SAND2024-13381

p— Sandia
DIA REPORT Lon il

“SAND2024-13381 Laboratories

UUR
Printed October 2024

Methane Integrated Monitoring and
Measurement System Design

Jake P. Zenker, Lekha Patel, Anneliese Lilje, Philip R. Miller, Joshua Whiting, Jennifer
Lewis, Daniel Krofcheck, Kurtis Shuler, Clare Amann, Andrew Glen

Controlled by: Sandia National Laboratories/Lekha Patel

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550




UUR

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that
its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

NOYSH

Natlonal Nuclear Security Administratiorn

UUR



UUR

ABSTRACT

Methane (CH4), an abundant greenhouse gas, is the second largest contributor to global warming after
carbon dioxide (CO,). In comparison to CO,, CH, has a larger warming effect over a much shorter
lifetime. While technologies to radically reduce global carbon dioxide emissions are materializing,
rapid reductions in methane emissions are needed to limit near-term warming. Methane is primarily
emitted as a byproduct from agricultural activities and energy extraction/utilization and is currently
monitored via bottom-up (i.e., activity level) or top-down (via airborne or satellite retrievals)
approaches. However, significant methane leaks remain undetected, and emission rates are challenging
to characterize with current monitoring frameworks. In this report, we study methane leaks from oil and
gas infrastructure using a tiered monitoring approach that combines bottom-up and top-down
approaches in an integrated framework. We describe the individual advantages of bottom-up and top-
down sensors in both stationary and mobile settings before characterizing how a fully integrated
framework can improve predictions and uncertainties of potential leak locations and their emission
rates. Further, we study the impact of different atmospheric (wind) conditions on integrated methane
monitoring and develop a probabilistic approach to optimal sensor placement, thereby shortening
detection times and improving monitoring capabilities. Last, we discuss how biogenic flux modeling
can be used to improve assessment of background methane concentrations needed to fully assess the

sensitivity of a tiered monitoring system.
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EXECUTIVE SUMMARY

This report studies multi-sensor monitoring of methane emissions as a preliminary step to
demonstrating the power of a multi-tier framework (i.e., one which integrates measurements of sensors
placed at varying spatial-temporal scales) in methane monitoring. We define three tier levels: Tier 1
indicates monitoring across large spatial areas (e.g., country level) that may include airborne
instruments such as satellites. Tier 2 indicates monitoring across smaller spatial areas (e.g., county
level) with higher accuracy/resolution that may include sensors placed on drones, airplanes, or towers.
Tier 3 indicates monitoring at single-emission site levels that may include ground-based point sensors
deployable at fixed locations or on mobile instrumented platforms. In doing so, we capture monitoring
benefits and challenges with single tiered sensors, including extensive lists of off-the-shelf instruments

that could be considered for monitoring at each tier.

To study an integrated methane framework, combining sensors from each tier for optimal monitoring,
we chose the Permian Basin as our exemplar, in which a significant portion of the United States’ oil
and gas infrastructure is situated. To enable modeling of methane leaks from potential emission sources
within such an area, we first define a Gaussian Plume model with the ability to capture methane plumes
which will be used to represent leaks. Using this model, zones of detection, defined as radii around
emission sources in which leaks can be detected, are studied at varying altitudes, wind speeds, and
emission rates (above background) using sensors located in both Tier 2 and Tier 3. By visualizing
emission sources in the Permian Basin around roads on which mobile sensors could be deployed, we
can quantify the number of emission sources monitorable using Tier 2 and Tier 3 sensors and determine
the potential for mobile monitoring in the Permian. Given this, we utilize Sandia developed Chama
software for optimal sensor placement of Tier 2-3 sensors, including stationary and mobile sensors, on

two areas of the Permian where roads intersect with oil and gas operations.

Camera based mobile sensors are somewhat challenging to model within Chama’s setup; however, we
demonstrate the ability to optimize sensor placement based on budget and cost to maximize monitoring
capabilities and detectability of leaks from various Tier 3 sensor options, which may include mobile
deployment. Using Chama’s output, we subsequently formulate an integrated (Tiers 1-3) methane

monitoring network which we show to provide greater methane concentration data than using a single
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tier alone. Using the tiered network, we formulate a statistical model capable of learning source
attribution (i.e., underlying emission rates from leaks) with quantifiable uncertainties, and show that a
fully tiered system improves predictive accuracy with reduced uncertainties compared with Tiers 2-3 or
Tier 3 networks alone. We additionally use an inverse Gaussian Plume model to study source
attribution as sensor sensitivities, sensor density and standoff distances are varied, which may help
determine specific sensors that could be utilized as part of an integrated system. In doing so, we are
able to provide cost estimates based upon monitoring accuracy and detection times for integrated
methane monitoring in the Permian. Last, we discuss biogenic methane modeling as an important area
of future work in order to accurately determine background methane concentrations, to improve
modeling of continuous methane emissions from natural sources such as from agriculture and

permafrost, and to drive down uncertainties associated with non-oil and gas sources.
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1. INTRODUCTION
Long-lived atmospheric pollutants, especially from fossil fuel burning, have long been known to have a
lasting impact on (positive) global radiative forcing or warming.! Two of particular concern are carbon
dioxide, persisting for thousands of years in the atmosphere and methane, which remains for at most a
decade.? Despite its short lifetime, methane increases short-term peak warming due to its higher Global
Warming Potential (25-35 times greater than carbon dioxide) and is estimated to account for 30% of
global temperature increase since industrialization.? Aggregated forcing effects between different gases
are causing global temperatures to rise at unprecedented rates and the resulting detrimental impacts,
ranging from increased droughts, more severe storms, hotter temperatures, warming oceans, and

increased health risks* are becoming irreversible.

However, the IPCC has determined future warming greater than 1.5°C above pre-industrial levels is not
unavoidable, but rather depends on continued rates of emission. In particular, the IPCC’s previous
recommendation to reduce anthropogenic methane emissions to limit global temperature rise beyond
1.5°C by 2030 was inspired by new evidence at the time which showed a larger methane forcing> than
previously determined. Due to its short-term lifespan, eliminating or severely cutting methane
emissions is estimated to result in both immediate cooling,® and prevention of catastrophic short-term
climate effects, particularly as longer-term technologies to reduce CO, emissions are being actively
developed. Consequently, following the 2015 Paris Agreement, many countries have pledged to reduce
their total greenhouse gas emissions, with methane being singled-out via the 2021 Global Methane
Pledge,” aiming to reduce methane emissions by at least 30% below 2020 levels by 2030. A huge
challenge with the Global Methane Pledge, however, is the lack of complete global support,
particularly from countries with high methane emissions, as illustrated by the 1.8% increase in

emissions in 2022, due primarily to industrialization.

While country-level commitments are becoming increasingly important and necessary, low-cost
opportunities to curb methane emissions remain largely under deployed. The largest sources of
anthropogenic methane emissions are reported to be from agriculture and energy production. However,
the data used to report the emissions levels varies greatly, and emphasizes the global need to improve

emission quantifications from various sources.
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For example, oil and gas (O&G) operations are documented as the largest industrial source of
anthropogenic methane emissions in the United States, with the International Energy Agency (IEA)
estimating a potential to reduce around 70% of global methane emissions from O&G facilities with
existing technologies.” Unintentional methane emissions occur as leaks across all levels of the
extractive industry and O&G pipeline, with major sources emerging from production, processing,
storage, and distribution. Specific limitations in gathering, processing, and transportation infrastructure

lead to significant venting and excess flaring of both carbon dioxide and methane.

At approximately 37%, agriculture is reported to be the largest source of anthropogenic methane
emissions globally, with new ideologies pushing farmers to move towards more sustainable feed
additives and higher plant than livestock food production. Methane emissions produced from
agricultural waste at landfills are additionally becoming increasingly capturable with state-of-the-art
technologies. When coupled with global food security, naturally occurring methane emissions such as
those from biogenic sources (e.g., livestock and agriculture) may be harder to limit than those from
0&G facilities, yet they importantly aggregate to form background methane rates beyond which it
becomes necessary for novel methodologies and technologies to discern methane levels from industrial

facilities.
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Figure 1: Energy sector emissions are from the Global Methane Tracker for 2021; non-energy sector
emissions are the average of estimates available from UNFCCC, CAIT, EDGAR and CEDS for 2018 or
2019. Natural sources and biomass burning are top-down median estimates and bottom-up median
estimates respectively from the Global Methane Budget for 2017.8
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Figure 2: UNFCCC submissions from the Greenhouse Gas Data Interface for the latest year available (Mt
methane). Reference estimates for energy are the Methane Tracker estimates for 2022. For non-energy
sector emissions, these are taken as an average of estimates available for 2019, 2020, or 2021 from
UNFCCC, CAIT, EDGAR and CEDS (see Methodology for further information).

There is therefore an urgent need for more accurate data to establish both baseline methane levels and
to determine rates of emissions of anthropogenic operations. Accurate detection of leaks from normal
operations as well as abnormal emissions from infrastructure failure will be required to assess the

success of mitigation techniques.

This report proposes a strategy to optimize and evaluate the performance of monitoring networks that
can be deployed on a regional scale to detect and quantify methane emissions from oil and gas

production operations.
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1.1. A Multi-Tiered Approach to Methane Leak Detection
There are several different types (or tiers) of platforms that can be used to monitor methane
concentrations and emissions. For this analysis, we crudely define these tiers to be Satellite (Tier 1),

Aerial (Tier 2), or Ground (Tier 3) platforms.

Each of these Tiers has advantages and disadvantages. Satellite platforms, for instance, can sense
methane across large swaths of the Earth’s atmosphere. However, the sensitivity, accuracy, and spatial
resolution of most of these systems are insufficient for the detection of individual leaks. While
advanced satellite platforms, such as the new Carbon Mapper satellite, have demonstrated their ability
to detect large individual sources (e.g., super emitters) with improved spatial resolution and sensitivity,
their revisit time, which may be several days or weeks, is too long since most methane emission events
associated with oil and gas operations are typically an hour or less in duration. Aerial sensors provide
robust spatial coverage, albeit much less than satellites, and are adequately sensitive and accurate
enough to detect and quantify emissions from individual sources. However, these platforms are cost
and labor intensive and therefore cannot be used as a means for continuous monitoring. Ground-based
sensors, which may be stationary or mobile, have the highest level of sensitivity and accuracy amongst
all the tiers and can continuously monitor methane concentrations. However, because their footprint is
small, a vast network of these sensors is required to perform source attribution; the cost of such a

network may be prohibitively expensive.

