
Thermo-Fluid Modeling Framework for Supercomputing Digital
Twins: Part 2, Automated Cooling Models

Scott Greenwood1 Vineet Kumar1 Wesley Brewer2

1Fusion and Fission Energy and Science Directorate, Oak Ridge National Laboratory, USA,
{kumarv, greenwoodms}@ornl.gov

2Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, USA, brewerwh@ornl.gov

Abstract
The development of digital twins for the purpose of im-
proving the energy efficiency of supercomputing facili-
ties is a non-trivial endeavor that is complicated by the
difficulty of creating physics-based thermo-fluid cool-
ing system models (CSMs). Within ExaDigit—an open-
source framework for liquid-cooled supercomputing dig-
ital twins—a thermo-fluid modeling framework is being
developed. This effort has been segmented into two with
two companion papers describing each portion of the over-
all effort. Part 1 focuses on the development of a cooling
system library in Dymola for the Frontier supercomputer
at Oak Ridge National Laboratory (Kumar et al. 2024).
Part 2, this paper, describes an effort to create a template-
based auto-generation methodology for CSMs, called Au-
toCSM. In this paper, an overview of the initial AutoCSM
architecture and workflow is provided, along with a prac-
tical example using the Oak Ridge Leadership Comput-
ing Facility’s (OLCF) Frontier supercomputer CSM. Au-
toCSM will (1) improve ExaDigiT’s user accessibility by
providing a flexible workflow for modularizing the cre-
ation of the CSM system and control logic, (2) decrease
the development time of CSMs, and (3) standardize the
method for incorporating CSMs into the ExaDigiT frame-
work.
Keywords: digital twin, automation, cooling system, su-
percomputer, architecture, framework

1 Introduction
Across myriad disciplines, high-performance supercom-
puting facilities have long been a key resource for ex-
ploring complex scientific and engineering challenges,
spurring technological innovation and opening new av-
enues of discovery (National Research Council 2005). As

This manuscript has been authored by UT-Battelle, LLC under con-
tract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE Public Ac-
cess Plan (http://energy.gov/downloads/doe-public-access-plan).

the problems being explored increase in complexity, and
therefore computational cost, it will become increasingly
difficult to make significant advances in energy efficiency.

1.1 Motivation
Fully operational in 2022, the Frontier supercomputer at
Oak Ridge National Laboratory became the world’s first
exascale supercomputer (Atchley et al. 2023). It could be
argued that the ability to achieve this milestone was fea-
sible principally because of the enormous gains in hard-
ware optimizations that have been made over the past
decade. For example, if the technology of 2009 used
in the Jaguar Supercomputer were used for the Frontier
facility, the power requirements would have been multi-
ple gigawatts. Instead, Frontier consumes only approxi-
mately 20 MW while achieving 1,000 times higher perfor-
mance than Jaguar. Although enormous strides have been
made in the past decade on computational hardware, it is
postulated that hardware optimizations have approached
their limits of being the primary means of obtaining ef-
ficiency improvements; instead, future efficiency gains
will be dominated by software innovations such as op-
erational performance (i.e., controls, job staging/predic-
tion) (Brewer et al. 2024). The use of digital twins is one
such software innovation that may be a primary means of
achieving the necessary performance efficiency improve-
ments for current and future supercomputing systems.

1.2 Digital Twins
A digital twin is defined as a virtual representation of a
real-world system that synchronizes and exchanges infor-
mation with the real-world system. In the context of exas-
cale computing facilities, the digital twin is expected to re-
quire, at minimum, connections to- and models of- power
consumption, the cooling system, and network behavior.
A digital twin should also incorporate human–computer
interfaces and optimization capabilities. The realization
of a digital twin for such computing facilities is non-trivial
given the complexity and scale of the facility, components,
and data.

