Development of a Machine-Learned Cruise Guide Indicator for Rotorcraft

Mathew Boyer Wesley Brewer Jeff Finckenor
Computational Scientist HPC/AI Research Scientist Structural Engineer
DoD HPCMP PET/GDIT Oak Ridge National Laboratory DEVCOM AvMC
Aberdeen, MD, USA Oak Ridge, TN, USA Redstone Arsenal, AL, USA
Chris Brackbill Daniel Martinez Andrew Wissink
Lead Aerospace Engineer Al Engineer Aerospace Engineer
DEVCOM AvMC DEVCOM AvMC DEVCOM AvMC
Redstone Arsenal, AL, USA Moffett Field, CA, USA Moffett Field, CA, USA
ABSTRACT

This paper presents a machine-learned virtual cruise guide indicator (vCGI) for Chinook helicopters. Two temporal
neural networks were trained and evaluated on measured data from 55 flight tests, one for the fore rotor and another
for the aft rotor, to predict a vCGI value, which protects 23 components from fatigue damage during steady-state
conditions. Three different classes of machine learning architectures were evaluated for prediction of the vCGI from
time sequences: a temporal convolutional neural network with 1D dilated causal convolutions, a long short-term
memory recurrent neural network, and an attention-based transformer architecture. The final average model accuracy
on unseen flight data is currently greater than 93% for CGI values which could result in fatigue damage and 90% for
normal operation CGI values. Model accuracy was improved through a series of advancements in: (1) selection of
optimal training data using temporal collective variables and unsupervised learning, (2) dataset augmentation with
maximum-entropy temporal collective variables, and (3) implementation of a mixture-of-experts classification-
regression approach using an adversarial classification approach to assign maneuver labels. The results are presented
for each advancement in model development along with lessons learned in training machine learning models on real-
world, time-dependent rotorcraft data.

INTRODUCTION

and avoid (red). The CGI is computed as a function of both

Virtual sensor methods have been proposed for future Army ¢ 0 4 -6 fixed link os cillatory loads.

rotorcraft platforms or future upgrades as a means of
monitoring or extending component lives. By constructing a
virtual sensor from flight test data acquired from a heavily
instrumented aircraft, stress loads can be monitored during
standard aircraft operation without the need for additional
physical sensors. Moreover, they could also enable mission
planners in acquisition programs to assess performance before
a new aircraft or upgrade is completed using digital models.

Cruise guide indicators (CGI), used on Chinook helicopters,
provide pilots a visual indication of stress loads on critical

components during flight, based on on-aircraft strain-gauges Il Normal operation
(Ref. 1). In contrast, a virtual CGI (vCGI) takes in standard Transient
flight data and virtually determines the stresses using a B Avoid

machine learning model trained on flight test data. Figure 1
shows an example of a cruise guide indicator available as a
cockpit instrument in rotorcraft. The indicator is divided into
three regions: normal operation (green), transient (yellow),

Figure 1. Schematic of a Cruise Guide Indicator gauge
for CH-47 rotorcraft, as described in Ref. 1.

Presented at the Vertical Flight Society’s 79th Annual Forum &
Technology Display, West Palm Beach, FL, USA, May 16-18,
2023. This is a work of the US Government and is not subject to
copyright protection. DISTRIBUTION STATEMENT A:
Approved for public release: distribution unlimited.

Oldersma and Bos (Ref. 2) provided an overview of a system
they developed called “CHAMP” which stands for Chinook
Airframe Monitoring Program, which is used to develop a
“virtual strain gauge” based on artificial neural networks
(ANN). Their training data, based on 49 recorded flight
parameters, monitors nine strain gauges on the CH-47D
Chinook helicopter.

Isom et al. (Ref. 3) investigated the development of a
technique for the virtual monitoring of loads (VML) based on
flight tests of the U.S. Army RASCAL JUH-60 helicopter.
Their model is based on 19 aircraft state parameters, and their
dataset contains a series of maneuvers including turns, pull-
ups, and pushovers. Their model uses proprietary regression
algorithms developed by Sikorsky (Ref. 4).

Martinez et al. (Ref. 5) investigated the development of a
virtual accelerometer that may be used to predict a vibration
spectrum using deep neural-network-based regression, or
deep regression, from which the health condition of an oil
cooler may be predicted. Martinez et al. (Ref. 6) investigated
the development of machine-learned aerodynamic models
based on high-fidelity computational data from CREATE-AV
Helios CFD software. Their neural networks are trained on
simulated flight test maneuvers and demonstrated on the
Utility Tactical Transport Aircraft System (UTTAS) pullup
maneuver.

This study investigated the development of neural networks
to predict the fore and aft fixed link oscillatory loads and,
from the loads, the vCGI. A variety of neural network
architectures were evaluated, including ones based on multi-
layer perceptrons (MLP), temporal convolutional neural
networks (TCNN), Long Short-Term Memory (LSTM)
layers, and transformer/attention-based networks, as well as
ensembles of these models. The final model developed
achieves greater than 90% average accuracy for predicting the
cruise guide indicator across a range of flight conditions.
Several technical approaches enabled significant
improvements in the model: (1) normalizing the input features
before training or inferencing the neural network, (2)
converting the input features to overlapping time sequences,
typically with a window of four to eight time steps per model
input, (3) using KerasTuner with the HyperBand technique
for hyper-parameter optimization, (4) implementing various
types of dataset culling and subsampling techniques, and (5)
development of a mixture-of-experts classification-regression
framework based on flight maneuvers. All training was
performed using Nvidia V100 GPUs on the DoD HPCMP
supercomputers: Onyx-MLA, SCOUT, and Vulcanite. The
models were trained using data from 55 flight tests, resampled
at a rate of approximately 16 Hz. The resampled data consists
of 74 features routinely monitored on rotorcraft, such as: pitch
angle, radar altitude, engine fuel flow, rate of climb, and
engine torque. The 74 features and resample rate were chosen
to mimic existing on-board data collection in fielded aircraft.