Due to the large variety of sensor types, spatial coverages, and methane sources, understanding the full
potential of an integrated methane platform is a challenging task. To this end, we focus on developing
an optimization strategy for an integrated approach from O&G methane sources in the Permian Basin.
By combining a range of sensors across all tiers, with quantifiable limits of detection, we subsequently
showcase the power of a fully integrated system in accurately covering concentration fields and
performing the inverse source attribution procedure: utilizing a statistical framework to spatially
identify leak sources and their emission rates with quantifiable uncertainties. In doing so, we can
determine methane leak rates and concentrations at lower uncertainties than what is achievable using

one tier alone.
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1.2. Network Design Optimization Philosophy

The “optimization” of any system inherently invokes the balance of competing parameters. Very
broadly, the optimal design may be one that achieves a balance between the cost and performance of a
system where gains in performance are associated with an increased cost. Alternatively, if financial and
labor limitations are a barrier to implementing a high-cost network, a low-cost network can be

implemented at the expense of performance.

For a methane monitoring network, performance might be defined as the ability to detect a leak, or
further, to determine the leak’s location, or quantify a leak’s emission rate. The end user might also
consider incorporating the spatial and temporal coverage of a monitoring network. While an obvious
definition for cost is the capital cost of materials (e.g., monitoring equipment and data purchases), it is

also important to consider the labor required to operate and maintain a monitoring network.

The practicality of deploying monitoring assets will be impacted by the resources, funding, and
authorizations that have been granted to an administering organization. These constraints should be
considered when establishing definitions of cost and performance and can be used to refine the scope of
the network design optimization. Because many practical details are unknown to the authors of this
report, it is impossible to recommend a detailed design for a monitoring network. Rather, we present an

optimization framework and discuss some of the broad insights that it provides.

1.3. Optimization Framework Overview

In this section we establish a performance metric and a workflow that was implemented to evaluate that
metric for different monitoring network configurations. Under this framework, we first ask our
workflow to simulate a spatially resolved methane concentration field using an array of environmental
inputs including assumed emission rates for facilities. Methane measurement values from a given
network design are then inferred from the simulated concentration field. These values are then used to
infer a concentration field which is then utilized to infer emission rates at known source locations. We
then compare the inferred emission rates to the assumed (i.e., ground truth) emission rates that were
used simulate the methane concentration field and leverage the accuracy of that inference as our

performance metric.
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This workflow is visually depicted in Figure 3 and is described as follows:

1.

Source terms: The user aggregates source term and environmental information relevant to the
domain where a monitoring network will be deployed. This information includes the source

locations, emission rates, and meteorology.

Atmospheric transport modeling: The source term and environment information is
incorporated into a model to simulate methane as it is transported to from the leak location to

the surrounding environment.

Simulated concentration field: the atmospheric transport model provides a spatially resolved

methane concentration field.

Network design: The user provides the workflow with a prospective design for the methane
monitoring network. This includes information about the tiers of measurements that are used,
the locations of those measurements, and the performance of the monitors being used to make

those measurements (e.g., accuracy, sensitivity, etc.)

Measurement inference: Using the simulated methane concentration field and network design

information to simulate measurements.

Data fusion: Inferred measurements are assimilated.

Inferred concentration field: The data fusion process provides an inferred concentration field.
Source attribution: Using the inferred concentration field, source attribution is performed.

Inferred emission rates: The source attribution algorithm provides inferred emission rates that

can be compared to source term emission rates (used in step 1).
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Figure 3: A schematic of the workflow used to evaluate the performance of a prospective methane
monitoring network.

1.4. Report Structure

Section 2 of this report describes the source term information and the model that was used to generate
simulated methane concentration fields. Section 3 describes network design parameters that a user
might consider. This includes different satellite, aerial and ground-based sensing platforms and their
associate performance statistics. This section also provides insights into how measurement inferences
are developed and reports on the characteristics of simulated measurements provided by each of these
modalities. Finally, Section 4 provides a description of how data fusion of simulated measurements is
used to infer a concentration field and, subsequently, perform source attribution to infer emissions
rates. This section also provides a discussion of the network performance evaluations the relies on the
comparison between input emission rates and inferred emission rates. Section 4 first describes
probabilistic optimal sensor placement under a Tier 2-3 network against budget and monitoring
constraints before constructing a fully integrated (Tier 1-3) monitoring system and both a Bayesian
inverse model and inverse Gaussian plume model to learn underlying emission rates. Section 5
discusses the importance of biogenic flux modeling in accurately determining background methane
concentrations, and for non-O&G methane sources. Finally, Section 6 concludes with a discussion of

our results and scope for future work in methane monitoring.
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2. SIMULATING A METHANE CONCENTRATION FIELD
As previously discussed, the first steps of our network evaluation workflow require the simulation of a
spatially resolve methane concentration field. An atmospheric transport model is used to produce this
simulation. That simulation must be informed with source term parameters and environmental
information. This section details the input information and model that we leveraged to perform this

simulation.

2.1. Source Locations and Descriptions

Well pad locations in the Permian Basins were referenced from the New Mexico Oil Conservation
Division (OCD) database. While OCD provides a wealth of data regarding the current and historical
operational state of production facilities in New Mexico, critical information needed to quantify
emissions estimates, such as detailed component counts, are not reported. While we have considered
ways that diagnostics reported by OCD may enhance our simulations in the future, only location data is

utilized for this analysis.

2.2, A Stochastic Model for Methane Emission Rates

Methane emissions from the oil and gas industry are highly variable in scale and duration. For instance,
maintenance events such as compressor blowdowns have a total duration of 15 minutes or less but may
exhaust over 100 kg of methane in that short time frame. In contrast, a small leak from a pneumatic
controller may be continuous, but typically have emission rates that are less than 0.1 kg/hr. Emission
events are also challenging to predict. While some venting, flaring, and maintenance events are
permissible and expected under normal operating conditions, upset events occur irregularly due to
faulty equipment components, downstream pipeline capacity limitations, or other operational
challenges. At any given time, an amalgamation of different emission events may be occurring in a

basin or subsection of a basin.

Given the level of complexity and variability of these events, an emissions model is needed to
accurately represent emissions scenarios for a geographic area of interest. Rutherford et al. (2021)
developed such a model that is based on a synthesis of data from several measurement campaigns.
Their model provides stochastic component level emissions that we have used to develop facility and
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basin level emissions for different scenarios. For this analysis, we limited our focus to oil and gas
production facilities and assumed that each facility was identical and comprised of the component

counts listed in Table 1.

Table 1. Component counts used for emission estimates to simulate methane concentration fields.

Component Type Component Count
Well 1
Header 1
Heater 2
Separator 2
Meter 1
Tank - Leaks 3
Compressor 1
Dehydrator 0
Injection Pump 1
Pneumatic Controller 1

2.3. Meteorological Data

Hourly meteorological data is utilized from the Hobbs, NM station. Meteorological conditions are
assumed to be spatially uniform across the entire Permian basin. Meteorological conditions are also
assumed to be vertically uniform across the 100 m in altitude that are modeled in this effort. While the
simulations could be enhanced by leveraging spatially varying meteorological with a finer temporal
resolution (e.g., minute data rather than hourly data), this data provides enough fidelity and relevance to

compare different monitoring designs in a relatively localized geographic region.
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24. Simulating the Dispersion and Advection of Methane Emissions

Once emission events have occurred, meteorological conditions including wind speed, stability,
turbulence, temperature, and relative humidity impact how quickly the resulting plume is advected and
dispersed in the atmosphere. Therefore, meteorological conditions must be considered when evaluating
the detectability of a plume. For example, when wind speed is low and atmospheric conditions are
stable/not turbulent, effluents may not be transported far from the emission source. Thus, under these
conditions, effluents will not be subject to rapid dispersion and the plume will be more concentrated.
While effluents may not be transported to a detector that is relatively far from the source, nearby
sensors will have a higher probability of detecting emissions from the source than under windy and
turbulent conditions. Conversely, if wind speeds are high and conditions are unstable or turbulent,
effluents have a higher probability of being transported to distant sensors, but nearby sensors will have

a lower probability of detecting emissions than during low wind speed and low turbulence conditions.

Given the complex behavior of plumes from methane leaks, evaluating the ability of a methane network
to detect leaks requires a model that can emulate this complex behavior. This section of the report
describes and justifies the use of a such a model, details the characteristics of plume representations
from this model, and provides an agnostic overview of how plume detectability varies across different

meteorological conditions, leak rates, and instrument sensitivity.

A plethora of computational tools exists that can be used to represent plumes from emission sources.
To determine which tool is most appropriate, a user must consider the spatial scale, temporal
variability, the thermodynamic properties of the plume, as well as how physically rigorous the
representation of the plume should be and what level of fidelity can be resolved with the information

available.

For this application, it is not necessary or even possible to use a physically rigorous model (e.g.,
computation fluid dynamics) since we are making broad generalizations about the source terms
associated with methane plumes and the environment within which that plume is dispersed. For efforts
described later in this report, it was also necessary to employ a model that is computationally
inexpensive to facilitate an analysis that requires many iterations of the model across various

conditions. We will consider more complex models for future development and operational use of the
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framework presented in this report, such as a gaussian puff model or a DNS. These models are
attractive for a plethora of reasons such as their ability to use spatially resolved meteorological and
environmental conditions to evaluate the evolution of effluents over many timesteps. Nonetheless, a
gaussian plume model is adequate for simulating localized dispersion of emissions like acute methane

leaks and are even implemented for regulatory applications (e.g., AERMOD).

A simple version of a gaussian plume model is described by the following equation:

2 y?
Q (72 +27§>
2moy(xy) 0,(x,2) U

C(x,y,z) =

where C is the concentration of an effluent at a downwind distance, y, from the source, and a crosswind
distance, x, from the plume centerline. In this form of the gaussian plume equation, Q is the mass
emission rate of the effluent at a point source with an effective stack height, 4. The speed of the wind is
incorporated with u. The rate with which the plume is dispersed in the horizontal and vertical directions
is described by the dispersion coefficients, o, and o, respectively. These coefficients are calculated for
a given downwind (x), crosswind (y), and vertical (z) distance from the source and are also dependent
on the Pasquill-Gifford stability class.[®! Even this simple gaussian plume model incorporates

substantial complexity and is sensitive to an array of source term and environmental parameters.
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3. SENSOR TIERS AND DESCRIPTIONS

3.1. Tier 1: Satellite Sensors

As satellite sensing technologies continue to advance, their role in environmental monitoring is
expanding. Spaced-based sensors (which we define as Tier 1 sensors in this analysis) are now being
used to improve low-resolution emission estimates for a variety of gaseous and particulate pollutants.
Platforms such as the Sentinel-5P and GOSAT-2 can be used to reconcile global and regional methane
emission inventories. More recently, the GHGSat platform has delivered data with enough fidelity to
detect facility level emissions. A complete list of methane monitoring satellite payloads and their

performance metrics, including the new Carbon Mapper, are provided in Table 2.

Though satellites have the advantage of providing methane monitoring global coverage, most payloads
cannot take measurements with a high enough spatial resolution or sensitivity to provide significant
value for methane leak detection efforts. Further, while more low-altitude systems capable of large
methane leak detection are slated to be deployed in the coming years, these systems are severely limited
by revisit times that are longer than 15 days. Given that many methane emissions are highly variable
and have durations less than an hour, even geosynchronous orbiting platforms with one day revisit

times do not provide adequate temporal coverage.