1.3 ExaDigiT
To help accelerate the development of exascale facil-
ity digital twins and their value in achieving efficiency



gains, Oak Ridge National Laboratory created ExaDigiT,
an open-source framework for developing comprehensive
digital twins for liquid-cooled supercomputers (Brewer
et al. 2024). This framework is intended to stream-
line the creation and connection of the necessary cross-
disciplinary systems and data as well as to provide meth-
ods of performing advanced analysis and predictive explo-
ration to build toward sustainable, energy-efficient super-
computing.

1.4 Cooling System Model (CSM) Develop-
ment

The broader development approach to ExaDigiT takes into
account that an effective digital twin of an exascale facil-
ity will likely require physics-based system models of the
liquid cooling system at various levels of fidelity through-
out the system’s life cycle—and that it must also be ca-
pable of capturing the transient operations of the system
for optimization and scenario exploration. In support of
ExaDigiT’s development, a Modelica model of Frontier’s
cooling system was completed and is detailed in a com-
panion paper (Kumar et al. 2024). Part of that modeling
efforts purpose was to provide insights into the value of
the cooling system model (CSM) toward delivering effi-
ciency improvements and into how the CSM would be in-
tegrated into ExaDigiT .

1.5 AutoCSM
The Frontier CSM described in (Kumar et al. 2024)
adopted a preliminary template architecture based on
previous efforts (Greenwood et al. 2017a). However,
as the ExaDigiT framework matured and more specific
users of the framework were identified, it became appar-
ent that supercomputing facilities—and datacenters more
generally—could benefit from a CSM template approach
more tailored to the way the systems are hierarchically de-
signed, constructed, and operated. The creation of suffi-
ciently accurate physics-based CSMs is a non-trivial ex-
ercise that requires domain-specific knowledge and good
modeling experience and best practices. The additional
complexities of iterative development and the integration
of the model into a broader digital twin exacerbate the
difficulty of achieving proper value from a CSM in the
broader digital twin. Therefore, the creation of a template
system-of-systems modeling approach for automating the
development, deployment, and integration of CSMs for
supercomputing facilities was proposed. This methodol-
ogy is called AutoCSM.

The remainder of this paper describes the AutoCSM
proof-of-concept methodology in the broader ExaDigiT
context in which it is situated. A description of the current
architecture and general workflow of the AutoCSM is then
provided. An illustrative example of the adaption of the
original Frontier model to the AutoCSM approach is then
provided as well as the extension of that AutoCSM based
model for exploration of a parallel datacenter study. Fi-
nally, because the users of ExaDigiT are expected to have

limited familiarity with Modelica, and to help clearly ad-
dress the role of AutoCSM in ExaDigiT explicitly, a sec-
tion of exploring potential questions regarding AutoCSM
is provided.

2 ExaDigiT & AutoCSM
The CSM within ExaDigiT consumes telemetry data (e.g.,
facility operation and job loading data, weather data), cou-
ples with the power simulator (RAPS), and ultimately pro-
duces operational predictions that can be leveraged for
scenario exploration and facility health analysis. The
CSM also provides data to reduced-order models for
AI/ML facility studies, optimization, and visual analytics
(Figure 1). Given the wide adoption of the open-source
Functional Mock-up Interface (FMI) standard (Functional
Mock-up Interface n.d.) by various tools and programming
languages—and given its direct application to dynamic
simulations at the levels of fidelity that are expected to
be valuable for supercomputer digital twins—using Func-
tional Mock-up Units (FMUs) was identified as the pri-
mary method of standardizing the incorporation of the
CSM into the broader ExaDigiT framework. However, a
question was posed about how the process for generating
the FMU could be simplified for the user, making it less
error prone and less time-intensive, as well as requiring
less experience, while remaining agnostic to the underly-
ing technology (e.g., commercial software, programming
languages) used to create the CSM. This line of reasoning
led to introducing AutoCSM as an optional interface layer
for streamlining CSM model generation to FMU deploy-
ment. In the framework depicted in Figure 1, AutoCSM
provides a means of automating the process for creating a
simulation-ready CSM FMU, depicted on the left side.

