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Abstract

Deep learning models have been shown to be vulnerable to ad-
versarial attacks, in which perturbations to their inputs cause the
model to produce incorrect predictions. As opposed to adversar-
ial attacks in computer vision, where small changes introduced to
pixel values can drastically alter a model’s output while remaining
imperceptible to humans, text-based attacks are difficult to conceal
due to the discrete nature of tokens. Consequently, unconstrained
gradient-based attacks often produce adversarial examples that
lack semantic meaning, rendering them detectable through visual
inspection or perplexity filters. In contrast to methods that rely on
gradient-based optimization in the embedding space, we propose
an approach that leverages a Large Language Model’s ability to
generate grammatically correct and semantically meaningful text
to craft adversarial patches that seamlessly blend in with the origi-
nal input text. These patches can be used to alter the behavior of
a target model, such as a text classifier. Since our approach does
not rely on gradient backpropagation, it only requires access to
the target model’s confidence scores, making it a grey-box attack.
We demonstrate the feasibility of our approach using open-source
LLMs, including Intel’s Neural Chat, Llama2, and Mistral-Instruct,
to generate adversarial patches capable of altering the predictions
of a distilBERT model fine-tuned on the IMDB reviews dataset for
sentiment classification.
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1 Introduction

Large Language Models (LLMs), based on the transformer architec-
ture proposed by [35], are capable of processing complex textual
data and producing human-like text. This proficiency allows them
to excel in a broad range of tasks in the domain of Natural Language
Processing (NLP). For this reason, they have gained widespread
popularity in recent years within the field of Al and various other
industries. For instance, they serve as Al companions and assis-
tants in the form of chatbots, aiding users in tasks such as creative
writing or computer programming [19].

Although transformer-based models, such as BERT, have estab-
lished themselves as the predominant choice for many NLP appli-
cations, they remain vulnerable to adversarial attacks. Therefore,
as these types of models are deployed more frequently in critical
applications, it has become increasingly relevant to pinpoint their
vulnerabilities and enhance their resilience against potential at-
tacks. Adversarial attacks involve an intentional manipulation of
input data into a Machine Learning (ML) model to alter its output.

A possible manipulation, that emerged originally for image clas-
sifiers [5], is an adversarial patch. To create an adversarial patch,
the attacker modifies a small region of an image to get the model
to output a specific classification. Ideally, the patch does not have
an effect on the high-level features of an object that would deceive
a human into misclassifying it. The continuous nature of images
facilitates the straightforward implementation of this constraint
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within gradient-based optimization methods without introducing
changes in pixel values that are perceptible to humans.

In the case of text, an attack based on a gradient search involves
a discrete optimization problem. On the one hand, not all points
in the embedding space map to a real token, requiring the use of
a distance function. This renders the attack less efficient than its
image counterpart since the closest token might not be in the exact
direction of the gradient. On the other hand, unless the embedding
space preserves semantic similarity, a small change in the embed-
ding space does not guarantee a well-camouflaged perturbation to
the input text.

These complexities lead to unconstrained gradient-based attacks
often producing adversarial patches that are semantically meaning-
less, such as the method proposed by [38], which make the attacks
easily detectable by visual inspection or perplexity filters [15]. In-
troducing constraints to avoid special tokens or those that shift the
meaning of the input text has already been proven to be effective
[25]. However, instead of implementing constraints as boundaries
in the embedding space to control the distance between the benign
and the adversarial text, we propose an attack that leverages the
ability of an LLM to generate an adversarial patch that is grammat-
ically correct and semantically meaningful. The construction of the
adversarial patch is guided by the loss of the target model, how-
ever, it does not use gradient backpropagation which means it only
requires access to the model’s prediction label and corresponding
probabilities, making it a grey-box attack [1]. This LLM-generated
adversarial patch can be used to alter the behavior of a downstream
target model, in our case, a sentiment classifier. An example of a
meaningful adversarial patch generated by our approach is shown
in Figure 1.

We demonstrate the feasibility of the proposed attack by using
the following open-source LLMs to generate adversarial patches:
Intel’s Neural Chat [22], Llama2 [33] and Mistral [17], given that
their performance is comparable to closed models like GPT-3.5.
As a target model we use distilBERT, a smaller version of BERT,
ideal for real-world applications in computationally constrained
environments, while still maintaining good performance across
various downstream tasks, such as sentiment classification [30].