Nonetheless, the considerable (and increasing) volume of openly available data provided by these
platforms should not be disregarded and as discussed later in this analysis, can be synergized with other

sensing modalities to enhance methane detection capabilities.
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Table 2: Satellite platforms and performance metrics.

Satellite or Operator Pixel Revisit | Precision Swath Lower Det. Coverage Reference(s)
Mission Dimensions Time (o) Width Threshold
(km x km) (days) (%) (km) (kg/hr)
MERLIN DLR/CNES 0.12 28 1-2 Global 20, 21
Copernicus ESA, EC 2x2 5 0.60 250 Global 22
Ccoz2m
Feng Yun 3G | CMA-NMSC 13.7x13.7 1200 7 spots across 23,24
(CMA) swath
G3E ESA 2x3 0.083 0.50 Central Europe 25
GaoFen-5 CHEOS 12x13 2600 26, 27
GEO-CAPE NASA 4 x4 0.042 1.00 28, 29, 30
GEOCarb NASA 3x6 0.083 - 0.60 2800 4000 North & South 29, 31, 32,33,
0.33 America 34
GEO-FTS NASA 3x3 0.083 0.20 35
GOSAT JAXA 10x 10 3 0.70 7100 Global 36, 37
GOSAT-2 JAXA 10x 10 3 0.40 4000 38
MethaneSat EDF - Env. Def. 0.4x0.1 3-4 0.1-0.2 260 200 200 x 200 km 39, 40
Fund targets
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Satellite or Operator Pixel Revisit | Precision Swath Lower Det. Coverage Reference(s)
Mission Dimensions Time (o) Width Threshold
(km x km) (days) (%) (km) (kg/hr)
MetOp-SG EUMETSAT 7x7 1 0.60 2670 41
MicroCarb CNES 45x9 7 0.70 13.5 x 9 km targets | 42
PCW/PHEQOS- | CSA, Canada 10x 10 0.083 arctic 43, 44
WCA
SCIAMACHY | ESA 30 x 60 6 1.50 45
Sentinel-5P ESA, NSO 55x7 1 0.60 4200 Global 46, 47, 48
(precursor)
ADEOS-1 NASDA, Japan 8x8 4.00 49
ADEOS-2 NASDA, Japan 8x8 4.00 49
AIRS NASA 45 x 45 0.5 1.50 Global 50, 51
Aura NASA 5x8 1.00 Global 52, 53
Joint Polar NOAA 14 x 14 0.5 1.50 2200 Global 54, 55
Satellite
System
Carbon NASA 0.03 x0.03 ~10 ~10-25 Targeted high-
Mapper emission regions
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3.2. Tier 2: Aerial Sensors

Another class of monitoring systems that are being rapidly developed includes those deployed on aerial
platforms (e.g., plane and drones). These systems are capable of surveying large swaths of oil and gas
production basins, facilitating the surveillance of hundreds of facilities in a single flight. Aerial systems
are typically outfitted with standoff detectors that take total column methane measurements between the
surface and flight attitude (approximately 1000 m). Commercial and government platforms have

successfully demonstrated the detection of methane plumes with leak rates lower than 50 kg/hr.

Though aerial surveys have revolutionized our ability to detect and attribute methane to persistent leak
events, the labor and costs of these surveys are a barrier to achieving continuous monitoring, which is

necessary to detect intermittent and short duration leak events.

A list of methane imagers that can be deployed on aerial platforms is provided in Table 3. A list of

fixed-wing and rotary aerial sensor platforms is provided in Table 4 and Table 5.
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Table 3. Methane imagers deployed on aerial platforms and performance metrics.
Satellite or Mission Sensor Type Wavelength Spectral Pixel Swath Emission
Range Resolution Size Width Rate LOD
(nm) (nm) (km) (kg/hr)
1600-1700,
AVIRIS-NG SRS 200-2510 0.003 16
Kairos SRS 46-52
365-1052,
Carnegie Airborne Observatory-2 | SRS and LIDAR 380-2510, 34°
1064
Ball Aerospace Methane Monitor LIDAR 1650 ~1
Carleton University, Ottawa DIAL 1600 0.002 0.128 km 0.6
Table 4: Fixed-wing UAV methane monitoring platforms.
Wing Load Endurance Flight Flight
e Length Weight TP Time Distance Height REHIEIEE
RQ-4 354 m 3000 Ibs. 650 km/hr 32 hr 20,000 m 15
Believer Fly v2.2 1.96 m 1.5 Ibs. 2 hr 20 km 16
Mightly Fly 100 Ibs. 1000 km 17
32
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Table 5: Rotary UAV methane monitoring platforms.

. Endurance Flight Flight
Model Load Weight Speed Time Distance Height Reference
Inspire 2 0.8 kg 58 mph 0.5 hr 7 km 2500;]3000 18
S-100 50 kg 220 km/h 6 hr 200 km 5500 m 19
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3.3. Tier 3: Ground Sensors

A ground-based sensor is defined as a sensor that is installed at or near ground level. This can include
fixed or stationary detectors, sited at facility fence lines and nearby towers, or mobile sensors that are
mounted on vehicles. Ground-based sensors also operate in standoff (similar to those implemented on

aerial platforms) or in situ configurations.

Singh et al. (2021) conducted an evaluation of the field performance of methane sensing systems. In
general, the ground-based sensors used in this study reported sensitivities and lower limits of detection
between 3 and 300 ppb, which corresponds to lower leak rate detection limits between 0.2 to 20 g/hr at
close proximities (10 m to 100 m). It should be noted that these systems are state of the art, are

relatively expensive, and have varying degrees of operational autonomy.

Motivated by the growing need for large scale comprehensive leak detection, there has been a recent
emergence of low-cost methane monitoring technologies. However, these sensors are limited by their
lack of sensitivity, poor accuracy, sensor-to-sensor variability, and dynamic range. Honeycutt et al.
(2019), provided statistics describing the poor sensitivity and signal noise of low-cost sensors and
reported lower limits of detection and signal variability (standard deviation) ranges of 16.3 ppm to 170
ppm and 5.4 ppm to 37.1 ppm (RMSE range of 15% to 24%), respectively. While the performance of
these sensors inhibits their use for environmental monitoring that requires sub-ppm sensitivity, they
have some utility for near-field detection of moderate to large leaks.

Table 6. Ground-based methane sensors and performance metrics.

Sensor Limit of Sensitivity
detection IPrecision (10) (ppb)
General Tools 0.05 kg/m3 0.5
(GT)
ATO Portable 0.003 kg/m? 0.3
Picarro 0.001 kg/m3 0.22
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3.3.1.  Ground Sensor Zones of Detection

Leveraging the previously described gaussian plume model, we define a Zone of Detection (ZOD) as
the volume of plume with a concentration of effluents that is sufficiently high enough to be detected by
a sensor with a certain sensitivity. ZOD size is sensitive to three parameters: the emission rate of a leak,
the meteorological conditions under which those emissions are dispersed, and detector sensitivity.
Figure 4 provides a visual depiction of a ZOD and defines dimensional parameters that can we use to
conceptualize the utility of sensors for leak detection: ZOD length, width, and height. ZOD length and

width are the downwind and maximum crosswind extents of the ZOD, respectively.

2. < 300
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2 -5 < 100 o _— 100

Figure 4: ZOD for sensors with sensitivities that are (a) 10%, (b) 100%, (c) 1000%, and (d) 10000% above
background methane concentrations. Panel (a) visually depicts ZOD length, width, and height with the
highest sensitivity above background to observe the plume. ZODs are simulated assuming a leak rate of
100 kg/hr and a wind speed of 10 m/s. The x-, y-, and z-axes report the downwind, crosswind, and
vertical distance from the source in meters.

For this analysis, we evaluate how the width, length, and height of a ZOD varies across this parameter

space which includes:

e Emissions rates: 1 to 1000 kg/hr

e Wind Speed: 1 to 7 m/s

e Incoming solar radiation: “moderate” for all cases

e Detector sensitivity: 10% to 10,000% above background [CH4] (2.1 ppm to 191.9 ppm)
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Figure 5 through Figure 7 report the ZOD length, width, and height, respectively, as a function of the
wind speed normalized leak rate (Q/U) for sensor sensitivities ranging from 10% to 10,000% above
background concentration. Aside from the demonstrating the trivial trend of increasing ZOD with
increasing sensor sensitivity, this analysis can be used to develop a conceptual design for ground sensor
placement. Assuming that 100% and 1000% above background sensitivities ZODs are analogs for the
detection of state-of-the-art highly sensitive sensors (e.g., Picarro) and low-cost sensors, respectively,
the ZOD length analysis suggests that moderate leaks with a Q/u value of 10 (kg/hr)/(m/s) (or a leak
rate of ~10 to 70 kg/hr) can be detected by a state-of-the art sensor at a downwind distance of 100 m or
less and that super emitters (Q/u > 100 (kg/hr)/(m/s)) can be detected at a downwind distance of 300 m
or more. In contrast, low-cost sensors need to be within a downwind distance of 20 m and 100 m
respectively to detect the same moderate and super emitter leaks. While it’s likely not fiscally or
operationally feasible to locate state of the art sensors 100 m downwind of every oil and gas production
facility, it may be possible to deploy or site multiple low-cost sensors in close proximity to each oil and

gas facility (or a prioritized subset of facilities).
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Figure 5: ZOD lengths as a function of Q/u for different instrument sensitivity proxies expressed as
percent greater than the background CH4 concentration. Data points represent individual modeled
scenarios. Solid lines represent an exponential fit of the form Y = a*exp(b*x)+c*exp(d*x).
Whereas the ZOD length analysis provides insights on the downwind siting requirements for detection,

noting the variability of wind direction, the width analysis can be used to consider the crosswind
spacing required to optimize detection frequency. Retaining our existing definitions for detector
sensitivity proxies, moderate leaks, and super emitters, this analysis indicates that a low-cost sensor
would need to be placed at crosswind distance increments of ~25 m or less to achieve comprehensive
detection of super emitters. If we assume that the sensors are placed on a circle with a radius that is
approximately the distance from the center of the facility to the fence line (~50 m), comprehensive

super emitter detection would require over 10 fence line sensors per facility assuming plume motion
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with minimal buoyancy. Though these sensors are low-cost, the cost to outfit a facility with more than
10 sensors is unreasonably high, especially when the costs associated with sensor maintenance and
calibration are taken into consideration. However, the placement and density of sensors can be further
optimized by leveraging sensors placed at other nearby facilities and by considering probabilistic wind

speeds and directions from local climatological data.
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Figure 6: ZOD widths as a function of Q/u for different instrument sensitivity proxies expressed as
percent greater than the background CH4 concentration. Data points represent individual modeled
scenarios. Solid lines represent an exponential fit of the form Y = a*exp(b*x)+c*exp(d*x).
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Figure 7: ZOD widths as a function of Q/u for different instrument sensitivity proxies expressed as
percent greater than the background CH4 concentration. Data points represent individual modeled
scenarios. Solid lines represent an exponential fit of the form Y = a*exp(b*x)+c*exp(d*x).

