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ABSTRACT 
This paper presents a machine-learned virtual cruise guide indicator (vCGI) for Chinook helicopters.  Two temporal 
neural networks were trained and evaluated on measured data from 55 flight tests, one for the fore rotor and another 
for the aft rotor, to predict a vCGI value, which protects 23 components from fatigue damage during steady-state 
conditions. Three different classes of machine learning architectures were evaluated for prediction of the vCGI from 
time sequences: a temporal convolutional neural network with 1D dilated causal convolutions, a long short-term 
memory recurrent neural network, and an attention-based transformer architecture. The final average model accuracy 
on unseen flight data is currently greater than 93% for CGI values which could result in fatigue damage and 90% for 
normal operation CGI values. Model accuracy was improved through a series of advancements in: (1) selection of 
optimal training data using temporal collective variables and unsupervised learning, (2) dataset augmentation with 
maximum-entropy temporal collective variables, and (3) implementation of a mixture-of-experts classification-
regression approach using an adversarial classification approach to assign maneuver labels. The results are presented 
for each advancement in model development along with lessons learned in training machine learning models on real-
world, time-dependent rotorcraft data.  
 

INTRODUCTION 
3  

Virtual sensor methods have been proposed for future Army 
rotorcraft platforms or future upgrades as a means of 
monitoring or extending component lives. By constructing a 
virtual sensor from flight test data acquired from a heavily 
instrumented aircraft, stress loads can be monitored during 
standard aircraft operation without the need for additional 
physical sensors. Moreover, they could also enable mission 
planners in acquisition programs to assess performance before 
a new aircraft or upgrade is completed using digital models.  

Cruise guide indicators (CGI), used on Chinook helicopters, 
provide pilots a visual indication of stress loads on critical 
components during flight, based on on-aircraft strain-gauges 
(Ref. 1).  In contrast, a virtual CGI (vCGI) takes in standard 
flight data and virtually determines the stresses using a 
machine learning model trained on flight test data. Figure 1 
shows an example of a cruise guide indicator available as a 
cockpit instrument in rotorcraft.  The indicator is divided into 
three regions: normal operation (green), transient (yellow), 
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and avoid (red). The CGI is computed as a function of both 
fore and aft fixed link oscillatory loads. 

 

Figure 1. Schematic of a Cruise Guide Indicator gauge 
for CH-47 rotorcraft, as described in Ref. 1. 
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Oldersma and Bos (Ref. 2) provided an overview of a system 
they developed called “CHAMP” which stands for Chinook 
Airframe Monitoring Program, which is used to develop a 
“virtual strain gauge” based on artificial neural networks 
(ANN). Their training data, based on 49 recorded flight 
parameters, monitors nine strain gauges on the CH-47D 
Chinook helicopter.  

Isom et al. (Ref. 3) investigated the development of a 
technique for the virtual monitoring of loads (VML) based on 
flight tests of the U.S. Army RASCAL JUH-60 helicopter. 
Their model is based on 19 aircraft state parameters, and their 
dataset contains a series of maneuvers including turns, pull-
ups, and pushovers. Their model uses proprietary regression 
algorithms developed by Sikorsky (Ref. 4).  

Martinez et al. (Ref. 5) investigated the development of a 
virtual accelerometer that may be used to predict a vibration 
spectrum using deep neural-network-based regression, or 
deep regression, from which the health condition of an oil 
cooler may be predicted. Martinez et al. (Ref. 6) investigated 
the development of machine-learned aerodynamic models 
based on high-fidelity computational data from CREATE-AV 
Helios CFD software. Their neural networks are trained on 
simulated flight test maneuvers and demonstrated on the 
Utility Tactical Transport Aircraft System (UTTAS) pullup 
maneuver.  