This paper presents a virtual cruise guide indicator, which
protects 23 components from fatigue damage during steady-
state conditions. The model uses 74 flight parameters and was
trained and evaluated on 55 flights tests, covering more than
14 flight maneuver categories. Three classes of neural
networks designed for temporal forecasting (Ref. 7) were
evaluated for accuracy, with a focus on the yellow and red
regimes of the CGI. The work advances the state-of-the-art in
the areas enumerated below:

1. A feature-rich raw training data set was developed
based on flight test data. The dataset contains a
wide array of flight maneuvers performed at
multiple gross weights and altitudes.

2. A novel framework was developed for selecting
optimal subsets of flight test data for training neural
networks using temporal collective variables and
unsupervised learning. A maximum-entropy feature
importance method was also developed and used to
identify information-rich features. The collective
variable representations of these features were
incorporated as additional model inputs.

3. Various temporal forecasting neural network
architectures were studied and optimal strategies
for predicting the vCGI were explored. This
included evaluation of model targets, whether to
model the CGI instrument values directly versus
modeling the oscillatory forces, the optimal
sampling frequency, and whether the forces are
averaged once or thrice (for the 3-bladed Chinook
rotor) per rotor revolution.

4. A mixture-of-experts approach using two-stage
classification-regression models was explored. A
novel approach was developed to classify flight
segments based on limited labeled data and
maneuver-specific models were trained on the full
dataset using the machine-generated labels. The
final model uses a weighted average of the
specialized models based on the classifier
probabilities.

5. A production pipeline was developed for training
and evaluating machine learned models on high
performance computers (HPC) using multiple
GPUs.

TECHNICAL APPROACH
Flight Test Data

Models were developed and tested based on data from 55
flight tests with a heavily instrumented CH-47 rotorcraft. A
subset of features that would be readily available based on the
standard (operational) instrumentation onboard H-47
rotorcraft was used for the inputs to models, such that the final
models could be deployed without modification to existing
rotorcraft. Several model targets were evaluated in this work,
including direct prediction of the CGI and indirect prediction

2

of the CGI via prediction of the mean or oscillatory fixed link
loads. The cumulative dataset contained hundreds of hours of
flight time sampled at 16 Hz, which corresponds to over six
million data points. This real-world dataset contains a variety
of flight maneuvers such as hover, turns, dives, climbs,
doublets, and different types of landings, and includes
different altitudes and gross weights. In addition to the
targeted maneuvers, the dataset also contains all auxiliary
operation within the test flights. Within the dataset, 98% of
all samples correspond to a green CGI, 1.5% to a yellow CGI,
and 0.5% to a red CGI.

The 72 input features utilized for the vCGI were first rescaled
to prevent the models from overweighting features based on
magnitude. Multiple scaling methodologies were explored,
including simple approaches like rescaling the mean-centered
features by one standard deviation (standardized scaling) and
more complex approaches like the Yeo-Johnson power
transformation (Ref. 8). While these more complicated
approaches can provide some improvement to accuracy, this
can come at the cost of stability if unseen cases exceed the
bounds of the training sets. Ultimately, the standardized
scaling approach was chosen for its stability and
interpretability. Results presented were produced using the
standardized scaling.

Machine Learning Models

For the virtual sensor developed in this work, input features
were considered as time histories, in order to account for their
gradients. For example, the rate of change of air speed and its
direction correspond to acceleration or deceleration; steady-
state flight at a given airspeed can result in differing loads
than acceleration or deceleration at the same air speed. To
enable accounting for the time history of these features, neural
networks commonly used in temporal forecasting were
chosen. Instead of predicting a sequence of future values
based on a sequence of past values, the models developed
used a sequence before and including the current time to
predict the target value at the current time.

Lim and Zohren (Ref. 7) present three different types of
neural network architectures that are typically used in
temporal forecasting: temporal convolutional neural networks
(TCNN:S), recurrent neural networks (RNNs) such as the long
short-term memory (LSTM) network, and models based on
the attention mechanism, like transformers. All models were
implemented in TensorFlow (open source AI/ML software
library) versions 2.6 or greater. RNN models were evaluated
using a single LSTM layer followed by nine fully-connected
layers. For the temporal CNN model, two one-dimensional
convolutional layers precede a flattening operation and four
fully-connected layers. Finally, the transformer architecture
utilizes a multi-head attention layer, followed by two one-
dimensional convolutional layers and nine fully-connected
layers. For each architecture, the number of parameters
(recurrent units, neurons, or filters) were varied and
optimized. Multiple activations were evaluated, including
hyperbolic tangent, rectified linear unit (ReLU), exponential

linear unit (ELU), scaled exponential linear unit (SELU),
Gaussian error linear unit (GELU), and Swish. Parameter
optimization and activation selection is discussed later in this

paper.

Uncertainty Quantification

A common criticism of neural networks is the black box
nature of their predictions, which can be biased or entirely
inaccurate under certain circumstances (Ref. 9). For
engineering applications, model interpretability is necessary
to ensure end-users are aware of when the model is most
likely to be inaccurate. To enable this, uncertainty
quantification was incorporated into the vCGI through the use
of Monte Carlo dropout, following the approach of Gal and
Ghahramani (Ref. 10). Dropout (Ref. 11) is the process of
setting a random collection of weights in a layer to zero and
reweighting the remaining non-zero weights. Typically,
dropout is only implemented during training to prevent
overfitting. However, it can also be used during inference to
perform an ensemble of inferences with a randomly varying
neural network. This ensemble is then used to determine the
mean prediction and its variance.

After initial development of the vCGI models, Monte Carlo
dropout was added as an optional feature to all neural network
architectures. Dropout was only applied before interior fully-
connected layers and a dropout rate of 0.125 was used. An
ensemble size of 16 was utilized for inference. As discussed
in the work of Gal and Ghahramani (Ref. 10), the inference
variance is dependent on the activation function; activations
which bound the layer output, like hyperbolic tangent, can
truncate the large variations and result in artificially small
variances. This was considered in addition to model accuracy
when selecting the optimal activation function for the vCGI.

