A simulated dataset that mimics the sample size
and spatial structure of the observational data; and 3) Simulated areal data (Figures 5-22b and
5-22¢): A simulated areal-only dataset that was generated by first simulating mock temperature
values on a high-resolution grid (200 x 100, Figure 5-22a), then coarsening the simulated values
into 72 areas (12 x 6) by averaging over all values in each area. It is this third dataset that was
used in the LatticeKrig model described above in Section 5.6.2.1 to illustrate the change of support
problem.

5.6.2.3. Results

As expected, both models did a good job predicting temperatures from the observational and
simulated observational data (see Figure 5-23a for FRK results on observational data and Figure 5-
24a for INLA results on observational data). For the simulated observational data, we ran the FRK
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Figure 5-21. Global temperature datasets used in performance comparisons (observational A & B
and simulated C).
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Figure 5-22. Simulated areal data example.
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Figure 5-23. FRK model on observational data.

model with BAUs of size 1 and a resolution of 3 for the basis functions. Otherwise we used the
default settings for the model with no covariates except latitude and longitude. The point dataset
(n = 102) was fed into the model as a SpatialPointsDataFrame, while the areal data (n = 1286)
was a SpatialPolygonsDataFrame, both created with the R package sp [9], for a total of 1388 data
values. We compared the predictions at the BAU level with the true (simulated) areal and point
data, where the true values ranged from —2.3 to 1.6. The mean prediction standard error was
0.0563, nominal 95% coverage was 98.2%, and the RMSE was 0.0433 (see Table 5-2).

We ran the INLA model with a projection matrix that captured the difference between the areal
and point simulated observations, using a mesh size of 20. Predictions were made on a 200 x 100
grid, and each observed value was compared to the prediction at the point closest to the observed
location (the centroid of an area for the areal observations). The mean posterior standard deviation
was 0.0252, about half that of the FRK model. Nominal 95% coverage was 84.9%, much less than
both nominal and the FRK model, and the RMSE was 0.0347, very slightly smaller than the FRK
model. Table 5-2 compares model results for the simulated observational data.

We used the simulated areal dataset to investigate how well each model handles the change of
support problem. We ran the simulated areal data through each model, first as point data and then
as areal data, and asked for one prediction for each of the 72 areas. We compared the prediction
standard errors (for FRK) and the posterior standard deviations (for INLA) from the areal model
to those from the point model, and expected the prediction uncertainty to be smaller for the point
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Figure 5-24. INLA model for observational data.
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Table 5-2. Comparison of model fit statistics for simulated observation data. Error column is mean
prediction error (FRK) or posterior standard deviation (INLA). Nominal coverage is 95%

Model BAU (FRK) or mesh size (INLA) Error  Coverage RMSE
FRK 1 0.0563 98.2% 0.0433
INLA 20 0.0252 84.9% 0.0347

model than the areal. Results are displayed in Figure 5-25a. The INLA model behaved as expected:
the posterior standard deviations for the areal model were substantially larger than those for the point
model, and while the posterior standard deviations were generally smaller than the true standard
deviations, there were within 20~ of the mean of the true standard deviations. These results suggest
that the INLA model is appropriately accounting for the added uncertainty in areal data.

The FRK results were less promising. In general, the prediction standard errors from the point
model were smaller than those from the areal model, however the differences were small, especially
compared to the variability in the true standard deviations. These results seem to indicate that the
FRK model is not appropriately accounting for the difference between areal and point data. We
suspect the reason might be a mis-match between the model conceptualization and the computational
procedures. The BAUs are areas as conceptualized in the model, however they are treated as points
in computations. In the FRK vignette for R, [205] state that the spatial field S can be approximated
with the set of points s, namely the centroids of the BAUs. “Since small BAUs are always assumed,
this approximation is used throughout FRK" (p. 4). The INLA framework explicitly incorporates a
mechanism to account for the difference between point and areal data, while the FRK model does
not. Rather, the FRK model relies on the fact that a point datum will fall into a single BAU, while
an areal datum will spatially cover more than one BAU. This may be the reason why there is very
little difference between the prediction standard errors in the point model versus the areal model.

We used the simulated areal data for a second investigation into how the models handle change of
support. Because both models allow predictions at arbitrary locations, we predicted on a very fine
grid then aggregated the predictions within each of the original 72 areas, and compared the mean
and standard deviation of the predictions within each area with the original data values. We did
not account for the uncertainty in the predictions. We ran the models as areal data, and results
are displayed in Figure 5-26a. The standard deviations of the aggregated predictions more closely
matched the true standard deviations than the reported prediction uncertainties (discussed above).
This is perhaps not surprising given that this procedure of aggregation is similar to the procedure
we used to generate the simulated data. But as the Figures 5-26b and 5-26d show, the aggregated
standard deviations were generally within 20~ of the mean of the true standard deviations. As
above, the variability in the INLA predictions more closely matched the variability in the true data
compared to the variability in the predictions from the FRK model. Qualitatively, the spatial pattern
in the model variability generally matched the spatial pattern in the true data (Figures 5-26a and
5-26¢), where areas in the upper right had less variability, the area at (3, 3) had high variability, and
the two areas that cover Australia had moderate variability. Again, results from the INLA model
matched the true values better than results from the FRK model.
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Figure 5-25. True standard deviations versus prediction standard errors (» = 72) from models on

simulated areal data.
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Figure 5-26. True variability in simulated data versus variability in predictions from areal models.
Top row: FRK model, Bottom row: INLA model.Left: Standard deviations of predicted values when
aggregated into 72 areas. Right: True standard deviations (black, grey horizontal line: mean, grey
shaded area: +2 standard deviations from the mean) and standard deviations of predicted values

when aggregated into 72 areas (blue, blue horizontal line: mean).

105



5.6.2.4. Conclusions

We conclude that the INLA model does a better job than the FRK model of accounting for the
additional uncertainty associated with areal data, and we suspect the reason might be a mis-match
between model conceptualization and computation in the FRK framework. From a modeling
perspective, therefore, the INLA framework seems to be superior. From a practitioner’s point of
view, however, we note that in our experience the package R-INLA was more difficult to use than
the FRK package. R-INLA was more memory intensive, and the reported error messages were
sometimes unhelpful. The package has been recently updated to a new package inlabru [6],
available on CRAN. We are not certain whether the functions necessary to produce a projection
matrix that appropriately accounts for areal versus point data have been ported over to the new
package.

As we worked through this study, several lines of further investigation suggested themselves. First,
we believe that the custom functions we applied to LatticeKrig which allow that package to
account for areal data are worth of development and publication. The two existing packages that
account for change of support —FRK and R-INLA —each have strengths and weaknesses, and
making another option available to practitioners would be valuable. Second, we ran all datasets on
a 2-D lattice, but both R-INLA and FRK are nominally capable of handling data on a sphere. For
global datasets, a spherical model would be an improvement both because great circle distances
will be more accurate that the Euclidean distances used here, and because a spherical model will
account for connectedness at the far west and east edges of the 2-D lattice. Finally, these models
should be tested in the new inlabru package using the spatial package sf rather than sp, as both
R-INLA and sp will likely be decommissioned in the future.

Perhaps the most important finding of our study is the following: when considering the change
of support problem as defined in this paper, we obtained the best results by predicting on a fine
grid and then aggregating the predictions into the areas defined by the original data. Results from
this procedure were more successful at capturing the true variability in the data than relying on
the reported prediction uncertainty alone. This procedure is more computationally expensive than
predicting at only the locations of the observation areas, and practitioners will need to balance the
computational costs with the improvement in results.
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6. ATTRIBUTION THRUST

The ability to robustly understand and quantitatively assess the causes of climate impacts is central
to scientific, legal, and policy communities. In climate science, this is performed through detection
and attribution (D&A). Detection of a change in a climate impact (such as global mean surface
temperature, GMST) is defined as the process of demonstrating that a change has occurred in
some statistically significant sense without providing a reason for the change. For example, the
Intergovernmental Panel on Climate Change (IPCC AR6, working group 1) has published charts
showing the detection of an GMST increase of 1.1°C over the period 1850-2020; see the discussion
in Chapter 3 of Working Group 1 report, FAQ3.1 [37]. Attribution is defined as the process
of evaluating the relative contributions of “multiple causal factors to a change or event with an
assignment of statistical confidence.” [70] For example, the IPCC attributes this GMST increase to
anthropogenic activity: “humans are the dominant cause of observed global warming over recent
decades” because the observational temperature increase can only be matched using ensembles
of climate models when anthropogenic greenhouse gas forcings as well as anthropogenic aerosols
are included. The attribution process also accounts for underlying noise: the temperature increase
signal has risen far above the internal variability of the climate system [37]. The statement of the
IPCC such as “It is unequivocal that human influence has warmed the atmosphere, ocean and land.”
[24] are attribution statements.

Due to the chaotic nature of the climate system, detection and attribution of a climate impact to a
climate forcing is plagued by variability in any climate variable. The further downstream, shorter
duration, or more spatially-localized the change, the larger the role that variability plays. Hence,
multiple climate attribution approaches [70, 68, 174, 157, 11] have been developed to decipher a
signal from the noise, i.e., a forced response from underlying variability. The existing attribution
approaches include the concept of a “fingerprint” which is a spatial and/or temporal signal that
helps indicate a change. The following references provide a history and evolution of attribution
approaches including fingerprinting and its variation, regional attribution, extreme event attribution,
and storyline approaches: [156, 68, 69, 71, 127, 174, 157, 143, 162, 163, 11, 102, 119].

In CLDERA, the Attribution Thrust focused on attributing changes in stratospheric temperature or
surface temperature to Mt. Pinatubo (Pathway 1) as well as agriculture productivity changes due to
Mt. Pinatubo (Pathway 2). We note a fundamental difference between the Mt. Pinatubo exemplar
and long-term climate change. In CLDERA, we are trying to attribute a short-term and spatially
localized forcing (Mt. Pinatubo erupted over a few days and its effects lasted a few years) as we were
targeting high variability environments. This is quite different from the IPCC focus on long term
climate change, where decades of observational records of temperature exist and the greenhouse
gas forcing has been increasing for over 200 years. Thus, to perform attribution studies of Mt.
Pinatubo impacts, we developed three novel approaches that address different aspects of attribution
of localized forcings on impacts that have high variability. The first uses an inverse optimization
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framework in which the objective is to infer the magnitude (or location or height, etc.) of the
source forcing given downstream observations of impact variables. The second is a multi-step
attribution framework that uses features of the downstream variables and relationships between
these features in a conditional Bayesian formulation. This multi-step method employs scaling
experiments (e.g. simulated Pinatubo runs of increasing SO2 magnitude representing increasing
forcing) to achieve more certainty in the attribution. The final approach is a new causal modeling
algorithm which accounts for space-time dependencies between variables, in contrast with existing
causal modeling approaches, which find causal relationships in random variable distributions or
time-series data (e.g. temporal dependencies). Collectively, these attribution approaches have
increased our understanding and ability to attribute low signal-to-noise impacts from localized
forcings.

6.1. Inverse Optimization

Contributing Authors: Joseph Hart (1441), Indu Manikam (5524), Mamikon Gulian (8734),
Laura Swiler (1400)

In complex and large-scale climate systems, important effects are caused by a combination of
confounding processes that are not fully observable. The identification of sources from observations
of system state is vital for attribution and prediction, which inform critical policy decisions. In
the context of CLDERA, our objective is to infer the correct source forcing (e.g. the magnitude
of SO, that Mt. Pinatubo injected into the atmosphere) given downstream observations of aerosol
optical depth (AOD). The primary uncertainties in this process are the injection magnitude and the
atmospheric wind variability. The difficulty of these types of inverse problems lies in the inability
to isolate sources, the cost of simulating computational models, and the inherent uncertainties and
variability in the climate system.

6.1.1. CLDERA contributions in Inverse Optimization methods

To address these challenges, we developed a framework which employs the following:

1. Dimension reduction. To perform inverse optimization, it is necessary to reduce the high-
dimensional 3-D global gridded data to a smaller dimensional space. We investigated Princi-
pal Component Analysis (PCA, [85]) and Radial Basis Functions (RBFs) as two alternatives
for dimension reduction. PCA was ineffective due to the internal climate variability and ad-
vective characteristics of the plume transport. This led us to our use of RBFs. Traditionally,
RBFs are defined on a fixed spatial grid and their coefficients are fit via linear least squares.
In this way, the RBF representation is smoothing but does not necessarily give a significant
dimension reduction. We adopted a different approach wherein we fit the RBF location,
shape parameter, and coefficient simultaneously via nonlinear least squares. This approach
adds to the complexity of fitting the RBFs, but enables a low dimensional representation
of the plume advection which is not possible using the traditional approach where the basis
functions are on a fixed grid.
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2. Surrogate models. Optimization involves querying a “forward model” many times, to un-
derstand which inputs lead to the desired objective. In our problem, E3SM is the forward
simulation model which maps an injection magnitude and atmospheric wind state to AOD.
Due to the high computational cost of querying E3SM, we trained an autoregressive neural
operator to serve as a surrogate model for E3SM. The model evolved the state of AOD over
the first 2 weeks of the simulation. We enforced physical constraints in the model architec-
ture to ensure that physically realizable solutions were produced. These constraints included
enforcing that the mass of SO, decreased post-eruption (as SO, is converted into sulfate),
and enforcing that the the total mass of sulfur from both SO, and sulfate is conserved at each
timestep.

3. Bayesian inversion. The inverse problem inverts the forward problem: given observations of
AOD and a probability distribution over the winds, we estimate the injection magnitude(s)
which may have led to the AOD observations. We perform this inversion using a probabilistic
Bayesian framework, where we determine a posterior probability on the injection magnitude
given AOD observations and wind data. This probabilistic estimate uses a deterministic
optimizer to obtain the Maximum a Posteriori (MAP) point of the posterior distribution
of injection magnitude and then uses additional stochastic approaches to obtain the full
distribution. A Bayesian Approximation Error (BAE) approach was used to embed the wind
variability within the Bayesian formulation, thus enhancing our quantification of uncertainty.