This study investigated the development of neural networks 
to predict the fore and aft fixed link oscillatory loads and, 
from the loads, the vCGI. A variety of neural network 
architectures were evaluated, including ones based on multi-
layer perceptrons (MLP), temporal convolutional neural 
networks (TCNN), Long Short-Term Memory (LSTM) 
layers, and transformer/attention-based networks, as well as 
ensembles of these models. The final model developed   
achieves greater than 90% average accuracy for predicting the 
cruise guide indicator across a range of flight conditions. 
Several technical approaches enabled significant 
improvements in the model: (1) normalizing the input features 
before training or inferencing the neural network, (2) 
converting the input features to overlapping time sequences, 
typically with a window of four to eight time steps per model 
input, (3) using KerasTuner with the HyperBand technique 
for hyper-parameter optimization, (4) implementing various 
types of dataset culling and subsampling techniques, and (5) 
development of a mixture-of-experts classification-regression 
framework based on flight maneuvers. All training was 
performed using Nvidia V100 GPUs on the DoD HPCMP 
supercomputers: Onyx-MLA, SCOUT, and Vulcanite. The 
models were trained using data from 55 flight tests, resampled 
at a rate of approximately 16 Hz. The resampled data consists 
of 74 features routinely monitored on rotorcraft, such as: pitch 
angle, radar altitude, engine fuel flow, rate of climb, and 
engine torque. The 74 features and resample rate were chosen 
to mimic existing on-board data collection in fielded aircraft.  

This paper presents a virtual cruise guide indicator, which 
protects 23 components from fatigue damage during steady-
state conditions. The model uses 74 flight parameters and was 
trained and evaluated on 55 flights tests, covering more than 
14 flight maneuver categories. Three classes of neural 
networks designed for temporal forecasting (Ref. 7) were 
evaluated for accuracy, with a focus on the yellow and red 
regimes of the CGI. The work advances the state-of-the-art in 
the areas enumerated below:  

1. A feature-rich raw training data set was developed 
based on flight test data. The dataset contains a 
wide array of flight maneuvers performed at 
multiple gross weights and altitudes.    

2. A novel framework was developed for selecting 
optimal subsets of flight test data for training neural 
networks using temporal collective variables and 
unsupervised learning. A maximum-entropy feature 
importance method was also developed and used to 
identify information-rich features. The collective 
variable representations of these features were 
incorporated as additional model inputs.  

3. Various temporal forecasting neural network 
architectures were studied and optimal strategies 
for predicting the vCGI were explored. This 
included evaluation of model targets, whether to 
model the CGI instrument values directly versus 
modeling the oscillatory forces, the optimal 
sampling frequency, and whether the forces are 
averaged once or thrice (for the 3-bladed Chinook 
rotor) per rotor revolution.  

4. A mixture-of-experts approach using two-stage 
classification-regression models was explored. A 
novel approach was developed to classify flight 
segments based on limited labeled data and 
maneuver-specific models were trained on the full 
dataset using the machine-generated labels. The 
final model uses a weighted average of the 
specialized models based on the classifier 
probabilities.  

5. A production pipeline was developed for training 
and evaluating machine learned models on high 
performance computers (HPC) using multiple 
GPUs.  

 

TECHNICAL APPROACH 
Flight Test Data 

Models were developed and tested based on data from 55 
flight tests with a heavily instrumented CH-47 rotorcraft. A 
subset of features that would be readily available based on the 
standard (operational) instrumentation onboard H-47 
rotorcraft was used for the inputs to models, such that the final 
models could be deployed without modification to existing 
rotorcraft. Several model targets were evaluated in this work, 
including direct prediction of the CGI and indirect prediction 
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of the CGI via prediction of the mean or oscillatory fixed link 
loads. The cumulative dataset contained hundreds of hours of 
flight time sampled at 16 Hz, which corresponds to over six 
million data points. This real-world dataset contains a variety 
of flight maneuvers such as hover, turns, dives, climbs, 
doublets, and different types of landings, and includes 
different altitudes and gross weights. In addition to the 
targeted maneuvers, the dataset also contains all auxiliary 
operation within the test flights. Within the dataset, 98% of 
all samples correspond to a green CGI, 1.5% to a yellow CGI, 
and 0.5% to a red CGI.  