3.3.2. The Potential Utility of Mobile Sensors for Leak Detection

Several additional factors must be considered when evaluating a mobile sensor’s ability to detect
methane leaks. Since the sensor’s position is not static and therefore will only be within a leak’s ZOD
temporarily, the data acquisition rate and response time must be considered in addition to the other
performance factors previously discussed for stationary sensors. These necessary considerations
challenged our ability to perform a robust analysis on the ability of mobile sensors to detect methane

leaks, but a scoping analysis was performed to evaluate what portion of leaks are in close enough
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proximity to roads to be detected by mobile sensors. The leak locations and road segments were
defined using datasets reporting the locations of well pads and road segments for the entire Permian

Basin.

For this analysis we simulated plumes using a matrix of conditions defined by the following parameter

ranges:

e Leak Rate: 1, 10, and 100 kg/hr

e Wind Speed: 0.1, 1 and 10 m/s
Since this analysis was not informed by wind direction, a simplified detectability metric was adapted: a
leak is considered to be detectable if it is located within a distance from a road that is less than or equal
to the leak’s ZOD length at a height of 1 m (the approximate height of a mobile detector). A detailed
description of the methodology and GIS workflow used to conduct this analysis is reported in
Appendix A. Recognizing that this analysis will overstate the detectability of sensors due to the
omission several important factors, these results nonetheless provide a valuable upper bound estimate

of the fraction of leaks in the Permian Basin that can be detected with mobile sensors.

Figure 8 shows the percentage of wells in the Permian Basin that are monitorable as a function of ZOD
length. There are three groups of data, Group A representing those ZODBs where the ZOD length is
less than 1000 meters (Red), Group B with zone lengths greater than and equal to 1000 meters but
below 6000 meters (Green), and Group C (blue) with zone lengths greater than and equal to 6000
meters. The plot shows that for the case when we consider a ZODB of greater than or equal 1000
meters for all wells, the percentage of monitorable wells at that size is at least 95%. This means that the
ability to monitor leaks of greater than or equal to 1000 meters with mobile Tier 3 sensors is excellent.
In Group B, we see a slightly diminished ability and in Group C the ability to monitor wells degrades
quickly as the ZOD length drops.
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Percent monitorable wells as a function of detection zone length

901

85—

80 1———

751 L

Percent Monitorable %

10° 104
Length (m)

Figure 8: Percent of wells monitorable by Tier 3 sensors for various ZOD lengths. There are three groups

of data, Group A representing those ZODBs where the ZOD length is less than 1000 meters (Red), Group

B with zone lengths greater than and equal to 1000 meters but below 6000 meters (Green), and Group C
(blue) with zone lengths greater than and equal to 6000 meters.

An extension of this analysis showing the geographic areas with insufficient road coverage to detect

leaks (“dead zones”) is provided in Appendix B.
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4. FULLY INTEGRATED SENSOR NETWORK

In this section, we provide a robust end-to-end modeling workflow that can ingest tiered sensor
measurements to determine overarching methane concentration maps and underlying emission rates
from individual sources, such as those provided by the well data that we have studied over the Permian
basin. In doing so, we first demonstrate robust sensor placements with both stationary and mobile
ground sensors (Tier 3), that can additionally be placed on towers/posts (Tier 2), and mobile sensors
able to be carried by low-flying drones (Tier 1) over areas of interest. To aid in the design of the
integrated sensor network, we leveraged prior work done at Sandia through the creation of Chama,
open-source software for sensor placement optimization. The Chama framework can probabilistically
account for various wind conditions in its optimization routines, allowing for more effective sensor
placement. Using the learned knowledge of optimal sensor placement, we subsequently propose a
multi-tier modeling framework that hierarchically combines all tiers’ sensor measurements. We first
show that this multi-tier representation can quantify a data-fused methane concentration map that
provides a richer visualization of potential leaks across higher fidelity spatial and temporal resolutions
than any one tier alone. Second, using inverse Bayesian modeling, we demonstrate the framework’s
robustness in accurately learning underlying leak locations and their emission rates (source attribution)
with quantifiable uncertainties, thereby providing a benchmark decision-making capability for
identifying potential leaks using a tiered monitoring system. Due to challenges associated with
quantifying the accuracy of source attribution based upon varying sensor and meteorological conditions
from the inverse Bayesian model, we subsequently use inverse Gaussian plume modeling to study the
impact of source attribution by demonstrating algorithm sensitivity to instrument accuracy, sensor

density and standoff distances.
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41. Integrated Sensor Set-up for the Permian

Sandia’s Chama software informs design of a sensor network and establishes a monitoring strategy
which minimizes environmental impact given a limited budget. Ideally, all potential emission sources
could be continuously monitored using the highest sensitivity sensors and equipment, but there is a
cost/benefit tradeoff between the monitoring budget in dollars and the ability to detect methane
emissions. We use Chama to determine, for a fixed budget in dollars, which Tier 3 and Tier 2 sensors
should be purchased, and where they should be placed, to minimize the expected amount of time to
detect a methane leak. This placement not only accounts for fixed ground-level Tier 3 sensors but can
include mobile Tier 3 sensors on vehicles traversing roads within biogenic and/or industrial areas
containing methane emission sources, fixed Tier 2/3 sensors placed on posts or towers to measure leaks
from the vertical displacement of methane plumes, and mobile Tier 2 sensors that could be deployed by
drones or low-flying planes. Chama’s ability to include a varied monitoring budget provides an
indispensable tool to inform decision makers the degree to which methane emissions can be expected to

be reduced if the monitoring budget is increased.

To reach this determinization, Chama uses information about potential emission sources, emission
scenarios, including wind conditions, and their probabilities of occurrence. Given these inputs, Chama
uses a mixed integer linear programming optimization routine to determine (1) which sensors should be
purchased and (2) where they should be placed. Chama flexibly handles different sensor types,
including point sensors, camera sensors, and mobile sensors. For mobile sensors, Chama resolves the

optimal monitoring routine rather than a fixed monitoring location.

We demonstrate how Chama may be used through a case study in the Permian basin. Using historical
wind data, and real-world data about potential emissions sources (i.e., oil well or facility locations as
shown in Section A.1), we develop a suite of potential emission scenarios and their probabilities. For
these scenarios, we use the stationary Gaussian plume model (see Section 2.4) to simulate methane
emissions from a source. These, coupled with information about methane monitoring sensors on the
market and their sensitivities, described in more detail below, are used as inputs to Chama to determine

an optimal methane monitoring strategy. The resulting sensor network minimizes the expected amount
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of methane emitted before detection while maintaining a fixed budget. For more information about

Chama, the reader is directed to Klise (2017)3°.

To demonstrate optimal sensor placement, we study two areas of the Permian which can be visualized
around potential emission sources and surrounding road networks as is shown in Figure 9. Both areas
were chosen by their differing relative density of emission sources per spatial area, proximity to roads
enabling mobile monitoring capabilities, and their spatial separation between other emission sources.
Specifically, Area 1 contains 46 emission sources over an area of 8.8km? (5.23 sources per km?) and

Area 2 contains 38 emission sources over an area of 126.26km? (0.3 sources per km?).
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Figure 9: Two areas in the Permian Basin (green, boxed) within New Mexico counties (black, boxed)
considered for Chama analyses plotted around O&G methane emission sources (blue) and intersecting
roads (black, faint) for potential mobile monitoring.

For each area, we use Chama to simulate three cases: low-medium, medium-high and realistic leaks,
where the latter two cases permit the occurrence of so-called super-emitters (emitted at >1000 kg/h). In

each case, each facility’s emission rate is sampled either uniformly between predefined minimum and
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maximum leak rates, or from the meteorological data itself using a bootstrapped approach, as is shown

in Table 7.

Table 7: Leak cases for Chama analyses with descriptions of their emission rate profiles.

Case Minimum (kg/h) Median (kg/h) | Maximum | Sampling method
(kg/h)
Low-medium leaks 0 54 10.8 Uniform
Medium-high leaks 10.8 1075 2160 Uniform
Realistic leaks 0 1.08 2088 Data bootstrap

For each of the three cases, meteorological scenarios under different wind conditions (characterized by
wind speed and direction) were sampled from a discretized formulation of the meteorological wind data

of the Permian, which shows dependence between the two variables as presented in Figure 10.
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Figure 10: Distribution of wind speeds and directions of movement in the Permian at any hour, based
upon historic meteorological data in the region.
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In order to determine discrete scenario probabilities for Chama’s formulation, the above wind data were
first grouped based upon their respective Pasquill stability class 37> 38, which provides a discretized

indication of the atmosphere’s stability index, shown in

Table 8.

Table 8: Description of Pasquill Stability Classes indicating atmospheric stability.

Stability Class Description
A Extremely unstable conditions
B Moderately unstable conditions
C Slightly unstable conditions
D Neutral conditions
E Slightly stable conditions
F Moderately stable conditions
G Extremely Stable

In particular, by using the meteorological data from the Permian Basin, the distribution of stability

classes amongst sampled conditions follows the probabilities shown in Figure 11.
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Gifford stability class, as observed from historic data.

The stability class probabilities were used to define seven main scenarios, indicating an atmospheric

condition that follows each stability class. Within each of the seven scenarios, 3 wind speeds and

directions were subsequently sub-sampled from the data with sub-probabilities 0.25 (lower

tail/quartile), 0.5 (median) and 0.25 (upper tail/quartile), providing the bulk of wind variability within

each stability class. Under each of the seven classes, the 3 wind conditions’ probabilities were

determined by multiplying the sub-probability with the class probability.
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Figure 12: Realistic emission examples simulated in Area 1 under atmospheric conditions

corresponding to stability class A.
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In this manner, 21 different scenarios with different probabilities, characterized by wind speed, wind

direction, and stability class, were determined. For each scenario, 20 independent realizations of
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Figure 13: Realistic emission examples simulated in Area 1 under atmospheric conditions
corresponding to stability class B.

methane emissions were simulated, of equal probability per leak case. In each realization, multiple
leaks are accounted for via a summed Gaussian plume over the area, computed via each emission site’s
individual methane plume computed from its respectively simulated leak rate (as determined by the
leak case shown in Table 7). In addition to accounting for the large variability in wind fields, we note
the importance of accounting for multiple leaks in determining optimal sensor placements, as in reality
methane leaks from O&G facilities are composed of multiple low-level leaks as opposed to an
individual plume. Plume examples under realistic emission sources (sampled from historic data), and
3D cross sections under wind conditions corresponding to stability classes A-F are shown in Figures 12
to Figure 17, with color bars representing concentrations. These figures highlight the spatial variability
in concentration depending on wind conditions and emission sources. The impact of the stability class
can be seen by the general decrease in concentration variability/volatility across the area as the class
moves from A (extremely unstable) to F (stable). Here, the x direction corresponds to the longitude
(transformed to UTM in meters), the y direction corresponds to the latitude (transformed to UTM in

meters) and the z direction corresponds to the vertical displacement of the plume from the ground in
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Figure 14 Realistic emission examples simulated in Area 1 under atmospherlc condltlons
corresponding to stability class C.
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Figure 15: Realistic emission examples simulated in Area 1 under atmospheric conditions

corresponding to stability class D.
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Figure 16: Realistic emission examples simulated in Area 1 under atmospheric conditions

corresponding to stability class E.
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Figure 17: Realistic emission examples simulated in Area 1 under atmospheric conditions
corresponding to stability class F.
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In each leak case, understanding of the different scenarios via the independent realizations provided
Chama with a probabilistic understanding of the most likely conditions and output in which potential
methane leaks are realized. Given this understanding, Chama’s optimization routines provide optimal
sensor placement, constrained upon total monetary budget of sensors, which includes start-up
installation costs and yearly maintenance fees. In this framework, we studied three different Tier 3
point sensors that may be situated up to 30m above ground, two different Tier 3 camera sensors
amenable to mobile vehicle installation, and one Tier 2 camera sensor that may be attached to a drone,
though emphasize that a larger array of Tiers 1 and 2 sensors may be analyzed in future work. The

sensor specifications and budgets are listed in Table 9.