The contributions of this work are as follows: (a) We introduce a
proof-of-concept adversarial attack that utilizes an LLM to generate
semantically meaningful adversarial patches capable of altering the
predictions of a downstream target model. The attack incorporates
a mechanism that controls the trade-off between effectiveness and
meaningfulness of the patch. (b) We show that the system prompt
of an instruction-tuned LLM can be leveraged to impose additional
constraints on the construction of the adversarial patch, thereby
enhancing the camouflage of the attack. (c) We evaluate the effec-
tiveness of this type of attack against a distilBERT model fine-tuned
on the IMDB movie reviews dataset for sentiment classification,
considering metrics such as the attack success rate, perplexity, and
the percentage of adversarial patches that preserve the sentiment
of the original input to the model.
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2 Related work

Adversarial attacks, most commonly researched in the field of com-
puter vision, aim to manipulate the predictions of a model by delib-
erately altering the input data. In the case of images, represented
as pixel values in a continuous domain, these alterations can be
constrained to small magnitudes, rendering them imperceptible
to the human eye while significantly influencing the model’s pre-
dictions. The small perturbations introduced to the input image
can be obtained via different optimization methods such as L-BFGS
[32] which was the first to show how these changes can fool deep
learning models trained for the task of image classification. More
complex methods based on gradients were later proposed that im-
proved the effectiveness of these types of adversarial attacks, such
as Fast Gradient Sign Method (FGSM) [11], its iterative variant
IFGSM [20] and Projected Gradient Descent (PGD) [24].

Instead of altering pixels across the entire image, adversarial
patches modify only a small number of pixels within a specified
region, however often using the same optimization strategies to
compute the perturbation. This type of attack is not confined to
the digital domain, as it has been demonstrated to generalize to the
real world, for example in the form of printed stickers as shown
by [5]. In classification, attacks can be targeted, fooling the model
to output a specific class, or untargeted, which seeks to steer the
prediction away from the correct class. Therefore, an optimization
problem is formulated based on a loss function. In the former case,
the loss function is minimized with respect to the target class, while
in the latter case, it is maximized with respect to the correct class
[1].

Some adversarial patch attacks do not impose restrictions on
the magnitude of the perturbations to ensure imperceptibility to
a human, as non-camouflaged adversarial examples are more ef-
fective. However, other works incorporate this constraint as part
of their threat model. For instance, in the work presented in [5],
an adversarial attack using physical patches is proposed, enabling
the placement of a patch anywhere within the field of view of an
image classifier which causes the model to output a targeted class.
The patch is designed to be transformation invariant, requiring
no prior knowledge of the scene where it will be deployed. This
exemplifies a universal adversarial attack because a single patch
applies to any background. Additionally, imperceptible attacks are
explored in this work by constraining the adversarial patch to be
within € in the Lo, norm of a starting image patch. They show that
the size of the patch can be smaller when the attack is not targeted
or universal.

Besides constraining the construction of the patch to limit the
magnitude of the perturbation, other works in computer vision
have explored different methods to force the patch to blend in with
the scene. Constraints not directly related to the magnitude have
been used such as a perceptual color distance [36] more closely re-
lated with human perception, or semantic similarity [8] that keeps
the patch similar to the background. Another work employs Gen-
erative Adversarial Networks (GANs) with a discriminator tasked
with distinguishing between images containing a patch and those
without one [3]. GANSs are also used in cases where the patch is
not designed to be imperceptible but is instead made to resemble
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Sentiment
Benign Input (movie review) Classifier
To quote Flik, that was my reaction exactly: Wow...you're perfect! This is the best movie! | think | can — @
even say it's become my favorite movie ever, even. Wow. | tell you what, wow. - =
g Positive
Adversarial Patch (meaningless, mostly gibberish)
e \\usepackage{% "babel.doxy.setup-legala.sty.patched.tar.orig.tar.unpatchable. — oo
> —> =
nocommitt.noalign.nocopy.noheading.none.normsocmath. -
Negative
Adversarial Patch (meaningful, preserves sentiment)
Exclamation exclamation. Just to cite Flik, wow was exactly the extent of it - utter .
4>e—>disbelief. Oh wait. This motion picture simply cannot receive enough appreciation| = (2.2
and is nothing but sheer brilliance - no if' Negative

Figure 1: Adversarial patches for a sentiment classifier. The top patch causes an incorrect prediction, however, it is meaningless
and therefore trivially detected, unlike the bottom patch which is a well-camouflaged attack. Both patches were generated by
different variants of our attack. The top one with the naive approach using Llama2-7B. The bottom one paraphrases the benign

input with Mistral-Instruct-7B.

real objects or patterns that would not look suspicious in a scene
[7, 31, 37]. For example, generating patches to resemble bugs [37].

Imperceptible or well-camouflaged attacks are desirable not only
in the image domain but in other fields such as in NLP. However, in
the text domain, the challenge of finding imperceptible attacks is
more complex since optimization methods must operate on tokens
that are discrete in nature. Therefore, gradient-based attacks require
a mechanism to translate gradients in the embedding space into
real tokens. When no constraints are imposed this type of attacks,
token replacements or deletions result in meaningless and easily
detectable adversarial examples.

To overcome this limitation, other works follow the attack cycle
outlined by [25], starting with a search phase where the input text
is scanned for vulnerable tokens, which are the ones most likely to
influence the classification when modified. Then different transfor-
mations are evaluated to individually modify each of the vulnerable
tokens and select the ones that bring the attack closer to the goal
of deceiving the model. This process is performed until the attack
is successful or a stopping criterion is reached. Constraints can
be imposed in the search and selection steps so special tokens (i.e.
unknown or end-of-sentence) and those that significantly change
the meaning of the input text are not allowed. This approach is
employed in white-box attacks such as the one proposed by [34]
and HotFlip [9], as well as in black-blox attacks such as DeepWord-
Bug [10] and TextBugger [21], the latter of which also include a
white-box version of the attack.

