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Abstract—This paper presents an open-source library that
pushes the limits of performance portability for irregular Gen-
eral Matrix Multiplication (GEMM) on the widely-used Arm
architectures. Qur library, autoGEMM, is designed to support
a wide range of Arm processors: from edge devices to HPC-
grade CPUs. autoGEMM generates optimized kernels for various
hardware configurations by auto-combining fragments of auto-
generated micro-kernels that employ hand-written optimizations
to maximize computational efficiency. We optimize the kernel
pipeline by tuning the register reuse and the data load/store
overlapping. In addition, we use a dynamic tiling scheme to
generate balanced tile shapes. Finally, we position autoGEMM
on top of the TVM framework where our dynamic tiling
scheme prunes the search space for TVM to identify the optimal
combination of parameters for code optimization. Evaluations on
five different classes of Arm chips demonstrate the advantages
of autoGEMM. For small matrices, autoGEMM achieves 98 %
of peak and up to 2.0x speedup over state-of-the-art libraries
such as LIBXSMM and LibShalom. For irregular matrices
(i.e. tall skinny and long rectangles), autoGEMM is 1.3-2.0x
faster than widely-used libraries such as OpenBLAS and Eigen.
autoGEMM is publicly available at: https://anonymous.4open.
science/r/GEMM_TVM_ASM-ED68

I. INTRODUCTION

Improving the performance of small and non-squared
shaped GEMM (General Matrix Multiplication) kernels can
have a significant impact on speeding up DL (Deep Learn-
ing) [1l], large language models [2], [3] and some scientific
applications (e.g. CFD [4], [5], N-body [6], [7]). Dense and
large-squared GEMM is well-studied and has been highly opti-
mized by open linear algebra libraries such as Eigen [8]], Open-
BLAS [9], and vendor libraries (e.g. Intel MKL [10]). These
implementations achieve near-optimal computing performance
using Goto’s methodology [11] for large and approximately
square matrices. However, optimizing irregular GEMM is still
underway and has attracted heavy attention from the HPC
community in recent years [12], [13], [14], [15].

The optimization of irregular GEMM through code automa-
tion on Arm architectures is motivated by the fact that Arm
architectures proliferate in the landscape of computing and
are increasingly gaining ground in HPC and datacenter-grade
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CPUs, e.g. AWS Graviton series and Nvidia Grace. Our goal
is to address the challenges posed by using Arm CPUs for
workloads with irregular matrix shapes and sizes, which is
a common issue in deep learning (inference and training),
and some scientific applications [16]. These matrices can vary
greatly in size and shape, making manual optimizations for
each case time-consuming and inefficient. Code generation
streamlines the optimization process, making it possible to
optimize for a wider range of matrix shapes and sizes with
minimal manual effort. Optimized irregular and small GEMM
on Arm architectures can lead to improved performance,
reduced latency, and higher energy efficiency. This can have
a significant impact on the overall efficiency of various DL
applications [[17], [18], in both edge devices and data centers.
To achieve close-to-peak performance in irregular GEMM
computations, we face three major challenges. (1) Irregular
Matrix Shapes: The shapes of matrices in various applications,
such as DL and some scientific simulations [19], [20], [21],
[22], [23], [24] are often irregular. Irregular matrices can arise
from transformed fully connected layers [23] or convolution
layers [24]], [22], [21], small matrices in simulation algo-
rithms [19]], [20] , and mismatched matrix dimensions in some
layers of deep neural networks [23]. These irregular shapes
pose a challenge for existing BLAS libraries such as Open-
BLAS [235]], Eigen [26], and LibShalom [13], [27], as they
are optimized for regular matrix shapes and may not perform
optimally for irregular shapes. (2) Hardware Diversity: There
are many different types of Arm SoCs and processors with
varying cache sizes, memory sub-systems, pipelines, instruc-
tion sets, etc. This creates a challenge for traditional manual
tuning by experts. For example, the developers of OpenBLAS
stopped porting the library to newer Arm architectures after
porting it to 14 different Arm architectures [25], [9]. This
diversity in hardware architectures makes it difficult to achieve
optimal performance across the Arm family of architectures.
(3) Coding Difficulties: To accommodate a large number of in-
put shapes and hardware configurations, an enormous amount
of highly efficient code is required. This is a daunting task
since the parameter space for hand-written codes is large, and
the hardware configuration space is also significantly large.
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We develop a framework that builds on hand-optimized
assembly-coded wrapped in auto-generated micro-kernels that
are adaptable to different input shapes, parameterizations, and
hardware targets. First, we automatically generate assembly-
coded micro-kernels for irregular matrix shapes. These micro-
kernels can be generated for different tile sizes/shapes, such
as 8 x 8, 6x 12,5 x 16 and 4 x 20, and act as building blocks
for generating optimized small-sized and irregularly shaped
GEMM kernels. Second, we optimize the instruction pipeline
of the micro-kernels to the underlying hardware target based
on a performance model of the relevant hardware features that
we collect for target Arm SoCs and processors. Using this
performance model, the micro-kernels are then optimized at a
very fine granularity using native Arm assembly for improving
register reuse, and to overlap data load/store with computation
by dividing the kernel to three stages: prolong, main, and
epilog. Third, we use the TVM framework [28]], [29] to auto-
tune autoGEMM. We apply a dynamic micro-tiling scheme on
the micro-kernels to generate code optimized for micro-tiles of
balanced sizes. TVM allows us to handle matrices of any shape
and tune all available parameters by calling the micro-kernels
repeatedly. Unlike previous approaches, the dynamic micro-
tiling algorithm aims to minimize the number of micro tiles,
while maximizing the arithmetic intensity [30]. By combining
multiple micro tiles into sub-matrices that fit into the cache,
our approach achieves significant improvements in perfor-
mance over existing methods. Fourth, we drive our framework
by a performance model for the dynamic micro-tiling, which
allows us to achieve an end-to-end performance that is close
to peak. The performance model enables TVM [28] to prune
the search space for input shapes and algorithm parameters,
thereby identifying the optimal parameters for code optimiza-
tion.