Hyper-parameter Optimization

An initial set of hyperparameters for each model architecture
was obtained by automatic search using Keras Tuner (Ref.
12). Model parameterization was divided into a few
parameters: the number of time-series-encoding layers
(LSTM, multi-headed attention, or convolution), the number
of neurons or filter for these encoding layers, the activation
function used for all but the last layer, and the width of the
first fully-connected layer. For the TCNN architecture,
subsequent fully-connected layers decreased in size by
powers of two, while for the transformer and RNN models a
fixed width was used for all but the last fully-connected layer.
The Hyperband technique was used for hyperparameter
tuning, rather than random search or Bayesian optimization.
Once the initial optimal parameterization was found, fine-
tuning was performed by manual modification of the base set
of parameters and comparing vCGI accuracy after fully
training the neural networks. All architectures were found to
produce optimal results using the Swish activation function
and the Adamax optimizer with a learning rate of 0.0024. A
batch size of 256 was utilized and all models were trained for
10 epochs with the learning rate set to decay by half based on

plateau of the training loss. For the TCNN model, 112 filters
and a kernel size of 2 were found to be optimal; the fully-
connected layers used 224 and then halved the next two
layers. For the LSTM, 256 units were used, and 256 neurons
were used in the fully-connected layers. Finally for the
transformer, 4 attention heads with a size of 72 were found to
be optimal and fully-connected layers with 256 neurons were
used.

Data and Model Augmentation

The natural statistics (only 2% of data outside normal
operation) of the dataset are not optimal for training a model
to achieve the target objective: produce a virtual CGI with
>95% accuracy for the red/avoid regime. A series of dataset
augmentation strategies were explored to improve model
accuracy for these conditions, which cause fatigue damage to
rotorcraft components. The first approach explored was
dataset culling (Ref. 13), where samples beneath a certain
threshold were omitted from the training set to increase the
relative population of higher values of CGI within the flights.
After evaluating this thresholding approach, unsupervised
learning methods were evaluated to construct more optimal
training sets from the flight data.

To enable the application of common unsupervised learning
methods, the CGI time series signal was divided into windows
and then decomposed into four collective variable (CV)
descriptions of the window: the mean, the slope, the variance,
and the curvilinear distance. In this study, a window of eight
time steps was used to construct the CVs. The four CV
features were then used as the inputs for two different
clustering algorithms: K-means and the self-organizing map
(SOM) presented in Ref. 14. The clustering methods were
used to segment the flight data into distinct groups, which can
represent different flight modes in terms of strain on the
rotorcraft. Figure 2 shows an example flight partitioned by a
self-organizing map along with the pressure altitude; cluster
indices were sorted from largest to smallest with the mapping
shown in the inset. Training datasets were then constructed by
randomly drawing an equal number of samples from each
cluster. Data within smaller clusters was repeated when the
sample size surpassed the cluster size.

The same approach can also be used to expand the input
feature set by including the CV representations of certain
input features as additional model inputs. Although the model
architectures described in the previous section all process
time series input features, they all decode a one-dimensional
latent vector. To utilize both the time series and a vector of
CV features, an additional fully-connected layer can be added
to the model to encode the CV features and then the 1D
encoding of the CV features can be concatenated with the 1D
encoding of the time series features, before being processed
by the decoding portion of the architecture. This methodology
enables the expansion of the feature set without any additional
data, can enable the model to more easily interpret temporal
features like increasing altitude or deceleration, but also
increases the computational cost of both training and

inferencing the models. To maximize the benefit of the
additional CV features, while minimizing the cost, an
entropy-based feature-importance method was utilized to
determine the N most optimal features to include as CV
representations.

-
Ll T W i
» L P -’L' 5‘, ”'M Ma!fi‘ift:i..ﬁu,;-u

o 1000 2000 3000 4000 5000
time

Pressure Altitude

- — ;ﬂ -
LI W ot *

-— g - (o |

!

4000

3000

Altitude (f)

2000

1000 ’

[1000 2000 3000 4000 5000
time

Figure 2. CGI signal colorized according to self-
organizing map cluster (top) and a single input feature,
pressure altitude, colorized according to the same CGI

clusters (bottom).

The information entropy of the input time series features was
measured by the following approach depicted in Figure 3.
First, the time series representation of each input feature was
converted to the same four CVs used in clustering the CGI.
Next, the clusters generated were used to sort the input
features into clusters. The population of each input feature CV
in each cluster was then used to construct a probability
distribution. For each CV feature, the minimum inter-cluster
distance was found by computing the mean absolute sum of
the Kullback-Leibler divergence (Ref. 15) between
corresponding probability distributions. The entropy of each
feature was then found by summing the four CV minimum
distances. This process was performed for each flight
separately and the maximum entropy of each feature in a
flight was then used to rank the information entropy from
greatest to least. The top N entropy features can then be
included as CV representations, where N is an additional
hyperparameter for model development. In this work, the top
20 entropy features were used when this approach was
utilized.

Mixture-of-Experts Models

In addition to developing general neural network models to
predict the CGI, the development of a mixture-of-experts
(MoE) approach was also explored. MoE approaches have
been widely used in machine learning with methods like
Gaussian process regression and support vector machines
(Ref. 16) and, even more recently, for large language model
neural networks (Ref. 17). As suggested by the name, a MoE
uses a weighted sum mixture of specialized models.
Typically, the weights for the sum are determined by another
model like a probabilistic classifier. In this work, a two-stage
classification-regression MoE approach was developed based

4

on timestamp labeled maneuver data. A classification model
was developed to predict the probability that a flight segment
corresponded to each of nine maneuver classes: ground, low
speed, level flight, acceleration, deceleration, climb, descent,
turns, or dynamic operation (any transient condition not
covered by another label). The same classifier was then used
to divide the flight test data into maneuver-specific subsets.
Specialized neural network models were then trained on each
maneuver-labeled data subset following the same approach
used to train the general models. Prediction of the vCGI was
then made by taking the probabilities from the classifier and
using them as weights for a sum of the predictions of the
specialized models. A diagram demonstrating the application
of MoE models to this problem is shown in Figure 4.