4. Ensembles. Our dataset consisted of volcanic simulations of varying injection magnitudes.
For each injection magnitude, multiple simulations were run that had different atmospheric
states and wind patterns (climate ensembles). We relied on limited variability ensembles to
reflect prior knowledge of the climate state around the time of the Mt. Pinatubo eruption
and thus reduce the uncertainty in our source magnitude estimate. In our final study, 7
ensemble members, each having 5 injection magnitudes, were used to train the surrogate
model. We used 5 additional simulations for hyperparameter tuning the model architecture,
and 2 simulations from previously unseen injection magnitudes and atmospheric states as the
final test set.

The inverse optimization team followed a careful tiered verification approach to develop the nec-
essary components for the inverse framework. The team started with a Gaussian plume model
which captured the time evolution and also demonstrated the wind variability which needed to be
accounted for in the inversion process. Then, the approach was demonstrated and tested on the
Held-Suarez-Williamson model, where spatial averaging and dimension reduction needed to be
addressed more fully. Finally, the inverse method was demonstrated on the full E3SM model with
prognostic aerosol treatment. In this model, the source tagging capability was used to separate
Pinatubo aerosols from other aerosol forcings (e.g. anthropogenic).

Two journal papers have been prepared summarizing the inverse optimization framework developed
under CLDERA. They are listed below [65, 66] :

e Joseph Hart, Mamikon Gulian, Indu Manickam, and Laura P. Swiler. Solving high-
dimensional inverse problems with auxiliary uncertainty via operator learning with limited
data. Journal of Machine Learning for Modeling and Computing, Vol.4, No. 2, pp. 105-133.
2023.
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* Joseph Hart, Indu Manickam, Mamikon Gulian, Laura Swiler, Diana Bull, Thomas Ehrmann,
Hunter Brown, Benj Wagman, and Jerry Watkins. Stratospheric aerosol source inversion:
Noise, variability, and uncertainty quantification, submitted to Journal of Machine Learning
for Modeling and Computing. This manuscript is available on arXiv, https://doi.org/
10.48550/arXiv.2409.06846.

6.2. Extensions of Attribution

Contributing Authors: Laura Swiler (1400), Diana Bull (8931), Christopher Wentland (8734), R.
Michael Weylandt (5573)

In the CLDERA project, we first examined fingerprinting methods for attribution. Then, we
developed a multi-step conditional attribution approach which leverages features from pathways.
The paragraphs below place this multi-step attribution approach developed under CLDERA in the
context of the larger field of attribution science.

6.2.1. Attribution Background

Attribution of long-term climate impacts to anthropogenic forcings such as greenhouse gases (GHG)
and aerosols in the climate system is a well-established practice [116, 37]. These studies rely almost
entirely on the “fingerprinting” methodology first introduced by Hasselmann [67] and refined over
the following decade [156, 68, 69, 71, 127, 4]. This method determines spatial and/or temporal
patterns of impacts under externally forced conditions. Typically, observational results are regressed
on simulation results driven by external forcings like GHG or aerosols. The regression coefficients
and corresponding significance are used to identify combinations of forcings which “best fit” the
observational data; these are the important forcings to which the change is attributed. The forced
simulation data might be as simple as a global average time series “signal,” though in many studies
a signal is computed from the projection of data onto a set of empirical orthogonal functions
(derived from a principal component analysis). A large body of work aims to identify optimal
fingerprints which best improve the signal-to-noise ratio [143], characterize and accommodate for
the internal variability of the climate [157, 195], and perform regional attribution studies [12, 174].
Multivariate fingerprinting approaches utilize multiple climate variables (such as temperature and
precipitation together) to identify a fingerprint which more robustly achieves attribution [11, 111].
Bayesian formulations of the fingerprinting problem allow analysts to more deliberately quantify
uncertainty in the fitted model [64] and encode prior knowledge of climate forcings [8].

Pattern scaling techniques [5, 130, 72] can be used to evaluate how the magnitude of the climate
response changes with respect to the degree of an external forcing (e.g., the amount of GHG); these
patterns are normally expressed as a change per degree of global-mean temperature change [130].
This is similar to epidemiological studies which invoke dose-response relationships as evidence
of causal relationships [74]. As attribution is inherently retrospective, associative pattern attribu-
tion [70] studies evaluating the sensitivity of impacts to changes in the degree of external forcings
are not common, as the degree of GHG forcing up to present is generally not contested.
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“Multi-step” fingerprinting methods attempt to link downstream impacts to a climate forcing
through a series of single-step fingerprinting assessments [70]. By incorporating progressive
steps of the process, this method explicitly evaluates the physical mechanism by which a driver
influences a downstream impact. The assumed statistically-independent nature of the component
steps unfortunately limits the confidence in such analyses to that of the single weakest attribution
step. The literature appears devoid of any such multi-step attribution findings following the
procedure outlined by Hegerl [70], successful or otherwise, likely due to this limitation. Other
multi-step attribution frameworks exist beyond the optimal fingerprinting canon [56], but remain
relatively rare.

6.2.2. Attribution challenges for localized forcings

The above attribution methods often struggle to achieve successful attribution in regimes where
the forcing response is dominated by the climate’s internal variability. In particular, there are
many climatic events that are short-lived and characterized by large variability in the forcing
response. These can arise from spatially and/or temporally localized external forcings like forest
fires [101], industrial fires (e.g., the Kuwait oil fires [17]), volcanic eruptions, and geoengineering
projects such as marine cloud brightening or stratospheric aerosol injection [81]. The characteristic
time scales of these events and their purported impacts (months or years) are much shorter than
those of anthropogenic climate change (decades), and their attribution requires methods capable of
overcoming the associated low signal-to-noise ratios for the impacts of interest.

6.2.3. CLDERA contributions in fingerprinting

To address the above challenges, we first focused on dimension reduction approaches, which are an
essential part of the climate analyst’s toolkit. Due to the enormous scale of climate data, dimension
reduction methods are used to identify major patterns of variability within climate dynamics, to
create compelling and informative visualizations, and to quantify major named modes such as the
El-Nifo Southern Oscillation. Principal Components Analysis (PCA), also known as the method of
empirical orthogonal functions (EOFs), is the most commonly used form of dimension reduction,
characterized by a remarkable confluence of attractive mathematical, statistical, and computational
properties. Despite its ubiquity, PCA suffers from several difficulties relevant to climate science:
high computational burden with large data sets, decreased statistical accuracy in high-dimensions,
and difficulties comparing across multiple data sets.

We introduced several variants of PCA that are likely to be of use in climate sciences and address
these problems. Specifically, we introduced non-negative, sparse, and tensor PCA and demonstrate
how each approach provides superior pattern recognition in climate data. We demonstrated these
approaches through an analysis of several runs of the E3SM climate model from 1991 to 1995,
focusing on the simulated response to the Mt. Pinatubo eruption; our findings are consistent with
a recently-identified stratospheric warming fingerprint associated with this type of stratospheric
aerosol injection. These variants of PCA and the demonstration of these dimension reduction
approaches have been published in the following paper [193]:
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* Michael Weylandt and Laura P. Swiler. Beyond PCA: Additional Dimension Reduction
Techniques to Consider in the Development of Climate Fingerprints. Journal of Climate,
Vol. 37, Issue 5, pp. 1723-1735. 2023.

6.2.4. CLDERA contributions in multi-step attribution

To address the attribution challenges of localized forcings, we developed a multi-step attribution
approach in CLDERA for which the inclusion of additional steps can increase the confidence
of attribution of downstream impacts from a localized source forcing. Rather than the assumed
statistical independence of steps as in the method noted by [70], this new method relies on a
conditional Bayesian approach which leverages significant relationships in each step of a pathway
to increase attribution certainty. Under this formulation, when intermediate steps in a proposed
causal pathways exhibit a stronger relationship than the equivalent single step from forcing to final
impact, the ability to distinguish between different forcing levels is improved and confidence in
attributing an observed response to a specific forcing level is increased. While we use the phrase
“multi-step” to describe this method, this represents a significant departure from the approach
outlined by Hegerl [70].

To demonstrate the proposed methodology for a short-term climate forcing marred by high vari-
ability in the impact response, we examine the June 15th 1991 eruption of Mt. Pinatubo. We
propose a multi-step pathway derived from the eruption’s injection of ~10 teragrams of SO, into
the atmosphere and the resulting formation of sulfates in the stratosphere. The sulfates modify
the radiative fluxes at both the top-of-atmosphere and the Earth’s surface, and ultimately lead to
changes in the stratospheric and surface temperatures.

A major challenge with a typical fingerprinting approach is the use of time-series data. While
aligning time-series signals work for a single variable, the time series of different steps along the P1
pathway exhibit different characteristic time scales based on Mt. Pinatubo’s impact. For example,
a decreased surface temperature is sustained for much longer than the shortwave radiative flux
decrease from the Mt. Pinatubo eruption. This precludes simple analysis of relationships between
such variables over entire time series (as is standard in optimal fingerprinting). As such, carefully-
designed scalar features of the time series must be specified to more easily link variables in the
proposed pathway. The need to align pathway variables with different time-scale characteristics
led us to a feature-based approach, where each time-series was reduced to a feature.

In the multi-step approach, the feature used was a peak value: we extracted the peak impact from
each time series using a procedure which determines the maximum deviation of the impact time
series from pre-forcing (i.e., pre-eruption) conditions. We found that peak response (e.g. peak
stratospheric or surface temperature, peak radiative flux) got larger as a function of the magnitude of
the Mt. Pinatubo forcing. This is as expected, but nicely demonstrates a “dose-response’” behavior
which is part of the causal argument for downstream impacts. Finally, another key relationship that
we identified and leveraged was the fact that the peak values of downstream variables tended to be
linearly related to peak values of upstream variables. Linear regressions of the peaks (as a function
of the Mt. Pinatubo forcing magnitude) were used in the multi-step analysis.
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Using this novel approach involving peaks, linear relationships, and Bayesian inference, we were
able to correctly attribute the eruption size (forcing level) based on downstream observations and
increase our confidence in the attribution of forcing level by including conditionally-dependent
intermediary steps.

This work is documented in the following paper [191]:

* Christopher R. Wentland, Michael Weylandt, Laura P. Swiler, Thomas S. Ehrmann, Diana
Bull. Probabilistic multi-step attribution for short-term climate forcings. Submitted to
Journal of Climate, Aug. 2024. This manuscript is available on arXiv: https://doi.org/
10.48550/arXiv.2409.01396.

6.3. Causal Discovery

Contributing Authors: J. Jake Nichol (1441), R. Michael Weylandt (5573), Melanie Moses and
Matthew Fricke (University of New Mexico), Mark Smith (5493), Laura Swiler (1400)

Causal discovery (CD) tools [171, 168, 54] enable scientists to infer meaningful relationships
from observational data, spurring advances in fields as diverse as biology, economics, and climate
science. Despite these successes, the application of causal discovery to space-time systems remains
immensely challenging due to the high-dimensional nature of the data. For example, in climate
sciences, modern observational temperature records over the past few decades regularly measure
thousands of locations around the globe.

To address these challenges, CLDERA researchers developed Causal Space-Time Stencil Learning
(CaStLe), a novel algorithm for discovering causal structures in complex space-time systems. CaS-
tLe leverages regularities in local dependence to learn governing global dynamics. This local
perspective eliminates spurious confounding and drastically reduces sample complexity, making
space-time causal discovery practical and effective. These advances enable causal discovery of
geophysical phenomena that were previously unapproachable, including non-periodic, transient
phenomena such as volcanic eruption plumes. When applied to ever-larger spatial grids, CaS-
tLe’s performance actually improves because it transforms large grids into informative spatial
replicates.

6.3.1. Causal discovery background

Today’s climate observation modeling capabilities provide a wealth of data for studying our planet’s
complex dynamics. Unfortunately, the immense complexity of those dynamics means that simple
analyses only tell a small part of the data’s story. Causal discovery tools offer the ability to
understand finer mechanistic details via causal graphs’ simplicity, interpretability, and flexibility.

Causal discovery is a field that utilizes algorithmic causal inference to identify causal models as
dependencies between fields of interest, which are often represented as a directed acyclic graph
(DAG). CD seeks to recover causal dynamics from observational data. CD generally has two
output classes: a causal graph/network [133] or a structural causal model [134]. We focus on
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causal graphs which let us analyze the space-time evolution of fields of interest without specifying
hypothesized physical models. The causal graphs are networks of variables (nodes) which are
connected by edges that denote a causal dependence. Causal graphs can provide insights that
are valuable building blocks to better mechanistic understandings of the climate system. Insights
gleaned from causal discovery can further inform physical models, validate simulations against
observational data, and identify future research questions. Additionally, causal models visualized
as causal graphs provide a useful visual shorthand model of complex physical dynamics.

While CD has the power to impact climate science significantly, the enormous size and scope of
climate data have limited its applications. More specifically, climate data often contains tens to
hundreds of thousands of grid cells, each with several orders of magnitude fewer observations in
time. That imbalance is frequently called the curse of dimensionality in machine learning because
statistical methodologies fail to estimate relationships when there are more fields than observations
to describe them. Despite these challenges, CD has been successfully applied in climate science
[32, 155, 128, 22, 23, 87, 43, 177], primarily via dimensionality reduction techniques to reduce
the number of relationships to estimate. These studies have identified teleconnection pathways
to recover large, periodic climate modes and their effects. While that approach can be practical,
analysis of local effects has been considered challenging and generally avoided due to the curse of
dimensionality [34, 155, 128]. In contrast to this prior work, our contribution leverages the known
locality in space-time systems to harness spatial replicates and identify local causal graphs.

6.3.2. CLDERA contribution in causal discovery: CaStLe

Under CLDERA, we introduced the CaStLe approach to causal discovery for space-time data.
CaStLe allows the discovery of causal structures in high-dimensional spatial data, avoiding the
need for dimension reduction techniques that dominate causal discovery of space-time data, e.g.
the work by [128]. By working in the raw data space, CaStlLe’s causal graphs are inherently
interpretable and do not require mapping structures from the dimension-reduced space back onto
the original data.

In the work developing CaStLe, we performed the following studies and analysis:

1. We performed a theoretical analysis of CaStLe, showing that it has attractive computational
and statistical properties and, rather remarkably, that CaStLe’s accuracy actually increases
on larger spatial domains.