3 AutoCSM
The motivating philosophy behind AutoCSM is to remove
as many barriers as possible to incorporating CSMs into
a facility’s digital twin. Therefore, attention was given to
identifying the broad architecture, identifying functional
requirements, and determining how AutoCSM develop-
ment could be compartmentalized and focused to achieve
near-term impact. This section touches on each of these
topics and provides a pseudo-code example of the Au-
toCSM workflow.

3.1 Architecture
AutoCSM is intended to be an optional interface that can
be used to automate the generation of system models that
have adopted a template architecture for rapid deployment
to simulation-ready FMUs. The AutoCSM interface, or
AutoCSM API (Figure 2), relies on the implementation of
an API that has a language- or modeling-specific exten-
sion. That extension will be used to script the generation
of the CSM in that language using a user template strategy
that can be unique to their facility and language. Finally,
the scripted model will be exported as an FMU using ex-



Figure 1. The base ExaDigiT framework, incorporating telemetry data, a power simulator (RAPS), visual analytics, and a CSM.
(Brewer et al. 2024)

Figure 2. AutoCSM API in the broader ExaDigiT procedure. Dotted line indicates scope of AutoCSM.

isting tools. Again, the tool used will be user-definable
and can be chosen according to the user’s preferred mod-
eling approach and tool (e.g., integrated development en-
vironment or language FMU export library). This FMU
will then be consumed within the broader ExaDigiT CSM
Simulator. At each step, AutoCSM is intended to remain
as agnostic to specific facility requirements as possible by
abstracting and reducing modeling requirements to the in-
put specification (to be discussed).

Internal to the AutoCSM API is a specific procedure
that is used to create an FMU export from user-input spec-
ification. Figure 3 illustrates the process of consuming in-
put specifications. Additional details of the principal focus
areas of the API are discussed in a subsequent section.

3.2 Functional Requirements
The functional requirements for the development of Au-
toCSM are identified below. Some have been mentioned
previously but are repeated here for completeness. In gen-
eral, the broad theme of the requirements is to provide
the framework and avoid encroaching on a user’s meth-
ods. AutoCSM will:

1. conform to the deployment requirements of
ExaDigiT (e.g., open-source),

2. be language/tool agnostic (both across and within
tools),

3. support custom specification extensions,

4. leverage existing solutions/methods where possible
(e.g., third-party Python libraries),



Figure 3. Internal to AutoCSM API procedure for CSM creation.

5. produce an FMU consistent with the requirements of
ExaDigiT,

6. assemble pre-configured systems and subsystems
(i.e., it will not generate the internals to a system
model itself, such as connecting or creating pipes,
volumes, etc.), and

7. not dictate the modeling template approach.

3.2.1 Modeling Approach Requirements
As shown in Figure 2, AutoCSM requires a modeling ap-
proach (e.g., Modelica, Julia, or other software/languages
and libraries) that supports the creation of a formal model-
ing structure or template approach for the assembly of the
FMU. To use AutoCSM for a selected modeling approach,
three requirements have been identified.

1. Be templatable (i.e., able to organize models into
system-subsystem architectures)

2. Be scriptable at the level of system assembly (i.e., not
binary or otherwise inaccessible from outside tools)

3. Support FMU export

Satisfying these three requirements allows AutoCSM
to support virtually any modeling approach a user may
want to employ. If a requirement is not met with a se-
lected tool, then the user will need to decide if that is
an insurmountable issue with that tool (e.g., commercial
software unable to be adapted) or if investment in an Au-
toCSM extension for that tool is feasible. As an open-
source project, AutoCSM will be open to community con-
tributions, and users may develop proprietary extensions
that are not shared with the broader community.