Cluster-Sorted Input Features

Probability Distributions

&

Kullback-Leibler Divergence

I WU O e :
Minimum Inter-cluster Distance

Figure 3. Schematic of entropy-based feature importance
methodology using Kullback-Leibler divergence to
compute distance between information in each cluster.

Adversarial Classification

Although the flight test data contained millions of samples for
prediction of the CGI, only a few thousand samples were
available with timestamped maneuver labels. In general, this
process required hand-labeling by subject matter experts,
which limited the ability to expand the dataset size. One key
finding discussed within the landmark dropout paper (Ref.
11) was the tendency of neural networks to overfit on small
datasets. In general, multiclass classification has issues with
overfitting to noise or memorizing rare cases (Ref. 18). To
contend with both the inclination of neural networks to overfit
on small datasets and in multiclass classification tasks, a
novel classification approach was developed to enable the
MoE method described previously. Direct classification of
flight segments with LSTM-based neural networks was also
explored as a baseline methodology for comparison.

Instead of training a model to directly learn the maneuver
label based on the input, neural networks were trained to
rescale the inputs such that samples with the same label would
be closer to one another in the high-dimensional mapped
space than to samples with different labels, as illustrated in
Figure 5. Once the input space is remapped, clustering can be
performed through unsupervised methods, like the K-means
algorithm. Once the labeled training samples are clustered,
each cluster can be mapped to a maneuver based on the
greatest label frequency. The label mappings and cluster

model can then be applied to unlabeled data to predict the
maneuver class.

Weighted Sum vCGlI

Turns Climb Accel
Model Model Model
ﬂl

2 . e\
S OAclimb -y o

Maneuver
Classifier

Y
Flight Data

Figure 4. Example of a mixture-of-experts classification-
regression scheme used to predict the CGI.

Unmapped Space Mapped Space

.4— - +. Neural ‘k\ d;
A Network \

/ - d,
X
@ d

Figure 5. Demonstration of a neural network learning
high-dimensional mapping to a space where samples with
the same label (color) are nearer to each other than to
samples with different labels.

¢

The neural network used to rescale the inputs was trained on
random groupings of one sample from the target class and one
sample from each of the other classes. A custom loss function
was implemented based on the squared Euclidean distances
(d*) between the target sample and each class sample. A
vector of class probabilities was constructed where the
probability, P, for each class, i, was given by:

The categorical cross-entropy (CCE) was then calculated
based on this vector of probabilities and a one-hot encoding
of the target maneuver label (target label = 1, other labels =
0). During training, P is used directly, but for determination
of MoE weights, the Softmax function is applied to the vector
of probabilities.

By providing the model with both positive and negative
examples during training, the effective dataset size increase
from N labeled samples to [], N; for N; samples in each of
the M classes. This approach was inspired by the training of
generative adversarial neural networks, where the generator
is rewarded or penalized, depending on the discriminator. In
this adversarial classification approach, the model is rewarded
for decreasing distance between samples of the same class and
penalized for decreasing the distance between samples of
different classes. In direct prediction of the class label, only
the first is explicitly done. The use of distance in a high-
dimensional space allows for learning categorization in a
continuous fashion, rather than the discrete assignment of
labels. Furthermore, the distance mechanism allows for a
clear and interpretable definition of an unknown sample: any
test value that is nearly equally far from all reference centroids
does not fall into any assigned class.

RESULTS AND DISCUSSION

The vCGI model presented in this paper was developed and
refined over a series of studies. It was found that the model
architecture, the input features, and the relative sampling of
different segments of the flight envelope within the training
set all significantly affected the fidelity of the virtual sensor
predictions. The vCGI model was based on two independent
models trained to predict the fixed link oscillatory loads for
the fore and aft rotors. This approach provides more
information about specific component damage and avoids the
need for the model to handle discontinuities from the piece-
wise nature of the CGI. The oscillatory loads were averaged
once per revolution, as this produced better results with less
jitter than more frequent averaging, as shown in Figure 6.

Different neural network architectures were compared, with a
primary focus on those which leverage a time history of the
input features for prediction of the vCGI. Even after careful
optimization of the training procedure and hyper-parameters,
the vCGI trained on raw flight datasets was found to
significantly overpredict and/or underpredict the analog CGI
value. This led to optimization of the training dataset through
subsampling based on temporal collective variables
describing the CGI and its change over time. While this
approach showed improvements to the model accuracy, most
notably a significant reduction in over-prediction, additional
avenues of refinement were explored to further improve
accuracy.

The first leveraged an entropy-based feature importance
method to down select the full feature set and then a model
architecture modification to incorporate the temporal
collective variables of these high-entropy features as

additional model inputs. The second approach leveraged all
previously mentioned developments within a mixture-of-
experts framework based on classification of the flight
segment based on maneuver. The intent was to develop
models specialized towards certain input feature regimes
representative of general flight maneuver categories such that
the regression models did not need to accurately predict the
CGI for the full flight envelope.

1 sample per rev

1000 2000 3000 4000 5000 6000
tim

3 samples per rev

0 1000 2000 3000 4000 5000 6000
time

Figure 6. Fore and aft fixed link oscillatory loads as a
percent of component damage threshold and model
predictions with sampling rates of once per revolution
(top) and thrice per revolution (bottom).