Similar to image patches that are not restricted in magnitude,
other techniques to create inconspicuous attacks have been pro-
posed for text manipulation. For example, randomly replacing char-
acters with those that would be close in a keyboard [4] mimicking
typos to craft an attack for a machine translation system. Another
example introduces misspellings in vulnerable words and adds punc-
tuation to letters to fool Google Perspective, a toxicity detection
engine [13]. These belong to the class of character-level adversar-
ial attacks, which involve the insertion, deletion or swapping of
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characters in the input text to a model. Other examples in this
category include DeepWordBug [10] and TextBugger [21], where
important words or sentences in the input text are identified and
then perturbed. However, even though these misspellings may be
inconspicuous, they can still be easily detected by a spell-checker
[12].

Other attacks use word-level or sentence-level perturbations.
For instance, TextFooler [18], which identifies important words for
the text classification task and then replaces them with synonyms
until the model’s output changes. The authors also verified that
the adversarial examples are classified correctly by human eval-
uators and are deemed to be semantically similar to the original
text and grammatically acceptable. This attack targets text classi-
fiers based on Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and the transformer architecture, namely
BERT. Another example is the attack proposed in [2], which eplaces
randomly chosen words in the input text using the GloVe embed-
ding space to find words with similar semantic meanings, thereby
implementing an imperceptibility constraint. It is important to note
that, even though these 2 attacks are labeled as black-box attacks,
they both assume access to the model’s confidence scores. By the
definition used in this paper, this would constitute a grey-box attack,
which results in the same level of access required by our attack.

At the sentence level, attacks such as ADDSENT and ADDANY
[16], designed for the Question-Answering task, concatenate adver-
sarial strings to the original input rather than modifying it; these
strings retain a syntactic resemblance to the questions. Another
example is "AdvGen" [6], a white-box attack that targets machine
translation models. It uses gradients to perform a greedy search,
guided by the model’s loss on the original input, to create adversar-
ial examples that attempt to preserve semantic meaning.

A more recent attack, targeting LLMs used for text generation,
is the jailbreaking attack proposed by [38], where the LLM’s safety
alignment is circumvented leading the model to generate objec-
tionable content by appending an adversarial suffix (patch) to the
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user prompt. The loss function compares the model’s output to
what the authors call an “initial affirmative response”, following the
intuition that if the model starts its response with an affirmative
statement, it is more likely to output the requested information.
The attack starts with a fixed-length randomly initialized suffix.
Then an iterative process begins, using the model’s gradients to
identify a set of promising replacements for a specific position in
the suffix. These replacements are evaluated via a forward pass and
the token that minimizes the loss is selected. The authors show that
this method can be extended to be universal by aggregating the
loss across multiple user prompts and can be transferable to models
different from the one for which the attack was designed. This work
highlights the issue of easily detectable adversarial examples: when
constraints are not introduced in the token search, adversarial ex-
amples tend to lack semantic coherence, which translates to attacks
that are perceptible to humans and detectable via perplexity filters
as shown by [15].

3 Methodology

Our goal is to leverage the ability of LLMs to generate semantically
meaningful adversarial patches to alter the behavior of downstream
target models (e.g. a classifier). Drawing inspiration from the ad-
versarial attack proposed by [38], which uses a patch (suffix) to
fool an LLM into generating objectionable content bypassing its
safety alignment, we propose a simpler attack by introducing an
LLM as the component responsible for constructing the adversarial
patch guided by the loss of the target model. Notably, this approach
does not rely on gradient backpropagation which typically assumes
white-box access to the target model.

3.1 Threat Model

We assume a grey-box setting where the attacker does not have
access to the model’s architecture, parameters, or training dataset.
Only the classification label and corresponding confidence scores
are available after querying the model with specific input sequences.
This corresponds to the same level of access as [18] and the attack
proposed by [2], which are categorized in the literature as black-
box attacks. This difference in categorization with respect to our
attack lies in the fact that the definition we use for black-box attacks
assumes access only to the prediction labels [1].

Our attack uses the benign input to the model as context for
the LLM to generate an adversarial string, which we refer to as an
adversarial patch, that is later concatenated to the benign input
to alter the output of the target model—in this case, a sentiment
classifier. The adversarial patch begins as an empty string, with
tokens added one by one from a set of candidates generated by the
LLM. At each step, multiple forward passes are performed through
the target model and the candidate token that maximizes the loss
is added to the patch.