While some of the individual optimization techniques we
use have been proposed before in other contexts, no prior-
art combines these techniques to create a systematic way
to auto-generate irregular matrix multiplication kernels from
expert-optimized assembly building blocks that are adaptable
to hardware of different characteristics. The contributions of
this paper are listed below:

o We create a collection of micro-kernels that can accom-
modate varying tile sizes and serve as building blocks for
optimizing small-sized and irregularly shaped GEMMs for
Arm architectures. Additionally, we optimize the micro-
kernels instruction pipeline by leveraging register reuse and
latency hiding with native Arm assembly. The effectiveness
of these optimizations are driven by a performance model
that is proven effective by empirical results.

o We propose a dynamic micro-tiling algorithm to implement
autoGEMM with TVM. Our algorithm combines multiple
balanced micro-tiles into submatrices to minimize the num-
ber of tiles, while maximizing the arithmetic intensity. We
use different micro-kernels that are auto-generated to cater
to the specific sizes of the micro-tiles.

« We show end-to-end and comprehensive performance com-

TABLE I: Summary of comparison with GEMM libraries w.r.t.
irregular-shaped and small matrices.
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parisons. For small matrices, autoGEMM achieves 98% of
peak and a 1.5-2.0x speedup, on average, in comparison
to LIBXSMM [12] and LibShalom [13], [27]. For irregular
matrices, autoGEMM is 1.3-2.0x faster than widely-used
libraries such as OpenBLAS and Eigen.

II. BACKGROUND
A. Matrix Multiplication

Irregular GEMM refers to matrix multiplication on
irregular-shaped or small matrices. This means that one di-
mension is significantly smaller than the other, or the matrix
is small enough to fit into the last-level cache of the pro-
cessor. Examples of irregular-shaped matrices include long-
rectangular, skinny-tall, and small matrices with dimensions
up to 80 [12]. To efficiently compute GEMM, it is important to
maximize the data locality [[11]. This involves dividing the ma-
trices into smaller submatrices, known as cache blocking [31],
[32]], [[L1]. Next, those submatrices are divided into micro-
tiles that fit optimally into existing registers without causing
register pressure, which is known as register tiling [11]. By
repeatedly loading these micro-tiles into registers, we can
calculate the output matrix with minimal data movement
along the memory and cache subsystem. Overall, an efficient
GEMM implementation optimizes data reuse and minimizes
data movement to improve efficiency.

B. Related Works

Irregular and small GEMM: There are two main ways
that libraries follow to optimize GEMM computations:
Hand-optimized libraries and automatic code generated li-
braries. Older and mature libraries such as OpenBLAS [25],
Eigen [26]], and LibShalom [[13], [27]] follow the first approach.
However, due to the large space of configurations that exist for
Arm processors [33]], it is not feasible to hand-optimize these
libraries for each new Arm hardware architecture. More mod-
ern libraries, such as LIBXSMM [12] and TVM [28], focus
on the second approach: generating micro-kernels with just-
in-time (JIT) [34] or ahead-of-time (AOT) [35] compilation.
However, this approach lacks the flexibility of hand-arranging
the instruction pipelines for different hardware targets.

Code Generation and Auto-tuning: In addition to the tradi-
tional open source and vendor BLAS libraries (i.e. [8], [36],
[9], [10]), state-of-the-art libraries that can generate code and
tune dense matrix/tensor operators include Google JAX [37],
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Fig. 1: Overview of the workflow and internals of autoGEMM.

Halide [38]], and the TVM series [28], [29], [39], [40].
JAX [37] uses XLA [41], a specialized compiler for linear
algebra, to transform numerical functions. TVM [28]] builds on
Halide’s ideas and aims to be performance portable for deep
learning applications across various hardware configurations.
AutoTVM [39]] generates a performance model using the
machine learning method XGBoost [42]], and applies an auto-
tuning process using statistical modeling (via a simulated an-
nealing algorithm) to effectively remove local optimal saddle
points.

We compare various GEMM libraries in Table [ Open-
BLAS [25], Eigen [26], LibShalom [13]], [27], and Fast-
Conv [43]] have highly optimized hand-tuned kernels. Among
those state-of-the-art libraries, LibShalom delivers the best
performance, on average. In addition, LIBXSMM generates
its own micro-kernels using JIT-based code generation tech-
niques [44], while TVM adopts AOT-based code generation,
auto-tuning, and loop scheduling techniques. Our work pro-
poses a method to generate an in-library packing kernels that
combine and adapt hand-optimized code blocks, automatically.
We also employ TVM’s auto-tuning capabilities [45], [46] to
push the limits of irregular GEMM computations.

III. GENERATION AND PERFORMANCE MODELING OF
MICRO-KERNELS

We proposed framework autoGEMM and its workflow
overview are presented in Figure [l The workflow comprises
three main steps. o autoGEMM generates and optimizes
high-performance micro-kernels, which are then automatically
adapted to different Arm chip configurations. 0 An auto-
tuning mechanism searches for optimal performance parame-
ters for irregular-shaped matrices, using the generated micro-
kernels and fine-grained scheduling methods. 9 autoGEMM
generates high-performance code using the optimal parameters
and packages it in the library. In this section, we first demon-
strate the generation and optimization of micro-kernels.

TABLE II: Auto-generated micro-kernel of various tile sizes are
listed. When possible, we select the tile size with higher arithmetic
intensities (colored in blue). Other tiles sizes are used to handle the
corner cases.

o 4 8 12 16 20 24 28
Lz

2 2.67 320 343 356 364 3.69 3.73
3 3.43 436 480 505 522 533 542
4 4.00 533 600 640 667 - :
5 4.44 615 706 762 - . .
6 4.80 6.86 8.00 - . . .
7 5.09 747 - . . . .
8 533800 - - - - -

A. Micro-kernel Auto-generation

This section elaborates on the auto-generation of efficient
micro-kernels. Regarding a micro-kernel of size (m,., n,), the
operations in the GEMM computation [47], [48] can be
expressed as:

C(mr,nr) = C(mp,np) + A(my, ke) - B(ke,nr) 1

Here, sub-matrices of A(m,,k.), B(k.,n.), and C(m,,n;)
are stored in L1 Cache. In particular, n, and k. in Eqn(T)
should be a multiple of 04y, Which is 4 for Armv8 architec-
ture and 16 for SVE-supporting architectures like A64FX [49],
[50], [51] and Graviton3. We use 7, = n,/0ane, and
k:_; = k¢/0lane to denote the vectorized versions of n,., and
k., respectively.