3.3 AutoCSM Focus Areas
The development of the AutoCSM API consists of three
distinct focus areas: input specification, the automated
CSM generator, and an example template architecture for

demonstration and development. Figure 3 provides an
illustration of these areas within the internal AutoCSM
methodology, from input specification to model creation
to FMU generation. The following subsections elaborate
on the role of each of these focus areas.

3.3.1 Input Specification

AutoCSM requires a standardized means of collecting the
necessary information into a form that can be incorporated
into the broader ExaDigiT input requirements. As refer-
enced in Figure 3, the specification that proceeds to the
CSM generation stage is an amalgam of the CSM-specific
settings and additional information from other ExaDigiT
pieces that a CSM may indirectly require. From a user’s
perspective, the CSM settings are what a modeler would
define, and the CSM generator would use those CSM
settings after they have undergone a settings compilation
step. Potential examples of CSM input include the num-
ber of various systems used, modifications on parameters
and input, and/or specification of the different versions of
systems to be used.

3.3.2 AutoCSM Generator

The AutoCSM Generator provides the necessary logic to
automatically translate the input specification into a com-
plete system model that can be used within the ExaDigiT
framework. The initial demonstration uses the Modelica
language, but the API is extensible so that other languages
or tools can be added as needed by users (e.g., Julia).
To limit scope creep and edge cases, the initial develop-
ment focused on the creation of co-simulation FMUs as
the product of the automation process for use in the digital
twin.

3.3.3 ExaDigiT Modelica Library

To enable automated generation of a CSM, a formalized
architecture or template approach that compartmentalizes
the facility into standardized systems, subsystems, and
control logic is required. This is achievable because of
how supercomputer facilities are constructed and orga-



nized and because of the level of fidelity necessary from
the CSM for ExaDigiT’s purposes. Therefore, work in this
focus area involved creating a proof-of-concept template
approach for assembling the facility.

As previously noted, a CSM for Frontier was developed
(Kumar et al. 2024) to provide support to its operations
and contribute to the development of ExaDigiT (??). The
model outlined in the aforementioned work leveraged a
template approach previously developed for advanced en-
ergy systems studies contained within the TRANSFORM
Modelica library (Greenwood et al. 2017b). Although the
adopted template approach has been adequate for its orig-
inal purposes, the CSM would benefit from an adapted
template approach that aligns better with a nested struc-
ture that could be leveraged by external programming
languages and be better aligned with ExaDigiT. There-
fore, an ExaDigiT specific Modelica template prototype
was developed using other Modelica template approaches
(Modelica Asscotiation 2024; Greenwood et al. 2017a)
for inspiration and the Frontier CSM modeling efforts as
a use case demonstration. Figure 4 shows the outline
of the developed Modelica template system. This lever-
ages identical underlying structures–BaseClasses–and re-
placeable components to create a common template–
TemplateSystem–that can be duplicated by AutoCSM or
a user and serve as the foundational structure to create an
AutoCSM compliant model.

In addition to a common structure, at each system level
the models are implemented as arrays such that all input-
s/outputs to the simulation can be readily associated with
ExaDigiT input/output requirements and the ExaDigiT
user can easily customise the structure of their facility.
For example, to access the summary output of a partic-
ular model a path of the following form can be utilized:
system[i].systemA[j].systemB[k].summary.VAR where i, j,
and k are the index of the instance reference. Finally, if
desired, parallel flow logic may be implemented for situa-
tions where computational performance is more important
than model fidelity. If employed, the parallel logic treats
an array of model system as a single representative model
(i.e., without parallel logic an array may have 10 instances
but with it included and enabled an array will be reduced
to a 1 instance). This feature is built into the input specifi-
cation and Modelica template library structure.

Figure 5 shows an example of a system model using
the ExaDigiT Modelica template library. One of the ad-
vantages of this approach is that no matter which level in
the hierarchy a system exists it has the same foundational
components shown in the figure–i.e., structure, summary,
inputs, control system, data, and the sensor bus. Every-
thing beside those components are definable by the user
for that system–e.g., alternative fluid ports, or none at all.
Below is a description for each of these components.