Table 9: List of sensor types considered by Chama, including potential placements, limits of detection,
measurement sensitivities/uncertainties, and cost per sensor (including unit, start-up, calibration, repair,
and maintenance costs).

Tier Sensor Sensor Type Placement Limit of Sensitivity Cost
detection Iprecision (10) ($)
(ppb)
3 General Point Ground, posts 0.05 0.5 $277
Tools (GT) Stationary (up to 30m kg/m?3
high)
3 ATO Point Ground, posts 0.003 0.3 $5,050
Portable Stationary (up to 30m kg/m?3
high)
3 Picarro Point Ground, posts 0.001 0.22 $118,824
Stationary (up to 30m kg/m?
high)
2/3 GMP02 Camera Vehicle (30 10 Unknown $40,000
Mobile mph) kg/hour
2/3 FLIR GF77a Camera Vehicle (30 0.1 Unknown $60,000
Mobile mph) kg/m?
2 LICOR LI- Camera Drone (15 0.9 Unknown $80,000
7700 Mobile mph) kg/hour

Under both areas and with set budgets of $250,000, $1,000,000, and $2,000,000, the results of Chama’s
optimization routines are shown in Figure 18 and Figure 19. Interestingly, under both areas, sensor
placement was optimized at around 5-10m above ground level, with no sensors placed at ground level,

and a few placed at 20m above ground level. In all cases, the ground-level emission rates were sampled
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using the methodology in Table 7. This determination highlights that placing sensors at ground-level is
in general insufficient to capture the impact of wind on a methane leak’s trajectory and emphasizes the
importance of considering the vertical displacement (also monitorable via Tiers 1-2 sensors) and

variable atmospheric impacts on methane plumes after emission.
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Figure 18: Optimal Sensor Placement with Chama in Area 1 of the Permian under budgets $250,000,
$1,000,000, $2,000,000 and under different emulation cases (low level, medium level and realistic) as
detailed in Table 9. Only stationary point sensors were chosen (between General Tools (GT) (green,
circle), ATO Portable (purple, circle) and Picarro (red, circle) whose costs are listed in Table 9). Sensors
are placed around potential emission sources (black, crosses) and near an intersecting road (blue,
dotted).
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As shown in Figure 18, optimal sensor placements are visualized in Area 1 under different leak
conditions and budgets. Clearly as budget increases, more sensors are being placed in the scene.
Interestingly, the cheapest point sensor (GT) is not chosen under the low-level or realistic leak
scenarios under any budget due to its higher limit of detectability above background, which can be
impossible to reach with lower emission rates. Under the medium-level scenario, which contains many
more super-emitter scenarios, more inexpensive GT sensors are being chosen, and which decreases as

the budget increases to reach an earlier detection time and increased accuracy of monitoring.
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Figure 19: Optimal Sensor Placement with Chama in Area 2 of the Permian under budgets $250,000,
$1,000,000, $2,000,000 and under different emulation cases (low level, medium level and realistic) as
detailed in Table 9. Only stationary point sensors were chosen (between General Tools (GT) (green,
circle), ATO Portable (purple, circle) and Picarro (red, circle) whose costs are listed in Table 9). Sensors
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are placed around potential emission sources (black, crosses) and near an intersecting road (blue,
dotted).

Figure 19 shows Chama’s optimal sensor placement in Area 2 of the Permian. Generally, the same
pattern of sensor choice is observed as budget and leak conditions change. Due to the lower emission
rates and variable wind fields that are probabilistically accounted for in Chama, the same pattern of
placing the most sensitive sensor (Picarro) at varying heights in the middle of the scene is observed
under the low-level emission scenarios in both areas. Such positions are subsequently covered by
chosen sensors under the medium and realistic scenarios, indicating that the detection of low-level

emissions is possible under varying emission rate scenarios.

In both areas, none of the mobile sensors placed either on a vehicle or drone were picked as part of the
optimal solutions. While this may be alleviated by using mobile monitoring from point sensors, this
observation may instead be due to Chama’s characterization of camera sensors. Chama’s class for
handling camera sensors utilizes a specific camera model®®. Instead of determining measured signal
based on limit of detection from the camera type and field of view, the detector quantifies whether a
detection takes place or not by converting any signal within the camera’s field of view to pixels and
comparing if that exceeds the detector’s threshold in terms of pixels. This characterization is intended to
correspond to basic camera detectors placed within tens of meters of the scene and is therefore
challenging to compute with camera sensor specifications for methane monitoring, such as
hyperspectral or FLIR infrared cameras, especially those that are intended to cover large areas such as
the Permian. As such, for the camera sensors listed in Table 9, the detection thresholds in pixels were
approximated from the sensors’ pixel sizes and spectral resolutions. Chama’s software is therefore not
optimal for determining if studied camera sensors at Tiers 1-2 are realistic for integrated methane
monitoring. Instead, an important area of future work would be to modify Chama’s camera sensor
module to account for how state-of-the-art methane camera sensors (which could include Tier 1
satellite-level resolutions, passive spectrometers and lidar based systems) leverage their unique
detection ranges, optical, and spectral properties to detect methane signals above background.
Nevertheless, it is observed that Chama’s placement of multiple sensors that intersect the road in each

area could be leveraged with the mobile monitoring analysis conducted in Section A.1 to identify
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possible routes with equipped sensors at least as sensitive as those picked by Chama for efficient

mobile monitoring.

In particular, Figure 20 shows Chama’s sensor placement output for Area 1 under a $2M budget around
generated ZODs around each emission source emitting at 1 kg/hr at 25m altitude with a wind speed of
0.01 m/s. Here it is seen that the placed sensors are within the majority of ZODs, and those not
covering a ZOD highlight emission sources close to roads that could be leveraged for accurate mobile

monitoring.

Figure 20: Chama’s sensor placement of Tier 3 sensors (ATO in blue and Picarro in pink) at a $2M
budget, overlaid with ZODs (yellow) computed at a wind speed of 0.01m/s at altitude 25m around each
emission source (green) emitting at 1kg/h, and connecting roads in Area 1.

Importantly, Chama’s framework provides a means to pursue cost-benefit analyses between sensor
choice, placement, and monetary budget, which is crucial for integrated monitoring characterization
and policy development. Under each leak scenario and area of the Permian considered, we can use
Chama to estimate the average time to leak detection (hours) against the covered fraction of leak
scenarios (which includes the variability in wind conditions and emission rates) detected with the
sensors placed in the scene. This is to say, given the set of potential sensors and their positions, not all
scenarios will be detectable, and the fraction of covered scenarios only includes scenarios that are

detectable from the setup. This has a one-to-one correspondence with the monetary budget; therefore,
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we consider how 1) average leak time to detection (provided by determining if a sensor with particular
specification and its placement detects the leak signal over given time stamps), and 2) fraction of
scenarios covered, changes as the budget increases. Figure 21 highlights this under both Areas 1 and 2,
where it is seen that by just using the stationary point sensors previously considered by Chama, it takes
on average at least 680 hours for a sensor to first detect the presence of a leak under the low-level leak
scenario, and around 525 hours under the realistic scenario. While this calculation is done under
pristine, stationary conditions in both areas, in which low emission rates were considered, these results
highlight the need to consider sensor cost vs efficacy across a range of different scenarios. However,
this result is to be expected with low emission rates, as a combination of several low-level leaks may be
needed for the sensors to detect the advent of a breach beyond which the background concentration
field is perturbed. This expected time decreases as the budget increases, where more sensors are added
and the probability of at least one sensor detecting a leak increases. For medium-level leaks containing
potential super-emitters, the expected time to detection decreases, and is much quicker at detection due
to the higher methane concentration above background. In terms of the fraction of covered scenarios
detected, Figure 21 shows a sharp increase towards 1 in all studied cases, with a smaller budget
required for low-level and realistic leaks due to the limited threshold at which the given choice of
sensors can be aggregated for detection. On the other hand, it is seen that more than $1M is needed in
both areas with medium-level leaks to cover a higher proportion of scenarios with higher emission rates
above each sensor’s limit of detection. While Area 1 has a 17 times higher source per km? density than
Area 2, Area 2’s spatial area is 15 times that of Area 1. Given this, it is generally seen that a small but
notable $250,000 increase in the budget from Area 1 to Area 2 is needed to realize the same expected
times to detection and fraction of covered scenarios, which proportionally mimics the differences in

density and area, and the more broadly distributed emission sources in Area 2.
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Figure 21: Cost-benefit analyses using Chama under Areas 1 and 2. Expected time to detection (blue)
shown against fraction of leak scenarios covered by the optimal sensor placement (red) over budgets
ranging to $2M under low, medium, and realistic leak scenarios.

Using the analyses of two areas in the Permian, we estimate that $4.2-13.5 billion in average start-up

Tier 3 sensor costs over the Permian’s 220,000km? area would maximize monitoring coverage over

both sparse and densely populated emitters having realistic-high emission rates, including coverage of

super-emitters. The placement of such sensors could additionally utilize Chama for optimal monitoring

of leaks with relatively low (<10.8 kg/h) emission rates, as shown in the above analysis, caveated by

the increased amount of time needed for detection.

With the advent of high-performance computing and Artificial Intelligence, future work involving

Chama would consider many more types of stationary point and mobile camera sensors, with a larger

focus on incorporating camera detectors for methane monitoring at each tier, and scalability to, for

example, the spatial area of the entire Permian basin. In doing so, a larger-scale cost-benefit analysis

could be conducted to find the appropriate budget possible for optimal or sub-optimal monitoring from

Tier 3 and 2 sensors within the larger scope of a fully integrated methane characterization platform.
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4.2. Integrating measurements across tiers
While Chama provides a basis for Tier 3 sensor placement in the Permian, an integrated monitoring

system requires addition of Tiers 1 and 2 sensors for full characterization.