1) Selecting the Micro-kernel Sizes: Our main goal is
to generate micro-kernels with high Arithmetic Intensity
(AI) [11], [43]], which would allow us to fully utilize the
vector registers available on the specified chip. For a single
micro-tile expressed in Eqn (I)), the maximum AI becomes:

Almaz =2-my - nr/(mr + nr) (2)

With 32 vector registers being the common upper limit in
ARM chips, there are only 58 feasible tile sizes, part of which
are enumerated in Table [ We calculate the AT value for all
tile sizes and select 4 tile sizes colored in blue with higher



TABLE III: Performance model parameters for matrix multiplication.

Definition Parameters
Input matrix shape M, N, K
£ | Leading dimension lda, ldb, ldc
g Cache block shape Me, Ne, ke
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Fig. 2: Arithmetic Intensity(Al) trend for micro-kernel of tile size
m, X 16 with k. increased, as well as four different hardware o 47
(the lower the easier to achieve). When k. is small, micro-kernels
with low Al are memory-bound, rather than compute-bound; the
bottleneck is at the prologue and epilogue.

AT as our first-choice micro-kernel shapes. The remaining tile
sizes are used for filling corner cases of GEMM computation.

For multiplication on large and square matrices, a default
assumption is made that k. > m,(n,) and micro-tile can
always reach Al,,,,. However, in irregular matrices (espe-
cially small or skinny-tall), this assumption can no longer be
guaranteed. Incorporating k. into the Equ [2| the actual Al
should be written as follows:

AI:Q-mr-nﬁ-kc/(Z-mT-n1+mr-k_;Jrk:C-n?) 3)

Figure [ illustrates the trend of AI for m, x 16 micro-
kernel with a increasing k.. Note that o457 is a threshold
value obtained by micro-benchmarking a target hardware. If
Al > o045, the micro-kernel can potentially achieve close-to-
peak performance on the specified chip. Lower 045 means it
is easier to optimize on hardware, and thus the micro-kernel
for corner case can also achieve close-to-peak performance.
2) Micro-kernel Code Generation: Implementation of
micro-kernels for GEMM has strong regularity, and the auto-
matic code generation method can greatly reduce the amount
of hand-written codes. The generation of micro-kernels with
various tile sizes listed in Table [[I] is described by Listing [I]
We automatically generate assembly codes for micro-kernels
using a Python script. Here we assume that n, and k. is
divisible with 04, to simplify the code example. The input
has three parameters m,., n,. and k.. The output is C++ code
that uses the native Arm assembly [52]], [S3]. Line 4 and lines
47-51 are the interface that calls the ASM code in a C++
code. The generator generates three code blocks: The first
code block (prologue) defines all of the needed scalar/vector
registers that represent matrix A, B and C using lines 5-24.

Listing 1: Python script that generates micro-kernel of shape m,. X n.

1 def MicroKernel_Generator (mr, nr, kc):

2 code = f"

3void MicroKernel_ {mr}x{nr}x{kc} (float A[mr][kc], float Blkc
][nr], float C[mr][nr], int 1lda, int 1ldb, int 1ldc) {

4asm volatile (

5 prfm PLDL1KEEP, [%[A], #64] # Prefetch A[0][0:15]

6 prfm PLDL1KEEP, [%[B], #64] # Prefetch B[0][0:15]

7 prfm PLDL1KEEP, [%([C], #64] # Prefetch C[0][0:15]

8 1sl %$[1ldal, %[lda]l, #2 # 1da = 1da * 4(byte)

9 1sl %[1db], %[1ldb], #2 # 1db = 1db * 4(byte)

10 1sl %[1ldc], %[ldc], #2 # 1dc = 1dc * 4(byte)

11 mov x{6}, %[A] # Line 11-16 for getting position

12 mov x{ 1, s[CcI1" # of the matrix A and C

13 for row in range(l, mr)

14 code += f"

15 add x{ beox| }, %[lda]

16 add x{ b,ox| }, %[1dc]l™

17 for row in range(mr) # Line 17-19

18 code += f" # Load A[mr][0] before unroll loop

19 ldr af b [xd b1, #{ H"

20 for col in range(nr) # Line 20-22

21 code += f" # Load B[0][nr] before unroll loop

22 ldr af br [%1B1, #{ i

23 code += f"

24 add %$[B]l, %[B], %[ldb]

25 mov %29, #{kc) # The loop counter

26 1:"

27 for i in range(oigne) # Unroll Loop oigne

28 for col in range(nr) # Binding one load B

29 for row in range(mr) # with mr FMA

30 code_str += f" # C[row][col]+=A[row][p;]*B[p;][col]

31 fmla vi }.4s, v }.4s, v s [{ip"

32 code += f" # Load B[p;][col]

33 ldr af boo [%50B1, #{ b

34 code += f"

35 add %$[Bl, %[B], %[ldb]"

36 for row in range(mr) # Load A[row][p:p+0ianel

37 code += f"

38 ldr af boo Ixd b1, #{ 3"

39 code += f"

40 subs %29, x29, #1

41 bne 1f" # Loop jump to Line 26

42 for row in range(mr) # Line 42-45 for storing C[mr][nr]

43 for col in range(nr)

44 code_str += "

45 str afl boooIxd b #1 b1

46 code += f"

47 ¢ [A]"=r"(A), [B]"=r" (B), [C]"=r" (C),

48 [lda]"=r"(lda), [1db]"=r"(1db), [1dc]"=r" (1dc)

49 ...

50 : "cc", "memory"

S0);m

52 return code

The second code block (mainloop), generated by Lines 25-41,
will calculate m,. - n,. Fused Multiply-Add (FMA) operations
iteratively and accumulate the results. Finally, the third code
block (epilogue), in Lines 42-45, terminates the process by
storing the accumulated results in the main memory. We
generate micro-kernels with about 200 Python code lines. This
not only greatly reduces the amount of expert hand-written
codes, but also aids in achieving higher compute efficiency.
A quantitative model in the next subsection will discuss the
performance benefits of this light-weight approach.