Neural Network Architecture Evaluation

Initial attempts at developing a vCGI utilized flight data from
a single instance in time to predict the CGI. This approach
was found to be insufficient to predict quantities dependent
upon gradients. For example, a model which does not
interpret a time sequence or explicitly include feature
gradients with respect to time cannot easily distinguish
between steady flight and acceleration for a given airspeed.
To demonstrate the importance of this time component, a
multi-layer perceptron (MLP) neural network (equivalent to
the LSTM-based model without the LSTM encoding layer)
was trained and compared against the time series
architectures. While an MLP can process a sequence by
flattening the time dimension into the feature dimension, this
does not necessarily interpret time in order. Table 1 shows
selected results of the neural network models from evaluation
on five unseen test flights; the models were trained on 37 test
flights using sequence lengths of 1, 4, and 8. The mean
percent error for instances when the true CGI is above the
threshold for fatigue damage is shown (Y/R error).
Additionally, the categorical overprediction ratio is reported:
the number of false-positive predictions of CGI yellow/red
divided by the number of true CGI yellow/red occurrences.

From these results, it can be seen that including a time history
of the input features increases model accuracy for both the
MLP and LSTM models, compared to their non-temporal
equivalents. Furthermore, the architectures designed for time
series data more accurately predict the CGI for values in the

6

yellow or red, compared to the MLP model. Generally, there
is an observed tradeoff between the yellow/red accuracy and
the overprediction ratio, whereas when this accuracy
increases, more green CGI samples are predicted to be in the
yellow or red categories. The LSTM-based model exhibits the
lowest tendency to overpredict the CGI category, while
performing marginally worse than the TCNN model at
predicting the CGI in the yellow/red.

Table 1. Results of Architecture Evaluation.

Architecture Sequence Y/R Error Overprediction
(%) Ratio
MLP 1 19.8 1.3
MLP 8 17.2 0.5
LSTM 1 18.0 2.6
LSTM 4 14.8 2.2
LSTM 8 15.5 1.7
TCNN 4 16.2 2.8
TCNN 8 14.4 3.8
Transformer 4 15.2 34
Transformer 8 124 4.2

To better understand the meaning of the two presented
metrics, Y/R error and overprediction ratio, plots of the vCGI
predictions for two of the unseen test flights are presented in
Figures 7, 8, and 9, for the nontemporal MLP, the LSTM with
sequence length 4, and the transformer with sequence length
8, respectively. The first unseen test flight contains pullups,
partial power descents, and high-velocity level flight, while
the second unseen test flight contains autorotation maneuvers.
The baseline MLP model tracks the primary signal mode of
the CGI with some spurious peaks and overpredictions for the
second test flight. In general, this model underpredicts the
magnitude of many of the peaks, even when accounting for
the uncertainty estimate; this model only correctly predicts
that the CGI is in the red/yellow 24.8% of the time and only
48% of underpredictions are within three standard deviations
of the threshold for yellow CGI. By comparison, this model
also predicts large uncertainty bands, which is likely due to
the simpler description of the input features resulting in wide
range of CGI values for many similar sets of inputs.

Utilizing the time history of the input features enables the
models to better disambiguate by contextualizing flight
conditions against the short-term history. This results in lower
model uncertainty for the LSTM model, compared to the
MLP model, with the exact same training data, as seen in
Figure 8. The additional information enables the model to
more accurately predict the CGI while in the yellow or red as
well. However, even with the additional information, this
model still underpredicts many of the CGI peaks and predicts
spurious features, particularly in the second unseen flight with
the autorotation maneuvers.

unseen flight 1

unseen flight 2 s

o 500 1000 1500 2000 2500 3000 3500 4000
time

Figure 7. Predictions on two unseen test flights
simulating normal flight (top) and normal flight with
autorotation (bottom) made using a multi-layer
perceptron model. The model uncertainty is shown for +
3 standard deviations in orange.

unseen flight 1

50
unseen flight 2 s
00

time

Figure 8. Predictions on two unseen test flights
simulating normal flight (top) and normal flight with
autorotation (bottom) made using an LSTM neural
network with a time sequence of four. The model
uncertainty is shown for + 3 standard deviations in
orange.

The transformer model demonstrated both the best accuracy
in red CGI prediction and the highest overprediction ratio.
Figure 9 demonstrates that these models capture many of the
large peaks in CGI at the cost of predicting a large amount of
spurious features, particularly for the second unseen test
flight. In general, every model performed the worst on this
flight, which suggests it is not well represented within the
training set. However, comparing models with this flight
demonstrates their ability, or lack thereof, to generalize. Both
the MLP and the transformer appear to overfit the training
data, as both models exhibit large uncertainties for the
majority of the second unseen flight. While the MLP lacks the
complex description of the input features provided by the time
history, the transformer still appears to overpredict to some
subset of features through the attention mechanism.

— Ground Truth

unseen flight 1

veel

o 1000 2000 3000 4000 5000 6000
tme

unseen flight 2 —— predicto

o 500 1000 1500 2000 2500 3000 3500 4000

Figure 9. Predictions on two unseen test flights
simulating normal flight (top) and normal flight with
autorotation (bottom) made using a transformer-based
neural network with a time sequence of eight. The model
uncertainty is shown for + 3 standard deviations in
orange.

The results presented in this section were the final findings
after automated tuning and hand-tuning of hyper-parameters,
data scaling, and the training procedure. As mentioned
previously, the raw dataset is heavily imbalanced towards
lower values of CGI with the green regime. While it may be
expected that this would result in underprediction of the CGI
peaks, the poor generalization and spurious overpredictions
were also expected to be caused by overfitting to noise within
the imbalanced dataset. To further improve the vCGI model
accuracy and generalization, dataset augmentation was
explored.

Dataset Augmentation

Initial investigations of dataset augmentation focused on
dataset culling (Ref. 13) by thresholding or removing entire
flight sections without any yellow/red CGI values. These
approaches provided minor improvements to the yellow/red
CGI error, but significantly degraded the model accuracy
flight segments with green CGI. This finding led to the
exploration of more complex methods based on unsupervised
learning.