• structure: instances of the same name as system-
models used at that level. This component contains
information that requires recompilation of a model

such as the number of instances and a flag to enable
a parallel model.

• summary: user-defined variables or calculations of
interest to users of the model that are not readily ac-
cessible or desired to be highlighted–e.g., some type
of calculation of many variables.

• inputs: replaceable model containing time-
dependent variables for external access.

• control system: replaceable control system model for
that model.

• data: replaceable data for containerizing information
for that model.

• sensorBus: An expandable model for collecting sig-
nals for communicating to/from inputs, control sys-
tems, or other levels in the hierarchy.

This template approach directly informs the input spec-
ification development and is used by the automation pro-
cess. Although AutoCSM does not require the use of this
specific template approach, this library can also serve to
accelerate the development of the system models them-
selves, as well as modified template approaches that may
be more appropriate for a specific supercomputing facil-
ity. Additional features of the ExaDigiT Modelica Library
are templates for testing system models for verification
purposes. Leveraging the overall template approach and
the practices demonstrated therein should provide signif-
icant efficiency gains for supercomputer facility model-
ers and analysts. To help orient a new user to using Au-
toCSM, a simplified Modelica library—GenericCSM—
demonstrating the use of the template library is included
with the AutoCSM source code. It is expected that new
adopters of AutoCSM using Modelica would take that
model and then adapt it to their system.

3.4 Example AutoCSM Workflow
Figure 6 provides a step-by-step pseudo-code workflow
of AutoCSM’s use, along with a description of each step.
The current version of AutoCSM is written in Python and
adopts a RedFish-style (REDFISH | DMTF n.d.) JSON in-
put specification. The FMU is generated using Dymola’s
Python API, and simulation of the generated FMU is per-
formed via FMPy (CATIA-Systems 2024). To reiterate,
the use of tool-specific choices (i.e., Dymola) is not dic-
tated by AutoCSM.

4 Frontier AutoCSM Demonstration
The Frontier CSM detailed in (Kumar et al. 2024) was
modified and updated to use the ExaDigiT Modelica tem-
plate library as described above and AutoCSM API for
model generation. This section will first briefly discuss
key aspects of that conversion and FMU auto-generation
process. The ability to then extend this approach to ex-
tension of that base model to a preliminary exploration of



Figure 4. ExaDigiT Modelica template library. All systems use a common TemplateSystem that is then modified for the specific
system. The TemplateSystem relies on replaceable components built on the (BaseClasses) models.

Figure 5. Example of a system model using the ExaDigiT Modelica template library. This is the Frontier AutoCSM model cooling
tower loop. Every system model has a common set of components for use by the AutoCSM API or for internal-to-model usage.

two parallel datacenters with a single heat rejection system
will be presented.

4.1 Conversion of Frontier to AutoCSM

The conversion process of taking the pre-AutoCSM Fron-
tier model and converting it to the AutoCSM approach
involved four general steps. In each of these steps, as-



Figure 6. Pseudo-code workflow of the AutoCSM workflow with descriptions of each of the steps.

sociated variables for control, summary, or external input
where also updated accordingly. Once all steps were com-
plete, the Frontier model was properly formatted into a hi-
erarchical structure Figure 8 and accessible by AutoCSM
for the auto-generation of the FMU.

1. Identify and convert models to arrays and then cre-
ate template-based System packages accordingly–
e.g., the compute blocks that make up the datacenter
Figure 7.

2. Break models into compartmentalized sections and
convert, as with the first step, or turn into component-
only models.

3. In parallel two the previous two steps, create test sim-
ulations for dynamic and steady-state to verify the
models returns the expected results. Typically these
tests only use a small number of instances of a partic-
ular system model to be tested sufficient to verify the
behavior and performance–e.g., 2 compute blocks in-
stead of 25. The input JSON file facilitates creation
of the complete model.