2. We performed extensive validation experiments to demonstrate the effectiveness of CaStLe
over existing causal-discovery frameworks on a range of synthetic benchmark data that are
useful proxies for climate data. These include a set of vector autoregression (VAR) problems
and the use of CaStLe to identify the governing dynamics of an important non-linear partial
differential equation (PDE).

3. We successfully applied CaStLe to discover the atmospheric dynamics governing the climate
response to the 1991 Mount Pinatubo volcanic eruption. We demonstrated how CaStLe can
be used to better understand how stratospheric winds mediate climate response to volcanic
activity.
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The CaStLe causal discovery methodology, along with the studies and analysis mentioned above,
are documented in the following paper [124]:

* Jake Nichol, Michael Weylandt, G. Matthew Fricke, Melanie E. Moses, Diana Bull, Laura P.
Swiler. Causal Space-Time Stencil Learning: Local Causal Dynamics in Complex Systems.
Submitted to Journal of Geophysical Research, Machine Learning and Computation

The code repository can be found at: https://github.com/jjakenichol/CaStLe.

As part of the causal model development, the team developed a large suite of benchmark test cases
for tiered verification of causal discovery methods, specifically focusing on datasets that exhibited
space-time dependencies. The initial test cases are based on VARS (Vector Autoregressive Models)
that modeled 1-D and 2-D spatial dependencies as well as temporal dependencies. The test cases
provide an important set of benchmarks for the climate community, as they have tests of increasing
difficulty on multiple dimensions: the number of time points, the grid size (e.g. number of spatial
grid points in the test data), and neighborhood dependence density (the amount of connectedness
between a center grid cell and its eight neighbors), as well as the amount of noise and the amount of
autocorrelation in the data. These test cases are documented in the following SAND report [125]:

* J. Jake Nichol, Michael Weylandt, Mark Smith, Laura Swiler. “Benchmarking the PCMCI
Causal Discovery Algorithm for Spatiotemporal Systems.” SAND2023-05141. June 2023,
Sandia National Laboratories, Albuquerque NM.

Finally, we note that the main author and developer of the CaStLe approach, J. Jake Nichol, is now
working on a multi-variate version of CaStLe as part of his Ph.D. dissertation.
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7. SCIENCE ANALYSIS

In addition to the method development performed under the three technical thrust for Tiers 1-3
described in Chapters 4, 5, and 6, research was performed under CLDERA to advance the scientific
understanding of stratospheric processes within E3SM and to evaluate the effects of Mt. Pinatubo
on debated and further downstream impacts. This chapter provides an overview of further research
aimed at advancing scientific understanding, starting with the first detailed analysis of stratospheric
circulation in E3SMv2 (Section 7.1) as well as an analysis of Brewer-Dobson circulation using
tracers within E3SMv2 (Section 7.2). Using simulations with both prescribed and prognostic
volcanic aerosols we evaluated how the variability changed in terms of stratospheric circulation
(Section 7.5). The CLDERA E3SMv2-SPA simulations were also used to perform an analysis of
changes in cirrus clouds due to the Mt. Pinatubo eruption (Section 7.6) and evaluate a debated
impact from the Mt. Pinatubo eruption, which is winter warming in the Northern hemisphere in the
year after the eruption (Section 7.4). Under Tier 4, the Echo State Network was used to analyze the
impacts of Mt. Pinatubo on the south Asian monsoon (Section 7.7) and multi-step attribution was
applied to the impacts of Mt. Pinatubo on agricultural productivity in the temperate North 7.8).

7.1. Characterization of E3SMv2’s general circulation

Contributing Authors: Christiane Jablonowski and Joe Hollowed (University of Michigan).

The CLDERA project was an early adopter of the E3SMv2 model configuration which was publicly
released in September 2021, just before the start of the CLDERA project. This raised open questions
about the physical realism of the low-resolution (LR) E3SMv2 simulations with 1° grid spacing and
72 vertical levels that reach up to 0.1 hPa (about 63 km). This resolution captures the stratospheric
circulation with vertical grid spacings between 500 m and 1 km in the tropopause region and lower
stratosphere below 50 hPa (about 20 km). The level spacing is then stretched to about 3 km at 1
hPa (or about 50 km). This design resolves important elements of the stratospheric circulation,
such as the polar jets, but misses some forcing mechanisms by upward traveling waves with short
wavelengths of just a few kilometers. Such upward traveling waves are, for example, important for
the realistic representation of the QBO in the tropical stratosphere. Our early results revealed that
E3SMv2’s QBO is highly biased, and these findings motivated further studies to provide a general
understanding of E3SMv2’s stratospheric biases.

While E3SMv2’s model performance of the coupled system was investigated for the troposphere
via the 6th Coupled Model Intercomparison Project (CMIP6) simulation campaign as documented
in [55], no published analyses were available to judge the realism of E3SMv2’s stratospheric circu-
lation. We therefore conducted a series of studies to inform the CLDERA team about stratospheric
biases that can impact the life cycle of the volcanic aerosols and their physical pathways for the
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source-to-impact attribution studies. The majority of our climatology studies were built upon
the publicly released five-member ensemble of the CMIP6 simulation campaign with the coupled
E3SMv2 configuration. In addition, some studies were conducted with the CMIP6 data of the
coupled predecessor version E3SMv1 as well as the three-member ensemble of the uncoupled
E3SMv?2 configuration in so-called AMIP mode. The latter was driven by prescribed sea surface
temperatures and sea ice. Both our coupled and uncoupled analyses focused on the historical
CMIP6 scenario which incorporates the observed greenhouse gas and aerosol concentrations until
2014. In particular, the enhanced aerosol concentrations due to volcanic eruptions, including the
Mt. Pinatubo eruption in June 1991, were prescribed. We focused our studies on the satellite era
from 1980 onwards. This enabled us to compare the E3SM climatologies to satellite data, and
other observational and reanalyses products.

Our assessments of E3SM’s general circulation, as seen in the CMIP6 data sets, focused on the
climatology of the zonal wind, temperature, water vapor, and precipitation rates as well as on the
stratospheric Brewer-Dobson Circulation (BDC). The latter was assessed via the “Transformed
Eulerian Mean” (TEM) framework, which sheds light on the diabatic (residual) circulation and the
driving of the zonal-mean zonal flow by resolved waves via the divergence of the Eliassen-Palm
flux. The diabatic circulation largely determines the tracer transport velocities in the stratosphere
which were investigated further via passive tracer studies (see also section 7.2). In addition, we
investigated E3SM’s modes of variability, such as the so-called “water vapor tape recorder” and
the QBO in the tropical stratosphere, the semi-annual oscillation (SAO) of the zonal wind in the
tropical mesosphere, and the tropical wave activity as measured by the wavenumber-frequency
spectra of the tropical precipitation. The water vapor tape recorder also provides information
about the troposphere-stratosphere exchange processes. This is due to the fact that the main source
of water vapor for the stratosphere is the upward advection of the water vapor from the tropical
tropopause region.

Our studies found that E3SMv2 exhibits important biases, such as a severe lack of water vapor in
the stratosphere, a large-magnitude warm bias near the model top above 1 hPa, a reduced tropical
wave activity and degraded representation of the QBO in comparison to E3SMv1, and biased polar
jets that extend too far up with overestimated zonal wind speeds. Further analyses suggest that
some of these biases are likely due to undesirable properties of E3SM’s physical parameterization
package. For example, it was found that the stratospheric water vapor gets removed by moist
physical processes, which likely come from the cloud and boundary layer schemes. However,
cloud formation is not a relevant process for the stratosphere. Therefore, this aspect needs further
investigations and corrections in future E3SM versions. In addition, our analyses suggest that the
temperature biases are likely caused by the radiation scheme. This was analyzed via the temperature
tendencies for longwave and shortwave radiation which showed significant biases with opposite
signs.

These biases were revealed when comparing the E3SM CMIP6 data to various observational and
model products. They included the SWOOSH satellite data set for stratospheric water vapor [30],
ERAS reanalyses data [73], as well as simulation data from NCAR’s whole atmosphere model
WACCM. As mentioned above, the primary purpose of the assessments was to understand the
realism of E3SMv2’s stratospheric circulation and its ensemble spread. This informed CLDERA’s
pathway verification tasks and the aerosol-related model developments as, for example, discussed
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in [13]. Despite the physical biases, E3SSMv2 was deemed to capture the Mt. Pinatubo impacts
on the circulation at a satisfactory level which was important for the development and tests of the
CLDERA tool sets.

This research is currently being summarized in the following articles [83, 76]:

* Jablonowski, C., Hollowed, J., Nguyen, L., Hillman, B., Ehrmann, T., Wagman, B. “Strato-
spheric Characteristics in E3SMv2.” To be submitted by December 2024.

¢ Hollowed, J., Jablonowski, C., Ehrmann, T., Hillman, B., ... “Volcanic Aerosol Modification
of the Stratospheric Circulation in E3SMv2 Part I: Wave-Mean Flow Interaction.” To be
submitted to Climatic Dynamics by October 2024.

7.2. Tracer Analyses of Brewer-Dobson Circulation

Contributing Authors: Joe Hollowed and Christiane Jablonowski (University of Michigan).

The Brewer—Dobson circulation (BDC) describes the global atmospheric circulation pattern that
includes the rise of the air from the tropical troposphere into the stratosphere, and subsequent
descending poleward motion in the stratosphere. It is this global circulation pattern that determines
the mean age of stratospheric air, the residence times of stratospheric gases, the distributions
of stratospheric water vapor and ozone, and the tropical tropopause temperatures (important for
exchange processes). Because this circulation pattern is so important for determining the chemical
and thermodynamic composition of the stratosphere, and thus the global climate as a whole, we
are particularly interested in identifying modifications of the BDC by the radiative forcing of
stratospheric sulfate aerosols, and the dynamical mechanisms which drive them.

In order to investigate these questions, we instrumented the CLDERA E3SMv2 configuration with a
set of idealized tracers, designed to assess the model’s BDC and the tracer transport characteristics
in the stratosphere. This tracer set includes age-of-air (AOA) tracers, as well as a pair of related
tracers known as E90 and ST80. All of these tracers are “passive”, meaning that they do not interact
in any way with other species, and they do not provide any feedbacks to the atmosphere (i.e. a model
run will proceed identically with or without them enabled). Each of these tracers has an associated
source and sink, which describe their creation and removal as a function of space. The integrated
sum of the source, sink, and tracer advection yields the tracer concentration distribution at a given
time, expressed as dimensionless mass mixing-ratios (kg of tracer per kg of air). The source and
sink functions for AOA, E90, and ST80 have been designed such that the mean distributions of
these tracers are able to diagnose certain aspects of the stratospheric circulation.

The AOA tracer, or sometimes referred to as a “clock tracer”, is defined to exist everywhere in the
atmosphere, from the surface to the model top [188]. Its source is simply set to 1 s™!, which drives
a uniform production of the AOA over the entire atmosphere. Its sink is nonzero only near the
surface (below 700 hPa), where it quickly forces the tracer concentration to zero. In the right units,
the mixing ratio of the AOA thus gives the average age of air, or the time since the air’s last contact
with the surface layer. In accordance with the BDC, the AOA is generally smallest in the tropical
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troposphere, and largest in the polar stratosphere. Thus, modifications to the global AOA indicates
changes to the BDC.

The E90 tracer has a constant emission at the surface, and has a uniform sink throughout the
atmosphere which describes an exponential decay with a 90-day e-folding timescale, e.g. see
also the description in [2]. Using this simple process the E90 sink quickly establishes a global
tracer distribution throughout the troposphere, with the highest concentrations being found near
the surface and throughout the tropical vertical column. Because troposphere-stratosphere mass
exchange is hindered by the temperature inversion at the tropopause, the E90 tracer accumulates
here with a sharp vertical gradient. Thus, modifications of the stratospheric E90 concentration
encodes changes to upward cross-tropopause transport.

While E90 is designed to diagnose troposphere-stratosphere exchange, the complimentary ST80
tracer does the same for stratosphere-troposphere exchange. This tracer is held to a fixed concentra-
tion in the stratosphere, above 80 hPa, and has a uniform sink below the tropopause which describes
an exponential decay with a 25-day e-folding timescale. Thus, modifications of the tropospheric
ST80 concentration encode changes to the down cross-tropopause transport.

Currently, these tracers are used to identify modifications to the BDC by volcanic forcing of the
Mt. Pinatubo eruption in E3SMv2-SPA [13]. To achieve this, we have enabled these tracers in
ensembles of simulations with Pinatubo included, and also ensembles without Pinatubo (known as
the “counterfactual” simulations). Each simulation in the Pinatubo ensemble have a “paired” sim-
ulation in the counterfactual ensemble, which shares an identical initial condition. The difference
in the tracer fields between each pair thus provides the changes to the tracer distributions that are
due to the volcanic forcing specifically.

Figure 7-1 shows an example of the impacts that we are able to detect via this method. Here
“impact” specifically refers to the difference between each pair of ensemble members. Positive
impacts are excesses in the Pinatubo runs, while negative impacts are deficits in the Pinatubo runs.
Also shown is the statistical significance of the measured impact, determined by a t-test between
the two ensembles. Figures 7-1 (a)-(b) show the unaltered AOA distribution in the counterfactual
ensemble for October 1991 (4 months post-eruption), and the impact by the volcanic forcing over
this same time period. The dominant feature in the impact is a significant decrease in the mean
AOA in the tropical stratosphere, which is indicative of enhanced tropical upwelling. At the same
time, there is increased AOA at higher latitudes in the mid- to lower-stratosphere, which indicates
enhanced subsidence of older air from the upper stratosphere. Overall, these effects indicate an
accelerated BDC. Figures 7-1 (c)-(d) show the analogous information for E90, which demonstrates
that E90 concentrations have enhanced throughout the global stratosphere. This further suggests
an accelerated BDC, and in particular an enhanced mass exchange from the troposphere to the
stratosphere.