The 72 input features utilized for the vCGI were first rescaled 
to prevent the models from overweighting features based on 
magnitude. Multiple scaling methodologies were explored, 
including simple approaches like rescaling the mean-centered 
features by one standard deviation (standardized scaling) and 
more complex approaches like the Yeo-Johnson power 
transformation (Ref. 8). While these more complicated 
approaches can provide some improvement to accuracy, this 
can come at the cost of stability if unseen cases exceed the 
bounds of the training sets. Ultimately, the standardized 
scaling approach was chosen for its stability and 
interpretability. Results presented were produced using the 
standardized scaling. 

Machine Learning Models 

For the virtual sensor developed in this work, input features 
were considered as time histories, in order to account for their 
gradients. For example, the rate of change of air speed and its 
direction correspond to acceleration or deceleration; steady-
state flight at a given airspeed can result in differing loads 
than acceleration or deceleration at the same air speed. To 
enable accounting for the time history of these features, neural 
networks commonly used in temporal forecasting were 
chosen. Instead of predicting a sequence of future values 
based on a sequence of past values, the models developed 
used a sequence before and including the current time to 
predict the target value at the current time. 

Lim and Zohren (Ref. 7) present three different types of 
neural network architectures that are typically used in 
temporal forecasting: temporal convolutional neural networks 
(TCNNs), recurrent neural networks (RNNs) such as the long 
short-term memory (LSTM) network, and models based on 
the attention mechanism, like transformers. All models were 
implemented in TensorFlow (open source AI/ML software 
library) versions 2.6 or greater. RNN models were evaluated 
using a single LSTM layer followed by nine fully-connected 
layers. For the temporal CNN model, two one-dimensional 
convolutional layers precede a flattening operation and four 
fully-connected layers. Finally, the transformer architecture 
utilizes a multi-head attention layer, followed by two one-
dimensional convolutional layers and nine fully-connected 
layers. For each architecture, the number of parameters 
(recurrent units, neurons, or filters) were varied and 
optimized. Multiple activations were evaluated, including 
hyperbolic tangent, rectified linear unit (ReLU), exponential 

linear unit (ELU), scaled exponential linear unit (SELU), 
Gaussian error linear unit (GELU), and Swish. Parameter 
optimization and activation selection is discussed later in this 
paper. 

Uncertainty Quantification 

A common criticism of neural networks is the black box 
nature of their predictions, which can be biased or entirely 
inaccurate under certain circumstances (Ref. 9). For 
engineering applications, model interpretability is necessary 
to ensure end-users are aware of when the model is most 
likely to be inaccurate. To enable this, uncertainty 
quantification was incorporated into the vCGI through the use 
of Monte Carlo dropout, following the approach of Gal and 
Ghahramani (Ref. 10).  Dropout (Ref. 11) is the process of 
setting a random collection of weights in a layer to zero and 
reweighting the remaining non-zero weights. Typically, 
dropout is only implemented during training to prevent 
overfitting. However, it can also be used during inference to 
perform an ensemble of inferences with a randomly varying 
neural network. This ensemble is then used to determine the 
mean prediction and its variance.  

After initial development of the vCGI models, Monte Carlo 
dropout was added as an optional feature to all neural network 
architectures. Dropout was only applied before interior fully-
connected layers and a dropout rate of 0.125 was used. An 
ensemble size of 16 was utilized for inference. As discussed 
in the work of Gal and Ghahramani (Ref. 10), the inference 
variance is dependent on the activation function; activations 
which bound the layer output, like hyperbolic tangent, can 
truncate the large variations and result in artificially small 
variances. This was considered in addition to model accuracy 
when selecting the optimal activation function for the vCGI. 