In order to visualize the monitoring and detection capabilities of an integrated system, we can use ideas
from Machine Learning, specifically Gaussian Process modeling to fuse together the concentration data
gained from each tier individually. A Gaussian Process field utilizes point or gridded measurements
such as those provided from point or camera sensors to determine a probabilistic representation of a
spatially varying object, in this case methane concentration, over a pre-defined spatial field. To
visualize the power of integrating measurements between tiers, we can fit an inverse-variance weighted
Gaussian Process to determine a data-fused methane concentration map. This map efficiently combines
measurements from each tier based upon the relative precision of the measurement, as determined by
the sensor sensitivities, and is amenable to large spatial modeling. For instance, Tier 3 point sensors
have a much higher precision than Tier 1, hence the measurements obtained from Tier 3 have a higher
weight in the data-fused fitting procedure. On the other hand, Tier 1-2 sensors can capture a larger, less
sparse spatial field, thereby providing nonzero weight or probability to spatial areas where the absence
of Tier 3 sensors render the inability to determine ground-level concentrations. An example of

simulated Tier 1-3 measurements is shown in Figure 22 from simulated methane leaks in the Permian.
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Figure 22: Example measurements of simulated methane leaks in the Permian from Tier 1-3 sensors at
100m, 10m and 1m resolution. Randomly placed ground-level (Tier 3) point sensors are shown in red.
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The inverse-variance weighted Gaussian Process smoothly combining concentrations across these
tiered measurements is shown in Figure 23 and highlights “hot spots” of larger methane leaks as is
matched by Tier 3 measurements. Depending on the placement of ground-level sensors, an integrated
methane characterization platform would therefore provide a holistic representation of methane
concentration and given information from multiple tiers, could improve current leak detection times.
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Figure 23: Inverse-variance weighted Gaussian Process smoothed concentration field determined by all
measurements in a fully integrated system. Randomly placed ground-level (Tier 3) point sensors are
shown in red.

4.3. Source Attribution with an Inverse Bayesian Model Approach
In order to understand the monitoring potentials of an integrated system, we utilize methane
concentration measurements from Tiers 1-3 to statistically learn the emission rates from potential O&G
emission sources in the Permian. To do so, we consider a statistical model that learns underlying
emission rates given tiered observations, known wind fields and a known background methane
concentration, that both separately (Figure 22) and together (Figure 23), determine a spatially varying
methane concentration field. By placing Gaussian priors on the logarithm of the unknown emission
rates, we utilize a similar Bayesian modeling framework to that of Weidmann et al (2022)%°, which
involves continuous simulation of methane concentration fields until convergence of a set of learned
emission rates that establishes concentrations that best match the tiered data. This set is intended to

represent emission rates that are drawn from the (posterior) probability distribution of unknown
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emission rates given (noisy) observed data. The observed data are modeled with a Gaussian distribution
with mean true concentration (at a given point in space) and standard deviation (uncertainty) given by
the sensitivity of the measurement obtained from that tiered sensor (see Table 9 for known instrument
sensitivities). By utilizing a priori information in this framework, each iteration of the algorithm
proposes emission rates that are either accepted or rejected as those from the true (posterior) probability
distribution. By doing so, this framework automatically permits uncertainty quantification of the
emission rates, since the collected sample is representative of the true (posterior) distribution of
emission rates, from which the estimated (most likely) emission rate (distribution mode) and sample

quantiles (e.g., 2.5% and 97.5%) showing the variability in the estimates, can be extracted.

Under the realistic leak scenario, we use Chama’s optimal sensor placement output (with the exact
sensor types and sensitivities listed in Table 9) at $1M cost, under Area 2 of the Permian (see bottom
panel, center figure of Figure 21 to place Tier 3 sensors in a simulated setting. With this, we add a Tier
2 camera measurement at 100m resolution with sensitivity 10 ppbv, and a Tier 1 satellite camera
measurement at 1000m resolution with sensitivity 50 ppbv. With all tiered measurements, we utilize the

Bayesian inverse framework to learn emission rates from the emission sources in both Areas 1 and 2.

Overall, given the integrated sensor setup, the framework is largely able to estimate the underlying
emission rates from the sources in both areas. Figure 24 provides example output from the Bayesian
framework over 4 random sources in Area 2, where a point estimate (shown in green) is highlighted
from the posterior distribution, including a 95% credible interval (shown in black) and the true
simulated emission rate (red). In many instances which largely reflect higher emission rates (super-
emitting scenarios), it can do so with high accuracy and low uncertainty. In other cases, it is unable to
pick up the signal exactly, yet can provide a non-zero estimate which may still be useful for continual
tiered monitoring. In these scenarios, more precise sensors at each tier, equipped with a greater
monetary budget, would be needed to increase the likelihood of accurately detecting such emissions.
Important future work leveraging this framework would include more efficient computation over larger

spatial areas, and inclusion of time-varying observations from tiered sensors.

To emphasize the importance of the tiered monitoring system on the uncertainty quantification of

emission rates from potential sources, we compare the output of this setup and framework on a) solely
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utilizing Tier 3 (ground-level) sensors, b) purely utilizing Tier 3 and 2 measurements, and c) utilizing
all Tiers 1-3 measurements between a randomized (i.e., randomly placed) sensor network and Chama
optimized sensor network. This is shown in Figure 25, which shows the estimates, true emission rates
and uncertainties across the sources in Area 1 under a fully integrated system, Tier 2-3 system, and sole
Tier 3 system. Here, it is seen that while a sole Tier 3 network (shown in blue) can capture high
methane leaks (super-emitters) as many high emission rates are covered within the computed
uncertainty bounds, the uncertainty bounds in comparison to an optimized network are much larger. On
the other hand, a Tier 2-3 system captures most emission sources with good accuracy and is largely
comparable to that of a fully tiered network, with only a handful of cases where a fully tiered network
is favorable (shown by true emission rates belonging to the fully tiered network’s uncertainty bounds).
Overall, we find that the overall error in estimating the true emission rates (across each scenario) is 1.3
times higher, with uncertainties associated with the estimates being 2.4 times higher, when using the
randomized network over the Chama-optimized network. Our findings suggest that not only is a tiered
approach suitable in more accurately detecting leaks, but its emission quantifications and uncertainties

can be augmented by optimizing Tiers 2-3 sensors’ placements.
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Figure 24: Sample posterior distributions of 4 randomly chosen emission sources in Area 2 of the
Permian determined from the Bayesian framework showing the learned variability of true emission rates
per source. From the distributions, mean estimated emission rates (green) shown with 95% credible
(uncertainty) bounds (black, dotted) compared with true emission rates (red).
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Figure 25: Comparative uncertainty quantification of emission rates from an inverse Bayesian framework
under different sensor placements in Area 1: Chama-optimized placement (left) versus randomized
(uniform) placement (right). Estimates are shown with circles and uncertainties are shaded, color-coded
by the layered network strategy: Tier 3 (blue), Tiers 2-3 (green) and Tiers 1-3 (red). True emission rates
are depicted with black circles.

4.4. Source Attribution with an Inverse Gaussian Plume Model Approach
The inverse Bayesian modeling approach presented in the previous section is advantageous in that it is
able to integrate measurements from sensors across the multi-tiered network and perform emission rate
uncertainty quantification for a single-scenario based on the reported accuracies of different
measurement techniques. However, our implementation of this approach is limited since it does not

evaluate the performance of the source attribution algorithm:
e Under a range of potential meteorological conditions;
e With spatial variability in wind speed and direction; and
e With different source emission rates.

To address the limitations of the inverse Bayesian analysis, we employ an inverse gaussian plume

model algorithm that is described by the following workflow:

1. Assign receptor locations (can be a fixed location or random; sensor density can vary)

61
UUR



UUR

2. Randomly assign emission rates for each known source location. Emission rates are assigned
based on emission rate distributions provided by Rutherford et al (2021)°'. For this analysis, the

sources located in “Area 1” were utilized (See Section 4.1).

3. Determine “ground truth” concentrations at each receptor with the previously described

gaussian plume model.

4. Estimate measurement concentrations, C, at each receptor by applying random gaussian

variability based on the reported accuracy for the instrument used for the measurement.

5. Determine the source contribution, G, at each sensor for each source.

6. Using a non-negative least linear squares solver, estimate the emission rate, Q, for each source.
The least linear squares problem is in the form of:

. 2
argming ||GQ — C||,

Where Q >0.

7. Repeat the above step for 200 meteorological scenarios randomly selected from the Hobbs, NM

dataset.

Several sensitivity analyses were performed to evaluate the sensitivity of a ground-based (Tier 3)

sensor network’s performance to:
e Instrument accuracy;
e The spatial density of randomly placed sensors; and

e The standoff distance for fixed sensors placed NE, SE, SW, and NW of each facility.

4.4.1.  Sensitivity to Instrument Accuracy

Accuracy sensitivity analyses were performed on two networks: one with 50 randomly placed sensors
across the spatial domain (Figure 26) and one with fixed sensors specifically placed 100 m NE, SE,
SW, and NW of each facility (Figure 27).
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The results in these figures show an increase in error and decrease in percent of sources detected as
would be expected. However, the fixed sensor network performs significantly better than the randomly
placed sensor network under virtually every scenario. Given that the fixed sensor network used 68
sensors, and the random network utilized 50 sensors, this analysis underpins the importance of
optimizing sensor placement and confirms the obvious conclusion from Section 1 that sensors should
be placed in areas with the most facilities. The standoff distance sensitivity analysis in Section 5.4.3

provides some important additional context.
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Figure 26: A sensor accuracy sensitivity analysis performed for a network of 50 randomly placed
sensors. (Left)The mean absolute error of the source attribution algorithm derived emission rate vs.
sensor density for different emission rate magnitudes. (Right) The percent of sources detected vs.
Sensor Density for different source magnitudes.
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Figure 27: A sensor accuracy sensitivity analysis performed for a network sensor with fixed locations
100 m to the NE, SE, SW, and NW of each facility. (Left)The mean absolute error of the source attribution
algorithm derived emission rate vs. sensor density for different emission rate magnitudes. (Right) The
percent of sources detected vs. Sensor Density for different source magnitudes.

4.4.2.  Sensitivity to Sensor Density

The sensitivity of performance to sensor density was evaluated on networks consisting of either all
Picarro sensors (accuracy of 0.22 ppbv) or all project canary sensors (accuracy of 200 ppbv). Though
an actual network could and would likely consist of a mix of these sensors, congruent to the analysis

conducted in Section 4.1, this analysis comprehensively bounds the potential range of instrument

performance.