B. Micro-kernel Performance Modeling

After generating the micro-kernels with all feasible sizes, we
use a performance model to analyze the micro-kernels’ perfor-
mance, be that compute or memory bound. Table [ summa-
rizes the algorithm and hardware-related parameters used in
our model. We optimize the GEMM computation following
a two-layered approach: cache blocking (m., n., k.) and
register tiling (m,., and n,). We also use parameterized data
packing (0 packing) and loop ordering [54)] (o4rqer) to control
data layout and access pattern [S5], [54]. Hardware features
like FMA/load/store instruction latency (L{fma/ioad/store])s iN-
struction per cycle for FMA/load/store (I PC|fma/ioad/store])s
threshold Al to reach peak performance (o 45), and SIMD data
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Fig. 3: Runtime measured in cycles for Listings |1} (a) is based on a generated compute-bound micro-kernel of tile size 5 x 16, and (b)
is based on a memory-bound micro-kernel of tile size 2 x 16. (c) and (d) show the details of rotating register allocation optimization. (c)
emphasize how the FMA instructions can overlap with the load instructions of sub-matrices A(m., kc), and (d) emphasizes how to overlap

FMA instructions with the B(k.,n,) sub-matrices.

lane (0;4ne) have an impact on register tiling, vectorization,
and pipelining, which also affects the performance of the
micro-kernel.

1) Performance Model of Compute-Bound Tile Sizes: The
total time comprises launch time, prologue time, mainloop
time, and epilogue time:

T’l‘(mT7 nT) = Tlaunch + Tprologue + Tmainloop + Tepilogue (4)

Here, Tjqunch are the cycles used to launch the micro-kernel.
Tprologue Involves necessary preparation before the multipli-
cation, such as the initial pre-fetching of matrices A(m,., k.)
and B(k¢,n,) and data loading on matrices C'(m,., n,). It can
be calculated as:

Tprologue :(m'r Cnp 4+ my 4 nﬁ’;‘) : IPCload + Lload ©)

For the actual compute portion, the projected runtime
Tnaintoop in Listing with FMA instructions covers all
matrices B(k., n,) load instructions:

;oa”:;l;z)loop =my -1y - IPCymg - (I.k_;J “ Olane) ©)

+ Lk‘—(‘ij . (mT - IPCloaq + Lload)

Finally, the epilogue time includes post-remainder data calcu-
lation, and storing the result matrix C'(m,.,n,.) as:

Tepilogue =my - Ny - IPCfma . (k(‘ - Lk_;‘J : Ulane) + Lfma

7
IPCstoTc ( )

+my - ny -

We combine the above Eqn(3), (6), to project the total
runtime in Eqn@) for the generated code with a given tile
size (m,,n,) from Listing |[I} For example, the runtime of
tile size 5 x 16 is illustrated as an example in Figure [3}
(a). In this example, we assume load, store, and FMA to
take 8 cycles (Lyjoad/store/fma) = 8): the IPC is equal to
I (IPCload/store/fma) = 1) First, after the launch time of
Tiaunch, we load C(m,.,n,.) with 20 cycles, and the first load
of A(m,,k.) and B(k.,n,) takes 5 and 4 cycles. Another 8
cycles are required for the last loading instruction to finish.
The combined FMA instructions take 80 cycles to cover all
matrices B(k.,n,) load instructions. For every unroll ¢4y
loops, there are 5 matrices A(m,,k.) load instructions that
could not be overlapped (line 38 in Listing [I)), and require
an additional 8 clock cycles before the next iteration starts.
Finally, we wait 8§ cycles for the FMA instruction calculation
to finalize, and then store C(m,.,n,) in the last 20 cycles.

All in all, in addition to the launch time, the micro-kernel
generated from tile size 5 x 16 will use 20- k. + 13- | k.| + 65
cycles.

2) Performance Model of Memory-Bound Tile Sizes: As
we listed in Table [II} not all tile sizes of micro-kernels have
high enough Al to be compute-bound. For these micro-kernels,
FMA instructions in the main loop can no longer overlap with
all the load instructions of the matrices B(k., n,). Based on
the micro-kernel generated by Listing |1} the runtime T, 4ini00p
in the memory-bound case is:

T::;{Zloop = ms - IPCload . \_k’_;J *Olane T+ Lload . I_k_:iJ : (Ulane + 1(%)
Figure B}(b) illustrates a memory-bound micro-kernel of tile
size 2 x 16 on the same parameters settings as Figure 3}(a). In
the main loop part, the FMA instructions cannot completely
overlap with the load instructions of submatrices B(k.,n,),
leading to a bubble of 2 cycles for every iteration. The 2 cycles
here are the minimum cycles required to ensure that a register
satisfies the FMA — LOAD — FMA dependency. Thus,
the projected main loop runtime for the generated micro-kernel

—

of tile size 2 x 16 is 48 - |k.] cycles.

C. Micro-kernel Performance Optimization

This section explains our technique for optimizing the
instruction pipeline automatically instead of relying on hand-
optimization (as in [56] for example). This involves overlap-
ping the memory access operations with arithmetic computa-
tions.

