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Abstract—Attention-based models are proliferating in the
space of image analytics, including segmentation. The standard
method of feeding images to transformer encoders is to divide
the images into patches and then feed the patches to the model
as a linear sequence of tokens. For high-resolution images,
e.g. microscopic pathology images, the quadratic compute and
memory cost prohibits the use of an attention-based model, if we
are to use smaller patch sizes that are favorable in segmentation.
The solution is to either use custom complex multi-resolution
models or approximate attention schemes. We take inspiration
from Adapative Mesh Refinement (AMR) methods in HPC by
adaptively patching the images, as a pre-processing step, based
on the image details to reduce the number of patches being fed to
the model, by orders of magnitude. This method has a negligible
overhead, and works seamlessly with any attention-based model,
i.e. it is a pre-processing step that can be adopted by any
attention-based model without friction. We demonstrate superior
segmentation quality over SoTA segmentation models for real-
world pathology datasets while gaining a geomean speedup of
6.9x for resolutions up to 64K2, on up to 2,048 GPUs.

I. INTRODUCTION

Recently, Vision Transformers (ViTs) have emerged as a
transformative paradigm in computer vision, demonstrating re-
markable success in image classification tasks [1], [2], [3], [4],
[5]]. To effectively tackle dense prediction tasks like segmenta-
tion, numerous efforts have introduced variations on ViTs [0,
[7], (8], [9]. Others have explored combinations of transform-
ers with U-Net like architectures [7]], [10], [[1L1], [12]. However,
employing ViTs with high-resolution images presents distinct
scalability challenges, especially when processing small-sized
image patches arranged into long sequences of complex visual
data in medical imaging [10], [13]].

The challenge of handling long sequences in ViTs arises
from the quadratic computational complexity associated with
self-attention mechanism, leading to significant computational
demands [14]. Consequently, traditional ViTs encounter limi-
tations when applied to high-resolution images, where detailed
information spans extensive spatial contexts.

There are other two approaches that address the long
sequence scaling problem, yet they do not reduce the to-
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tal amount of work. The Sequence parallelism approach
distributes long sequences into sequence segments among
workers (GPUs): Deep-Speed Ulysses [15], LightSeq [16],
RingAttention [17], and LLS [18]]. The blocking/titling ap-
proach aims to tile the attention matrix into sub-matrices
that fit into the user-managed cache memory: FlashAttention
1 [19] and 2 [20], and the Swin transformer [7] that adopts
a shifted windowing technique, breaking down the image
into smaller overlapping windows for processing within the
transformer. The blocking/tiling approach allows scaling for
longer sequences to the available memory, however, the total
amount of compute is not reduced.

In contrast, there are two other approaches that address the
long sequence scaling problem by reducing the amount of
work (not necessarily specific to vision transformers): attention
approximation and hierarchical training.

The approximation attention approaches approximate the
self-attention mechanism through spectral attention [21]], [22]],
[23]], low-rank approximation [24]], [25]], sparse attention ma-
trix sampling [26], [27], [28], [29], [30l], infrequent self-
attention updates [31]], [32], or their combinations [33]. Ap-
proximation methods greatly reduce the memory and com-
putation cost, with some reducing the quadratic complexity
of self-attention to be linear. Yet, loss of information due to
approximating the self-attention could have negative impact
on accuracy, especially for long-range sequences. Experiments
show a notable drop in accuracy when the compression ratio
surpasses 70% [34]. Finally, implementing approximation ap-
proaches is complex and often requires custom operators and
sparse formats.

Hierarchical training of ViTs comprises multiple transform-
ers being trained at different levels of resolution [35[], [36],
[9], [37]. Training begins with the lowest-level transformer
processing short sequence segments. Higher-level transform-
ers iterate on using outputs from lower levels to process
longer segments. However, employing multiple transformers
increases the training time and memory usage. Moreover, man-
aging multiple interacting transformers is complex, demanding
hyperparameter tuning for the model at each resolution level.



TABLE I: A summary of relevant long sequence training methods that reduce the amount of work. N = sequence length.