Hyper-parameter Optimization 

An initial set of hyperparameters for each model architecture 
was obtained by automatic search using Keras Tuner (Ref. 
12). Model parameterization was divided into a few 
parameters: the number of time-series-encoding layers 
(LSTM, multi-headed attention, or convolution), the number 
of neurons or filter for these encoding layers, the activation 
function used for all but the last layer, and the width of the 
first fully-connected layer. For the TCNN architecture, 
subsequent fully-connected layers decreased in size by 
powers of two, while for the transformer and RNN models a 
fixed width was used for all but the last fully-connected layer. 
The Hyperband technique was used for hyperparameter 
tuning, rather than random search or Bayesian optimization. 
Once the initial optimal parameterization was found, fine-
tuning was performed by manual modification of the base set 
of parameters and comparing vCGI accuracy after fully 
training the neural networks. All architectures were found to 
produce optimal results using the Swish activation function 
and the Adamax optimizer with a learning rate of 0.0024. A 
batch size of 256 was utilized and all models were trained for 
10 epochs with the learning rate set to decay by half based on 
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plateau of the training loss. For the TCNN model, 112 filters 
and a kernel size of 2 were found to be optimal; the fully-
connected layers used 224 and then halved the next two 
layers. For the LSTM, 256 units were used, and 256 neurons 
were used in the fully-connected layers. Finally for the 
transformer, 4 attention heads with a size of 72 were found to 
be optimal and fully-connected layers with 256 neurons were 
used. 

Data and Model Augmentation 

The natural statistics (only 2% of data outside normal 
operation) of the dataset are not optimal for training a model 
to achieve the target objective: produce a virtual CGI with 
>95% accuracy for the red/avoid regime. A series of dataset 
augmentation strategies were explored to improve model 
accuracy for these conditions, which cause fatigue damage to 
rotorcraft components. The first approach explored was 
dataset culling (Ref. 13), where samples beneath a certain 
threshold were omitted from the training set to increase the 
relative population of higher values of CGI within the flights. 
After evaluating this thresholding approach, unsupervised 
learning methods were evaluated to construct more optimal 
training sets from the flight data. 

To enable the application of common unsupervised learning 
methods, the CGI time series signal was divided into windows 
and then decomposed into four collective variable (CV) 
descriptions of the window: the mean, the slope, the variance, 
and the curvilinear distance. In this study, a window of eight 
time steps was used to construct the CVs. The four CV 
features were then used as the inputs for two different 
clustering algorithms: K-means and the self-organizing map 
(SOM) presented in Ref. 14. The clustering methods were 
used to segment the flight data into distinct groups, which can 
represent different flight modes in terms of strain on the 
rotorcraft. Figure 2 shows an example flight partitioned by a 
self-organizing map along with the pressure altitude; cluster 
indices were sorted from largest to smallest with the mapping 
shown in the inset. Training datasets were then constructed by 
randomly drawing an equal number of samples from each 
cluster. Data within smaller clusters was repeated when the 
sample size surpassed the cluster size. 

The same approach can also be used to expand the input 
feature set by including the CV representations of certain 
input features as additional model inputs. Although the model 
architectures described in the previous section all process 
time series input features, they all decode a one-dimensional 
latent vector. To utilize both the time series and a vector of 
CV features, an additional fully-connected layer can be added 
to the model to encode the CV features and then the 1D 
encoding of the CV features can be concatenated with the 1D 
encoding of the time series features, before being processed 
by the decoding portion of the architecture. This methodology 
enables the expansion of the feature set without any additional 
data, can enable the model to more easily interpret temporal 
features like increasing altitude or deceleration, but also 
increases the computational cost of both training and 

inferencing the models. To maximize the benefit of the 
additional CV features, while minimizing the cost, an 
entropy-based feature-importance method was utilized to 
determine the N most optimal features to include as CV 
representations. 

 
Figure 2. CGI signal colorized according to self-

organizing map cluster (top) and a single input feature, 
pressure altitude, colorized according to the same CGI 

clusters (bottom). 