Using the methodology outlined in the Technical Approach
section, the training dataset for the same 37 test flights was
reduced from 4.5M samples to about 1M samples. Because
the procedure includes the replication of samples within
smaller clusters, it should be noted this does not amount to a
removal of 3.5M samples; the data reduction was likely more
significant. The clustering algorithm utilized 16 clusters and
up to 2,000 samples from each cluster in each flight were
drawn to construct the modified training set. Because of the
training set size reduction, the time to train the vCGI models
was also reduced by about a factor of four. Table 2 shows the
results for the temporal forecasting architectures using
sequence lengths of 4 and 8. The augmented dataset resulted
in a reduction of the overprediction ratio across all models,
while not significantly depreciating the accuracy for

yellow/red CGI prediction. For some model formulations,
such as the LSTM model with a sequence of 8, the accuracy
increased along with the reduction in the overprediction ratio.

Table 2. Model Performance with Subsampling.

Architecture Sequence Y/R Error Overprediction
(%) Ratio
LSTM 4 15.6 1.4
LSTM 8 12.5 1.3
TCNN 4 15.7 1.7
TCNN 8 17.4 2.6
Transformer 4 14.6 1.8
Transformer 8 12.1 1.8

Accounting for both the yellow/red CGI accuracy and
overprediction ratio, the LSTM model with the longer
sequence produced the best overall results. Figure 10 shows
the prediction with uncertainty for the same two unseen test
flights as used in the previous section. It is apparent that the
subsampling drastically improves the model generalization in
the second flight containing the autorotation maneuvers, but
careful inspection also indicates that the CGI peaks are also
better resolved in the first unseen test flight.

— Ground Truth
Prediction

unseen flight 1

1000 2000 3000 4000 5000 6000

unseen flight 2

500 1000 1500 2000 2500 3000 3500 4000
time

Figure 10. Predictions on two unseen test flights
simulating normal flight (top) and normal flight with
autorotation (bottom) made using a LSTM-based neural
network with a time sequence of eight trained on
subsampled flight data. The model uncertainty is shown
for + 3 standard deviations in orange.

This finding is significant, because it contradicts a common
assumption in artificial intelligence research, which has been
previously criticized in Ref. 19., that more data produces
better models. For science and engineering applications, rare
events are often the most important. For example, to ensure
their model would accurately capture high-energy transitions
states, the authors in Ref. 20 generated a synthetic dataset to
train their machine-learned interatomic potential model. The
synthetic data was generated through performing simulations
with an external bias that made high-entropy configurations
more likely to occur than under natural circumstances.
Although the same approach cannot be adopted to

experimental flight test data, the flight regime subsampling
approach outlined in this work follows the same principle of
placing more equal importance on events with unequal natural
probabilities, where probability manifests as frequency of
occurrence within the dataset. By constructing datasets with
more uniform statistical representations of all salient
phenomena, models can be trained which generalize better
across the full flight envelope. To further leverage this
concept, feature set augmentation was explored using a
maximum entropy approach.

Feature Augmentation and Architecture Modification

The methodology described in the Technical Approach was
used to rank the input features from most information entropy
to least. The top 20 entropy features were then selected for
inclusion as temporal CVs. A single additional fully-
connected network was added to each temporal forecasting
architecture to process the 80 CV features. The encoded CV
latent space was concatenated with the vector output of the
first fully-connected layer following the time series encoder
portion of each architecture. Table 3 shows the results for
each architecture with sequence lengths of 4 and 8.

Table 3. Model Performance with Subsampling and
Maximum Entropy Collective Variables.

Architecture ~ Sequence Y/R Error Overprediction
(%) Ratio
LSTM 4 13.5 1.8
LSTM 8 12.0 1.0
TCNN 4 14.7 2.2
TCNN 8 14.3 2.4
Transformer 4 9.8 1.9
Transformer 8 12.9 2.4

In this approach, the time sequence length affects both the
history interpreted by the time series encoder and the
information basis for the CV features. For all three
architectures, including the CVs and using a sequence length
of 4 improved yellow/red CGI accuracy and increased the
overprediction ratio. The extent of both these changes varied,
but the transformer model showed the best improvement with
only a slight increase in overprediction ratio and an almost
5% reduction in the red/yellow CGI mean error. In fact, the
transformer performed better in both metrics with the shorter
sequence, which was not true for either the TCNN or the
LSTM. The sequence length was found to make little
difference in the TCNN results, with a mild tradeoff between
red/yellow accuracy and overprediction ratio, with the longer
sequence improving high-CGI accuracy. The LSTM model
produced superior results by both metrics with the longer
sequence, further demonstrating the recurrent architecture’s
suitability for interpreting the time series features. Including
the maximum entropy CV features reduced the overprediction
ratio from 1.8 to 1.0 with a mild improvement to the high-CGI
accuracy.

Although the transformer produced lower error in the
yellow/red CGI, it still appeared to generalize poorly

compared to the LSTM model. The best model would depend
upon the error tolerance for overpredictions and for
underpredicting the vCGI. Accounting for accurate high-CGI
predictions and overpredictions, the LSTM model predicts the
total time spend in red/yellow CGI to be 115% of the ground
truth, while the transformer model predicts 224% of real time
spent in yellow/red CGI. Based on this, the LSTM model with
data and feature augmentation and a sequence length of 8 was
determined to be the best overall model. Figure 11 shows the
predictions of this model for the two unseen test flights. While
determining the overall best model depends on the use-case
needs, the LSTM model appears to be the best architecture for
the purpose of monitoring fatigue damage-causing scenarios
based on its accuracy and minimal net overprediction
yellow/red CGI events.

— Ground Truth

unseen flight 1

— Ground Truth
— prediction

unseen flight 2

8

time

Figure 11. Predictions on two unseen test flights
simulating normal flight (top) and normal flight with
autorotation (bottom) made using a LSTM-based neural
network with a time sequence of eight, augmented with
maximum entropy feature collective variables, and
trained on subsampled flight data. The model
uncertainty is shown for & 3 standard deviations in
orange.