Approach Method Merits & Demerits Complexity (Best) Model Implementation
Longformer [29] (+) Better time complexity vs Transformer. O(N)
ETC (38] (-) Sparsity levels insufficient for gains to materialize. O(N+VN)
BigBird [39] (+) Theoretically proven time complexity.
O(N log N) Some
Reformer [40] (-) High-order derivatives Custom
Attention - - Models
(+) Introduced sparse factorizations of the attention. Self-attention
Approximation Sparse Attention [41] X . X O(NVN) w/ Forked
(-) Higher time complexity. Implementation
PyTorch
Linformer [42] (+) Fast adaptation
O(N)
Performer [43] (-) Assumption that self-attention is low rank.
Hier. Transformer [35] (+) Independent hyperpara. tuning of hierarc. models.
O(N log N)
(Text Classification) (-) No support for ViT.
CrossViT 9] (+) Better time complexity vs standard ViT.
O(N) Custom
(Classification) (-) Complex token fusion scheme in dual-branch ViTs. Custom
Model
Hierarchical HIPT (36] (+) Model inductive biases of features in the hierarchy. Model
O(N log N) w/ Plain
(Classification) (-) High cost for training multiple models. Implementation
PyTorch
MEGABYTE [37] (+) Support of multi-modality. 4
O(N 3)
(Prediction) (-) High cost for training multiple models.
(+) Attention mechanism intact. Any
Adaptive Patching (+) Negligible overhead. 2 Model Image
Ours O(log“N)
(Segmentation & Class.) (+) Largely reduces computation cost; maintains quality. w/ Plain Pre-processing
() Efficiency depends on level of details in an image. PyTorch

In summary, to scale long sequences for high-resolution im-
age segmentation trained on ViT models or U-Net models that
use transformers to ingest the images, we need the following:
a) be able to use smaller patch sizes that are favorable in
segmentation [13]], b) avoid the potential loss in performance
that comes with self-attention altering mechanisms, c¢) avoid
the high aggregate compute cost of sequence parallelism
and tiling/blocking methods, and d) have a general solution
that can work with transformer model, and not custom built
models.

To that end, we take inspiration from the tree-based Adap-
tive Mesh Refinement (AMR) methods pioneered [44] and
used [45], [46] for decades in HPC to dramatically reduce the
computational cost of solvers applied on structured discretized
meshes. We propose an Adaptive Patch Framework (APF)
that is compatible with any vision transformer. APF is a pre-
processing solution that uses a quadtree to partition each image
in the dataset into mixed-scale patches, based on the level
of detail in different regions in the image. Larger patches,
that carry fewer image details are then downscaled such that
all patches become the same size when being fed to the
model, while keeping the core attention mechanisms and ViT
model architecture intact. To demonstrate APF’s scalability,
we conducted extensive training of transformer-based vision
models with small patch sizes for long sequences of high-
resolution images. The primary contributions outlined in this
paper are as follows:

o Adaptive Patch Framework A solution to reduce the
total number of patches extracted from an image, thereby
reducing the overall training cost. This not only reduces
the cost of computing and memory, it also allows for
using small sizes for patches, e.g., 4x4 or 2x2, which is
favorable for high segmentation quality [13]]. Our quan-
titative results demonstrate that at the same resolution
levels [512, 1024, 4096, 8192, 16384], a model using AFP
can employ nearly 8x smaller patch sizes or 64 x longer

sequence lengths, while maintaining the same cost of
traditional patching.

o High-quality segmentation on real-world datasets We
conducted experiments on Frontier supercomputer, with
up to 2,048 MI250X using real-world high-resolution
pathology datasets. At a fixed compute budget, and up to
the depth of 13 multi-resolutions, we can scale to image
resolutions up to 16K 2 and lower the patch size from
16 x 16 to the minimum 2 x 2 on a vision transformer.
Meanwhile, due to the smaller patch size at the same
computational cost, we improve the segmentation quality
by 5.5% over widely used models. Alternatively, we
can reach the same segmentation quality with speedups
ranging between 12.7x to 3.9x. We also demonstrate
the versatility of AFP by achieving more than 7% clas-
sification accuracy over the most sophisticated model
for classifying of high-resolution microscopic pathology
images.

o Simplicity and low-overhead Unlike existing methods
that modify attention mechanisms, our solution preserves
the original attention mechanism. This ensures seam-
less integration into any vision transformer. APF is a
very low-overhead pre-processing solution, that is fur-
ther amortized over epochs: the overhead is effectively
negligible.

In summary, AFP offers a novel and general solution to
the long-sequence challenge in ViTs, it preserves the dense
self-attention merits, and reduces sequence length dramatically
to boost the segmentation efficiency. This paves the way for
enhanced applications of ViTs in high-resolution scientific
imaging domains.

II. BACKGROUND AND MOTIVATION

A. Adaptive Mesh Refinement and Quadtrees in Imaging

Structured AMR [44] uses a hierarchical spatial represen-
tation of mesh spacing. In the 2D tree-based scheme, the



mesh is organized into a hierarchy of refinement levels in a
tree that represents the hierarchy of the mesh. The mesh is
usually decomposed into relatively small fixed-sized quadrants
of mesh cells. Each quadrant can be recursively refined into a
set of quadrants of fine cells. A quadtree manages the mesh
by maintaining explicit child-parent relationships between
coarse and fine quadrants. At most one level of refinement
difference is typically allowed between neighboring quadrants
to maintain size relations. Traversing the quadrants across the
three leaves corresponds to a Morton z-shaped space filling
curve in the geometric domain [47]]. Accordingly, sorting the
tree leaf blocks by their Morton ID would give a series of
blocks that are affine in the geometric space of the mesh.