Further work is underway to investigate the full time series of these tracer impacts for several
years following the Pinatubo eruption, and magnitude scaled versions of the eruption, in E3SMv2-
SPA. Theoretical methods of identifying the specific dynamical mechanisms responsible for these
circulation changes are also being developed, which will shine light on the fundamental ways
in which volcanic forcing enables stratospheric composition changes. These mechanisms are
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Figure 7-1. October 1991 monthly mean AOA and E90 in the counterfactual ensemble, and the
impact in the tracer distributions between the Pinatubo and counterfactual simulations. (a)
ensemble-mean, zonal-mean AOA for the counterfactual ensemble in years, (b) ensemble-mean,
zonal-mean AOA impact in months, (c) ensemble-mean, zonal-mean E90 for the counterfactual
ensemble in ppb, (d) ensemble-mean, zonal mean E90 impact in ppb. In both panels (b) and (d), a
black contour shows 95% statistical significance, and hashed regions show statistical significance
less than 95%.

important to identify in order to properly understand the dynamics relevant to the pathways between
the volcanic source, and far-removed, indirect impacts on the climate.

In addition, the team conducted work to use the dynamic tracers “Potential Vorticity” (PV) and
“Potential Temperature” (PT) as markers for the stratospheric circulation. These quantities are
conserved for adiabatic conditions. Therefore, the deviation of the PV and PT tracers from their
dynamic flow counterparts reveals the impact of the diabatic forcing from the volcanic eruption on
the circulation. Both, the PV and PT tracers have been added to CLDERA’s E3SMv?2 code base and
can be used for future studies, including studies of tropopause folds and troposphere-stratosphere
exchange processes.

This research is currently being summarized in the following article [75]:

¢ Hollowed, J., Jablonowski, C., Ehrmann, T., Hillman, B., ... “Volcanic Aerosol Modification
of the Stratospheric Circulation in E3SMv2 Part II: Tracer Sensitivity.” To be submitted by
December 2024.

We note that two papers relating to stratospheric circulation will become two chapters in the main
researcher’s, Joe Hollowed, Ph.D. dissertation.

7.3. Size-resolved process understanding of stratospheric sulfate aerosol
following the Pinatubo eruption

Contributing Authors: Allen Hu and Xiaohong Liu (Texas A& M University).
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Stratospheric sulfate aerosol produced by volcanic eruptions plays important roles in atmospheric
chemistry and the global radiative balance of the atmosphere. The simulation of stratospheric
sulfate concentrations and optical properties is highly dependent on the chemistry scheme and
microphysical treatment. In this work, we implemented a sophisticated gas-phase chemistry scheme
(full chemistry, FC) and a 5-mode version of the Modal Aerosol Module (MAMS) for the treatment
of stratospheric sulfate aerosol in the Department of Energy’s Energy Exascale Earth System
Model version 2 (E3SMv2) model to better simulate the chemistry-aerosol feedback following the
Pinatubo eruption, and to compare it against a simulation using simplified chemistry (SC) and
the default 4-mode version of the Modal Aerosol Module (MAM4). MAMS5 experiments were
found to better capture the stratospheric sulfate burden from the eruption of the volcano to the
end of 1992 as compared to the High-resolution Infra Red Sounder (HIRS) observations, and the
formation of sulfate in MAMSFC was significantly faster than in MAM4FC due to the addition
of a OH replenishment reaction. Analyses of microphysical processes indicate that more sulfate
aerosol mass was generated in total in FC experiments than in SC experiments. MAMS performs
better than MAM4 in simulation of aerosol optical depth (AOD); AOD anomalies from the MAMS
experiment have better agreement with AVHRR. The simulated largest changes in global mean net
radiative flux at the top of the atmosphere following the eruption were about -3 W/m? in MAMS5
experiments and roughly -1.5 W/m? in MAM4 experiments.

This work is detailed more fully in the following article [79]:

* Hu, A, Liu, X, Ke, Z., Wagman, B., Brown, H., Lu, Z., Bull, D., Peterson, K. Size-resolved
process understanding of stratospheric sulfate aerosol following the Pinatubo eruption, Sub-
mitted July 2024. Atmospheric Chemistry and Physics.

7.4. Northern Hemisphere Winter Warming

Contributing Authors: Thomas Ehrmann (8931), Benjamin Wagman (8931), Diana Bull (8931),
Benjamin Hillman (8931), Joseph Hollowed (University of Michigan), Hunter Brown (8931), Kara
Peterson (1442), Laura Swiler (1400), Jerry Watkins (8734), and Joseph Hart (1441).

The Mt. Pinatubo eruption on 15 June 1991 is often associated with surface warming in the
northern hemisphere during the subsequent winter. The prevailing theory is that increased low
latitude stratospheric temperatures caused by the volcanic aerosol injection amplified the meridional
temperature gradient and strengthened the northern hemisphere stratospheric polar vortex (SPV).
Through the existing teleconnection between the high latitude stratosphere and troposphere the
strengthened SPV induces a positive North Atlantic Oscillation (NAO) phase which leads to surface
warming over the continental landmasses.

To isolate this localized impact of the eruption we created an ensemble of simulations using the
Energy Exascale Earth System Model version 2 (E3SMv2) with prognostic aerosol modifications
initialized on 1 June 1991 to limit the intra-ensemble variability at the time of the eruption. The
initialization of these simulations was selected to have major climate modes, specifically the quasi-
biennial oscillation (QBO) and the El Nino southern oscillation (ENSO), in similar states to those
preceding the real-world eruption. We also generated a more traditional ensemble representing the
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full range of intra-ensemble variability to compare to our limited variability ensemble. For each
ensemble member in both the limited variability and full variability experiment we generated a
paired counterfactual simulation with the Pinatubo forcing removed to allow for isolation of the
Pinatubo impact. In general, the limited variability ensemble has greater coherence in the Pinatubo
impact across ensemble members which leads to more statistically robust signal compared to the
full variability ensemble.

Investigating the northern hemisphere winter warming post-Pinatubo, we find significant warm
anomalies in our limited variability ensemble consistent with observation. However, similarly
significant warm anomalies are also present in our limited variability counterfactual simulation,
and the difference between the limited variability ensemble members with Pinatubo versus the
counterfactuals do not show any significant mid-winter surface warming. Additionally, the full
variability ensemble members do not show significant mid-winter surface warming anomalies. All
of this suggests that the northern hemisphere mid-winter surface warming present in observations
is more likely a result of the state of the major modes in the atmosphere at the time of the eruption,
specifically ENSO and the QBO, than a response to the volcanic aerosol injection.

Although we did not find evidence of the traditionally proposed northern hemisphere warming, we
did find a statistically robust high latitude surface warming response in fall months immediately
following Pinatubo. There was a significant mid-latitude westerly signature in the stratospheric
zonal wind that starts less than a month after the eruption and continues through October 1991.
During October 1991, as the SPV begins to spin-up, these increased mid-latitude westerlies are
associated with a significant weakening of the high latitude westerlies. This weakening of the SPV
core 1s associated with a positive geopotential height impact which penetrates to the surface driving
a high-latitude warm temperature impact. This alternative warming pathway is especially coherent
in the limited variability ensemble where it is present in more than 90% of individual ensemble
members.

This work is documented in following paper [36]

* Thomas Ehrmann, Benjamin Wagman, Diana Bull, Benjamin Hillman, Joseph Hollowed,
Hunter Brown, Kara Peterson, Laura Swiler, Jerry Watkins, and Joseph Hart. “Identifying
Northern Hemisphere Temperature Responses to the Mt. Pinatubo Eruption through Limited
Variability Ensembles.” Submitted to Climate Dynamics, September 2024.

7.5. Prescribed Versus Prognostic Aerosol Variability

Contributing Authors: Benjamin Wagman (8931), Thomas Ehrmann (8931), Hunter Brown
(8931), Diana Bull (8931).

Fully coupled earth system model (ESM) ensembles are essential tools for diagnosing climate
variability. However, many ESMs, including E3SMv2, prescribe aspects of stratospheric volcanic
eruptions instead of prognostically simulating the formation and evolution of volcanic stratospheric
sulfate aerosol. E3SMv?2 prescribes stratospheric sulfate extinction, such that the volcanic forcing
for stratospheric eruptions is identical across ensemble members, and the feedback from simu-
lated climate fields to volcanic forcing is missing. The identical volcanic forcing across ensemble
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members is an artificial constraint on forcing; in the natural system, and in ESMs with prognostic
stratospheric volcanic aerosol, volcanic forcing evolves independently across ensemble members
as a function of internally simulated stratospheric circulation, moisture, and other simulated vari-
ables.

Here we compare the Mt. Pinatubo eruption in two E3SMv2 ensembles. One ensemble has identical
prescribed stratospheric volcanic forcing, and the other uses a modified version of E3SMv2 in which
the volcanic stratospheric aerosol and its forcing are simulated prognostically, and therefore varies
across ensemble members. We hypothesize that the prognostic ensemble should exhibit greater
variability in volcanic forcing and therefore greater variability in other simulated fields, e.g. surface
radiative fluxes and temperature. However, we find only brief and localized enhancements to the
variability in volcanic forcing, and no statistically significant enhancement in variability in the
surface radiative fluxes and temperature. We then consider possible explanations for the relative
lack of enhancement in variability, particularly, whether aspects of the stratospheric circulation
may be constraining the variability in forcing in the prognostic ensemble.

This work is documented in following draft paper [ 183] with anticipated submission to Atmospheric
Chemistry and Physics:

* Benjamin M. Wagman, Hunter Brown, Diana Bull, Tom Ehrmann, Ben Hillman, Laura
Swiler, Kara Peterson, Joe Hollowed. “Does prognostic volcanic aerosol enhance climate
variability in Earth System Model simulations of volcanic eruptions?” SAND2024-127250.
September 2024, Sandia National Laboratories, Albuquerque NM.

7.6. Impacts on Cirrus and implications for Cirrus Cloud Thinning

Contributing Authors: Benjamin Hillman (8931), Xiaohong Liu (Texas A& M University), Allen
Hu (Texas A& M University).

7.6.1. Background

It has been hypothesized that large volcanic eruptions might impact cirrus clouds by increasing
homogeneous freezing due to increased aerosol number concentration, however, there is a bit of
conflicting evidence for this in the literature. An initial study by [198] using HIRS data suggested a
strong increase in cirrus following the Mount Pinatubo eruption, but a subsequent reexamination by
[196] showed a diminished impact. [105] showed no significant impact on ISCCP cirrus amount or
brightness temperature. However, more idealized studies have suggested an impact. [100] showed
an increase in homogeneous freezing rate, and [84] showed potential for increase in slow updrafts,
but this result was later diminished by including new freezing rates computed by [92].

It generally seems to be accepted that Pinatubo probably increased homogeneous freezing, but
this does not necessarily lead to substantial changes in cirrus. [103] suggested that homogeneous
freezing is not usually limited by aerosol number concentration, so increasing aerosol number would
not be expected to increase cirrus. They saw small increase in ice crystal number concentration,
and no effect on cirrus cloud radiative effects, consistent with the [105] ISCCP results.
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An interesting quote from [103]: “In order to investigate the combined effects of Pinatubo and
ENSO on cirrus and potential feedbacks on climate, coupled simulations need to be carried out.”
Interestingly, we have exactly these kinds of simulations here, but given the small impact on cirrus
CRE that the literature seems to suggest, any signal may be difficult to detect.

7.6.2. Changes in cirrus observed in CLDERA-E3SM simulations

In order to evaluate cirrus changes in a way consistent with observations, we derive high-topped
cloud metrics from output from the ISCCP simulator [86, 189], which is embedded into E3SM
via the Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP;
[10]). The function of the ISCCP simulator is to mimic what ISCCP retrievals would produce,
given the model-simulated atmosphere state at a given timestep. Statistics of cloud properties are
aggregated in a similar way as the retrievals are to produce time-aggregated statistical summaries
that are directly comparable between model and observation. These statistical summaries are output
as joint histograms of cloud optical depth and cloud top pressure.

Figure 7-2 shows time and area-weighted global means of ISCCP-simulated joint histograms of
cloud top pressure and optical depth from our early limvar simulations for the first five ensemble
pairs of 10 Tg Pinatubo eruption simulations compared with their counterfactuals. Only the period
from June 1991-December 1993 is shown. Each comparison shows the time-area-averaged joint
histogram for each ensemble member pair, along with the difference between the Pinatubo and
counterfactual simulations (the “impact analysis”). From the difference histograms, it is evident
that high-topped cloud (bins with cloud top pressure ranges greater than 560 hPa in the joint
histograms) increases in each ensemble member relative to its counterfactual, while mid and low-
topped cloud (bins with cloud top pressure ranges below 560 hPa) decreases in each ensember
member relative to the associated counterfactual. Based on this, we define a “high-topped cloud
fraction” quantity that is the sum of all bins with cloud top pressure greater than 560 hPa so that
we can more closely investigate the time evolution and spatial distribution of high-topped cloud
and its changes in response to the eruption. Because the ISCCP/ISCCP-simulated retrievals are
1D, summing the bins of the joint histogram produce an estimate of cloud cover. Summing just the
bins with cloud top pressure less than 560 hPa, for example, yields the fractional area covered by
clouds with tops above 560 hPa.

The time series of this high-topped cloud estimate is shown in Figure 7-3 for the limvar ensembles.
This shows a very clear increase in ISCCP-simulated high-topped cloud which sets up a few months
post-eruption and remains for at least two years. Note that not only do each Pinatubo/counter-factual
pair show an increase in Figure 7-3, but in fact there is almost no overlap in the extreme spread
between the Pinatubo and counter-factual ensembles. This shows a robust increase in high-level
cloud, consistent with the hypothesis that a Pinatubo-like eruption could increased cirrus.