4. Improve numerical or structural issues uncovered via
the tests to reduce or eliminate numerical issues (e.g.,
numerical Jacobians and non-linearities).

4.2 Frontier to AutoCSM FMU

A nested hierarchical modeling approach for Modelica
was implemented in AutoCSM API. Therefore, with the
Modelica model updated to this approach the input JSON
specification was created that reflects the desired overall
model structure including instances of each model and
parallel logic flags Figure 10. The JSON file is then
processed and an FMU is generated using the AutoCSM
Python API Figure 10. If needed, the intermediate .mo file
generated in this process is accessible and can be loaded
into a Modelica IDE for simulation, debugging, or manual
FMU generation. After the Frontier model was converted
to the AutoCSM approach, and various numerical issues
were resolved, the simulation time was cut approximately
by one-third while significantly improving the tractability
and robustness of the model.



Figure 7. Example of the datacenter portion of the Frontier CSM before and after using the ExaDigiT Modelica AutoCSM template
library where the compute blocks were able to be modified to an array.

Figure 8. Subset of the Frontier CSM model implemented using the ExaDigiT Modelica AutoCSM template library demonstrating
the nested hierarchy of the model structure. The dots at the bottom indicate that the levels of the hierarchy may continue as needed.

4.3 Extension to Alternative Studies

The migration to an AutoCSM approach enabled the ex-
ploration of a secondary test at Oak Ridge National Labo-
ratory (ORNL). ORNL is beginning to assess whether its
heat rejection system can support both Frontier and the
next flagship supercomputer simultaneously. Although a
detailed performance analysis of this system is beyond the
scope of this work, it’s worth discussing how AutoCSM
could be adapted for that study.

A key requirement for this effort is that the new super-
computer will be structurally differ from Frontier. Since
Modelica doesn’t support arrays of replaceable models
from different classes, a second datacenter was added in
parallel to Frontier instead of simply increasing the in-
stance number by one. The datacenter-level structure

component was modified to include this addition. With the
new model and associated sub-models created, the JSON
file was updated to include a new Datacenter system under
the ORNLSupercomputing node, named datacenter_new.
The entries for the new datacenter were populated, and an
FMU was generated without changes to the Python code.

This exercise demonstrated the flexibility of the Au-
toCSM approach to meet the needs of various datacenter
studies with minimal effort. Originally designed for a su-
percomputer facility, AutoCSM is also likely applicable to
most datacenter modeling activities and could likely serve
as a starting point for any system modeling effort with a
hierarchical architecture.



Figure 9. Part of the Frontier input JSON specification file for
AutoCSM used to auto-generate the FMU.

Figure 10. The python code required to process the input JSON
file to create a Frontier FMU.

5 Potential Questions
During the exploration and development of AutoCSM,
several common questions were identified, especially
from the perspective of a potential user unfamiliar with
Modelica. Below is a non-exhaustive list of questions that
may be relevant to a potential AutoCSM user. While some
of these questions or their answers are addressed in part
within this paper, they are repeated here for completeness.

What is the value of an AutoCSM API in ExaDigiT?
Creating CSMs is a time-consuming process that typically
requires a deep understanding of the facility and expertise
across various domains, such as thermal-hydraulics and
controls. Additionally, integrating the model demands an-
other specialized skill set, further complicating CSM de-
velopment. AutoCSM accelerates this process by offering

a step-by-step framework that allows for greater compart-
mentalization between the CSM developer and the user
(in ExaDigiT). Another key time-saving benefit of Au-
toCSM lies in its support for exploratory studies, from
analyzing subsystems at different levels of fidelity to ex-
ploring what-if scenarios to understand how design or op-
erational changes might affect facility performance. Ulti-
mately, time savings is the core value of AutoCSM.