The information entropy of the input time series features was 
measured by the following approach depicted in Figure 3. 
First, the time series representation of each input feature was 
converted to the same four CVs used in clustering the CGI. 
Next, the clusters generated were used to sort the input 
features into clusters. The population of each input feature CV 
in each cluster was then used to construct a probability 
distribution. For each CV feature, the minimum inter-cluster 
distance was found by computing the mean absolute sum of 
the Kullback-Leibler divergence (Ref. 15) between 
corresponding probability distributions. The entropy of each 
feature was then found by summing the four CV minimum 
distances. This process was performed for each flight 
separately and the maximum entropy of each feature in a 
flight was then used to rank the information entropy from 
greatest to least. The top N entropy features can then be 
included as CV representations, where N is an additional 
hyperparameter for model development. In this work, the top 
20 entropy features were used when this approach was 
utilized. 

Mixture-of-Experts Models 

In addition to developing general neural network models to 
predict the CGI, the development of a mixture-of-experts 
(MoE) approach was also explored. MoE approaches have 
been widely used in machine learning with methods like 
Gaussian process regression and support vector machines 
(Ref. 16) and, even more recently, for large language model 
neural networks (Ref. 17). As suggested by the name, a MoE 
uses a weighted sum mixture of specialized models. 
Typically, the weights for the sum are determined by another 
model like a probabilistic classifier. In this work, a two-stage 
classification-regression MoE approach was developed based 
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on timestamp labeled maneuver data. A classification model 
was developed to predict the probability that a flight segment 
corresponded to each of nine maneuver classes: ground, low 
speed, level flight, acceleration, deceleration, climb, descent, 
turns, or dynamic operation (any transient condition not 
covered by another label). The same classifier was then used 
to divide the flight test data into maneuver-specific subsets. 
Specialized neural network models were then trained on each 
maneuver-labeled data subset following the same approach 
used to train the general models. Prediction of the vCGI was 
then made by taking the probabilities from the classifier and 
using them as weights for a sum of the predictions of the 
specialized models. A diagram demonstrating the application 
of MoE models to this problem is shown in Figure 4. 

 
Figure 3. Schematic of entropy-based feature importance 

methodology using Kullback-Leibler divergence to 
compute distance between information in each cluster. 

Adversarial Classification 

Although the flight test data contained millions of samples for 
prediction of the CGI, only a few thousand samples were 
available with timestamped maneuver labels. In general, this 
process required hand-labeling by subject matter experts, 
which limited the ability to expand the dataset size. One key 
finding discussed within the landmark dropout paper (Ref.  
11) was the tendency of neural networks to overfit on small 
datasets. In general, multiclass classification has issues with 
overfitting to noise or memorizing rare cases (Ref. 18). To 
contend with both the inclination of neural networks to overfit 
on small datasets and in multiclass classification tasks, a 
novel classification approach was developed to enable the 
MoE method described previously. Direct classification of 
flight segments with LSTM-based neural networks was also 
explored as a baseline methodology for comparison.  

Instead of training a model to directly learn the maneuver 
label based on the input, neural networks were trained to 
rescale the inputs such that samples with the same label would 
be closer to one another in the high-dimensional mapped 
space than to samples with different labels, as illustrated in 
Figure 5. Once the input space is remapped, clustering can be 
performed through unsupervised methods, like the K-means 
algorithm. Once the labeled training samples are clustered, 
each cluster can be mapped to a maneuver based on the 
greatest label frequency. The label mappings and cluster 

model can then be applied to unlabeled data to predict the 
maneuver class. 

 
Figure 4. Example of a mixture-of-experts classification-

regression scheme used to predict the CGI. 

 
Figure 5. Demonstration of a neural network learning 

high-dimensional mapping to a space where samples with 
the same label (color) are nearer to each other than to 

samples with different labels. 

The neural network used to rescale the inputs was trained on 
random groupings of one sample from the target class and one 
sample from each of the other classes. A custom loss function 
was implemented based on the squared Euclidean distances 
(d2) between the target sample and each class sample. A 
vector of class probabilities was constructed where the 
probability, P, for each class, i, was given by: 

𝑃! =
1

𝑑!" + 1
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The categorical cross-entropy (CCE) was then calculated 
based on this vector of probabilities and a one-hot encoding 
of the target maneuver label (target label = 1, other labels = 
0). During training, P is used directly, but for determination 
of MoE weights, the Softmax function is applied to the vector 
of probabilities. 