A similar concept appears in computer graphics, under the
name of quadtrees, where a mesh is replaced by an image,
and mesh cells are replaced by image pixels. The history
of quadtree structures dates back to early advancements in
computer graphics and image processing [48], [49]], [48]], [49],
[50], [51]. In the work of [48]], [49], quadtrees (octrees) were
used in 2D (3D) computer games to detect the collision of two
objects efficiently in O(nlogn) time complexity, where n is
the number of particles. Quadtrees are also used as an image
representation at different resolution levels and have been
efficiently applied in image [48] and video compression [49].
Recently, quadtrees have been used in image segmentation
to improve attention efficiency, e.g., quadtree attention [S2],
and octree transformer [S3]]. Both of those approaches employ
quadtrees, like the work in this paper. However, we introduce
a quadtree-based pre-processing patching strategy without
changing the model or attention scheme. In other words, our
proposal doesn’t involve additional complexity and custom
model design; our solution can be integrated seamlessly into
the current and future transformer-based encoders.

B. Vision Transformers and Attention

Our proposed methods act as a pre-processing step to feed
patches to vision transformers, or U-Net [54] like models
employing transformer encoders. ViTs [2] comprise an em-
bedding layer, transformer encoder layers, and a classification
head. The embedding layer linearly projects the image patches
sequence input into a sequence of flattened embeddings. Trans-
former encoder layers process these embeddings, capturing
local and global context through self-attention mechanisms.

The attention mechanism in transformers computes attention
scores A between input tokens, forming the attention matrix.
Let x € RV*F denote a sequence of N feature vectors of
dimensions F. A transformer is a function T : RV*F —
RN*F defined by the composition of L transformer layers
T1(-)y ..., Tpr() as follows,:

Ty(z) = fi(Ai(x) + z). (1

A;(+) is the self-attention function. The function fj(-) trans-
forms each feature independently of the others, and is usually
implemented with a small two-layer feedforward network.
Formally, the input sequence x is projected by three matrices

Wq € RF*XP Wy € RFXP and Wy € RF*P| to cor-
responding representations (), K and V. Thus, the attention
scores are calculated as follows:

Q=zWq 2)
K =xWkgk 3)
V =zWy 4)
o W)

A;; = Softmax ( NGA (5)

where (); and K; are query and key vectors for tokens ¢ and j,
and dy, is the dimension of the key vectors. The complexity of
the attention matrix is O(N?), where N is the sequence length.
The same is true for the memory requirements because the full
attention matrix must be stored to compute the gradients for
the weights of the queries, keys, and values.

We further assume that the input is the content of a square
image x with a resolution of Z, that is, let z € R%*%,
and by assuming that patches arise from the uniform grid
patch method of patch size p. Thus the sequence N = (%)2.
Therefore, the total computation and memory cost of attention
scores according to resolution and patch size is O([%]‘*).
This complexity demonstrates the difficulties of increasing the
resolution while decreasing patch size P with the uniform grid
patch strategy.

C. Long Sequence Problem

Due to the quadratic cost of transformers w.r.t. the sequence
length, numerous efforts have been dedicated to overcoming
the long-sequence problem by reducing the amount of work.
The first approach questions the necessity of full attention be-
tween all input embedding pairs. Longformer [29] introduced
a localized sliding window-based mask with few global masks
to reduce computation scales linearly with the input sequence.
Child et al. [41] proposed a set of sparse attention kernels
that reduces the complexity to O(ny/n) and saves memory
usage of the backward pass. Reformer [40] further reduces the
complexity to O(nlogn) based on locality-sensitive hashing.
ETC [38] uses local and global attention instead of full self-
attention to scale transformers to long documents. BigBird
[39] is closely related to and built on the work of ETC.
Linformer[56] assumes the self-attention is low rank, and also
proposes a linear complexity transformer. Later, Performers
[43] also achieved linear space and time complexity and did
not rely on any priors such as sparsity or low-rankness.

The second approach reduces the attention computation
by training a hierarchy of models at different resolutions.
Hierarchical transformers for text classification [35] use three
models to capture the structure in long sequences in doc-
uments. CrossViT [9] classifies images by running a dual-
attention model, in which each branch creates a non-patch
token to exchange information with the other branch by atten-
tion. HIPT [36] is a classifier for high-resolution images that
trains multiple models at different resolutions to leverage the
hierarchical geometric structure of visual tokens. The highest
resolution model is trained with large patch sizes to reduce the
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Fig. 1: Overview of AFP. The right-side flow (green) shows all the steps, starting from the original image, and ending up with
feeding the patches (tokens) to an intact transformer-based model. The reduction from 4,096 to 424 patches (of size 4 x 4)
while achieving the same dice score is from a real example of training 512 x 512 images from the PAIP [55] liver cancer

dataset on the UNTER [10] model: ~ 9.6x reduction in sequence length, and ~ 12.7x speedup in end-to-end training.

sequence length. MEGABYTE [37] predicts patches of bytes
by running local and global models at different patch sizes.