What is the value of having a CSM in ExaDigiT? The
benefit of having a CSM in ExaDigiT is to allow a user to
understand how all aspects of their facility interact—for
example, how job loading, facility cooling, and facility us-
age all respond to each other. This type of information can
then be leveraged for exploration and optimization during
all facility life cycles—across the processes of design, up-
grades/downgrades, and operation. Thus, a CSM within
ExaDigiT enables improvements and changes in facility
design and operational efficiency that otherwise may not
be possible.

If a user’s digital twin needs do not require the use of
the same or all subsystem levels as those of the template
example library, how will the template system handle
this scenario? The template system assumes top-down
assembly of the CSM, allowing users to abstract lower-
level facility components. The automation process adapts
to the user’s desired level of detail. For instance, if indi-
vidual blades don’t need modeling, the user can specify
this in the input, omitting lower-level template subsystem
models. The CSM modeler must only ensure that the mod-
els necessary for an ExaDigiT study are included.

As many Modelica integrated development environ-
ments (IDEs) are commercial software, is there con-
cern that the template library will become tool spe-
cific? Although this work will use the commercial Mod-
elica IDE Dymola to accelerate development, the proof-
of-concept development will use pedantic mode to strictly
enforce language standards such that the library should be
usable with any Modelica-compliant IDE (e.g., Dymola,
Modelon Impact, OpenModelica, ANSYS Twin Builder).
Although this requirement will not be enforced upon users
of ExaDigiT, the template library and any components
used to create the example facility will be cross-tool com-
pliant. To satisfy this requirement, components from ex-
isting libraries will be used, if possible; otherwise, modi-
fied components that satisfy the requirement will be cre-
ated. However, this work prioritizes the input specification
and API over the Modelica library, so the initial version
will only include essential model development.

Is the limited availability of Modelica expertise a
concern in AutoCSM value and adoption? While the
methodology is language-agnostic, Modelica is chosen
for initial demonstration due to its established capabili-
ties. Alternatives like Julia’s ModelingToolkit may be vi-
able in the future, but uncertainties exist regarding prob-
lem size handling, solver availability, language stability,
and domain-specific libraries for CSM-relevant dynamic
system modeling. Lessons learned from Modelica are ex-



pected to be transferable to other approaches. More gen-
eraly, Modelica has a proven track record of signficantly
decreasing model development time as compared to other
approaches. Therefore, with AutoCSM and other open li-
braries available to users, it is expected that the creation
of CSM subsystems for use in ExaDigiT, even by novice
Modelica users, will not be a barrier to using ExaDigiT.

What is the advantage to using Modelica over al-
ternative modeling languages? The advantages of using
Modelica for this type of application derives from the ma-
turity of the Modelica Language Standard and of the in-
tegrated development environments which implement it.
The three primary relevant aspects is the importance of
supporting extends, replaceable, and the language being
acausal. The acausal nature assists in rapid and flexible
model creation. The other two are foundational for creat-
ing architecture based implementations.

How will the AutoCSM process know how to model
a user’s facility? The template architecture provides
the framework for connecting systems. This system-of-
systems abstraction is therefore abstracted to a level where
the method of defining the interfaces is the critical enabler
for automating CSM creation. The architecture will not
create the internal logic of individual subsystems. For ex-
ample, the specific way to model the manner in which a
blade or GPU is cooled will not be automated. The user
must create the subsystem internal model by using Mod-
elica components and then connect that internal model to
the subsystem template.

6 Conclusions
The development of digital twins is a non-trivial endeavor.
Methods that can help standardize and streamline the
process for model development and incorporation into a
framework used to operate a digital twin are critical. Au-
toCSM is one such methodology that aims to accelerate
CSM development for integration into ExaDigiT’s digital
twin framework for supercomputing facilities. It strives
to enhance speed, robustness, and the quality of results
by enabling users to focus more on specific problems
by abstracting out of the workflow, to the greatest ex-
tent possible, the infrastructure requirements for connect-
ing models. This paper provides an overview of the Au-
toCSM methodology and workflow and provides an ex-
ample overview of AutoCSM being used on the ORNL
Frontier supercomputer facility. Future efforts in Au-
toCSM development will be driven by community adop-
tion and feedback to the open source code base. There-
fore, if AutoCSM is relevant to a potential user’s needs,
they are highly encouraged to provide feedback to the
authors or directly via the code repository (https://
code.ornl.gov/exadigit/AutoCSM).