7.6.3. Investigating the mechanisms for cirrus cloud changes

The hypothesized pathway for cirrus increase due to Pinatubo in the literature is through an increase
in homogeneous freezing associated with an increase in sulfate. Figure 7-4 shows activated
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Figure 7-2. ISCCP-simulated area-weighted global mean joint histograms of cloud top pressure and
cloud optical depth for June 1991 - December 1993 in limvar experiments.
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ice number concentration due to both homogeneous and heterogeneous (immersion) freezing.
Interestingly, the increase in activated ice number concentration is seen not in the homogeneous
freezing as proposed in the literature on Pinatubo, but rather in the heterogeneous (immersion)
freezing. In E3SM, immersion freezing occurs only on the coarse-mode dust concentration. But
the coarse-mode is treated collectively in MAM4; that is, there is no separate treatment for coarse-
mode dust distinct from sulfate. It turns out then that in making the changes to allow for increased
lifetime of sulfate aerosol in the stratosphere, coarse-mode dust in the troposphere is also affected.
Thus, an increase in sulfate also inadvertently increases coarse-mode dust. This is demonstrated
in Figure 7-5, which shows the changes in coarse-mode dust mass concentrations between the
counterfactual and Pinatubo 10 Tg injection simulations. It is clear that there is a large increase
in coarse-mode dust in the upper troposphere that is correlated with the increase in heterogeneous
freezing seen in Figure 7-4.

7.6.4. Separating the impacts of dynamics and aerosol-cloud interaction on
changes in cirrus amount

In this section, we explore the different drivers for cirrus formation and evaluate whether changes we
see in cirrus due to Pinatubo are driven by aerosol-cloud interaction changes (ice nucleation changes
due to presence of aerosol) or due to dynamical drivers in response to heating and circulation
changes. In order to do this, a set of nudged Pinatubo and counterfactual simulations were
performed:

1. Pinatubo free-running limvar ensemble member, writing out winds and temperature at 6-
hourly frequency to be used for nudging

2. Counterfactual free-running limvar ensemble member
3. Counterfactual nudged to Pinatubo U, V, and T

With these simulations, we should be able to separately evaluate the direct impact of the aerosol
changes on cirrus and the dynamical changes on cirrus (influenced due to changes in circulation
and heating in response to changes in aerosol). These impacts can be diagnosed by taking the
following differences (impact analyses):

Xpin — Xcr : Total Pinatubo impact
Xpin — XCF-nudged : Pinatubo aerosol impact
XCF-nudged — XcF : Pinatubo dynamical impact

where X; is a given quantity of interest for case i. By nudging U, V, and T we hope to more
tightly constrain the temperature and wind profiles, but recognize this might make for unrealistic
simulation results due to over-constraining the model.

Figure 7-6 shows the total, aerosol, and dynamical impact on zonal means of cloud ice mass,
ice number concentration, and ice number concentration due to heterogeneous and homogeneous
freezing. There is a clear increase in cloud ice mass between 600 and 200 hPa in the northern
hemisphere mid to high latitudes (top panel). The dynamical and aerosol-cloud interaction signals
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Figure 7-6. From top to bottom, differences in ice mass concentration, ice number concentration,
activated ice number concentration due to immersion freezing, and activated ice number
concentration due to homogeneous freezing in hudged simulations showing the total Pinatubo
impact (left), the aerosol-cloud interaction impact (middle), and the dynamical impact (right).
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oppose each other, but the increase in cloud ice mass appears to be dominated by the increase in
the aerosol-cloud interaction response (top-center panel). This is also true for the total ice number
concentration in high latitudes (north of 50 N), where the increase in upper levels is dominated
by an increase in the aerosol-cloud response. The responses in number concentration due to
immersion freezing makes it abundantly clear that this is driven by the changes to the aerosol: the
aerosol-cloud interaction and dynamical responses oppose one another, but clearly the increase in
immersion freezing due to the aerosol-cloud interaction response dominates, with the result being
an overall increase in immersion freezing in the total Pinatubo response. These results suggest that
while dynamical changes could be playing a role, the increase in high-level clouds in the Pinatubo
limvar ensemble appear to be primarily driven by changes in the aerosol-cloud interactions due
to the changes in dust. The changes in homogeneous freezing are small in magnitude compared
to the changes in heterogeneous freezing (bottom row). This suggests that rather than converting
homogeneous freezing to heterogeneous, the increased ice nucleation is perhaps occurring where
heterogeneous freezing is already dominant.

7.6.5. Implications for cirrus cloud thinning

While the inadvertent increase to dust concentrations makes it difficult to evaluate realistic impacts
on cirrus due to the Pinatubo eruption, it does provide an interesting opportunity to look for
evidence of cirrus cloud thinning in E3SM. Cirrus cloud thinning (CCT) is a proposed method for
climate intervention. The approach would be to inject a source of heterogeneous nucleation (such
as mineral dust) into regions in the atmosphere that are dominated by homogeneous nucleation
to shift the dominate source of ice nucleation from homogeneous to heterogeneous freezing. In
doing so, larger ice crystals are formed that are a) optically thinner, thereby trapping less outgoing
longwave radiation, and b) tend to sediment or precipitate out of suspension faster, thus shortening
the lifetime of cirrus clouds. Both of these impacts act to cool the climate system by reducing the
longwave heating provided by cirrus.

Figure 7-4 shows a clear increase in heterogeneous freezing and a decrease in homogeneous freezing
in the Pinatubo simulations relative to the counterfactual. This is consistent with the increase in
coarse-mode dust in the Pinatubo simulation discussed in the previous section. However, it is also
evident from Figure 7-3 that cirrus amount tends to increase rather than decrease in the Pinatubo
simulations. Thus, the first part of the cirrus cloud thinning pathway appears to be consistent
with theory (increasing dust leads to increased heterogeneous freezing), but this is not leading to a
decrease in cirrus.

It is possible that the change in coarse-mode dust in the 10 Tg eruption simulations is just already
too large, and that cirrus are effectively being “over-seeded”, which would lead to an increase rather
than a decrease in cirrus [173]. In an attempt to evaluate the sensitivity of cirrus to dust seeding,
we look at the varying eruption magnitude ensembles. Because we are ultimately interested in
changes in the outgoing longwave that result from changes in cirrus, we look at both high-topped
cloud fraction (derived from the ISCCP simulator) and the longwave cloud radiative effect (the
difference between all-sky and clear-sky outgoing longwave radiative fluxes). These are shown
in Figure 7-7 and Figure 7-8, respectively. While there is considerable spread in individual
ensemble members, there does not appear to be any evidence for either reduction in cirrus amount,
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Figure 7-7. High-topped cloud fraction derived from ISCCP simulator in limvar varying eruption
maghnitude ensembles.

or reduction in longwave cloud radiative effect in these figures even down to the 1 Tg eruption
magnitude ensembles. This suggests that the changes in coarse-mode dust at the 1 Tg injection
level are already too large to see a cirrus thinning response, and instead the impact is primarily an
increase in cirrus amount and increase in longwave heating.

The fact that at 1 Tg we are already seeing a cirrus increase and consequent longwave warming
signal makes it difficult to use these simulations as-is for an analysis of cirrus cloud thinning. It
does however highlight the delicate balance needed to obtain the desired impact from cloud seeding.
This may also be another artifact of the changes made to MAM4 to support longer sulfate lifetimes
in the stratosphere. The development of MAMS, with a fifth mode added to better account for
this, should enable better representation of the relevant processes without unrealistically shifting
the nature of the freezing processes important for cirrus formation and maintenance.

7.7. Pinatubo Impacts on South Asian Monsoon

Contributing Authors: Thomas Ehrmann (8931), Daniel Ries (5574), Kelly McClernon (5573),
Katherine Goode (5573), Diana Bull (8931).

The South Asian Summer Monsoon (SASM) is generally considered to be between June and
September and accounts for as much as 90% of the annual rainfall in western and central India
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[63]. For most of the last 300 years SASM has been explained as a gigantic land-sea breeze
[62, 190, 117]. This theory postulates that, because the specific heat over the ocean is much
greater than over the land, as the radiative forcing of the early summer increases, the temperatures
of the land heat up faster than over the ocean driving a large-scale thermal wind system. While
there is an intuitiveness to this theory, in recent years a consensus has been developing around
an alternative theory. The emergent theory is that the SASM, along with all other tropical and
subtropical monsoons, is actually driven by the seasonal migration of the intertropical convergence
zone (ITCZ) [40, 41, 46]. The ITCZ is generally considered to lie in the ascendent branch of
the Hadley Cell and is characterized by enhanced precipitation and a local reduction in out-going
longwave radiation due to increased cloud cover [184, 158].

While the exact mechanism is still under debate, most publications believe that large volcanic
forcing in the northern hemisphere tropics is likely to lead to a decrease in precipitation in the
SASM [110, 80]. Our data also exhibited a noticeable area of significant precipitation reduction as
a result of the Pinatubo eruption, especially around the central western coast of India in July 1992.
Pinatubo could affect either of the proposed drivers of SASM above and multiple publications have
proposed both [26, 207, 148, 108].

We believe that this problem can be at least partially addressed using spatial-temporal zeroed feature
importance (stZFI) with an echo state network (ESN) [145, 57]. Our hypothesis is that the ESN
will be able to weigh the competing mechanism and stZFI will identify which mechanisms are the
most important for driving the Pinatubo impact on SASM precipitation over the landmass of India
(IPCC WR6 region SAS) [82]. This is the first application of stZFI to regionally defined variables,
particularly where the spatial domain of the output is distinct from that of most of the inputs.

This work explored the drivers of the Indian Monsoon with and without forcings due to the 1991
Mount Pinatubo eruption by investigating the relative role of two of these mechanisms (ITCZ
and land-ocean temperature contrast) using regionally refined feature importance with an echo
state network (ESN), stZFI [145, 57, 113]. We found that the ESN possesses improved predictive
power over baseline models and that temperature as well as radiative indices were important to
this predictive power. However, we were unable to uncover conclusive evidence of the underlying
mechanism.

This work is documented in following paper [146]:

* Daniel Ries, Kellie McClernon, Thomas Ehrmann, and Diana Bull. “Using Spatio-Temporal
Feature Importance to Identify Drivers of Indian Monsoon after the Mount Pinatubo Erup-
tion.” SAND2024-125810. September 2024, Sandia National Laboratories, Albuquerque
NM.

7.8. Pinatubo Impacts on Agricultural Productivity

Contributing Authors: Dan Krofcheck (5522), Justin Li (8732), Christopher Wentland (8734),
Diana Bull (8931), Joe Crockett (8931) Laura Swiler (1400), Kara Peterson (1442), Michael
Weylandt (5573), Ram Singh, Kostas Tsigaridis, and Kate Marvel (Columbia University).
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The impacts of Mt. Pinatubo on agricultural productivity are still debated. They involve several
interacting or confounding effects, rely on changes to both light-based drivers and water-based
drivers of plant productivity, and exhibit spatially varying impacts. For this reason, Pathway 2 (P2)
in CLDERA (identification of pathways from Mt. Pinatubo to changes in plant productivity) has
been challenging.

7.8.1. Soil-moisture and evapotranspiration deficit indices

We present two lines of research developed in CLDERA. The first one represents a collaboration with
Ram Singh, Kostas Tsigaridis, and Kate Marvel. This research focused on how the Mt. Pinatubo
eruption affected the hydroclimatic conditions and water-based drivers of plant productivity. We
used NASA’s Earth system model (the Goddard Institute for Space Studies GISS model) for
modeling the eruption and detection of hydroclimate response.

We investigated changes in agricultural drought indices from Pinatubo by considering the store (soil
moisture) and flux (evapotranspiration) of water as potential short-term controls over productivity
in particular regions. We used NASA’s GISS model with interactive aerosol chemistry to conduct
the simulation experiments consistent with the counterfactual inference of causation approach for
the Pinatubo eruption. The Pinatubo effect in the model-simulated climate is evaluated through
the various pathways of climate impacts, from the primary dependent variables to the higher order
responses controlling plant productivity. Considering the complexity of modeling the terrestrial
system, vegetation demographics, and physiological characteristics, we used the soil moisture and
evapotranspiration-based agricultural drought indices SMDI (soil moisture deficit index) and ETDI
(evapotranspiration deficit index) to account for agricultural productivity. We evaluated short-term
(weekly) and long-term (seasonal) scale changes in SMDI and ETDI relative to statistics over a
longer modern time-period. We also evaluated changes in actual and potential evapotranspiration,
precipitation, transpiration, and surface temperature.

Using these metrics, we concluded that approximately 10-15% of land region shows statistically
significant dry or wet patterns in the volcanically perturbed climate conditions for 1992 and 1993.
In equatorial Africa, decreases in both SMDI and ETDI indicated that there was likely a negative
impact on plant productivity while a Middle East region showed increases in SMDI and ETDI
indicating a positive impact on plant productivity. Northern Asia in comparison exhibited an
increase in SMDI with a decrease in ETDI indicating that plant productivity likely decreased, but
not because of water-based drivers. We demonstrated that there is an excess of root-zone soil
moisture in high latitudes which is not being utilized by plants to grow; it is likely that the more
dominant drivers in the high latitude regions are temperature and radiation-based drivers. The
intricate nature of the compounded response, particularly regarding the soil moisture-based impact
pathways in tropical regions and higher latitudes across the northern hemisphere, underscores the
necessity of broadening the scope of the investigation beyond soil moisture and land-atmosphere
interactions.

This work is documented in following paper [165]:

* Ram Singh, Kostas Tsigaridis, Diana Bull, Laura P Swiler, Benjamin M Wagman, and Kate
Marvel. Pinatubo’s effect on the moisture-based drivers of plant productivity. Submitted
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to Atmospheric Chemistry and Physics, July 2024. The review preprint is available at:
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2280/

7.8.2. Attributing Mt. Pinatubo in spatial patterns of vegetation response

Volcanic eruptions induce significant perturbations within the climate system cascading into con-
sequences for quantities as far downstream as terrestrial ecosystems. Understanding the complex
and coupled interactions driving changes in vegetation function and productivity outside of natural
variability in response to a volcanic eruption is extremely difficult; not only are the drivers (energy
and water) of vegetative function differential and heterogeneous, but so too are the responses in dis-
tinct plant representations across the Earth’s surface. This heterogeneity has the potential to mask
underlying relationships by which a pathway becomes expressed (especially at low magnitudes of
primary forcing).

In this research we seek to amplify and align proposed pathways to determine if they can be reliably
detected within spatially distributed data. This requires filtering the data for only the growing season
responses. Further it requires co-locating grid cells with strong and weak pathways (i.e. a large
reduction in downwelling shortwave radiation resulting in a strong reduction in photosynthesis).
With analyses proving that strong relationships, for instance, are the most prevalent, we can then
employ these grid cells in a multi-step conditional attribution framework [191]. This analysis would
be the first to bring probabilistic attribution statements of the size of the eruption to vegetative
1mpacts.