We summarize the core idea of each approach and their
limitations in Table[[} Hierarchical and attention approximation
methods exploit the hierarchy and sparsity of the features
inside the model. On the other hand, our solution is a
lightweight mechanism that exploits the hierarchy and sparsity
of features at different resolutions directly on the images in
a pre-processing step, which leaves the attention mechanism
and the model architecture intact.

D. High-Resolution Segmentation

High Resolution (HR) aggravates the long-sequence prob-
lem. Initially, the common way in literature to handle this
problem was to rely on a convolutional input encoder, which
first down-samples the image to learn low-resolution fea-
tures [57]], [S8] and then up-sample to complete the predic-
tion [59]. To benefit from the effective entire-image receptive
field of transformers, many efforts turned to transformer
encoders (as pure ViT or CNN+ViT), and resorted to the
techniques mentioned in the previous section for handling
the long sequence problem. HRViT[60], HRFormer[61]], and
HRNet[62]] learn the HR representations by cross-resolution
stream. Vision-LongFormer [63] uses a pyramid-like hier-
archical structure of models at different scales to combine

local attention and global memory. HIPT [36]] also applied a
hierarchical pyramid transformer to a pathology dataset with
the utmost 4K? resolution. However, in comparison to these
models, our method is a pre-processing strategy, which doesn’t
require additional revision to of the model or attention design.

III. ADAPTIVE PATCHING FOR HIGH-RESOLUTION
SEGMENTATION

Figure |I| gives an overview of the flow of AFP, in compar-
ison to the traditional method of dividing images uniformly
into equal-sized patches. AFP divides the image into patches
of different sizes based on the level of details, and then
downsamples the large patches so that all patches have the
same size. In the next section, we follow the flow of AFP
starting from the original image up until the patches are fed
to the model.

A. Quadtree-based Adaptive Patches

Image and Patches We use the following notation to distin-
guish the size of an “image” and the patch” corresponding to
that image. Consider an image dataset D consisting of input
images * € R?*Z where Z is the resolution of image .
Then, the sequence of non-overlapping patches can be noted
as {z;}, € RN*P where N is the sequence length and P
is the patch size. For the traditional uniform grid patching in



ViT [2]], the sequence length is N = (%)2. For an image x
with resolution Z = 512 (i.e. the image is 512 x 512) and
patch size P = 8 (i.e. the patch is 8 x 8), the sequence length
N is 4096 patches (tokens).

Edge Extraction To ignore the irrelevant details in the
images = in APF, as shown in step 0 of Figure EI, we apply
Gaussian Blur with kernel £ and Canny [64] edge detection
with lower ¢; and higher threshold ¢, to the original input
images x. The Gaussian blur smooths the irrelevant details,
and the Canny edge detection extracts the grayscale edges
z. of the image. The kernel £ and threshold ¢ can also be
used as hyper-parameters for controlling the smoothing effect.
During our experiments, we kept the threshold as [100, 200];
the kernel size is set to be [3,3,5,7,9,11, 13] for resolutions
[512,1024, 4096, 8192, 16384, 32768, 65536], respectively.

Quadtree Patches The input edge z. undergoes a recursive
quadtree partitioning shown by step @ of Figure |1} creating
nodes (), that represent specific regions where h is the depth
of the quadtree. The quadtree node Q1 is defined recursively
as follows:
if Y, D; <vorh=H
if >, D; >vand h < H

(6)
where H is the maximum quadtree depth, v is the subdivision
criterion, QRy, Qly, Q. QB are the h-th depth child nodes
representing the northwest, northeast, southwest, and southeast
quadrants, respectively [65], [66]. In our implementation, the
subdivision criterion constraints the total number of pixels
>; D; confined in the data area by the split value v. The
depth limitation H is set to [9,10, 12, 13,14, 15, 16] w.r.t. res-
olutions, which practically allows the input x. to be subdivided
all the way down to the 2 x 2 patch size level.