Acknowledgments
This research was sponsored by and used resources of
the Oak Ridge Leadership Computing Facility (OLCF),

which is a DOE Office of Science User Facility at the Oak
Ridge National Laboratory (ORNL) supported by the U.S.
Department of Energy under Contract No. DE-AC05-
00OR22725.

References
Atchley, Scott et al. (2023). “Frontier: Exploring Exascale”.

In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.
New York, NY, USA: Association for Computing Machinery,
pp. 1–16. DOI: 10.1145/3581784.3607089.

Brewer, Wesley et al. (2024-11). “A Digital Twin Framework
for Liquid-cooled Supercomputers as Demonstrated at Ex-
ascale”. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis. To be published. Atlanta, GA.

CATIA-Systems (2024). CATIA-Systems/FMPy. https://github.
com/CATIA-Systems/FMPy. Published 2017.

Functional Mock-up Interface (n.d.). https://fmi-standard.org/.
Accessed April 19, 2024.

Greenwood, Scott et al. (2017a-08). A Templated Approach for
Multi-Physics Modeling of Hybrid Energy Systems in Mod-
elica. Technical Report 10.2172/1427611. DOI. URL: https:
//www.osti.gov/biblio/1427611.

Greenwood, Scott et al. (2017b-09). TRANSFORM - TRANsient
Simulation Framework of Reconfigurable Models. DOI: 10 .
11578/dc.20171025.2022. URL: https://www.osti.gov/biblio/
1503596.

Kumar, Vineet et al. (2024-10). “Thermo-Fluid Modeling
Framework for Supercomputing Digital Twins: Part 1,
Demonstration at Exascale”. In: Proceedings of the America
Modelica Conference. Storrs, CT.

Modelica Asscotiation (2024-05). VehicleInterfaces Library.
https://github.com/modelica/VehicleInterfaces.

National Research Council (2005). The Future of
Supercomputing–Conclusions and Recommendations.
Washington, DC: The National Academies Press. DOI:
10.17226/11148.

REDFISH | DMTF (n.d.). https : / / www. dmtf . org / standards /
redfish. Accessed April 19, 2024.

https://code.ornl.gov/exadigit/AutoCSM
https://code.ornl.gov/exadigit/AutoCSM
https://doi.org/10.1145/3581784.3607089
https://github.com/CATIA-Systems/FMPy
https://github.com/CATIA-Systems/FMPy
https://fmi-standard.org/
https://www.osti.gov/biblio/1427611
https://www.osti.gov/biblio/1427611
https://doi.org/10.11578/dc.20171025.2022
https://doi.org/10.11578/dc.20171025.2022
https://www.osti.gov/biblio/1503596
https://www.osti.gov/biblio/1503596
https://github.com/modelica/VehicleInterfaces
https://doi.org/10.17226/11148
https://www.dmtf.org/standards/redfish
https://www.dmtf.org/standards/redfish

	Introduction
	Motivation
	Digital Twins
	ExaDigiT
	Cooling System Model (CSM) Development
	AutoCSM

	ExaDigiT & AutoCSM
	AutoCSM
	Architecture
	Functional Requirements
	Modeling Approach Requirements

	AutoCSM Focus Areas
	Input Specification
	AutoCSM Generator
	ExaDigiT Modelica Library

	Example AutoCSM Workflow

	Frontier AutoCSM Demonstration
	Conversion of Frontier to AutoCSM
	Frontier to AutoCSM FMU
	Extension to Alternative Studies

	Potential Questions
	Conclusions