Figure 28 and Figure 29 report the performance statistics of the Picarro and Project Canary sensor
networks, respectively. Both figures show a decrease in mean absolute error and sharp increase in the
percent of sources detected as the density of sensors increases. The network using the more accurate
Picarro sensor outperforms the network using the much cheaper Project Canary sensors, however, the
improvement in performance may not be significant, especially if the end goal is to detect super
emitters (>100 kg/hr).
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Figure 28. Sensor density sensitivity analysis performed for a network of sensors with a measurement
accuracy of 0.22 ppbv. (Left) The mean absolute error of the source attribution algorithm derived
emission rate vs. sensor density for different emission rate magnitudes. (Right) The percent of sources
detected vs. Sensor Density for different source magnitudes.
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Figure 29: Sensor density sensitivity analysis performed for a network of sensors with a measurement
accuracy of 200 ppbv. (Left) The mean absolute error of the source attribution algorithm derived
emission rate vs. sensor density for different emission rate magnitudes. (Right) The percent of sources
detected vs. Sensor Density for different source magnitudes.

4.4.3.  Sensitivity to Standoff Distance
The standoff distance sensitivity analysis was conducted using the same Picaro and Project Canary
sensor networks (Figure 30 and Figure 31, respectively). However, rather than conducting this analysis

with randomly place sensors, a fixed number of sensors was used: four sensors placed NE, SE, SW, and

NW of each facility.

The figures show that the fraction of source detected decreases as the standoff distance increases, but
there is not much of a trend in the mean absolute error of the derived emission rate. The Picaro network
clearly outperforms the Project Canary network in estimating the emission rate of the known sources.
However, consistent with the sensor density analysis, there is not a significant increase in emission rate

estimation performance between the two networks.
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Figure 30: Standoff distance sensitivity analysis performed for a network of sensors with a measurement
accuracy of 200 ppbv. (Left)The mean absolute error of the source attribution algorithm derived
emission rate vs. sensor density for different emission rate magnitudes. (Right) The percent of sources
detected vs. Sensor Density for different source magnitudes.
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Figure 31: Standoff distance sensitivity analysis performed for a network of sensors with a measurement
accuracy of 0.22 ppbv. (Left)The mean absolute error of the source attribution algorithm derived
emission rate vs. sensor density for different emission rate magnitudes. (Right) The percent of sources
detected vs. Sensor Density for different source magnitudes.

67
UUR



UUR

5. BIOGENIC MODELING OF METHANE FLUX
In the Bayesian inverse analyses conducted previously, the background methane concentration is
assumed known for the algorithm to be able to learn emission rates and their uncertainties. In general,
however, quantifying background methane concentrations can be challenging. To emphasize this, the
Bayesian inverse framework can neither run nor start without a good initial estimate for background
methane, which is used when determining tiered observations from the underlying concentration fields.
Even when given a good initial estimate, background methane has an informative (flat) prior, which
reflects its unknown value equipped with large a priori uncertainty. To illustrate the difference between
knowing the background concentrations with good confidence vs with poor confidence, we rerun the
inverse Bayesian framework described in Section 4.3 with a known measurement of background
(spiked, certain prior) vs a good initial measurement with a flat (highly uncertain) prior, as shown in

Figure 32.

“e
.
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Figure 32: Uncertainty quantification of emission rates from inverse Bayesian framework between model
with background (known with high confidence): estimates (red, circle) and uncertainties (red, shaded);
and model with background (known with low confidence): estimates (green, circle) and uncertainties
(green, shaded). True emission rates in black (circles).

Since the algorithm requires a good initial estimate to run, the estimates between both look largely

similar. However, it is seen that where neither model performs well (e.g., for sources 1, 5, 7, 17, 27),
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the model which assumes a known background rate with good uncertainty is more accurate at
recovering the emission rates, and whose uncertainty bounds indicate a higher degree of confidence that
the underlying rate is higher than estimated. For other examples (e.g., for sources 2, 9, 11, 16, 25, 38),
the uncertainty bounds are much wider under the model which assumes background with poor
uncertainty, and which does not typically cover the true emission rates with 95% credibility. In general,
these observations emphasize the need to model and estimate background methane (i.e., coming from
non O&G emissions) as accurately as possible to a) increase the accuracy of integrated methane
monitoring for leak detection and b) constrain/lower the uncertainty thresholds of emission rates

coming from observed O&G sources.

Monitoring and predicting methane emissions from varied sources is an emerging challenge in the
global biosphere-atmosphere flux community, the success of which will have significant impacts on our
ability to constrain associated uncertainty and propose steps to mitigate runaway climatic change.
Methane is produced through both biogenic (natural) and anthropogenic (human-caused) sources, and
any attempts to characterize methane remotely cannot inherently discriminate between the two sources.
However, biogenic and anthropogenic mechanisms of methane fluxes have very different abiotic
drivers, with substantially variable responses to future climate and policy intervention efforts. For
instance, biogenic methane fluxes are ecotype-dependent and are controlled to varying degrees by
surface temperature, moisture content, precipitation, leaf area index, lateral subsurface fluxes, organic

matter composition, and soil physical properties, among other factors.

Anthropogenic sources of methane flux are dominated by O&G infrastructure, with complex and
poorly constrained understanding of how methane emissions from O&G vary as a function of
atmospheric conditions, and hardware state variables (e.g., component type, time since installation,
time since maintenance, etc.). Current bottom-up modeling approaches subsume these mechanistic
relationships using emissions factors, and scaling spatially as a function of component composition,

results in massive and poorly constrained uncertainties that are static with respect to climate.
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Our proposed network structure described in previous sections aims to characterize regional methane
fluxes using a combination of models and measurements. Critically however, the modeling components
developed herein, and generally leveraged for these efforts, are strictly focused on anthropogenic
emissions from O&G infrastructure, yet this poses a known disparity between our models and
measurements, given our measurements will inherently incorporate biogenic fluxes as well. If we
ignore biogenic fluxes entirely, the resulting model estimates will have a minimum error term
proportional to the biogenic activity. This may be a sufficient result in certain geographic areas like the
Permian basin, however with increasing latitude, or for specific geographic regions prone to methane
production or consumption, subsuming the biogenic processes into an error term will reduce the signal
to noise potential of the system. Finally, as climate continues to change, the need to consider ecosystem

physiologic interactions with non-stationary climate will continue to grow.

The biogenic flux research proposed here would directly contribute to improved estimates and scaling
of biogenic and anthropogenic fluxes, through direct observations made using eddy covariance.
Methane flux measurements collected across networks of eddy covariance flux tower sites are a
massively underleveraged source of direct ground-atmosphere fluxes of methane that can be described
as a function of biogenic and anthropogenic state variables, in response to changes in abiotic drivers.
These methane flux response functions will play a critical role in scaling local measurements to

landscape and regional scales.
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Our measurement and modeling solution to disambiguating methane emissions from biogenic and
anthropogenic sources with top-down measurements from satellites and aerial platforms hinges on
using eddy covariance as a systems integration lens. This is a work in progress, but our current
approach is to leverage a machine learning architecture called transformers to create an ecosystem
embedding model for the terrestrial fluxes of carbon, water and energy in a general way, with specific
inclusion of terrestrial sources of methane. This ecosystem embedding approach learns the relationship
between abiotic drivers and methane flux as a function of remotely retrievable state variables of the
system and any a priori descriptions such as O&G infrastructure composition, etc. By describing these
state variables specifically in terms of anthropogenic parameters and biogenic parameters (e.g.,
vegetation type, leaf area index), we can dramatically improve our ability to generate bottom-up
emissions estimates, with direct biogenic or anthropogenic source attribution. Ultimately, this
capability is designed to operate in concert with our previously described space-borne and aerial
gridded estimates of methane concentration and will permit the decomposition of an arbitrary grid cell

into components that are due to anthropogenic and biogenic contributions.
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Figure 33: Conceptual framework for a measurement driven approach to modeling biogenic fluxes of
carbon in a spatially and temporally heterogenous manner. Box a illustrates an example eddy covariance
instrumentation tower, along with the associated data products ingested by our machine learning
framework for flux modeling. Box b is a representation of the footprint model decomposition that
explains the tower measurement as a spatial process that can be aligned with remote sensing (e.g.,
aerial and space borne) sensors.
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This data driven partitioning between abiotic and biotic fluxes provides a key component to the
parameterization of a biogeochemical methane production model being developed in parallel with this
monitoring effort. Ultimately, our combined source specific bottom-up modeling approach will
augment top-down monitoring efforts by allowing researchers to ask questions about consensus
between measurements and models, and most critically, to understand how terrestrial methane
production is changing as a function natural and human caused activities — a distinction that is central

to managing and mitigating climate change.
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6. DISCUSSION & CONCLUSION
This report details work that was conducted to create a framework that can be used to design and
evaluate a multi-tiered methane sensor network to detect leaks from oil and gas industrial activities. To
accomplish this objective, we first developed a steady-state gaussian plume model-based realization of
methane plumes. We reviewed available sensors that could be deployed for stationary or mobile
ground-based measurements, airborne measurements, or satellite measurements. We used the gaussian
plume model realization to determine the detectability of individual plumes with various mobile and
stationary ground-based sensors. We then conducted more robust analyses that integrated emulated
sensor measurements across domains within the Permian Basin that contain multiple sources. Using
several different software applications and computational techniques (e.g., Chama, inverse Bayesian
modeling, and inverse gaussian plume modeling), we evaluated the ability of several integrated
networks (with different associated costs) to detect sources in a timely manner and to accurately

quantify emission rates of sources in the domain of interest.

While the most valuable outcome of this work is the demonstrated use of computational tools to
perform source attribution and to evaluate the performance of sensor networks, the analyses we

conducted yielded some useful insights:

e There is a high potential detectability of leaks in the Permian Basin from road-based mobile
sources (>95% for sources with an emission rate > 10 kg/hr) that should be leveraged in future

computational analyses of optimal sensor placement and monitoring assessments.

e Optimally placed (<100 m from facilities) low-cost stationary ground-based sensors can be used
to achieve good detection and source attribution performance (>75% detection and < 50% mean
absolute emission rate error for sources with emission rates >100 kg/hr). If desired, the
deployment of strategically placed high-cost sensors can be used to enhance the performance of

sensor networks.

e We estimate that total capital cost to deploy a Tier 3 sensor network with comprehensive
coverage across the Permian Basin would range between $4.2-13.5 billion (to accurately cover

realistic — high emissions as described by the whole Permian’s source per km? density).
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Additional repair, maintenance and calibration costs would be needed for continual monitoring

over multiple years of deployment.

e Creating a fully tiered monitoring framework based upon the integration of methane sensors
deployed from Tiers 1 and 2 within an optimized Tier 3 network, would provide enhanced
monitoring and inverse quantification (source attribution) capabilities for rapid detection of
medium— and high—Ievel (i.e., super emitting) leaks across larger spatial areas, as exemplified

over the Permian.