While developing our attack we identified 3 different approaches
which correspond to gradual improvements in the construction
of the adversarial patch. Each approach will be described in the
remainder of this section and then referred to in the subsequent
sections: a (1) naive approach, a (2) paraphrasing approach and a
(3) beam search approach.
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3.2 Naive approach

The naive approach is illustrated in Figure 2. It works iteratively,
constructing the patch token by token in a greedy manner to maxi-
mize the loss of the target model, which in this case is a sentiment
classifier. The patch can begin as an empty string or with an arbi-
trary word or sentence. In each iteration, the following steps are

taken:

(1) With the current patch as its input, the LLM is used to ob-
tain candidate tokens for the next position of the patch by
selecting a set of the most likely tokens from its output.

(2) Then, the set of candidate tokens is evaluated, by appending
each to the benign input and the current patch and perform-
ing a forward pass through the target model, to compute the
loss with respect to the correct classification.

(3) At the end of the iteration, the candidate token with the
highest loss is appended to the patch.

This process is repeated until the patch reaches an arbitrary
length. Since the patch is constructed by maximizing the loss with
respect to the correct classification over a particular input, it con-
stitutes a non-universal and untargeted attack. Furthermore, the
attack solely relies on the confidence score at the output of the
target model, categorizing it as a grey-box attack.

This approach was valuable to evaluate the feasibility of this
type of attack. However, since the LLM lacks context when con-
structing the patch, it predominantly produces meaningless patches
or converges to generate repetitive sequences of words with the
opposite sentiment. For example, it produces text sequences such as
"\usepackage{%} {graph}{TensorMathPackage$""or "It works
perfectly well fine it works perfect perfect perfect
perfect".

Incorporating the input text as context during the patch con-
struction led to more meaningful patches, i.e., coherent sentences
that keep the context of the original input. However, it did not
significantly improve how well the patch preserved the sentiment
of the input. This may happen due to the absence of a mechanism
to impose other constraints on the attack such as preserving the
sentiment of the input to improve imperceptibility.

3.3 Paraphrasing approach

To introduce a constraint that preserves the meaning (or sentiment)
of the benign input, the approach was modified by replacing the
LLM with an instruction or chat-tuned variant [27]. This type of
model can be instructed to paraphrase the benign input without
altering the original meaning to construct the adversarial patch.
The modifications with respect to the naive approach are shown in
Figure 3. The structure of the attack remains the same, except for the
way the token candidates for the adversarial patch are generated.
As will be shown in the next section, the words in the adversar-
ial patches obtained using top-k as the selection method are often
incomplete, misspelled, or non-existent. For example, "unnotice,'
"sequal,’ or "likeErrollFllyndstand. This occurs when the prob-
ability of the next token is highly concentrated on a single (or very
few) option, and the top-k method allows the selection of a lower-
probability token. To address this issue, another selection technique
is introduced: a probability threshold. For instance, if in a given
iteration the current patch ends in "unnotice," the top-k method
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In a given iteration, with k=3:

Input = This movie has an exceptional plot and great actors.
Patch = The film is

1. Next token candidates (top 3):

* Remarkable
* Great
« Ridiculously

2. Loss for the benign input + patch + candidate:

* Remarkable 0.55
o Great 0.50
« Ridiculously 0.61

3. Patch = The film is ridiculously

Figure 2: Left: using an LLM to generate a meaningful adversarial patch for a sentiment classifier. Right: an example of the

approach.

might allow the word to remain incomplete if the space character
is among the k token candidates and happens to maximize the loss.
However, if a probability threshold is used and only the token that
completes the word surpasses it (in this case, the character "d"),
that token is guaranteed to be selected.

For a specific attack, the threshold is determined through trial
and error, analyzing the generated adversarial patches and balanc-
ing the trade-off between the attack success rate and the meaning-
fulness of the patch. The threshold must be low enough to generate
multiple token candidates for the method to evaluate, yet high
enough so that when the probability is mainly concentrated on one
token, it is chosen for the patch. The threshold is combined with a
cap to restrict the number of options evaluated in a single iteration,
in our case, set at 20 tokens.

3.4 Beam search approach

Finally, as a way to widen the search space for the adversarial patch
and control the trade-off between the patch meaningfulness and the
attack success rate, a beam search approach is introduced building
on top of the paraphrasing approach. At the end of each iteration,
a certain number of adversarial patches are kept (beams) for the
next iteration. This approach is coupled with a score mechanism
to rank the token candidates not only by the loss but also by their
associated probability given by the LLM, this ensures the patch
with a higher sentence probability is chosen.

Thus, a score is computed for each token candidate utilizing
both the loss of the target model and the probability of the patch
given by the LLM. This probability represents how likely the LLM
is to generate the patch as a sequence of tokens given the provided
context. Hence, for a particular benign input and adversarial patch,
the score is computed as follows:

Score(patch) = a L(y, §) + (1 = a) Ppasch (1a)
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i=1
Where L(y, §j) represents the cross-entropy loss of the classifica-
tion task with respect to the correct class, and Pp,;cp, denotes the
probability of the patch p given the context c. This term is computed
from the confidence values of the LLM as it generates the patch.
The reason it is written as a normalized sum over logarithms of
probabilities is to counteract the issue that arises when multiplying
probabilities, that is, the values become progressively smaller. So
we use length normalization [26], a technique frequently used in
beam search to overcome this issue. In equation 1a, « is used to
modulate the degree of importance assigned to each term in the
score. A higher & means that the loss term holds more influence

over the score compared to the probability of the patch.