For uniform grid patches, we concatenate horizontal lines
of patches into a 1D sequence of patches. On the other hand,
for adaptive patching, after the quadtree is constructed, the
patches, that is, the leaf nodes, need to be arranged. Here
we show by steps e and 9 of Figure |1, we use a Morton
Z-order curve [47] to arrange the nodes starting from the
left end of the tree and going to the right. Z-order curves
have the desirable property of keeping geometrically affine
patches closer in the constructed sequence. After arranging
the patches, since different images have different quadtree
sequence lengths, firstly, we project all the different patches
into the same minimized size P,, (step of Figure|l). Next,
we randomly drop or pad them to the same length L. Finally,
the sequence of patches x, € RE*Pm are fed to the model
(step @ of Figure (1)) to train any underlying segmentation
model using a transformer encoder f(xzp;60). We summarize
the above steps in Algorithm [T}

It is worth mentioning that for quadtree in the worst case,
where all objects and details are in the same quadrant at the
deepest level of the tree, the time complexity becomes O(N?).
In the best cases, the quadtree patching strategy leads to
O(log? N), where N is the total number of patches. However,
from empirical observations in pathology datasets, instead of

Qni1 = {Qh
Qb Qe Qb Qlig}

Algorithm 1 Adaptive Patch Framework

Require: v, H, k, 1,1, f(x;0),N,T, D, D,
1: Initialize segment model f(x;0).
2: for n <1 to N do

3 zg = GaussianBlur(z,; k)

4 z. = CannyEdge(zg; (1, th))

5 zp = QuadTreePatch(zg;v, H)

6: Add to D, = D, U (zp, )

7

8

9

: end for
:fort <+ 1toT do
for n < 1 to N do

10: zp = Dp.pop()

11: Train f(x;6) on the x,.

12: end for

13: Evaluate f(x;6) on validation set.
14: end for

15: Evaluate f(z;0) on Test set.

the best or worst cases, we observed sub-linear growth in
sequence length as the average patch size decreased. This
linear complexity in sequence length suggests the empirical
time complexity is approximately O(n).

IV. EVALUATION

A. Experimental Setup

All the experiments were performed using the Frontier
Supercomputer [67] at ORNL. Each Frontier node has a
single 64-core AMD EPYC CPU and four AMD Instinct
MI250X GPUs (128GB per GPU). The four MI250X GPUs
are connected with Infinity Fabric GPU-GPU of 50GB/s. The
nodes are connected via a Slingshot-11 interconnect with
100GB/s, to a total of 9,408 nodes. For the software stack,
we used Pytorch 2.4 nightly build 03/16/2024. ROCm v5.7.0,
MIOpen v2.19.0, RCCL v2.13.4 with libfabric v1.15.2 plugin.

B. Datasets

PAIP [55]] is a high-resolution liver cancer pathology (real-
world) dataset. The sample resolution size is close to 64K,
far higher than the resolution of conventional image datasets.
PAIP includes 2,457 Whole-Slide Images (WSIs). When
needed to use smaller resolutions, we down-scale the im-
ages into uniform [512,1,024,4,096, 8,192, 16, 384, 32, 768]
square images. Before applying our quadtree patching method,
we first apply Gaussian smoothing with kernel size 3 x 3
and 0 = 0. Then, we used Canny edge detection with a
lower/higher threshold of [100, 200] to extract the edges from
the smoothed input. During the training process, we randomly
select 0.7 samples for training, 0.1 samples for validation,
and 0.2 samples for testing. All data sets are shuffled and
normalized to [0.0, 1.0] when used as model input.

BTCV challenge [68] for 3D multi-organ segmentation
contains 30 subjects with abdominal CT scans where 13 organs
are annotated by experts. Each CT scan consists of 80 to 225
slices with 5122 pixels. The multi-organ segmentation problem



TABLE II: Speedup of AFP end-to-end training for PAIP dataset at the same segmentation quality of the baseline. We use
the highest dice score of the baseline model (in Table , and report the APF configuration with similar dice scores.

Resolution Model-Patch | Sec/Image | Sequence Length Q;;Zf)glee ch?lg )c ore (Sseléfﬁggge) (Time tipé?)?)l\tle)rgence)
512 x 512 APF-4 0.06495 1,024 7 77.88
1 GPU UNETR-4 0.4863 16,384 : 77.31 748 12.71x
1,024 x 1,024 APF-8 0.14284 1,024 7 75.63 7 6x 12.92%
8 GPUs UNETR-8 1.0863 16,384 - 75.72 ’ :
4,096 x 4,096 APF-16 0.32231 2,116 8 75.74 5.77% 9.8%
128 GPUs UNETR-32 1.8613 16,384 - 75.77 ’ ’
8,192 x 8,192 APF-16 1.1613 2,116 9 76.13 2.99% 3.80%
256 GPUs UNETR-64 2.6618 16,384 - 75.27 : ’
16,384 x 16,384 APF-32 1.7613 1,024 9 75.92 2.9% 4.93%
512 GPUs UNETR-128 5.1179 16,384 - 75.89 ’ ’
32,768 x 32,768 APF-32 2.1567 2,116 10 75.32 379 6.44%
1024 GPUs UNETR-256 8.1896 16,384 - 74.96 ) ’
65,536 x 65,536 APF-32 5.733 4,096 11 75.82 2.3% 3.91x
2048 GPUs UNETR-512 13.218 16,384 - 75.31 ’ ’

is formulated as a 13 classes segmentation task where the
dice score typically reported is the average of the 13 classes.
BTCYV is relatively low in resolution in comparison to the PAIP
dataset (5122 vs. 64K?), yet is widely used as a benchmark
by the high-resolution medical segmentation community.