This research is ongoing with the following expected publication [94]

* Li, J., Wentland, C., Swiler, L, Peterson, K., Weylandt, M., Krofcheck, D., Wagman, B.,
Bull, D. Attributing Mt. Pinatubo in spatial patterns of vegetation response. To be submitted
November 2024

7.8.3. Understanding hydroclimatic shifts through a Budyko framing

The eruption of Mt. Pinatubo and similar volcanic eruptions force significant departures in global
incoming/outgoing radiation as well as the provision of precipitation. By placing these impacts into
a framework that incorporates both water and energy balances, we can examine the ecohydrological
effects of this eruption that may have implications for long-term changes in terrestrial function.
The Budyko framework, a conceptual model used to understand the relationship between climate
and the partitioning of precipitation into runoff and evapotranspiration, accomplishes this goal.
We leverage this framework by examining how the eruption altered an evaporative ratio (actual
evapotranspiration/ potential evapotranspiration) and a wetness index (precipitation / potential
evapotranspiration) between factual and counterfactual E3SM models. A joint change in the
evaporative ratio and the wetness index, known as movement in the Budyko space, can signify
changing water resources, shifts in vegetation composition, river basin specific changes due to
climate change, agricultural expansion or contraction or other departures from regional ecological
stability.
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Our research focuses on the impact of Mt. Pinatubo in this ecohydrological context. Specifically,
we hypothesize that the Pinatubo eruption altered the energy and water balance of areas of the globe
differentially, and in some cases inverted the historical constraints on the hydrologic cycle. This
would suggest that the eruption may have a bifurcating consequence on terrestrial function, the
directionality of which is a function of the initial state of the landscape and the local impacts of the
aerosol injections. This research analyzes movement within the Budyko space in response to Mt.
Pinatubo, evaluates time dependencies, and consider co-occurring environmental states with these
movements to construct an understanding of the ecohydrological effects from Mt. Pinatubo.

This research is ongoing with the following expected publication [89]

* Krofcheck, D., Crockett, J., Peterson, K., Li, J., Bull, D. Volcanic stratospheric aerosol
injection may buffer against global ecohydrological impacts of hotter and drier climates. To
be submitted December 2024
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8. CONCLUSION

In conclusion, the CLDERA project enabled multi-step attribution in the climate through devel-
opment of new methods that quantitatively assess pathways between a climate forcing and its
downstream impacts. To do this there have been three major technical outcomes.

CLDERA Developed Stratospheric Expertise and Aerosol Modeling Capabilities in E3SM:

Under CLDERA, a stratospheric prognostic aerosol capability in E3SMv2-SPA was developed
which allows for evolution of volcanic aerosols as well as tagging and diagnostics of various types
of aerosols. We performed a massive E3SMv2-SPA simulation campaign, generating 400+ TB of
data encompassing source magnitude varying ensembles representing 1750 simulated years. We
uncovered and communicated significant biases in E3SM’s stratosphere and studied how volcanic
eruptions can change circulation.

CLDERA Created Original Methods to Detect and Model Pathways from Source-to-Impact:

We extended detection methods for spatio-temporally evolving changes to better understand where
and when changes occur as well as their start and end. CLDERA has developed state-of-the-
art machine learning, reduced order modeling, and statistical tools to elucidate and represent
pathways, which are a foundational means for understanding dependent causal-like relationships
in many complex nonlinear systems. These eight methods have been described in detail in this
report and encompass both exploratory and confirmatory approaches. The breadth of methods
(multivariate, multi-variable, in situ, data driven, etc.) explored is part of the strength of CLDERA
enabling future method applications that are most suited to the method approach.

CLDERA Advanced Climate Attribution through Novel Methods, Cases, and Approaches:

CLDERA has tackled and been successful in developing methods to determine forcing magnitude
given an impact. Inversion approaches of this type have been avoided due to the complexity of the
climate system, however under CLDERA two approaches have been successfully demonstrated. We
also developed experiments well suited to attribution frameworks in order to expand the cases and
approaches by which we pursue attribution in the climate system. We employed pattern-scaling to
identify relationships that are robust to variability in the system in the same vein as epidemiological
dose-response studies. We also constrained natural variability in the simulations to sharpen impacts.
By initializing fully-coupled simulation to the historical ENSO3.4 and QBO characteristics, we
drew upon the heritage of storylines in the extreme weather event community and constrained our
variability in the early months making our results conditional upon those natural modes.

Further, CLDERA developed a tiered verification process that can be utilized in other domains.
Simplified and controlled data sets were developed with key characteristics of the multi-step
pathways. These datasets were used to prototype, verify, and refine the CLDERA methods.
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CLDERA increased Sandia’s footprint in the climate analytics community and developed new
climate collaborations. CLDERA created a cadre of climate analysts, representing a significant
workforce development effort.

New methods and tools developed through CLDERA offer a framework that can be translated
to other localized or episodic sources such as large wildfires, changes to ocean currents (e.g.,
Atlantic Meridional Overturning Circulation), or climate interventions (e.g., stratospheric aerosol
injection). The CLDERA methods could also be extended to understand and attribute impacts
from tipping points in the climate system. In the future, CLDERA methods could be used to
advance climate science and analyze climate impacts. CLDERA methods can provide decision
support using ESMs, potentially helping inform policies and regulations as well as requirements
on monitoring systems.

The products from CLDERA have been extensive with a total of 9 journal articles published, 12
articles submitted and under review, and an additional 8 articles in preparation'. We have produced
1750 simulated years® and developed 9 code-bases. Additionally, CLDERA staff have given 79
conference presentations and posters and 17 invited talks. The following sections highlight a
concise list of the CLDERA products.

8.1. CLDERA Products

8.1.1. Published Articles

1. L. Tezaur, K. Peterson, A. Powell, J. Jakeman, E. Roesler. “Global sensitivity analysis using
the ultra-low resolution Energy Exascale Earth System Model,” Journal of Advances in
Modeling Earth Systems, 14, €2021MS002831, 2022 [175]

2. Joseph Hart, Mamikon Gulian, Indu Manickam, and Laura P. Swiler. Solving high-
dimensional inverse problems with auxiliary uncertainty via operator learning with limited
data. Journal of Machine Learning for Modeling and Computing, Vol.4, No. 2, pp. 105-133.
2023. [65]

3. Tucker, J. D., & Yarger, D. (2023). Elastic functional changepoint detection of climate impacts
from localized sources. Environmetrics, €2826. https://doi.org/10.1002/env.2826
[182]

4. Michael Weylandt and Laura P. Swiler. Beyond PCA: Additional Dimension Reduction
Techniques to Consider in the Development of Climate Fingerprints. Journal of Climate,
Vol. 37, Issue 5, pp. 1723-1735. 2024. [193]

LOur website https://www.sandia.gov/cldera/ will continue to be updated with publication information

2Data from the full E3SMv2-SPA simulation campaign including pre-industrial control, historical, and Mt. Pinatubo
ensembles will be hosted at Sandia National Laboratories with location and download instructions announced on
https://www.sandia.gov/cldera/e3sm-simulations-data/ when available.
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5. McClernon, Kellie. Goode, Katherine. Ries, Daniel. “A comparison of model validation
approaches for echo state networks using climate model replicates”. Spatial Statistics. 2024.
https://doi.org/10.1016/j.spasta.2024.100813 [112]

6. Brown, H. Y., Wagman, B., Bull, D., Peterson, K., Hillman, B., Liu, X., Ke, Z., and Lin,
L. “Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2

using observations after the Mount Pinatubo eruption.” Geoscientific Model Development,
17,5087-5121, https://doi.org/10.5194/gmd-17-5087-2024, 2024. [13]

7. Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana
L. Bull, and Joseph L. Hart. “HSW-V v1.0: localized injections of interactive volcanic
aerosols and their climate impacts in a simple general circulation model.” Geoscientific
Model Development, 17, 5913-5938, https://doi.org/10.5194/gmd-17-5913-2024,
2024. [77]

8. K. Goode, D. Ries, and K. McClernon, “Characterizing climate pathways using feature
importance on echo state networks”, Stat. Anal. Data Min.: ASA Data Sci. J. 17 (2024),
el1706. https://doi.org/10.1002/sam.11706. [57]

9. Samantha Shi-Jun, Lyndsay Shand, Bo Li. “Tracing the impacts of Mount Pinatubo eruption
on global climate using spatially-varying changepoint detection.” Accepted Annals of Applied
Statistics. September 2024. This manuscript is available on arXiv: https://arxiv.org/
abs/2409.08908 [164]

8.1.2. Submitted Articles

1. Jake Nichol, Michael Weylandt, G. Matthew Fricke, Melanie E. Moses, Diana Bull, Laura P.
Swiler. Causal Space-Time Stencil Learning: Local Causal Dynamics in Complex Systems.
Submitted to Journal of Geophysical Research, Machine Learning and Computation July
2024. [124]

2. Ram Singh, Kostas Tsigaridis, Diana Bull, Laura P Swiler, Benjamin M Wagman, and Kate
Marvel. Pinatubo’s effect on the moisture-based drivers of plant productivity. Submitted to
Atmospheric Chemistry and Physics, July 2024. The review preprint is available at: https:
//egusphere.copernicus.org/preprints/2024/egusphere-2024-2280/ [165]

3. Daniel Ries, Katherine Goode, Kellie McClernon, and Ben Hillman. “Using feature im-
portance as exploratory data analysis tool on earth system models.” Submitted to GMD
Special Issue: Theoretical and computational aspects of ensemble design, implementa-
tion, and interpretation in climate science, July 2024. The review preprint is available at:
https://gmd.copernicus.org/preprints/gmd-2024-133/ [145]

4. Hu, A, Liu, X, Ke, Z., Wagman, B., Brown, H., Lu, Z., Bull, D., Peterson, K. Size-resolved
process understanding of stratospheric sulfate aerosol following the Pinatubo eruption, Sub-
mitted July 2024. Atmospheric Chemistry and Physics. [79]

141



5. Drew Yarger and J. Derek Tucker. “Detecting changepoints in globally-indexed functional
time series.” Submitted to Evironmetrics, August 2024. This manuscript is available on
arXiv: https://arxiv.org/abs/2308.05915. [204]

6. Andrew Steyer, Luca Bertagna, Graham Harper, Jerry Watkins, Irina Tezaur, and Diana Bull.
“In-situ data extraction for pathway analysis in an idealized atmosphere configuration of
E3SM.” Submitted to Computing in Science & Engineering, August 2024. [172]

7. Christopher R. Wentland, Michael Weylandt, Laura P. Swiler, Thomas S. Ehrmann, Diana
Bull. “Conditional multi-step attribution for climate forcings.” Submitted to Journal of
Climate, Aug. 2024. This manuscript is available on arXiv: https://doi.org/10.
48550/arXiv.2409.01396. [191]

8. Garrett, R., Shand, L. and Huerta, J. G.. A Multivariate Space-Time Dynamic Model for
Characterizing the Atmospheric Impacts Following the Mt. Pinatubo Eruption. Submitted
to Environmetrics. Aug 2024. [45]

9. Joseph Hart, Indu Manickam, Mamikon Gulian, Laura Swiler, Diana Bull, Thomas Ehrmann,
Hunter Brown, Benj Wagman, and Jerry Watkins. Stratospheric aerosol source inversion:
Noise, variability, and uncertainty quantification, submitted to Journal of Machine Learning
for Modeling and Computing. This manuscript is available on arXiv, https://doi.org/
10.48550/arXiv.2409.06846. [66]

10. Thomas Ehrmann, Benjamin Wagman, Diana Bull, Benjamin Hillman, Joseph Hollowed,
Hunter Brown, Kara Peterson, Laura Swiler, Jerry Watkins, and Joseph Hart. “Identifying
Northern Hemisphere Temperature Responses to the Mt. Pinatubo Eruption through Limited
Variability Ensembles.” Submitted to Climate Dynamics, September 2024. [36]

11. Jerry Watkins, Luca Bertagna, Graham Harper,Andrew Steyer, Irina Tezaur, and Diana Bull.
“Entropy-based feature selection for capturing impacts in Earth system models with extreme
forcing.” Submitted to Journal of Computational and Applied Mathematics, September
2024. [187]

12. Meredith G. L. Brown, Matt Peterson, Irina Tezaur, Kara Peterson, and Diana Bull. “Random
Forest Regression Feature Importance for Climate Impact Pathway Detection.” Submitted to
Journal of Computational and Applied Mathematics, September 2024. [16]

8.1.3. Articles in preparation to be submitted

1. Warren L. Davis, Max Carlson, Irina Tezaur, and Diana Bull. “Spatio-temporal Multi-
variate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts.” Intended
submission to Journal of Computational and Applied Mathematics, September 2024. [31]

2. Justin D. Li, Audrey McCombs, Daniel Dunlavy, Gabriel Huerta, Lyndsay Shand, ”Exploring
Multivariate Tensor Data Fusion and Completion.” To be submitted to Special issue of Remote
Sensing: Spatiotemporal Fusion of Multi-Source Remote Sensing Data and Its Applications.