1) Rotating Register Allocation: Rotating Register Allo-
cation [48], [57], [58]], [S9] is a classic technique used to
optimize pipelines in the field of software engineering and
compiler design. It is also used in the main micro-kernel
of the latest BLAS libraries [13]], [27]. The goal of rotating
register allocation in micro-kernel is to use redundant hardware
registers to increase the volume of overlap between the FMA
and load instructions. For the compute-bound micro-kernels
(Section [[II-BI)), this technique can help in overlapping the
compute and load instructions of sub-matrices A(m,, k).
For every 2 - 0j4n iterations, the load instructions of sub-
matrices A(m.., k.) can be completely overlapped by the FMA



instructions once. Eqn(6) can thus be updated as follows:

comp
mainloop

=my - Ny - IPCfma . (U‘::J : Ulane)
n O]
ke
+ [%‘l . (m’f - IPCloaq + Lload)
Figure [3}(c) shows the details of the pipeline after rotating
register allocation. Note that the 2 and 3 cycles in red come
from using hardware redundant registers (3 registers for micro-
kernel 5 x 16) to load sub-matrices A(m,,k.) in advance.
According to the parameters settings and updated model,
besides the launch time, the projected runtime of the micro-

kernel of tile size 5 x 16 will be 20-k.+13- (%1 +65 cycles.
For the case of memory-bound micro-kernels (Section [[lI-B2)),
this technique can allow us to overlap the load instructions
of sub-matrices B(k.,n,). In the prologue stage, we double
the loading of multiple-iterations of sub-matrices B(k., ;) in
the registers; the dependency of FMA — LOAD — FMA
in the pipeline of main loop stage is eliminated, and no
bubbles appear between the FMA instructions. When load
instructions are overlapped with FMA instructions, Eqn(8) can
be optimized as:

Tmem
mainloop

=My - Ny - IPCfma . (I_ECJ . Ulane)

- (10)
+ Lk‘CJ . (mT - IPCloaq + Lload)

Figure 3}(d) illustrates this optimization based on Figure 3}(b).
The projected main loop runtime for micro-kernel of tile size

2 x 16 now becomes 42 - | k.| cycles.

2) Fusing the Epilogue with the Following Prologue:
Latency hiding of the epilogue and prologue can also save
a few cycles in the generated micro-kernel. When the k.
dimension is not large enough in some irregular matrix shapes,
the time used for the epilogue and prologue will increase. For
example, the micro-kernel with a shape of 5x 16 and k. = 18,
Tprologue and Tipijogue account for 8.2% and 15.1% of the
total micro-kernel projected runtime. We fuse the epilogue
FMA with the ending store operations and load instructions in
the next loop’s prologue. This overlaps the load/store with the
arithmetic instructions in the previous iteration and eliminates
Tiaunch to improve the micro-kernel’s efficiency. As shown
in Figure El], there are four types of fusion: c_to_c, m_to_m,
c_to_m, m_to_c based on whether the current and next micro-
kernel are compute or memory bound. Take the current and
next micro-kernel to be both compute-bound as an example,
the projected runtime can be calculated as:

c_to_c
fuse_epi_pro

=my 13 - IPCfumq - (ke = [ke] - Olane) 1)
+ (my - 17 +my) - IPCioad + Lioad

In summary, the traditional method of manually implement-
ing the above optimizations on all chips, tile sizes (listed
in Table [[I), and different numbers of epilogue iterations is
not practical. The micro-kernel autogeneration with the above
optimization approaches proposed in this section is a practical
solution for irregular GEMM. It also serves as a prerequisite
for enabling the parameterized tuning work in the following
section.

I T ] 1‘5[ 20 \8 111111112‘6‘8\8
20 20 88
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Fig. 4: Four fusion methods to fuse the current epilogue with the
following prologue: c_to_c, m_to_m, c_to_m, m_to_c, based on
whether the current and next micro-kernels are compute or memory-
bound.

IV. AUTO-CONSTRUCTING AND TUNING OF THE KERNEL

After orchestrating the micro-kernels instruction pipeline,
auto-constructing is used to comprise different micro-kernels
into a kernel, after which auto-tuning is further used to
achieve close-to-peak performance. In this section, we first
propose a dynamic micro-tiling algorithm to split the sub-
matrix C(m,n.) into multiple micro tiles. Then a perfor-
mance analysis is presented in Section to explain the
effectiveness of dynamic tiling on merging the sub-matrix
C(me,n.). Finally, TVM is employed to tune all the algorithm
parameters, on a pruned search space, as a final step to enhance
performance.

A. Dynamic Micro-Tiling

1) Static Micro-tiling: With two input matrices A(M, K)
and B(K, N), we first divide matrices A, B and the output
matrix C into sub-matrices that can fit in cache as follows:

C(mc, nc) = C(mmnc) + A(mm kc) X B(km nc) (12)

Each sub-matrix is the minimum scheduling unit executed by
multiple threads. It can be further split into multiple micro-
tiles for better utilization of registers. Thus the micro-tiling
algorithm is critical to the performance of irregular GEMM.

Micro-tiling methods have been applied in several previous
research works [25], [12]. An illustration of the different
micro-tiling strategies is presented in Figure [5] with a sub-
matrix of shape m. x n. = 26 x 36. OpenBLAS (Figure [5}
(a)) employs micro tiles with a single static shape of 5 x 16:
for this example, 8 corner micro-tiles are generated with
padding that will penalize performance. LIBXSMM (Figure [5}
(b)) improves this by tiling the edge columns and rows with
a different tile size. This results in micro-kernels at the edges
that may have extremely low arithmetic intensity. For irregular
matrices, the performance degradation can be significant for
both redundant works due to padding (OpenBLAS) and edge
tiles with low arithmetic intensity (LIBXSMM).

2) Dynamic Micro-Tiling Algorithm: To improve the effi-
ciency of the calculations on the sub-matrix C(m., n.) of an
irregular matrix, we propose a dynamic programming method,
Dynamic Micro-Tilling (DMT), to find the optimal solution
satisfying following conditions: 1) split the sub-matrix into
micro-tiles that have high arithmetic intensity, 2) balance the
different sizes of tiles to avoid extremely small tile with low
arithmetic intensity, and 3) minimize the number of tiles. In



Algorithm 1 Dynamic Micro-Tiling (DMT) Algorithm

Input: : Sub-matrix to tile C(mc, nc).