C. Models

Because our method is a patching strategy, it can easily
replace the uniform grid patching method typically used in
transformers. In our experiments, we use one of the widely-
used models, UNETR [[10], as the baseline model we use for
AFP to conduct experiments on the high-resolution medical
image segmentation task. It is worth nothing that in all our re-
sults we train the model from scratch for the target dataset: we
do not do any pre-training on other datasets or fine-tune. We
also report results for various other highly performing models
as baselines, TransUnet [69], HIPT [36], Swin UNETR [70],
ViT [2], and U-Net [54], to demonstrate different aspect about
the performance and efficiency of AFP.

UNETR uses a contraction-expansion pattern consisting
of several transformers as an encoder. It is connected to
the decoder via a skip connection. UNETR’s initial target
application was 3D medical imaging for human organs. The
original work [10] also discussed the impact of patch size on
the model: the smaller the patch size, the better the model per-
formance will be. However, due to the memory capacity and
compute power limitation associated with quadratic attention,
the authors reported that conducting experiments with a small
patch size is unfeasible. Since our target experimental data is
2D medical images, we only swap the 3D convolution and
deconvolution blocks in UNETR with the 2D version without
additional changes to the model structure. Other than that, we
make no changes nor do we tune the original UNETR model.

D. Training Setup

The loss function we applied is a combination of dice loss
and binary cross-entropy loss:

L(g,y) = w - Lice(9,y) + (1 — w) - Laice(9, v) ™
=—w- ;XN;[% log(9:) + (1 — ;) log(1 — 9;)]

(8)

+(1—-w)-(1- ZZilil(Qi'yi)‘Fe ©)

21‘1\;1 ?Qz + Zf\;1 Yi + €
where L(¢,y) represents the combined loss function, com-
posed of a weighted sum of Binary Cross-Entropy (BCE)
loss and dice loss. w is the weight parameter controlling
the contribution of BCE loss versus the dice loss:, we set
it to 0.5 during the experiments. ¢ is a smoothing term,
and we keep it to 1.0 during the experiments. For the res-
olutions [512,1024,4,096], all models were trained with a
batch size of 16, using the AdamW optimizer [71] with an
initial learning rate of 0.0001 for 300 epochs and decay by a
factor of 0.1 at epoch step [500, 750, 875]. For the resolutions
[8,192, 16,384, 32, 768, 65, 536], we countered the problem of
fitting a single sample in memory by tuning the sequence
length and training for 200 epochs.

E. Evaluation Metrics

For computational performance, we report the sec-
onds/image of end-to-end training. For the quantitative evalu-
ation of the segmentation result, we use the dice score, which
measures the similarity between a predicted segmentation
mask and the ground truth segmentation mask. The dice score

(also known as the dice similarity coefficient) is defined as:
. 2x|XNY]|
Dice(X,Y) = —————

[ X]+1Y]

where X and Y are the two sets being compared. | X NY|
represents the cardinality of the intersection of sets X and
Y. |X| and |Y| represent the cardinality of sets X and Y



TABLE III: Improvement in quality of segmentation for the PAIP dataset against different baselines.

Resolution Model Patch | GPUs | Sec/Image/GPU | Depth | Sequence Length | Dice Score | Dice Improvement

e 3 i 006112 |8 7239 | 7832
CUNTER) |2 T 005975 |7 676 | 77.88
g T 005812 | 6 576 [ 75.17
3 T 04863 | - 16384 [ 7731

512 X 512 UNETR g T 03746 | - 4006 | 75.23 411%
16 T 01477 | - 024 | 7488
TransUNet |- T 01783 | - 1024 [ 7332
U-Net - T 00438 | - 7032
3 g 02314 O 1024 | 7842
APF 3 g 0.1786 | 8 900 | 77.64
(+UNTER) [ % g 01428 |7 R T 75.63
16 g 01313 6 576 | 74.8%