(1b)

4 Experimental Setup

To evaluate the efficacy of the different attack variants, as the target
model we use a distilBERT model fine-tuned on the IMDB reviews
dataset for sentiment classification [23].

We evaluated the naive approach with Llama2-7B as the LLM
generating the patch, then transitioned to the paraphrasing ap-
proach. With the paraphrasing approach, the evaluation included
different LLMs, such as Intel’s Neural Chat-7B, Llama2-chat-13B,
and Mistral-Instruct-7B. For the beam search approach, we utilized
the model that produced the best patches, namely Intel’s Neural
Chat-7B. Finally, we present a set of experiments on another target
model fine-tuned on the Rotten Tomatoes dataset of movie reviews
[28].

Since the ground truth is available for these datasets, we defined
the attack to be successful if it changed the prediction of the tar-
get model on an input that was correctly classified before adding
the patch. For this reason, we pre-process the dataset to filter out
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Prompt of the Chat LLM:
### System:
You are a helpful assistant. Your mission is to

ﬁ}ﬁ:ﬁ; ( ) D help users paraphrase text without changing
+lnput ) Chat LLM Selection —> D its original sentiment or semantic meaning.
+ Patch N
Topk / ### User:
N Threshold D This movie has an exceptional plot and great
ext token
probabilities Nex(; Loken actors.
candidat
andicates ### Assistant:
The film is

Figure 3: Left: generation step of the paraphrasing approach, the other steps are equal to the naive approach. Right: an example
prompt for an attack that targets a sentiment classifier with the format of Neural-Chat-7B.

samples that are incorrectly classified by the target model, leaving
23966 samples out of 25000. Furthermore, we ensure that we use
samples that will fit within the context length of the target model
(512 tokens) when concatenated with the largest patch size, in the
case of the IMDB dataset, 50 tokens, resulting in 19477 samples.

We observed that the attack would occasionally converge to
patches that completely changed the sentiment of the input. Since
our approach aims to emulate the imperceptibility of adversarial
patches in images, we considered this outcome undesirable. There-
fore, in addition to counting successful attacks, our results incorpo-
rate other metrics that evaluate the meaningfulness of the patch
and its ability to preserve the original sentiment.

In the next section, we discuss the results of each set of experi-
ments in terms of the following metrics:

o Attack Success Rate (ASR): percentage of attacks that were
successful, that is, attacks that changed the prediction of the
model.

e Sentiment Analysis (Vader): percentage of successful at-
tacks where the rule-based sentiment analysis tool, Vader
[14], classifies the patches as being of the same sentiment of
the input with which the patch was generated or of neutral
sentiment. For a well-camouflaged attack on a sentiment
classifier, this percentage should be higher.

e Perplexity (PPL): This metric is designed to gauge the
meaningfulness of the patch, as perplexity measures the
likelihood of an LLM to generate a specific text sequence.
The lower the perplexity, the better the attack is hidden. We
used the smallest version of GPT-2 [29], with 124M parame-
ters, as the model to compute this metric. In the next section,
the perplexity is presented only for the successful attacks.
For our analysis, we also report a reference perplexity value,
equal to the maximum perplexity of the samples from the
dataset. This value corresponds to the threshold of the base-
line perplexity filter proposed by [15]. This filter would flag
any sequence of text that surpasses this threshold.

Every experiment is conducted on 500 positive and 500 negative
samples chosen at random from the pre-processed dataset for the
sentiment classifiers. We present the results for positive and nega-
tive cases separately since we found the attack behaves differently
depending on the sentiment. The length of the patch is fixed to 50
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tokens for the IMDB model, while it is limited to 10 tokens for the
Rotten Tomatoes model since the average length of the reviews is
27 tokens compared to 220 tokens for the IMDB dataset.

4.1 Attack Success Rate (ASR)

The results for the different attack variants, except the beam search
approach, are shown in Table 1. Increasing k or decreasing the prob-
ability threshold means more token candidates can be explored to
form the adversarial patch. This increases the likelihood of finding
a patch that increases the loss, thereby misleading the target model
into making an incorrect prediction. However, evaluating more
token candidates means the attack becomes more computationally
expensive growing at the rate of k, unless the candidates can be
evaluated in parallel, depending on the availability of compute and
memory.

When a probability threshold is used, the ASR drops compared
to the top-k selection method, as will be discussed later in this
section, this drop points to a trade-off between the effectiveness of
the attacks and how well camouflaged they are. It can also be seen
that the ASR is consistently higher for negative sentiment reviews.

Additionally, Figure 4 shows that for the paraphrasing attack
with top-k, as the patch becomes longer, the loss over the correct
classification increases which is reflected in the ASR. This pattern
is consistent across the different approaches.