It should be noted that there are several factors that were not incorporated into this analysis. We
assumed that we knew the locations of all potential sources based on well and facility locations
reported in publicly available datasets. While this notably omits any non-oil and gas sources, the
emphasis we placed on accurately quantifying background methane concentrations remains
indispensable for understanding and reducing uncertainties of methane emissions from other sources.
Further, the algorithms cannot yet be used in an agnostic fashion to successfully detect and attribute
emissions to sources when their location is unknown. Some initial work was done to investigate this
capability based on work adapted form®?, but no solution could be determined that was both accurate
and computationally inexpensive. With additional effort that may leverage Sandia’s expertise in
developing state-of-the-art Machine Learning/Artificial Intelligence (ML/AI) algorithms deployable on
High Performance Computing (HPC) systems, we are optimistic, however, that this capability can be

matured to an operational state.

Lastly, a discussion regarding the funding source(s) and implementation of the sensor networks is
motivated by the significant costs projected in this report. While the current regulatory climate in the
United States continues to be favorable toward efforts to curb methane emissions, the implementation
of an integrated sensing network is much more aggressive than even the newly established monitoring
requirements under NSPS OOOOb which maintains the status quo manual and intermittent monitoring
of methane sources in the Oil and Gas industry. Further, while an integrated continuous monitoring
network would provide radically increased detection of methane leaks, the estimated initial capital
investment of $4 billion to $7 billion to outfit the entire Permian basin is significant, but not

incomprehensible when compared to $181 billion GDP generated by the oil and gas industry in 2022 or
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the approximately $25 billion in 2022 tax revenue associated with Permian Basin oil and gas

production activities®.

To provide additional context, the EPA estimates that the nationwide implementation of the new NSPS
OO0OO0O0D rule will cost $13 billion in initial capital costs and $1.5 billion per year in operating and
maintenance costs®. Given that 40% and 15% ¢ of domestic oil and natural gas, respectively, is
produced in the Permian Basin, the estimated capital cost for a prospective monitoring network is
roughly within same order of magnitude of the approximate costs that operator will incur under the new
NSPS OOOOD rule (though we do not speculate that operators will be burdened with the entire cost of

a methane monitoring network).

We further note that LDAR programs that are promulgated under existing and new regulations to detect
and mitigate emissions often require tedious manual labor and reporting requirements that impose
significant costs on operators. An automated sensing network would not pose these costs especially if
the sensors implemented are low cost and do not require frequent or arduous maintenance and

calibration.
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APPENDIX A. GIS WORKFLOW FOR MOBILE SENSOR ZOD ANALYSIS

The “Zone of Detection” for a mobile sensor is a planimetric area in the x,y plane of a methane plume
where concentrations of CH, are above normal background concentrations. The surface on which the
Z0D is projected is termed here as the Primary ZOD Surface. As the dimensions of the ZOD are in
meters, we can transform the ZOD’s geometry directly onto a cartographic map with geographic
coordinates. The origin of the leak (0,0) becomes the origin of a local coordinate system on which the
length and width of the ZOD can be plotted. The length of a ZOD swept 360° around the local origin
represents a feature we term the Zone of Detection Buffer (ZODB) (Figure 34).

Zone o}
length]

Figure 34: Example of the planimetric outline for a Zone of Detection Buffer (ZODB) around a well
locations.
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The ZODB represents the area within which the ZOD can possibly fall for any wind vector parallel to
the Primary ZOD surface.

If the wind direction is not known, then the whole ZODB could be used as a means to estimate the
boundary within which the ZOD could be located (Figure 35). A road that can support travel of the
mobile sensor to the ZODB qualifies the well associated with that ZODB as monitorable.

Westefly winds With perfect westerly winds
L | the plume location would be
as shown

Actual plume location at any
time will be within the area
of detection.

k]
=

Area of
If the wind direction is perfectly steady and i b_
westerly the plumes zone of detection would be
within the red shaded area

Southerty to westerly winds

If the wind direction varies from southerly to
westerly with time the area of detection could be
anywhere within the red shaded area

If the wind direction is unknown, the zone
of detection could be amywhere within the
shaded area

Figure 35: a) An example of the area within a circle of radius w, in the case where wind is from the west.

b) If the wind direction shifts from the south to the west, the area of detection during that transition will

be somewhere within the purple area. c) If the wind direction is unknown, the area of detection could be
anywhere within the purple area.

AA1. Overview of Study Area and Geographic Distribution of Wells and Roads
Figure 36 is a map showing the geographic extent of the Permian Basin. Publicly accessible well and
road data for this area was collected. Well data was obtained from the Railroad Commission of Texas’
statewide Well database!® and the New Mexico Energy, Minerals and Natural Resources Departments

Oil Conservation Divisions Geospatial Hub!3 (Figure 37). Publicly accessible roads of the Permian
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Basin from the US Census Bureau’s road databases for the states of Texas and New Mexico are shown

in Figure 38'4.
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Figure 36: Location of the Permian Basin, Eastern New Mexico, and Western Texas
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Figure 37: The Permian Basin’s oil and gas wells. Major roads/cities shown for reference.
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Figure 38: Publicly accessible roads of the Permian Basin.

A.2. A First-Order Approximation of Wells in the Permian Basin that are
Monitorable by Tier 3 Sensors

In this section, we present a first-order approximation for the percentage of wells in the Permian Basin
that are monitorable by Tier 3 sensors. A monitorable well in this case is a well whose ZODB intersects

a road that is passable by a mobile sensor.

For all the wells in the database, the ZOD length was used to define the ZODB. The ZODBs evaluated
were constructed from the data presented in Section 1.3 and 1.4. The result of the calculations for a
variety of leak rates, wind speeds, and ZOD CH, concentrations allowed us to answer the following

questions:
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1. What is the percentage of wells in the Permian Basin that are monitorable by mobile sensors?
2. What is the total area of the Permian Basin that is within a ZODB?
3. Are there areas where monitoring wells via mobile sensor is not currently possible?

The workflow we used to determine the answers to these questions is shown in Figure 39. It was
implemented as a standalone python application that leveraged the Python API of an open-source
application called QGIS!!, a full featured Geographic Information System that has a mature API

accessible in both C++ and Python.

PROGRAM SETUP/START

+ Gather Geospatial Data
* Gather Data from Single Source Gaussian Plume Model

PLUME BUFFER AROUND WELL LOCATION /- /
+ Create layers where for all plume widths a buffer with radius plume
width is drawn around each well location 2 Roads
3 Segments

rage
IDENTIFY AND CATALOGUE ROUTES IN PLUME BUFFER / S g329%6 (b)
+ For each Plume Buffer catalogue the roads, segments and the /- Sl a
length of each segment in a buffers attribute table A

WELL ID ROAD COUNT | SEGMENT COUNT | TOTAL SEGMENT LENGTHS (m)|

TALLY PLUME BUFFERS WITH AND WITHOUT ROAD ACCESS /- B> Saeus ) ! £l (c)
« For each well, plume buffer and road data tally number of roads, |

geospatial segments for those roads, their length and other details

SUM TOTAL WELLS AND AREA AROUND WELLS MONITORABLE /‘ /

* Using data in 04, determine how many wells are and are not
monitorable by mobile sensors.

(d)

CREATE FINAL STATISTICS AND PLOTS

+ From the geospatial and tallied data create automated reports on
monitorable areas

Figure 39: Analytics Workflow in analysis using QGIS

There are six steps to the workflow. The first involved the gathering of data from publicly accessible
web sources and the loading of the data in Appendix A and B into a data structure accessible by the
QGIS Python API.
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Step 2 involves creating the ZODB for all wells at all parameters of the data in Step 1. The resulting
data were output as Shapefiles that possess attribute tables storing attributes for each ZODB. This
includes geographic location in latitude and longitude, area, and perimeter for of the ZODB. An

example of output for this process is shown Figure 40.

The distance noted by the green
arrow is the length of the
plume’s detection zone

Figure 40: An example of Step 2 results. Each of the ZODBs have a radius that is the
length of the plume representing the ZOD for differing wind speeds, leak rates, and
background concentrations.

In step 3, we run a process that checks for intersections of ZODBs and roads. Step 4 then identifies

ZODBs with one or more roads intersecting them as well as those ZODBs that intersect no roads

(Figure 41).
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Ref buffers show that the
plume’s detection zone for that
well never intersects one or
more publicly accessible roads

Green buffers show that the
plume’s detection zone for that
well intersects one or more
publicly accessible roads

Figure 41: A map representing the output of process 3. There are two sets of items in this case, the first
is all ZODBs that intersect one or more roads (Green) and those that intersect none (Red).

As we saw in the results of steps 1-4, the ZODBs can overlap in some cases. This is particularly true in
situations where the length of the ZOD is large. This means that there some ZODBs that do not
intersect roads but do intersect ZODBs from other wells. Even though a well’s ZODB could intersect
another wells ZODB, we would not count these wells as monitorable as they would not have a road

intersecting them.

Step 5 involves “dissolving” the intersections and overlaps of the ZODBs for those that intersect roads.
In this case the results are a multipart polygon (Figure 42). This area represents the full area (not
number of wells) that is physically monitorable by ground sensors. In addition, it also defines what we
term here as “dead zones” or zones where Tier 3 mobile vehicles would not be deployable. The final

step of the process, step 6, is simply producing the plots, statistics, and other artifacts for this report.
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The areas if the pink buffers are
summed to obtain an
approximation of the total area
which can be monitorable from
publicly available roads

Figure 42: Step 5 is a "dissolve™ step. The dissolve step aggregates all the polygons in a layer into one
entity.
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APPENDIX B. MONITORABLE AND DEAD ZONE AREA PERCENTAGES

BA RO )
d Speed 0.0 d Speed
100 94.28% Monitorable with 5.72% Dead Zone 21.35% Monitorable with 78.65% Dead Zone
10 66.09% Monitorable with 33.91% Dead Zone No Data
1 24.06% Monitorable with 75.94% Dead Zone No Data
0% Above Background
d Speed 0.0 d Speed
100 | 94.28% Monitorable with 5.72% Dead Zone | 21.35% Monitorable with 78.65% Dead Zone
10 | 65.91% Monitorable with 34.09% Dead Zone | No Data
1 22.03% Monitorable with 77.97% Dead Zone | No Data
00% Above Background
d Speed 0.0 peed
100 | 92.08% Monitorable with 7.92% Dead Zone | 12.79% Monitorable with 87.21% Dead Zone
10 | 56.23% Monitorable with 43.77% Dead Zone | No Data
1 15.00% Monitorable with 85.00% Dead Zone | No Data
000% Above Background
d Speed 0.0 d Speed
100 27.83% Monitorable with 72.17% Dead Zone No Data
10 27.83% Monitorable with 72.17% Dead Zone No Data
1 No Data No Data
0000% Above Background
d Speed 0.0 d Speed
100 | 38.84% Monitorable with 61.16% Dead Zone | No Data
10 No Data No Data
1 No Data No Data
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Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
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International Inc. for the U.S.
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National Nuclear Security
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