Output: : Minimum 7'(mc, n.) and corresponding parameters.
1 P =+0c0
2 for nyront = 0 10 ne do

up —
3 for m-f”’"ﬁp_ 0 to m¢ do
4 for m,_ , =0 to mc do
5 nb:ilck = N¢ — Nfront 4
own __ _ . own __ _ up

6 mfront = Mc mfront’ Mpack — 73‘: Mpack

= up
7 Prew = T(meont7 Nfront) + T(Tf%’,?p nfront) +

up
T(mback7 nbaCk) + T(mbgzu]gnr nback)

8 P =min (P, Pnew )

9 return minimum 7 and parameters set get minimum P

11 Function T (m, n) :

12 Q = +0c0

13 while (m.., n,.) in Table |l do

14 Qnew = (m/mr) ‘(n7/ n;) 'TT‘(m'r:n'r)
15 Q=min ( Q, Qnew )

16 return minimum Q and m,, n, get minimum Q

Algorithm |1} DMT has 3 steps: the first step is to divide the
sub-matrix into 4 parts using three parameters 7 f,.on¢, m?font,
and m,” . in Line 2-4. In the second step, for each divided
part, traverse all micro-kernel shapes in Table [ and calculate
the minimum projected runtime, in Line 11-16. Finally, we
accumulate the projected runtime of the four parts, and record
the minimum projected runtime, in Line 7-8.

We explain the DMT algorithm in Figure [5}(c) with the
same example of sub-matrix shape C(26,36). We show two
possible tilings using DMT for this specific sub-matrix shape,
since the hardware o4 affects DMT results. For hardware
with low o 47, micro-tiles of shapes 4 x 16 and 3 x 20 can
also achieve close-to-peak performance, so the right one is
a preferable solution for a sub-matrix without low arithmetic
intensity tiles. While the left one is more suitable for hardware
with high o 47, since it will generate the fewest low arithmetic
intensity tiles. OpenBLAS and LIBXSMM would both have
had 18 micro tiles, whereas DMT has 13 micro tiles in total.
In terms of arithmetic intensity, LIBXSMM has 8 micro tiles
with low arithmetic intensity, but DMT has at most 2.

B. Tile Size Search Space Pruning

For a given sub-matrix shape m. X n., the total number of
FMA instructions used is fixed. If the load/store instructions
can be fully overlapped with the FMA instructions, the best
performance can be achieved regardless of the register block
size chosen. However, the performance of the edge tiles is
much lower than that of the non-edge tiles since there are not
enough FMA instructions to hide the latency of the load/store
instructions. We combine the projected runtime of all tiles
in Figure E]-(d) to estimate the total runtime of sub-matrix
C(me,ne):

Te(me,ne) =(m?  /mr) - (ngront/nr) - Tr(my,nr)
+ (m‘}‘iﬁﬁ‘t/mremam) “(Npront/mr) - Tr(Myemain, M)
+ (mgfck/mrest) . (nback/”rest) . Tr(mrest,”rest)

+ (mggévkn/mlast) . (nback/nrest) Ty (mlast7 nrest)

With Eqn@, we can do a theoretical estimation of the
runtime with the parameters listed in Table [T} Eqn(I3) acts
as a performance model in TVM to prune the search space by
estimating the runtime for a certain combination of parameters.

C. Autotuning with TVM

TVM’s [28] priority is to handle matrices of any shape,
and then tune all available parameters by calling performance-
aware kernels repeatedly. The tuning process can take hours or
even days to get optimal parameters, using Eqn (I3) to prune
the search space can drop the tuning time dramatically.

1) Using TVM with autoGEMM: The generated kernel
appears as an external library to TVM. Since TVM does
not expose the parameterization for external libraries, we
patched the TVM framework to embed directly the kernels
we generated using the code generation method proposed in
Section [lI-A2] so that TVM could interweave the tuning of
parameters directly into the assembly code.

2) Searching the Parameters Space: All the algorithm
related parameters in our implementation are included in Ta-
ble[[l, Among these parameters, M, N, K are the input prob-
lem size. m., n. and k. are cache blocking sub-matrix shape;
and m,, n, are micro-tile size. Packing strategy opqcking.
and loop order o,,q4er are the tuning parameters related to
the memory access pattern. Micro-tile size is an autoGEMM
internal parameter used to select the main micro-kernels listed
in Table |l Cache blocking yields a huge parameter search
space in irregular matrix multiplication. We can search all
possible combinations satisfying 0 < m. < M, M%m,. = 0,
0<n.<NN%N., =0and 0 < k. < K, K%k, = 0.
Loop order controls the memory access pattern: it includes
all permutations of the above block parameters (m., nc, ke,
m, and n,) to get 5! = 120. Packing strategy permutes the
possible transformations of sub-matrix’s layout to get unit-
strided access on the vectorized dimension. This may introduce
additional read and store operations as an overhead. When the
N dimension is relatively small, the performance benefits from
data locality may not justify the packing time and hence we
skip the packing step. Finally, three options for packing are
provided: none, offline, and online.

V. EVALUATION

Our library autoGEMM relies on AOT code generation
and TVM-based auto-tuning to achieve close-to-peak per-
formance. The correctness of our implementation has been
verified against all other libraries we compare with by ensuring
the relative error is less than le-6. The performance of
our implementation is compared against Eigen [26], Open-
BLAS [25], LIBXSMM [12], LibShalom [13], [27], and
Fugaku SSL2 [60].

A. Evaluation Environment and Data

We evaluated five Arm processors, which are detailed in Ta-
ble The data center servers and supercomputer used Linux
kernel versions 5.4.0 and 4.18.0, as well as GCC versions 9.4.0
and 8.4.1, respectively. The MacBook M2 used Darwin Kernel
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Fig. 6: Step-wise pipeline optimization on KP920, Graviton2 and M2. The x-axis is the matrix shape (M x N x K).
TABLE 1V: Hardware Specifications 100% OpenBLAS mLIBXSMM mautoGEMM
Huawei AWS Ampere Apple Fujitsu f? 75% A
KP920 Graviton2 Altra M2 A64FX E 50% 1
Cores 8 16 70 4(+4) 48(+2) g i

Frequency 8@2.60 16@2.50 70@3.0 4@3.49 48@2.20 25% 1

L1i Cache 8@64K 16@64K 70@64K 4@192K 48@64K E

Lid Cache | 8@64K 16@64K 70@64K 4@128K 48@64K 0%

L2 Cache 8@512K 16@1M 70@1M 16M-share ~ 4@8M-share SIBIJILIS I IIINTLSS383 & ﬁ L8882