When comparing the ASR among different LLMs, it can be seen
it is higher for Mistral-Instruct-7B and Neural-Chat-7B than for
Llama2-chat-13B. As it will be shown with the other metrics, the
reason Neural-Chat-7B was chosen as the best-performing LLM
for this set of experiments is not solely because of its ASR but
because the patches it generated fulfilled the objective of being
better camouflaged than the others.

4.2 Sentiment analysis

Table 2 presents results given by the Vader sentiment analysis tool
when considering only successful attacks. It can be seen there is a
significant difference between the attack’s behavior for negative
and positive sentiment samples. A higher percentage of patches for
negative samples are categorized as having the opposite sentiment.
This suggests the constraint imposed on the LLM to preserve the
sentiment of the benign input on the adversarial patch is more
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Table 1: ASR for different attack variants against distilBERT fine-tuned on the IMDB dataset.

Attack Selection LLM K/ Threshold ..ASR (%) -
Positive  Negative

5 11.4 21.6

Naive Top-k llama2-7B 10 33.8 51.0
20 73.8 75.8

5 30.8 54.8

Naive + Context Top-k llama2-7B 10 65.0 79.8
20 89.0 92.0

5 27.2 35.0

Paraphrasing Top-K neural-chat-7b 10 60.0 66.2
20 79.6 85.2

0.005 16.2 45.4

Paraphrasing Threshold neural-chat-7b 0.004 21.8 51.2
0.003 23.8 56.2

0.005 4.0 16.8

Paraphrasing Threshold llama2-chat-13B 0.001 13.2 37.8
0.0005 28.2 48.6

0.008 13.2 37.8

Paraphrasing Threshold mistral-inst.-7B 0.005 19.6 53.2
0.002 48.2 68.4

Attacks with a 50 token patch for 500 reviews from each class.

ASR (%)

0 10 20 30 40 50
Patch Length (tokens)

Figure 4: ASR of paraphrasing attack with top-k on 500 pos-
itive reviews against distilBERT fine-tuned on the IMDB
dataset.

robust for positive reviews. Comparing the different LLMs, the
better-performing attacks by this metric are with Neural-Chat-7B
and Llama2-Chat-13B.

As k increases or the probability threshold decreases, the number
of patches that Vader classifies as preserving the sentiment also
decreases. This could be attributed to the fact that patches diverge
more from the benign input, therefore the sentiment constraint be-
comes weaker as the sample space of tokens for the patch becomes
larger. The opposite phenomenon is observed when comparing the
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metric between top-k and threshold. As will be discussed in Section
4.3, the attack with top-k tends to generate more gibberish-like
patches, which might increase the complexity of the sentiment
classification task as the patches approach an out-of-distribution
sample.

In addition to the Vader sentiment analysis tool, we also consid-
ered the classification of the adversarial patch by the target model.
Specifically, the percentage of successful attacks where the target
model, when given the patch as input, outputs the same sentiment
as the associated benign input. However, in practice, the results
were consistently under 2%, with most of them being 0%. This is
why this metric is not included in the results, as it does not change
between variants of the attack. This type of metric is intended to
provide an insight into whether the adversarial patches preserve
the sentiment of the benign input. However, it could be argued that
since the attack is optimized to produce a patch that deceives a
sentiment classifier, it is expected that the model will misclassify it.

4.3 Perplexity

To measure the meaningfulness of the adversarial patches, the av-
erage perplexity of the patches from successful attacks is presented
in Table 4. In this case, the maximum perplexity of the samples of
the IMDB dataset is 1184. This value corresponds to the perplexity
threshold of a baseline perplexity filter [15].

The results indicate that as k increases or the probability thresh-
old decreases, perplexity also increases. This occurs because mean-
ingless patches are generated more frequently, as the search space
expands and tokens with lower probabilities can be selected to
form the patch. This is why a probability threshold is preferred
over top-k, as mentioned in Section 3.3, since it leads to patches
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Table 2: Percentage of adversarial patches that preserve the sentiment according to Vader from successful against distilBERT

fine-tuned on the IMDB dataset.

Attack Selection ~ LLM K / Threshold _Vader (%) _
Positive Negative

5 75.4 10.2

Naive Top-k llama2-7B 10 58.6 6.7
20 49.3 5.8

5 36.4 3.7

Naive + Context Top-k llama2-7B 10 37.5 1.0
20 23.6 0.7

5 61.8 18.9

Paraphrasing Top-K neural-chat-7b 10 59.0 10.0
20 45.5 2.3

0.005 44.4 13.7

Paraphrasing Threshold neural-chat-7b 0.004 50.5 10.5
0.003 42.9 10.3

0.005 65.0 17.9

Paraphrasing Threshold llama2-chat-13B 0.001 48.5 7.9
0.0005 39.7 5.3

0.008 37.9 6.7

Paraphrasing Threshold mistral-inst.-7B 0.005 52.0 6.0
0.002 39.4 4.7

Attacks with a 50-token patch for 500 reviews from each class.

with lower perplexity. Overall, patches associated with negative
samples exhibit a lower perplexity and all of them from the para-
phrasing approach, with Llama2 and Neural-Chat, would bypass a
perplexity filter with the aforementioned perplexity threshold.