October 2024. [95]
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3. Hollowed, J., Jablonowski, C., Ehrmann, T., Hillman, B., ... “Volcanic Aerosol Modification
of the Stratospheric Circulation in E3SMv2 Part I: Wave-Mean Flow Interaction.” To be
submitted to Climatic Dynamics by October 2024. [76]

4. Li, J., Wentland, C., Swiler, L, Peterson, K., Weylandt, M., Krofcheck, D., Wagman, B., Bull,
D. “Attributing Mt. Pinatubo in spatial patterns of vegetation response.” To be submitted
November 2024. [94]

5. Krofcheck, D., Crockett, J., Peterson, K., Li, J., Bull, D. “Volcanic stratospheric aerosol
injection may buffer against global ecohydrological impacts of hotter and drier climates.” To
be submitted December 2024. [89]

6. Jablonowski, C., Hollowed, J., Nguyen, L., Hillman, B., Ehrmann, T., Wagman, B. “Strato-
spheric Characteristics in E3SMv2.” To be submitted by December 2024. [83]

7. Hollowed, J., Jablonowski, C., Ehrmann, T., Hillman, B., ... “Volcanic Aerosol Modification
of the Stratospheric Circulation in E3SMv?2 Part II: Tracer Sensitivity.” To be submitted by
December 2024. [75]

8. Hu, A., Liu, X, Hillman, B., Wagman, B., Bull, D., Peterson, K. “Aerosol Indirect Effect: a
study of cirrus implications with MAMS.” To be submitted by December 2024. [78]

8.1.4. SAND Reports

1. J. Jake Nichol, Michael Weylandt, Mark Smith, Laura Swiler. “Benchmarking the PCMCI
Causal Discovery Algorithm for Spatiotemporal Systems.” Technical Report. SAND2023-
05141. June 2023, Sandia National Laboratories, Albuquerque NM. [125]

2. Thomas Ehrmann, Benjamin Wagman, Diana Bull, Benjamin Hillman, Joseph Hollowed,
Hunter Brown, Kara Peterson, Laura Swiler, Jerry Watkins, and Joseph Hart. “Identifying
Northern Hemisphere Stratospheric and Surface Temperature Responses to the Mt. Pinatubo
Eruption within E3SMv2-SPA.” Technical Report. SAND2024-12730. September 2024,
Sandia National Laboratories, Albuquerque NM. [35]

3. Carole Hall, J. Derek Tucker, and Drew Yarger. “Elastic Changepoint Detection for Globally-
indexed Functional Time Series Data with Climate Applications.” Technical Report. SAND2024-
12470. September 2024, Sandia National Laboratories, Albuquerque NM. [61]

4. Daniel Ries, Kellie McClernon, Thomas Ehrmann, and Diana Bull. “Using Spatio-Temporal
Feature Importance to Identify Drivers of Indian Monsoon after the Mount Pinatubo Erup-
tion.” SAND2024-125810. September 2024, Sandia National Laboratories, Albuquerque
NM. [146]

5. Benjamin M. Wagman, Hunter Brown, Diana Bull, Tom Ehrmann, Ben Hillman, Laura
Swiler, Kara Peterson, Joe Hollowed. “Does prognostic volcanic aerosol enhance climate
variability in Earth System Model simulations of volcanic eruptions?” SAND2024-127250.
September 2024, Sandia National Laboratories, Albuquerque NM. [183]
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6. McClernon, Kellie, Ries, Daniel, and Goode, Katherine. “Verifying regional feature impor-
tance on echo state networks for climate pathways.” SAND2024-124040. September 2024,
Sandia National Laboratories, Albuquerque NM. [113]

8.1.5. Codes & Data

* CLDERA Simulation campaign: Data from the full E3SMv2-SPA simulation campaign
including pre-industrial control, historical, and Mount Pinatubo ensembles will be hosted
at Sandia National Laboratories with location and download instructions announced on
https://www.sandia.gov/cldera/e3sm-simulations-data/ when available

* Prognostic aerosol code base: E3SMv2-SPA at https://github.com/sandialabs/
CLDERA-E3SM

* Profiling in-situ co-analysis: CLDERA-Tools at https://github.com/sandialabs/
cldera-tools

* Inverse optimization with operator neural network: SAILo is currently undergoing copy-
right assertion and is only available on SNL internal resources at gitlab-ex repo CLDERA/sailo

¢ Conditional Multivariate Attribution: at https://github.com/sandialabs/
conditional-multistep-attribution

* Pair-wise RFR: currently undergoing copyright assertion and is only available on SNL
internal resources at gitlab repo mgpeter/RFR-CLDERA

* Explainability for Echo State Networks: listner at https://github.com/sandialabs/
listenr

* Multivariate space-time dynamic model: MV-STDM at github.com/garretrc/MV-STDM

* Elastic Functional Data Analysis: fdasrvf_python/r at https://pypi.org/project/
fdasrsf or https://cran.r-project.org/web/packages/fdasrvf

* Causal Space-Time Stencil Learning: CaStLe at https://github.com/jjakenichol/
CaStLe
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APPENDIX A. CLDERA Simulation Campaign Output Data

Under the CLDERA project, we selected specialized high temporal-resolution output relevant to
impacts from the Mt. Pinatubo eruption for both the atmosphere and land models in E3SMv2-SPA.
In the following sections, the daily and subdaily output from the atmosphere and land used in the
CLDERA simulation campaign are listed. Each entry includes the variable name, description,
units, and number of model levels. Variables with level equal to one are provided at a single level
or column integrated values. The entries also include the simulation set and ensemble numbers for
which the variable is available. Not all fields were included in all simulation ensembles.

Name Description Units Levels InSimulations

ABSORB Aerosol absorption /m 72 all

AEROD_v Total Aerosol Optical Depth in visible band 1 1 all

AOA Age-of-air tracer kg/kg 72 Limvar_src_tagens 1-15
AODABS Aerosol absorption optical depth 550 nm - 1 all

AODS0401 Aerosol optical depth 550 nm SO4 - Mt. Pinatubo 1 Limvar_src_tagens 1-15
AODS0402 Aerosol optical depth 550 nm SO4 - Cerro Hudson 1 Limvar_src_tagens 1-15
AODS0403 Aerosol optical depth 550 nm SO4 - All other sources 1 Limvar_src_tagens 1-15
AODVIS Aerosol optical depth 550 nm - 1 all

AREI Average ice effective radius micron 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
AREL Average droplet effective radius micron 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
BURDEN1 Aerosol burden mode 1 kg/m2 1 all

BURDEN2 Aerosol burden mode 2 kg/m2 1 all

BURDEN3 Aerosol burden mode 3 kg/m2 1 all

BURDEN4 Aerosol burden mode 4 kg/m2 1 all

BURDENSO0401 Sulfate aerosol burden - Mt. Pinatubo kg/m2 1 Limvar_src_tagens 1-15
BURDENS0402 Sulfate aerosol burden - Cerro Hudson kg/m2 1 Limvar_src_tagens 1-15
BURDENSO0403 Sulfate aerosol burden - All other sources kg/m2 1 Limvar_src_tagens 1-15
BURDENSO4 Sulfate aerosol burden kg/m2 1 Fullvar ens 1-15, Limvar ens 1-6
CDNUMC Vertically-integrated droplet concentration 1/m2 1 all

CLDHGH Vertically-integrated high cloud 1 1 all

CLDICE Grid box averaged cloud ice amount kg/kg 72 all

CLDLIQ rid box averaged cloud liquid amount kg/kg 72 Fullvar ens12-15

CLDLOW Vertically-integrated low cloud 1 1 all

CLDMED Vertically-integrated mid-level cloud 1 1 all

CLDTOT Vertically-integrated total cloud 1 1 all

CLDTOT_ISCCP Total Cloud Fraction Calculated by the ISCCP Simulator percent 1 all

CLOUD Cloud Fraction 1 72 Limvar_src_tagens 1-15

EMIS Cloud longwave emissivity 1 72 Fullvarens 12-15

E90j E90 Tracer kg/kg 72 Limvar_src_tagens 1-15
EXTINCT Aerosol extinction 1/m 72 Limvar_src_tagens 1-15
FISCCP1_COSP Grid-box fraction covered by each ISCCP D level cloud type percent 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
FLDS Downwelling longwave flux at surface W/m2 1 all

FLDSC Clearsky Downwelling longwave flux at surface W/m2 1 all

Table A-1. Daily averaged output fields from E3SMv2-SPA atmosphere model for CLDERA
simulation sets.
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Name Description Units Levels InSimulations

FLNS Net longwave flux at surface W/m2 1 all

FLNSC Clearsky net longwave flux at surface W/m2 1 all

FLNT Net longwave flux at top of model W/m2 1 all

FLNTC Clearsky net longwave flux at top of model W/m2 1 all

FLUT Upwelling longwave flux at top of model W/m2 1 all

FLUTC Clearsky upwelling longwave flux at top of model W/m2 1 all

FSDS Downwelling solar flux at surface W/m2 1 all

FSDS_d2 Downwelling solar flux at surface - No Pinatubo aerosol W/m2 1 Limvar_src_tagens 1-15
FSDSC Clearsky downwelling solar flux at surface W/m2 1 all

FSNS Net solar flux at surface W/m2 1 all

FSNSC Clearsky net solar flux at surface W/m2 1 all

FSNT Net solar flux at top of model W/m2 1 all

FSNTC Clearsky net solar flux at top of model W/m2 1 all

FSNTOA Net solar flux at top of atmosphere W/m2 1 all

FSNTOAC Clearsky net solar flux at top of atmosphere W/m2 1 all

FSUTOA Upwelling solar flux at top of atmosphere W/m2 1 all

FSUTOAC Clearsky upwelling solar flux at top of atmosphere W/m2 1 all

H2S04 H2S04 concentration mol/mol 72 Fullvar ens 1-15, Limvar ens 1-6
LHFLX Surface latent heat flux W/m2 1 all

LWCF Longwave cloud forcing W/m2 1 all

Mass_SO4 Sum of SO4 mass concentration kg/kg 72 Fullvar ens 7-15, Limvar ens 6
Mass_S0401 Sum of SO4 mass concentration - Mt. Pinatubo kg/kg 72 Limvar_src_tagens 1-15
Mass_S0402 Sum of SO4 mass concentration - Cerro Hudson ka/kg 72 Limvar_src_tagens 1-15
Mass_S0403 Sum of SO4 mass concentration - All other sources ka/kg 72 Limvar_src_tagens 1-15

NIIMM Activated Ice Number Concentation due to immersion freezing 1/m3 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
NIHF Activated Ice Number Concentation due to homogenous freezing 1/m3 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
NUMICE Grid box averaged cloud ice number 1/kg 72 all

NUMLIQ Grid box averaged cloud liquid number 1/kg 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
OMEGA Vertical velocity (pressure) Pa/s 72 all

OMEGA500 Vertical velocity at 500 mbar pressure surface Pals 1 all

PRECC Convective precipitation rate (liq + ice) m/s 1 all

PRECT Total (convective and large-scale) precipitation rate (liq + ice) m/s 1 all

PRECTMX Maximum (convective and large-scale) precipitation rate (lig+ice) m/s 1 all

PS Surface pressure Pa 1 all

PSL Sea level pressure Pa 1 all

PV Ertel potential vorticity m2 K/kg/s 72 Fullvar ens 7-15, Limvar ens 1-6, Limvar_src_tagens 1-15
Q010 Specific Humidity at 010 mbar pressure surface kg/kg 1 all

Q050 Specific Humidity at 050 mbar pressure surface kg/kg 1 all

Q100 Specific Humidity at 100 mbar pressure surface kg/kg 1 all

Q1000 Specific Humidity at 1000 mbar pressure surface kg/kg 1 all

Q200 Specific Humidity at 200 mbar pressure surface kg/kg 1 all

Q500 Specific Humidity at 500 mbar pressure surface kg/kg 1 all

Q700 Specific Humidity at 700 mbar pressure surface ka/kg 1 all

Q850 Specific Humidity at 850 mbar pressure surface kg/kg 1 all

QBOT Lowest model level water vapor mixing ratio kg/kg 1 all

QREFHT Reference height humidity kg/kg 1 all

QREFHTMN Minimum reference height humidity kg/kg 1 all

QREFHTMX Maximum reference height humidity ka/kg 1 all

QRL Longwave heating rate K/s 72 all

QRS Solar heating rate Kis 72 all

REI MG REI stratiform cloud effective radius ice micron 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
REL MG REL stratiform cloud effective radius liquid micron 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
RHREFHT Reference height relative humidity 1 1 all

SFso4_a1 so4_a1 surface flux kg/m2/s 1 Fullvar ens 1-15, Limvar ens 1-6
SFso4_a2 so4_az2 surface flux kg/m2/s 1 Fullvar ens 1-15, Limvar ens 1-6
SFs0401_a1 so4_a1 surface flux - Mt. Pinatubo kg/m2/s 1 Limvar_src_tagens 1-15
SFs0402_a1 so4_a1 surface flux - Cerro Hudson kg/m2/s 1 Limvar_src_tagens 1-15
SFs0403_a1 so4_a1 surface flux - All other soures kg/m2/s 1 Limvar_src_tagens 1-15
SFs0401_a2 s04_a?2 surface flux - Mt. Pinatubo kg/m2/s 1 Limvar_src_tagens 1-15
SFs0402_a2 s04_a2 surface flux - Cerro Hudson kg/m2/s 1 Limvar_src_tagens 1-15
SFs0403_a2 so4_az2 surface flux - All other sources kg/m2/s 1 Limvar_src_tagens 1-15
SHFLX Surface sensible heat flux W/m2 1 all

S02 S02 concentration mol/mol 72 Fullvar ens 1-15, Limvar ens 1-6
S0201 S02 concentration - Mt. Pinatubo mol/mol 72 Limvar_src_tagens 1-15
S0202 S02 concentration - Cerro Hudson mol/mol 72 Limvar_src_tagens 1-15
S0203 S0O2 concentration - All other sources mol/mol 72 Limvar_src_tagens 1-15
SO2_XFRC extemnal forcing for SO2 molec/cm3/s 72 Fullvar ens 1-15, Limvar ens 1-6
S0201_XFRC external forcing for SO2 - Mt. Pinatubo molec/cm3/s 72 Limvar_src_tagens 1-15
S0202_XFRC external forcing for SO2 - Cerro Hudson molec/cm3/s 72 Limvar_src_tagens 1-15
S0203_XFRC external forcing for SO2 - All other sources molec/cm3/s 72 Limvar_src_tagens 1-15

Table A-2. Daily averaged output fields from E3SMv2-SPA atmosphere model for CLDERA
simulation sets (Continued).
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Name Description Units Levels InSimulations

SOLIN Solar insolation W/m2 1 all

SOLL Solar downward near infrared direct to surface W/m2 1 all

SOLL_d2 Solar downward near infrared direct to surface - No Pinatubo W/m2 1 Limvar_src_tagens 1-15
SOLLD Solar downward near infrared diffuse to surface W/m2 1 all

SOLLD_d2 Solar downward near infrared diffuse to surface - No Pinatubo W/m2 1 Limvar_src_tagens 1-15
SOLS Solar downward visible direct to surface W/m2 1 all