1,024 x 1,024 g EY) 10863 | - 16384 [ 7572 7.10%
6 6 09731 | - 2006 | 75.12
UNETR £9) g 08874 | - 1024 | 1322
TransUNet | - g 13247 [ - 3006 | 7238
U-Net - T 0.0081 68902
3 28 06938 | 11 3096 | 79.63
APF 7 128 04695 | 10 3116 | 78.17
(+UNTER) [ 3% o4 03824 1520 [ 75.74

4,096 x 4,096 16 ) 03223 8 024 | 74.96 5.09%
UNETR 3 128 18613 | - 16384 | 75.77
TransUNet - 128 2.1637 - - 71.32
U-Net - 6 03712 [ - T 6AIl
7 256 23314 | 12 10609 | 79.56
APF I 6 314 T 8464 | 7831
(+UNTER) [ % 2% 17867 10 2.006 | 7761

8,192 x 8,192 6 | 64 T1613 [ 9 2116 | 76.13 5.70%
UNETR 6 256 26618 | - 16384 [ 7527
TransUNet - 256 2.3678 - - 70.89
U-Net - &) 12858 | - 6321
7 512 38792 | 13 16384 | 80.62
APF i 256 BT 12 8464 | 7931
(+UNTER) [ % 756 18574 [ 11 3006 | 7884

16,384 x 16, 384 6 [ 128 16421 | 10 2116 | 7743 6.23%
UNETR 8 | 3512 ST - 16384 | 75.80
TransUNet - 512 6.1296 - - 70.46
U-Net - 756 2785 | - 6297
3104 78916 | 13 16384 | 78.98
APF g 512 61792 | 12 8464 | 7831
+UNTER) [ 16 | 512 31685 [ 11 4.006 | 7761

32,768 x 32,768 256 31567 |10 2116 | 76.13 5.36%
UNETR 256 [ 1024 81896 | - 16384 | 74.96
TransUNet - 1024 10.001 - - 69.88
U-Net - 512 )] v 6138
g 2048 2607 | 13 16384 | 77.77
APF 6 1024 8793 [ 12 8464 | T6.1T
(+UNTER) [ 32 | 512 5733 [ 11 4006 | 7541

65,536 x 65,536 64 1 256 3961 10 2116 | 75.03 3.27%
UNETR 512 [ 2048 3218 [ - 16384 [ 7531
TransUNet | - | 2048 43516 | - 6767
U-Net 102 5061 [ - T 59.69

respectively. A dice score of 100% means identical similarity

between the prediction and the ground truth.

F. Results

1) Speedup of End-to-end Training at the Same Segmen-

tation Quality: In Table [lIl we show that under the same dice
score, AFP is just a pre-processing step (on top of UNTER
as baseline) that achieves a geomean speedup of 4.1x, if we
compare on the basis that both AFP and the baseline run to
the same number of epochs. Since we further observe the
convergence speed in AFP to be 1.7x faster, the speedup to
get to the same dice score goes up to the geomean speedup

of 6.9x. At the highest resolution of 642 training on 2,048
GPUs, AFP achieves ~4x speedup. It is worth mentioning
that AFP also brings significant savings in memory and not
just speedup.

2) Gain in Segmentation Quality: Table[[Il|shows segmen-
tation improvement over different models, at different PAIP
resolutions. At similar resolution, with adaptive patches we can
use nearly 8x smaller patch sizes at the same, computational
complexity, and improve upon the original model dice score
with an average of 5.5%. It is worth noting that on top of
improving the dice score, we achieve those improvements with
additional speedups to the training time up to 4.6x.



TABLE IV: Segmentation of BTCV [68]] for multi-organ
segmentation on one GPU. Time reported is the end-to-end
time to reach the reported dice score.

TABLE V: Classification (Top-1 accuracy) of vanilla ViT,
HIPT [36], and APF-ViT on PAIP dataset (16, 3842 res.)

Model Num. GPUs Patch Size Accuracy
Model Patch Size Time Speedup Dice (%) ViT [2] 128 4,096 68.97
U-Net [54] N/A 843.90 Sec 0.79x 80.2 HIPT [36] 128 [16,256,4096] 72.69
TransUNet [69] N/A 3115.25 Sec 291x 83.8 APF-ViT-4096 3 2096 67.73
UNETR [10] 4 8386.56 Sec 7.85% 89.1 APE-ViT-2 128 2 79.73
Swin UNETR* [70] 4 6609.45 Sec 6.19x 91.8
APF-UNETR 2 1067.88 Sec 1x 89.7

*Unlike APF-UNTER, Swin UNTER is pre-trained on five datasets.

Table shows segmentation results for BTCV (5122
resolution). Following [72f], [11l], we applied APF to each
2D slice of each CT sample and inferred all the slices to
reconstruct the final 3D predictions. As shown in the table,
AFP-UNTER gives higher quality than other models, with the
exception of Swin UNTER (which has the advantage of being
pre-trained on five other datasets before fine-tuning on BTCV).
On top of getting the highest dice score, this is achieved at
>8x faster training time over models with similar dice score.