In general, the naive approach without context generates the
most meaningless patches. For positive sentiment reviews, we ob-
served some patches are mostly gibberish, often containing LaTeX
syntax or other code patterns, while others exhibited repetitive
wording and expressed the opposite sentiment of the review. In
contrast, patches for negative sentiment reviews tend to be more
coherent, but the algorithm tends to converge toward generating
words with a positive sentiment. Adding the review as context to
build the patch improves the coherence therefore lowering the per-
plexity. This effect is magnified with the paraphrasing approach,
especially when selecting tokens using a probability threshold. Ta-
ble 3 provides examples of adversarial patches that highlight these
observations.

In the case of the paraphrasing approach, the most effective at-
tack is with Llama2-Chat-13B, followed by Neural-Chat-7B. Upon
manual inspection of some of the patches, we observed that Neural-
Chat-7B tends to generate more meaningful patches without alter-
ing the original sentiment, using complete words, while Llama2-
Chat-13B is more prone to produce incomplete words. Mistral-
Instruct-7B also produced good patches, but its responses often
included affirmations of the instruction given. However, these affir-
mations were inconsistent across different inputs, making it chal-
lenging to control. It is worth mentioning that Llama2-Chat-13B
also exhibited this behavior, but the affirmative answer was nearly
identical each time, making it easier to incorporate into the prompt-
ing scheme and only use the tokens it generated afterward. These

49

observations, along with the other metrics, are the rationale behind
selecting Neural-Chat-7B as the LLM for subsequent experiments.

4.4 Beam Search

For the beam search approach, which incorporates a score for the
token selection mechanism that builds the patch, an experiment
was conducted for different values of the o hyper-parameter. This
parameter controls the degree of importance assigned to each term
of the score: the loss of the target model and the probability of the
patch as a sentence.

The results are presented in Figure 5. When « is set to 1, the
attack solely relies on the loss of the target model to construct the
patch as the previous attacks. However, since the search space of the
token candidates is larger the ASR increases significantly compared
to the approach without a beam search. For other values of «, it
can be seen that as « increases, so does the ASR and the perplexity.
This increase is expected as the patch diverges to a greater degree
from the benign input.

The sentiment analysis metric by Vader exhibits the same behav-
ior as mentioned in Section 4.2. For low values of «, the percentage
of patches that preserve the sentiment decrease as a increases.
These observations are exemplified in Table 5. However, the per-
centage starts increasing again for high values of a, which could
indicate that for high perplexity (more gibberish-like) patches, the
sentiment becomes harder to analyze, and in the extreme case of
a completely meaningless patch, the classification task becomes
intractable.
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Table 3: Adversarial patches for successful attacks for a positive review from the IMDB dataset.

Review: Errol Flynn’s greatest movie, not just a sports movie with a wonder last 5 minutes where Ward Bond shines. Don’t miss it just
because you think its an old movie. Its a classic that could be easily missed. Do yourself a favour and don’t.

Attack Method Adversarial Patch

Naive TopK \\begin{c.enter}{%* FrEmmmwkwak gk ko g* * \\vspace” {0.2cm}\\noindent\\large{Abstract.}\\normalem}
%\\parskip=1

Naive + Context Top-K This movie should not go unnotice... Read morded. It was a very interesting storyline, but the ending left
something lackluster and unfulfull. Over-ratted, and overly long movie that could use a little editing

Paraphrasing Top-K This film with a leading actor likeErrollFllyndstand out not just due to being about a game or contest -
its climactericc last minutes makeWarding Boundstandout too. Do not let it’ss being
This movie with the unsurpassable acting by Erroll Flynn shouldn’t just be categorized under a mere

Paraphrasing Threshold sport flick - pay extra heed for that breathtaking climactic ending involving an illustrious act by Ward

Bond.

Llama2-7B and Neural-Chat-7B generated the patches for the naive and the paraphrasing approach respectively.

Table 4: Average perplexity of adversarial patches from successful attacks against distilBERT fine-tuned on the IMDB dataset.
The maximum perplexity of the samples from the dataset without perturbations is 1184.

Attack Selection LLM K/ Threshold — PPL -
Positive ~ Negative

5 453.5 113.1

Naive Top-k llama2-7B 10 2283 134.6
20 14787.8 1151.4

5 128.0 57.7

Naive + Context Top-k llama2-7B 10 2494 101.5
20 3073529.3  530147.3

5 829.8 281.5

Paraphrasing Top-K neural-chat-7b 10 1384.4 374.7

20 1501.0 407.4

0.005 294.1 187.1

Paraphrasing Threshold neural-chat-7b 0.004 391.9 196.8

0.003 446.7 230.0

0.005 61.3 49.2

Paraphrasing Threshold llama2-chat-13B 0.001 384.6 129.3

0.0005 546.6 170.4

0.008 54537.1 82.3

Paraphrasing Threshold mistral-inst.-7B 0.005 17169.8 104.2

0.002 3621.4 183.2

Attacks with a 50 token patch for 500 reviews from each class.