SOLS_d2 Solar downward visible direct to surface - No Pinatubo W/m2 1 Limvar_src_tagens 1-15
SOLSD Solar downward visible diffuse to surface W/m2 1 all

SOLSD_d2 Solar downward visible diffuse to surface - No Pinatubo W/m2 1 Limvar_src_tagens 1-15
ST80_25j ST80_25j tracer kg/kg 72 Corrected initialization in Limvar_src_tagens 10-15
SWCF Shortwave cloud forcing W/m2 1 all

T Temperature K 72 all

TOO1 Temperature at 1 mbar pressure surface K 1 all

T002 Temperature at 2 mbar pressure surface K 1 all

T005 Temperature at 5 mbar pressure surface K 1 all

T010 Temperature at 10 mbar pressure surface K 1 all

T025 Temperature at 25 mbar pressure surface K 1 all

TO50 Temperature at 50 mbar pressure surface K 1 all

T100 Temperature at 100 mbar pressure surface K 1 all

T1000 Temperature at 1000 mbar pressure surface K 1 all

T150 Temperature at 150 mbar pressure surface K 1 all

T200 Temperature at 200 mbar pressure surface K 1 all

T250 Temperature at 250 mbar pressure surface K 1 all

T500 Temperature at 500 mbar pressure surface K 1 all

T700 Temperature at 700 mbar pressure surface K 1 all

T850 Temperature at 850 mbar pressure surface K 1 all

TGCLDIWP Total grid-box cloud ice water path kg/m2 1 all

TGCLDLWP Total grid-box cloud liquid water path kg/m2 1 all

TMH2S04 H2S04 column burden kg/m2 1 Fullvar ens 1-15, Limvar ens 1-6
TMH2S0401 H2S04 column burden - Mt. Pinatubo kg/m2 1 Limvar_src_tagens 1-15
TMH2S0402 H2S04 column burden - Cerro Hudson kg/m2 1 Limvar_src_tagens 1-15
TMH2S0403 H2S04 column burden - All other sources kg/m2 1 Limvar_src_tagens 1-15
™Q Total (vertically integrated) precipitable water kg/m2 1 all

TMSO2 SO2 column burden kg/m2 1 Fullvar ens 1-15, Limvar ens 1-6
TMS0201 S02 column burden - Mt. Pinatubo kg/m2 1 Limvar_src_tagens 1-15
TMS0202 S02 column burden - Cerro Hudson kg/m2 1 Limvar_src_tagens 1-15
TMS0203 S02 column burden - All other sources kg/m2 1 Limvar_src_tagens 1-15
TOT_CLD_VISTAU Total gbx cloud extinction visible sw optical depth 1 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
TOT_ICLD_VISTAU Total in-cloud extinction visible sw optical depth 1 72 Fullvar ens 12-15, Limvar_src_tagens 10-15
TOZ Total column ozone DU 1 all

TREFHT Reference height temperature K 1 all

TREFHTMN Minimum reference height temperature over output period K 1 all

TREFHTMX Maximum reference height temperature over output period K 1 all

TROPF_P Tropopause Pressure (cold point) Pa 1 all

TROPF_T Tropopause Temperature (cold point) K 1 all

TROPF_Z Tropopause Height (cold point) 1 all

TROP_P Tropopause Pressure Pa 1 all

TROP_T Tropopause Temperature K 1 all

TROP_Z Tropopause Height m 1 all

TS Surface temperature (radiative) K 1 all

TUQ Total (vertically integrated) zonal water flux kg/m/s 1 all

T™vQ Total (vertically integrated) meridional water flux kg/m/s 1 all

U Zonal wind m/s 72 all

U001 Zonal wind at 1 mbar pressure surface m/s 1 all

U002 Zonal wind at 2 mbar pressure surface m/s 1 all

U005 Zonal wind at 5 mbar pressure surface m/s 1 all

uo10 Zonal wind at 10 mbar pressure surface m/s 1 all

U025 Zonal wind at 25 mbar pressure surface m/s 1 all

U050 Zonal wind at 50 mbar pressure surface m/s 1 all

u10 10m wind speed m/s 1 all

U100 Zonal wind at 100 mbar pressure surface m/s 1 all

U1000 Zonal wind at 1000 mbar pressure surface m/s 1 all

U150 Zonal wind at 150 mbar pressure surface m/s 1 all

U200 Zonal wind at 200 mbar pressure surface m/s 1 all

U250 Zonal wind at 250 mbar pressure surface m/s 1 all

U500 Zonal wind at 500 mbar pressure surface m/s 1 all

U700 Zonal wind at 700 mbar pressure surface m/s 1 all

U850 Zonal wind at 850 mbar pressure surface m/s 1 all

\ Meridional wind m/s 72 all

Table A-3. Daily averaged output fields from E3SMv2-SPA atmosphere model for CLDERA
simulation sets (Continued).
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Name
V010
V050
V100
V1000
V200
V500
V700
V850
Z010
Z050
Z100
Z1000
Z200
Z3
Z500
Z700
7850

Description

Meridional wind at 10 mbar pressure surface
Meridional wind at 50 mbar pressure surface
Meridional wind at 100 mbar pressure surface
Meridional wind at 1000 mbar pressure surface
Meridional wind at 200 mbar pressure surface
Meridional wind at 500 mbar pressure surface
Meridional wind at 700 mbar pressure surface
Meridional wind at 850 mbar pressure surface
Geopotential Z at 10 mbar pressure surface
Geopotential Z at 50 mbar pressure surface
Geopotential Z at 100 mbar pressure surface
Geopotential Z at 1000 mbar pressure surface
Geopotential Z at 200 mbar pressure surface
Geopotential Height (above sea level)
Geopotential Z at 500 mbar pressure surface
Geopotential Z at 700 mbar pressure surface
Geopotential Z at 850 mbar pressure surface

Units

333333333

Levels

1

72
1
1
1

In Simulations
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all

Table A-4. Daily averaged output fields from E3SMv2-SPA atmosphere model for CLDERA

Name
03

PS
TROP_P

simulation sets (Continued).

Description

O3 concentration
Surface pressure
Tropopause Pressure

Units
mol/mol

Pa
Pa

Levels
72

In Simulations
all
all
all

Table A-5. Daily instantaneous output fields from E3SMv2-SPA atmosphere model for CLDERA

simulation sets.

166



Name Description Units Levels In Simulations

AEROD_v  Total Aerosol Optical Depth in visible band 1 1 all
FLDS Downwelling longwave flux at surface W/m2 1 all
FLNS Net longwave flux at surface W/m2 1 all
FLNT Net longwave flux at top of model W/m2 1 all
FLUT Upwelling longwave flux at top of model W/m2 1 all
FSDS Downwelling solar flux at surface W/m2 1 all
FSNS Net solar flux at surface W/m2 1 all
FSNT Net solar flux at top of model W/m2 1 all
OMEGAS500 Vertical velocity at 500 mbar pressure surface Pals 1 all
PRECC Convective precipitation rate (liq + ice) m/s 1 all
PRECT Total (convective and large-scale) precipitation rate (liq + ice) m/s 1 all
PSL Sea level pressure Pa 1 all
QREFHT Reference height humidity ka/kg 1 all
RHREFHT  Reference height relative humidity 1 1 all
SOLL Solar downward near infrared direct to surface W/m2 1 all
SOLLD Solar downward near infrared diffuse to surface W/m2 1 all
SOLS Solar downward visible direct to surface W/m2 1 all
SOLSD Solar downward visible diffuse to surface W/m2 1 all
TO50 Temperature at 50 mbar pressure surface K 1 all
T200 Temperature at 200 mbar pressure surface K 1 all
T500 Temperature at 500 mbar pressure surface K 1 all
™Q Total (vertically integrated) precipitable water kg/m2 1 all
TREFHT Reference height temperature K 1 all
U200 Zonal wind at 200 mbar pressure surface m/s 1 all
V200 Meridional wind at 200 mbar pressure surface m/s 1 all
Z500 Geopotential Z at 500 mbar pressure surface m 1 all

Table A-6. Six-hourly average output fields from E3SMv2-SPA atmosphere model for CLDERA
simulation sets.
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Name Description Units Levels In Simulations

AEROD_v Total Aerosol Optical Depth in visible band 1 1 all
FLDS Downwelling longwave flux at surface W/m2 1 all
FLNS Net longwave flux at surface W/m2 1 all
FLNT Net longwave flux at top of model W/m2 1 all
FLUT Upwelling longwave flux at top of model W/m2 1 all
FSDS Downwelling solar flux at surface W/m2 1 all
FSNS Net solar flux at surface W/m2 1 all
FSNT Net solar flux at top of model Wim2 1 all
OMEGAS500 Vertical velocity at 500 mbar pressure surface Pals 1 all
PRECC Convective precipitation rate (liq + ice) m/s 1 all
PRECT Total (convective and large-scale) precipitation rate (liq + ice) m/s 1 all
PSL Sea level pressure Pa 1 all
QREFHT Reference height humidity kg/kg 1 all
RHREFHT Reference height relative humidity 1 1 all
SOLL Solar downward near infrared direct to surface W/m2 1 all
SOLLD Solar downward near infrared diffuse to surface W/m2 1 all
SOLS Solar downward visible direct to surface W/m2 1 all
SOLSD Solar downward visible diffuse to surface W/m2 1 all
TO50 Temperature at 50 mbar pressure surface K 1 all
T200 Temperature at 200 mbar pressure surface K 1 all
T500 Temperature at 500 mbar pressure surface K 1 all
T™MQ Total (vertically integrated) precipitable water kg/m2 1 all
TREFHT Reference height temperature K 1 all
U200 Zonal wind at 200 mbar pressure surface m/s 1 all
V200 Meridional wind at 200 mbar pressure surface m/s 1 all
Z500 Geopotential Z at 500 mbar pressure surface m 1 all

Table A-7. Six-hourly average output fields from E3SMv2-SPA atmosphere model for CLDERA
simulation sets.

Name Description Units Levels In Simulations
PRECC Convective precipitation rate (lig + ice) m/s 1 all
PRECT Total (convective and large-scale) precipitation rate (liq + ice) m/s 1 all
QFLX Surface water flux kg/m2/s 1 all
SHFLX Surface sensible heat flux W/m2 1 all
TREFHT Reference height temperature K 1 all
TUQ Total (vertically integrated) zonal water flux kg/m/s 1 all
T™vVQ Total (vertically integrated) meridional water flux kg/m/s 1 all

Table A-8. Three-hourly average output fields from E3SMv2-SPA atmosphere model for CLDERA
simulation sets.
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Name Description Units Levels In Simulations

EFLX_LH_TOT total latent heat flux [+ to atm] W/mh2 1 all

FGR heat flux into soil/snow including snow melt and lake / snow light transmission W/mh2 1 all

FIRA net infrared (longwave) radiation W/mh2 1 all

FIRE emitted infrared (longwave) radiation W/mA2 1 all

FPSN photosynthesis umol/m2s 1 all

FSA absorbed solar radiation W/mh2 1 all

FSD24 direct radiation (last 24hrs) K 1 Fullvar ens 1-6, Limvar ens 1-6
FSDSND direct nir incident solar radiation W/mh2 1 Fullvar ens 7-15, Limvar_src_tag 1-15
FSDSNI diffuse nir incident solar radiation W/m"3 1 Fullvar ens 7-15, Limvar_src_tag 1-15
FSDSVD direct vis incident solar radiation W/mh2 1 Fullvar ens 7-15, Limvar_src_tag 1-15
FSDSVI diffuse vis incident solar radiation W/m*3 1 Fullvar ens 7-15, Limvar_src_tag 1-15
FSH sensible heat W/mA2 1 all

FSI124 indirect radiation (last 24hrs) K 1 Fullvar ens 1-6, Limvar ens 1-6

FSNO fraction of ground covered by snow 1 1 all

FSR reflected solar radiation W/mA2 1 all

H20SNO snow depth (liquid water) mm 1 all

H20SO0l volumetric soil water (vegetated landunits only) mm3/mm3 15 all

QDRAI sub-surface drainage mm/s 1 all

QDRAI_XS saturation excess drainage mm/s 1 all

QH20SFC surface water runoff mm/s 1 all

QIRRIG_REAL actual water added through irrigation (surface + ground) mm/s 1 all

QRUNOFF total liquid runoff (does not include QSNWCPICE) mm/s 1 all

QSNOMELT snow melt mm/s 1 all

QSOIL Ground evaporation (soil/'snow evaporation + soil/snow sublimation - dew) mm/s 1 all

QTOPSOIL water input to surface mm/s 1 all

QVEGE canopy evaporation mm/s 1 all

QVEGT canopy transpiration mm/s 1 all

RAIN atmospheric rain mm/s 1 all

SNOwW atmospheric snow mm/s 1 all

SNOW_DEPTH snow height of snow covered area m 1 all

SOILICE soil ice (vegetated landunits only) kg/m2 15 all

SOILLIQ soil liquid water (vegetated landunits only) kg/m2 15 all

SOILWATER_10CM soil liquid water + ice in top 10cm of soil (veg landunits only) kg/m2 1 all

TG ground temperature K 1 all

TLAI total projected leaf area index 1 1 all

TSAI total projected stem area index 1 1 all

TSOI soil temperature (vegetated landunits only) K 15 all

TV vegetation temperature K 1 all

TWS total water storage mm 1 all

Table A-9. Daily average output fields from E3SMv2-SPA land model for CLDERA simulation sets.

Name Description Units Levels InSimulations
EFLX_LH_TOT total latent heat flux [+ to atm] W/mh2 1 all
FPSN photosynthesis umol/m2s 1 all
FSH sensible heat W/m*2 1 all
QH20SFC surface water runoff mm/s 1 all
QSOIL Ground evaporation (soil’snow evaporation + soil/snow sublimation - dew) mm/s 1 all
QVEGE canopy evaporation mm/s 1 all
QVEGT canopy transpiration mm/s 1 all
SOILWATER_10CM soil liquid water + ice in top 10cm of soil (veg landunits only) kg/m2 1 all

Table A-10. Six-hourly average output fields from E3SMv2-SPA land model for CLDERA simulation
sets.
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