L3 Cache 32M-share 32M-share 32M-share None None - 1SS » &S -~ 1SS

SIMD(bit) | NEON(128) NEON(128) NEON(128) NEON(128)  SVE(512) M=80 | N=64 |~ | M=80 | N=64 |~ & M=80 N—64 a

SMP 1 1 2(NUMA) 1 1(ccNUMA) KP920 Graviton2 M2
Type SoC Datacenter Datacenter Consumer Supercomputer

Version 21.5.0 and clang version 13.1.6. TVM’s version was
v0.10 release, and LLVM’s version was 10.0.0, for all five
devices. We conducted evaluations on the following datasets:
(1) Small Matrices: We investigated the effects of step-
wise optimization on small matrices, varying in shape from
(1,1,1) to (128,128,128). Our evaluation included three parts:
a) a step-by-step assessment of micro-kernel generation and
optimization; b) an evaluation of the dynamic micro-tiling
algorithm; and c) a comparison of our work with other relevant
studies on small matrices. (2) Irregular Matrices: To evaluate
performance for deep learning applications, we used matrix
shapes generated by Resnet-50 [21] and [61]], [62], [63], [64]].
These shapes include all three types of irregular matrices: tall
and skinny, long and rectangular, and small matrices.

B. Step-wise Evaluation on Generated Micro-kernels

The GEMM code generation and pipeline optimizations
presented in Section [III] are evaluated step-by-step. The code
generated by micro-kernel generation (Listing [I] in Sec-
tion [[IT-A), rotating register allocation (Section [[II-CI)), and
fusing epilogue with next prologue (Section are eval-
uated on three Arm CPUs: KP920, Graviton2, and M2. Then
we compare our dynamic micro-tiling algorithm (DMT) with
OpenBLAS and LIBXSMM strategy to confirm its perfor-
mance benefits.

Fig. 7: Micro-tiling strategy comparison on OpenBLAS, LIBXSMM
and autoGEMM (using DMT) with KP920, Graviton2, and M2.

The step-by-step evaluation results are collected and pre-
sented in Figure [6] As can be seen from our two-step pipeline
optimization, autoGEMM improves performance over List-
ing [l When we increase the size of K-dimension, the effi-
ciency increases from lower than 60% to upper than 95%, and
reaches 98.78% of the hardware peak efficiency on Graviton2.
In the case when the K-dimension increases from 64 to 256
on N = 64, the efficiency on KP920 drops dramatically. As
there is 64KB of L1 cache in KP920 and the size of matrix
B is beyond 64KB, part of the data for the matrices A, B
and C will be stored in L2 cache, and on KP920 the latency
of loading instructions increases dramatically when accessing
the data in the L2 cache. We highlight the following trends in
the step-by-step performance evaluation results: 1) Individual
optimizations have different effects on different processors.
For example, the rotating register allocation optimization on
KP920 has a 3% improvement, but Graviton2 and M2 do
not benefit from it due to a larger hardware out-of-order
execution window. 2) When using the fusing epilogue with
next prologue optimization, when K = 4, we can see fairly
consistent performance improvement on the three processors,
17.3%, 15.8%, and 16.7%. Our performance model (Eqn @)
in Section accurately projects that the setting K = 4
and m, = 5, n,, = 4 can result in the projected improvements



TABLE V: Irregular GEMM shapes from Resnet-50 [21].

Layer|l M N K ||[Layerl M N K ||Layer
L1 | 64 12544 147|| L6 |128 784 256 || L11
L2 |64 3136 64 L7 |128 784 1152|| L12
L3 |64 3136 576|| L8 |512 784 128 || L13
L4 |256 3136 64 | L9 |512 784 256 || L14
L5 |64 3136 256| L10 |28 784 512 || L15

M N K ||Layer
256 196 512 | L16
256 196 2304| L17
1024 196 256 || L18
1024 196 512 || L19
256 196 1024| L20

M N K

512 49 1024
512 49 4608
2048 49 512
2048 49 1024
512 49 2048

in the step-by-step performance results.

We compare the micro-tiling algorithm of the static strate-
gies (OpenBLAS, LIBXSMM) with the dynamic strategy of
autoGEMM using KP920, Graviton2, and M2. The compari-
son results are reported in Figure [/, When M x N = 80 x 32
or M x N = 25 x 64, the tiling results for these three
algorithms use tiles of the same size, 5 x 16: there are no
performance gains with autoGEMM. For the other cases,
the dynamic micro-tiling of autoGEMM generates balanced
tiles with higher arithmetic intensity, yielding a significant
performance improvement over static strategies and always
guarantees close to peak performance. The case of M x N =
26 x 64 on three hardware targets validates our analysis of
the relationship between micro-kernel Al and hardware a7
in Figure [2| and the dynamic tiling strategy of autoGEMM
in Figure [5}(c). On high-o 4; hardware (KP920), our strategy
is the same as LIBXSMM: generate the minimum number
of low Al tiles. On low-o 4; hardware (Graviton2 and M2),
our performance improves in comparison to LIBXSMM. In
particular, 4 x 16 shape micro-kernel at the edges can achieve
peak performance, i.e. we completely eliminated tiles with low
Al. Additionally, for Graviton2 with lower o 4, the penalty for
calling low Al tiles of shape 1 x 16 is smaller. In conclusion,
autoGEMM’s dynamic micro-tiling plays an important role in
improving the efficiency of irregular GEMM.