Classification-Regression

The final avenue explored to improve vCGI accuracy was the
implementation of a classification-regression MoE approach.
Several classifiers were trained on five flights with manually
labeled segments. Only about 20% of the flight time was
associated with a maneuver label. The initial classifier model
was an LSTM network used to perform logistic regression
using SoftMax activations. However, because of the small
dataset this model was found to overfit the training data.
Although the model predicted the correct label for a subset of
the labeled flight data with an accuracy of greater than 99%,
the model predictions did not coincide with expectations
about the dataset. When inferenced on unseen, unlabeled
flights this model predicted that 38% of time in the air was
spent in dynamic maneuvers, a general label associated with
maneuvers like pullups and pushovers, which are short-lived
(between a few seconds and 2 minutes in the training set). By
contrast, it predicted only 2% of time in the air spent in level
flight and 13% in hover, which are expected to be larger

9

portions of these flights. Despite the apparent flaws in the
model, it had a nearly 0% prediction rate of unknown class
(where the difference between the maximum and minimum
probability was not greater than the probability of guessing
the correct label at random).

To address these issues, an alternative approach to maneuver
classification was developed, as discussed in the Technical
Approach. For the same five unseen flights, this classifier
predicted that for the same flights the time spent in the air
contained 1% unknown maneuvers, 12% dynamic
maneuvers, 10% level flight, and 24% hover. Although the
dynamic population may still be a bit high, it is more in line
with expectations than the direct classification approach,
which predicted this to be the most common maneuver label.

Two MoE models were trained using this classifier as a gate
to split the flight data into maneuver-specific training sets and
determine the expert model weights at inference. The first
model used the entirety of the flight data in the maneuver
category to train and the second used the same subsampling
method as used with the general vCGI model. Both models
used the top 20 entropy feature CVs as additional inputs. The
MoE models yielded an average yellow/red CGI error of
14.8% with subsampling and 17.2% without. The
overprediction ratios were 0.85 with subsampling and 0.65
without. Figure 12 shows the vCGI predictions and the
adversarial classifier assigned maneuver label for the two
unseen test flights discussed previously. Depending on the
dataset used, the MoE models offer a tradeoff between the
yellow/red CGI accuracy and overprediction ratio, compared
to the general vCGI model. The version with subsampling
predicts 75% of the real time spent in CGI yellow/red and the
version without predicts 65% of real time for the same.
Although these models have greater global accuracy when
considering the green CGI regime, they do not perform as
well for high-CGI regimes for the test flights evaluated.

To better assess the relative accuracies of the general vCGI
and MoE vCGI models, a study was conducted using all 55
test flights with 10 randomly generated splits between 50
training flights and 5 evaluation flights. Both models were
trained and evaluated independently, and the results were
averaged. This was done to simulate deployment on unseen
flight data after training on the entire dataset. From this study,
it was found that the general vCGI model correctly predicted
when the CGI was in the yellow/red 65.7% of the time and
the MoE model predicted this correctly 70.4% of the time;
additionally, the variance in this prediction was lower for the
MoE model. The general model exhibited a lower
overprediction ratio of 0.08 to the 0.10 of the MoE model.
Finally, the general vCGI had a higher average yellow/red
CGI error of 11% with a standard deviation of 15% for the
ensemble. By comparison, the MoE model had an average
error of 7.3% with a standard deviation of 3%, while
maintaining a green CGI error of 10%. Based on this study,
the MoE approach is able to more accurately and more
consistently predict the CGI than the best general model

presented, when considering randomly selected test flight
instead of a hand-picked set of evaluation flights. These
results also show the MoE model is able to obtain 93%
accuracy predicting the yellow/red CGI and 90% accuracy for
green CGI. This computational experiment indicates that the
MoE model is better able to leverage the information from the
additional flights used as training data and that the previous
set of flights used for training were insufficient to yield a
model with greater than 90% accuracy. For production
deployment, all flights would be used for training, but this test
demonstrates that the final MoE model architecture can
consistently achieve 90% yellow/red CGI accuracy on unseen
flights when trained on at least 50 of the test flights available.

Figure 12. Predictions on two unseen test flights
simulating normal flight (top) and normal flight with
autorotation (bottom) made using a mixture of experts
approach with an adversarial classifier gate and the
model design shown in Figure 10. The model uncertainty
is shown for = 3 standard deviations in orange.

CONCLUSIONS

A machine-learned virtual cruise guide indicator was
developed based on features extracted from hours of test data
recorded over 55 test flights conducted with CH-47 rotorcraft.
During the development of the ML vCGI, a series of different
neural network architectures were explored using accuracy of
the predicted CGI yellow/red conditions and overprediction
of CGI green conditions as key performance metrics.
Important results and findings include:

1) The raw dataset is suboptimal for the intended goal of
accurately predicting conditions which result in
component fatigue damage, due to the relatively small
population of these events. This is likely to be a common
issue in developing machine learning models for
engineering applications, particularly those focused on
component failure, and must be addressed to advance this
technology.

2) A dataset augmentation approach was developed to
address the natural imbalance in the flight test data and
was employed to improve model generalization. The
input feature set was further augmented with temporal
collective variables of the input features with the highest

10

information entropy, as determined by a novel approach
presented in this study.

3) Multiple neural network architectures were evaluated for
prediction of the vCGI from time-dependent input
features. The model utilizing an LSTM encoder for
temporal features was found to be the most reliable. This
is believed to be the result of the time-dependent nature
of the input features and prediction target. The recurrent
layer interprets the directionality of time, while the
TCNN is bidirectional and the transformer must learn the
relationship between each element of the sequence.

4) Finally, an adversarial classification approach was
developed to predict the maneuver category of flight
segments from limited labeled data. This classifier was
implemented in a classification-regression mixture-of-
experts approach that achieved 93% accuracy predicting
yellow/red CGI while maintaining 90% accuracy on
green CGL.