3) Segmentation Qualitative Results: We demonstrate the
quality of segmentation at different resolutions using differ-
ent models: TransUNet, U-Net, UNETR, and our proposed
APF-UNETR. We summarize the real results of the mask
and display them in Figure 2] The first column shows the
original input, where the label is the resolution and the scaling
percentage we use to show a portion of the image.

The second column shows the ground truth, followed by
the prediction results of different models. It can be seen
that at 512 resolution, small patches cannot fully express the
subtle differences. However, for high-resolution images, the
deviations in subtle details will become larger and larger. At
higher resolutions, uniform grid patching can only allow for
very large patch sizes, such as 16 K2 patch size with UNTER
at input image of 642 resolution. However, at the same input
image resolution of 64K2, APF-UNETR, can still use patch
sizes as small as 82 in areas of detail by having more depth
in the tree. This is the core benefit of adaptive patching.

4) Classification: APF vs. HIPT [36]: To demonstrate
the versatility of APF, we compare classification for the
PAIP dataset with the top performing and most sophisti-
cated hierarchical multi-resolution model designed specially
for microscopic pathology classification: HIPT [36]. In this
experiment, we divided the PAIP dataset, designed originally
for segmentation, into six categories according to organs. Each
category contains 40 samples, 28 of which are used for model
training, 8 for testing, and 4 for validation. For HIPT, we resize
all samples to three resolution scales [256,1024, 16384] and
set the patch size for each scale to [16,256,4096] according
to the original settings. For the APF method, we only applied
a level 16, 384 image for the classification; instead of using a
decoder for segmentation work, we added an additional output
channel for the class prediction. As seen in Table [V] with the
same compute budget, using AFP with a vanilla ViT gains a
huge improvement in accuracy (>7%) over the very well-tuned

and highly customized HIPT. At high-resolution (16K?), the
smallest patch size HIPT can handle, before going OOM, is
4,0962. AFP on the other hand can go down to patches of
size 22 at the regions of highest resolution in the images. This
big gain in accuracy, despite using a vanilla ViT with AFP,
indicates: a) the effectiveness of AFP, and b) that smaller patch
sizes matter more than the sophistication of the model.

G. Discussion

1) Adaptive Patches Empirical Growth Complexity: The
core reason why APF can handle small patch sizes at high
resolutions is that the sequence size can be reduced with
adaptive meshing. In Figure [3] we show the extent to which
the sequence length can be reduced by adjusting the split
value of the quadtree, without significantly losing prediction
performance. The split value v controls the total length and
distribution of patch sizes. The first row in Figure [3] shows
that when the split value is halved [100, 50, 20], the patch
size distribution or the average patch size [9.37,20.21, 30.73]
is also close to being halved. This means the average patch
size grows linearly with the split value. For the uniform
grid patching strategy, the sequence length grows by O(%)Q.
However, we observed an approximately linear increase in the
average sequence length as the average patch size decreased.
Note that APF sequence length depends on the complexity of
the image itself, while the best case attention complexity is
O(log?N)), the worst case would be O(N?) (it becomes like
uniform grid patching).

2) Training Stability and Patch Size: Figure 4] shows the
training and validation curves of the models: U-Net, UNETR-
32 (patch size = 32), and APF-UNETR-2 (min. patch size =
2) at 4K? resolution. We can see that at the same resolution
and model complexity, the UNETR model using APF can
converge to a better solution that is more stable than U-
Net and UNETR. We hypothesize this is because APF allows
the same model to use a smaller patch size under the same
model complexity. To test this hypothesis, we further tried the
performance of the UNETR model with different patch sizes
[4 % 4,16 x 16,64 x 64] at 1K? resolution. The results further
confirmed our thoughts. In Figure[z_f] (d,e,f), the UNETR model
using a smaller patch size 4 x 4 tends to converge more stably
than the bigger patch size 64 x 64.

3) Overhead of APF: Negligable: In our
experiments, the time is taken for the PAIP dataset
with  resolutions [512,1024, 4096, 32768, 65536) is
[4.232,7.561,37.160,127.374,286.568] in seconds. This
is negligible when compared with training time (Hours).
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Fig. 2: Example of segmentation quality for PAIP dataset. From 4K?2 to 64K2 we zoom-in to show a portion of the image.

V. CONCLUSION pre-processing approach incurs minimal overhead. We achieve
segmentation quality for 64/K2 images comparable to SoTA
models operating on no more than 4K2, at much higher
efficiency (geomean speedup of 6.9x).

We propose a solution that adaptively patches high-
resolution images based on image details, drastically reducing
the number of patches fed to vision transformer models. This
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