C. Irregular and Small GEMM Evaluation

In Figure [§] we compare autoGEMM with five state-of-
the-art libraries on five Arm processors using small matrices.
For fairness, we exclude the time to generate the code JIT
from the runtime and only the actual computation time was
considered for LIBXSMM since it uses the JIT method.
Additionally, LibShalom does not compile properly with clang
and also does not support SVE (Scalable Vector Extension),
and thus cannot be evaluated on the M2 and A64FX devices.
For M=N=K <24, autoGEMM significantly outperforms other
libraries, in comparison with LIBXSMM and LibShalom on
five hardware, there is a 1.5x-2.0x speedup. That is mainly
due to our more flexible combination of micro-kernels, and
the pipeline optimization. As the matrices sizes continues
to increase, we consistently achieve near-peak performance
and have a minimum of 5% performance advantage over
the best second-place library, on all different processors. We
emphasize that autoGEMM achieves a near-peak efficiency
of 97.6% on KP920, 98.3% on Graviton2, 98.4% on Altra,
96.5% on M2, and 93.2% on A64FX, when M=N=K=64.
This indicates that load/store instructions are almost perfectly
overlapped by FMA. However, when M=N=K=128 on KP920,
our performance is lower than LibShalom, which benefits from
hand-written data prefetching instructions. Our method does
not employ L1 prefetch instructions, which is based on an

assumption that there are no L1 cache misses in the micro-
kernel, and only keeps L2 prefetch instructions in kernel.
We report single-thread and multi-threads evaluations on
irregular-shaped matrices generated by the ResNet-50 deep
neural network. The layer-by-layer shapes of matrices are
presented in Table [V] We compare the performance of au-
toGEMM with OpenBLAS, Eigen, SSL2(Fujitsu), and Lib-
Shalom, as shown in Figure 0] As LibShalom uses an offline
packing routine for matrix B to improve reults on larger
matrices. Similarly, autoGEMM is also flexible in enabling
offline packing for near-peak performance, whereas traditional
BLAS library do not support offline packing. In terms of
single-thread evaluation, we outperform OpenBLAS and Eigen
with an average improvement of 1.3x (up to 1.9x) and 1.5x
(up to 2.0x), respectively. In comparison to LibShalom, auto-
GEMM achieves similar performance on KP920, and slightly
outperforms LibShalom by 2-8% on Graviton2 and Altra.
In terms of multi-threads evaluation, the result show that
autoGEMM achieves comparable performance on KP920 and
achieves an average of 8% (up to 20%) performance boost
over LibShalom on Graviton2. However, note that when multi-
cores autoGEMM implementation runs a matrix with a large K
dimension (L7,L12,L17,1.20), its performance may decrease.
This is because TVM, as an external framework, does not
support parallelism over the K dimension (k. consistent
with K). Consequently, autoGEMM cannot fully leverage the
hardware capabilities on multi-cores. The multi-core perfor-
mance on the A64FX is also not satisfactory (yet remains
competitive at the single-core level). The possible explanations
is that we transplant autoGEMM directly by replacing NEON
vector intrinsic with A64FX’s SVE intrinsic with no special
optimizations. Further improvement is to be expected as we
continue to optimize for SVE instructions on multi-cores.

D. Roofline Analysis

Figure [I0] shows roofline [66] for both small and irregular-
shaped matrices. The performance of small GEMM in most
cases is not limited by memory bandwidth, although end-
to-end execution of small matrices may be bounded by the
DRAM bandwidth. As small GEMM becomes compute bound,
the performance of autoGEMM is closer to peak GFLOPS
than that of LibShalom, OpenBLAS, and Eigen. The shape
extracted from Resnet50 has larger arithmetic intensity than
small matrices and is typically in the compute bound realm. On
a single core, autoGEMM is close to the peak of the roofline,
while on multi-cores, autoGEMM can easily exceed the upper
bounds of DRAM and L3 cache.

E. Scaling Evaluation

In Figure [T} we illustrate a strong scaling evaluation
conducted on all five chips. The results demonstrate that
autoGEMM achieves almost linear scaling on all chips with a
parallel efficiency of 98%, 98.2%, 83.2%, 93.5%, and 30.3%
on KP920, Graviton2, Altra, M2, and A64FX, respectively.
The findings also reveal autoGEMM’s poor scalability results
on A64FX, which could be attributed to the performance
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Fig. 10: Roofline comparison on KP920, Graviton 2, and M2 (single precision). We evaluate four small GEMM cases (8, 16, 32, 64) while

keeping M = N = K. The irregular-shaped matrices are four layers (L4, L8, L10, L16) selected from Resnet-50 in Table |V} autoGEMM

running on a single-core is denoted as single-core, and with all available cores is denoted as multi-cores.
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is used with default components, while only replacing the calls of its
GEMM routines from OpenBLAS to autoGEMM. The runtime for
CONV and FC layers by calling GEMM operations is Tgrnma, and
the time used on other non-GEMM operations is denoted as Tother-

. . Number of Threads .
Fig. 11: Scalability evaluation for autoGEMM. The irregular shaped

GEMM problem is L1 layer in Table [V]

tuning points being limited to 12 cores in one Core Memory
Group (CMG), and the ccNUMA architecture with a ring bus
between 4 CMGs that could affect scalability [67].

four DL models: ResNet50 (N1) [21]], Inception-V3 (N2) [61],
Mobilenet-V1 (N3) [62] and Squeezenet (N4) [63]. We denote
the convolution (CONV) and fully-connected (FC) operators

FE. Deep Neural Network Evaluation

In this section, we present our experiments on performing
end-to-end evaluations for popular DL networks. In Fig-
ure [I2] we integrated autoGEMM or OpenBLAS into Ten-
cent’s TNN framework [[65] and evaluated its performance on

in the model as GEMM, while the non-GEMM operators
are collectively denoted as Other. Figure [I2] shows that the
time consumed by Other is identical for both OpenBLAS and
autoGEMM, but a noticeable decrease in normalized time for
the Tgraras part is observed with autoGEMM. We obtained



the best results on KP920, with a speedup of 1.30x on all four
models. On Graviton2, the speedup is between 1.08x to 1.15x.

VI. CONCLUSION

This paper presents autoGEMM, an open-source library for
optimizing GEMM computation on Arm architectures. It auto-
matically combines hand-optimized assembly code fragments,
tunes register reuse, and overlaps data load/store for better
performance. Dynamic tiling generates balanced tile shapes
based on matrix shape. Evaluations on five different classes
of Arm chips demonstrate the advantages of autoGEMM. For
small matrices, autoGEMM achieves 98% of peak and a 1.5-
2.0x speedup over state-of-the-art libraries such as LIBXSMM
and LibShalom. For irregular matrices (i.e., tall skinny and
long rectangle), autoGEMM is 1.3-2.0x faster than widely-
used libraries such as OpenBLAS and Eigen.
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