4.5 Rotten Tomatoes dataset

The experiments conducted with the Rotten Tomatoes dataset are
presented in Table 6. In this case, we used the beam search approach
with a fixed threshold and Neural-Chat-7B. Similar patterns are
observed in the metrics as for the IMDB dataset. As « increases, so
does the ASR and the perplexity of the generated patches. Moreover,
the ASR is higher for negative compared to positive reviews, while
the perplexity follows the opposite trend. The percentage of patches
that preserve the sentiment according to Vader are higher when
compared to the IMDB dataset which suggests the attacks are better
camouflaged.
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Additionally, all successful attacks have a perplexity within the
maximum perplexity of the Rotten Tomatoes samples, which is
140302. This implies that all attacks would have bypassed the base-
line perplexity filter proposed by [15].

The ASR values are lower than those from the IMDB dataset,
possibly due to the shorter length of both the input and the patch
which might indicate the algorithm takes longer to converge as
the addition of a single token does not increase the loss by a large
margin as indicated by figure 4. Additionally, since the attacks are
performed with the same parameters as the ones for the IMDB
task, there is an unexplored space of hyper-parameters and prompt
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Table 5: Adversarial patches for different values of o for a negative review from the IMDB dataset generated with Neural-Chat-

7B.

Review: Not good! Rent or buy the original! Watch this only if someone has a gun to your head and then...maybe. It is like claiming an

Elvis actor is as good as the real King.

a  Adversarial Patch Success
0.5 Poor quality! Rent or purchase the authentic version instead. Watch this only under extreme coercion, N
" and even then, possibly not. It’s like saying an Elvis impersonator is just as good as the actual King.
0.7 It’s not great! Rent or purchase the authentic version. Watch it only if you're forced under threat, and v
" even then, it’s still quite a challenge. It is quite an apt metaphor that regards the quality of this
The quality is far from excellent! Consider the authentic edition to enjoy it fully! View it in extremely
10 compelling, rare, compellingly strong compelling strong compelling strong compellingly strong comp- v
" ellingly strong compellingly strong compelling strong circumstances where your life depend on this
specific
o . e . 300 1 o .
80 1 —e— Positive Reviews 704 " Positive Reviews —e— Positive Reviews
70 1 Negative Reviews Negative Reviews Negative Reviews
250
60 -
60
~ 501 2 907 200 1
g% = y
o 401 g 40 a
& k 150
301 = 30
201 20 4 100 | )
o
10 1 101 w‘(._'_/
R e — ———— e P
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
a a a

Figure 5: Beam search attack efficacy for different values of o against distilBERT fine-tuned on the IMDB dataset. Attacks with
a 50 token patch generated with Neural-chat-7B with a fixed threshold of 0.005, for 500 reviews from each class.

Table 6: Beam search attack efficacy for different values of
a against distilBERT fine-tuned on the Rotten Tomatoes
dataset.

Positive Reviews Negative Reviews

% TASR(%) Vader (%) PPL  ASR(%) Vader (%) PPL
0.9 8.0 60.0 722.7 20.4 23.5 385.7
0.95 8.2 58.5 731.4 20.6 24.3 396.0
1.0 17.6 72.7 1019.7 41.4 31.9 660.3

Attacks with a 10 token patch generated with neural-chat-7B
with a fixed threshold of 0.005, for 500 reviews from each
class.

engineering techniques that could bring the performance closer to
the one obtained with the IMDB.

5 Conclusions and Future Work

In this work, we show that it is possible to use an LLM’s mastery
over language to generate meaningful adversarial patches that alter
the behavior of a downstream target model, such as a sentiment clas-
sifier. By including the benign input as context for the construction
of the patch we build well camouflaged adversarial patches, which
emulates adversarial attacks on images that are imperceptible to
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humans. Additionally, our attack includes a hyper-parameter that
can control the trade-off between the meaningfulness of the patch
and the success rate of the attack. So the attack can be fine-tuned
to work in different settings that include detection mechanisms
such as perplexity filters. When attacking sentiment classifiers, we
introduce a constraint so the patch preserves the sentiment of the
benign input. In practice, we observed this constraint was harder
to enforce for negative sentiment samples. A possible hypothesis
is that LLMs are more prone to generate positive words or the
classifier is better at discerning negative than positive inputs.

For future work, we plan to: (1) explore different prompt engi-
neering techniques, such as few-shot prompting, to improve the
way the LLM enforces the constraints on the attack, (2) study how
the location of the adversarial patch can influence the success rate
of the attack, (3) explore other hyper-parameters such as the num-
ber of beams, a and different probability thresholds, (4) examine
the effectiveness of the proposed attack approaches to other clas-
sification datasets, (4) explore methods to choose an appropriate
probability threshold as it changes with different LLMs and datasets,
(5) extend the attack to other tasks and to exploit other types of
vulnerabilities, such as jailbreaking, by modifying the loss function
used to generate the patches.
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