A virtual sensor model, particularly for a component such as
the CGI, has the potential to improve fleet management,
reliability, and readiness by providing the Army with tools to
track usage and loads. The issue of dataset suboptimality was
in part the result of usage of existing datasets acquired for
other purposes. This work can help inform future data
acquisition efforts and provides approaches that can be
leveraged during development of machine learning models
across other rotorcraft applications. Future efforts aim to
improve accuracy and robustness towards post-flight data
processing for usage, anomalies and exceedances and shifting
focus to AI/ML prediction of loads for component damage
tracking.

Author contact: Mathew Boyer mathew.boyer@gdit.com
and Wesley Brewer brewerwh@ornl.gov

ACKNOWLEDGMENTS

This material is based upon work supported by, or in part by,
the Department of Defense High Performance Computing
Modernization Program (HPCMP) under User Productivity,
Enhanced Technology Transfer, and Training (PET) contract
47QFSA18KO0111, Award PIID 47QFSA19F0058. Any
opinions, finding and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the DoD HPCMP.

REFERENCES

1. Baskin, J. M., “CH-47C Fixed-System Stall-Flutter
Damping,” Boeing Vertol Co USAAMRDL-TR- 75-29.
1974.

2. Oldersma, A and Bos, M. J., “Airframe Loads and Usage
Monitoring of the CH-47D ‘Chinook’ Helicopter of the
Royal Netherlands Air Force,” 26th Symposium of the
International Committee on Aeronautical Fatigue
(ICAF), Montreal, Canada, June 2011.

10.

11.

12.

13.

14.

15.

11

Isom, J. D., Davis, M. W., Cycon, J. P., Rozak, J., N., and
Fletcher, J. W., “Flight Test of Technology for Virtual
Monitoring of Loads,” American Helicopter Society 69th
Annual Forum Proceedings, Phoenix, Arizona, May
2013.

Isom, J. D. and Morris, B. E., “Rotor System Health
Monitoring using Shaft Load Measurements and Virtual
Monitoring of Loads,” U.S. Patent 9,240,083, 2016.

Martinez D, Brewer W, Strelzoff A, Wilson A, Wade D.,
“Rotorcraft Virtual Sensors via Deep Regression,”
Journal of Parallel and Distributed Computing, Vol.
135, Jan. 2020, Pp. 114-126. DOL:
10.1016/j.jpdc.2019.08.008.

Martinez, D., Sitaraman, J., Brewer, W., Rivera, P., and
Jude, D., "Machine Learning based Aerodynamic Models
for Rotor Blades," Vertical Flight Society (VFS)
Transformative Vertical Flight Meeting, San Jose, CA,
Jan. 2020.

Lim, B., and Zohren, S., “Time-series Forecasting with
Deep Learning: a Survey,” Philosophical Transactions of
the Royal Society A, Vol. 379, (2194), Apr. 2021, pp.
20200209. DOTI: 10.1098/rsta.2020.0209.

Yeo, I. K., and Johnson, R. A., “A New Family of Power
Transformations to Improve Normality or Symmetry,”
Biometrika, Vol. 87, (4), Dec. 2000, pp. 954-959. DOLI:
10.1093/biomet/87.4.954.

Holm, E. A., “In Defense of the Black
Box,” Science, Vol. 364, (6435), Apr. 2019, pp. 26-27.
DOI: 10.1126/science.aax0051.

Gal, Y., and Ghahramani, Z., “Dropout as a Bayesian
Approximation: Representing Model Uncertainty in
Deep Learning,” International Conference on Machine
Learning, New York, NY, June 2016.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, L.,
and Salakhutdinov, R., “Dropout: a Simple Way to
Prevent Neural Networks from Overfitting,” The Journal
of Machine Learning Research, Vol. 15, (1), Jan. 2014,
pp- 1929-1958. DOI: 10.5555/2627435.2670313.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H.
and Invernizzi, L., “Keras Tuner,”
https://github.com/keras-team/keras-tuner, 2019.

Yoshioka, K., Lee, E., Wong, S., and Horowitz, M.,
“Dataset Culling: Towards Efficient Training of
Distillation-Based Domain Specific Models,” IEEE
International Conference on Image Processing (ICIP),
Taipei, Taiwan, Sept. 2019.

Kohonen, T., “The Self-Organizing Map,” Proceedings
of the IEEE, Vol. 78, (9), Sept. 1990, pp. 1464-1480.
DOI: 10.1109/5.58325.

Kullback, S., and Leibler, R. A., “On Information and
Sufficiency,” The Annals of Mathematical Statistics, Vol.
22, (1), Mar. 1951, ©pp. 79-8. DOI:

16.

17.

18.

19.

20.

10.1214/a0ms/1177729694.

Yuksel, S. E., Wilson, J. N., and Gader, P. D., “Twenty
Years of Mixture of Experts,” IEEE Transactions on
Neural Networks and Learning Systems, Vol. 23, (8),
June 2012, Pp- 1177-1193. DOI:
10.1109/TNNLS.2012.2200299.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J., “Outrageously Large Neural
Networks: The Sparsely-Gated Mixture-of-Experts
Layer,” 5th International Conference on Learning
Representations (ICLR), Toulon, France, Apr. 2017.

Sanyal, A., Dokania, P. K., Kanade, V., and Torr, P.,
“How Benign is Benign Overfitting?,” 9" International
Conference on Learning Representations (ICLR),
Virtual, May, 2021.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak,
B., and Sutskever, 1., “Deep Double Descent: Where
Bigger Models and More Data Hurt,” Journal of
Statistical Mechanics: Theory and Experiment, Vol.
2021, Dec. 2021, pp. 124003. DOI: 10.1088/1742-
5468/ac3a74.

Karabin, M., and Perez, D., “An entropy-maximization
approach to automated training set generation for
interatomic potentials,” The Journal of Chemical
Physics, Vol. 153 (9), Sept. 2020, pp. 094110. DOI:
10.1063/5.0013059.

12