By providing the model with both positive and negative 
examples during training, the effective dataset size increase 
from N labeled samples to  ∏ 𝑁!#  for Ni samples in each of 
the M classes. This approach was inspired by the training of 
generative adversarial neural networks, where the generator 
is rewarded or penalized, depending on the discriminator. In 
this adversarial classification approach, the model is rewarded 
for decreasing distance between samples of the same class and 
penalized for decreasing the distance between samples of 
different classes. In direct prediction of the class label, only 
the first is explicitly done. The use of distance in a high-
dimensional space allows for learning categorization in a 
continuous fashion, rather than the discrete assignment of 
labels. Furthermore, the distance mechanism allows for a 
clear and interpretable definition of an unknown sample: any 
test value that is nearly equally far from all reference centroids 
does not fall into any assigned class. 

RESULTS AND DISCUSSION 
The vCGI model presented in this paper was developed and 
refined over a series of studies. It was found that the model 
architecture, the input features, and the relative sampling of 
different segments of the flight envelope within the training 
set all significantly affected the fidelity of the virtual sensor 
predictions. The vCGI model was based on two independent 
models trained to predict the fixed link oscillatory loads for 
the fore and aft rotors. This approach provides more 
information about specific component damage and avoids the 
need for the model to handle discontinuities from the piece-
wise nature of the CGI. The oscillatory loads were averaged 
once per revolution, as this produced better results with less 
jitter than more frequent averaging, as shown in Figure 6. 

Different neural network architectures were compared, with a 
primary focus on those which leverage a time history of the 
input features for prediction of the vCGI. Even after careful 
optimization of the training procedure and hyper-parameters, 
the vCGI trained on raw flight datasets was found to 
significantly overpredict and/or underpredict the analog CGI 
value. This led to optimization of the training dataset through 
subsampling based on temporal collective variables 
describing the CGI and its change over time. While this 
approach showed improvements to the model accuracy, most 
notably a significant reduction in over-prediction, additional 
avenues of refinement were explored to further improve 
accuracy.  

The first leveraged an entropy-based feature importance 
method to down select the full feature set and then a model 
architecture modification to incorporate the temporal 
collective variables of these high-entropy features as 

additional model inputs. The second approach leveraged all 
previously mentioned developments within a mixture-of-
experts framework based on classification of the flight 
segment based on maneuver. The intent was to develop 
models specialized towards certain input feature regimes 
representative of general flight maneuver categories such that 
the regression models did not need to accurately predict the 
CGI for the full flight envelope. 

 

 

Figure 6. Fore and aft fixed link oscillatory loads as a 
percent of component damage threshold and model 

predictions with sampling rates of once per revolution 
(top) and thrice per revolution (bottom). 

Neural Network Architecture Evaluation 

Initial attempts at developing a vCGI utilized flight data from 
a single instance in time to predict the CGI. This approach 
was found to be insufficient to predict quantities dependent 
upon gradients. For example, a model which does not 
interpret a time sequence or explicitly include feature 
gradients with respect to time cannot easily distinguish 
between steady flight and acceleration for a given airspeed. 
To demonstrate the importance of this time component, a 
multi-layer perceptron (MLP) neural network (equivalent to 
the LSTM-based model without the LSTM encoding layer) 
was trained and compared against the time series 
architectures. While an MLP can process a sequence by 
flattening the time dimension into the feature dimension, this 
does not necessarily interpret time in order. Table 1 shows 
selected results of the neural network models from evaluation 
on five unseen test flights; the models were trained on 37 test 
flights using sequence lengths of 1, 4, and 8. The mean 
percent error for instances when the true CGI is above the 
threshold for fatigue damage is shown (Y/R error). 
Additionally, the categorical overprediction ratio is reported: 
the number of false-positive predictions of CGI yellow/red 
divided by the number of true CGI yellow/red occurrences.  

From these results, it can be seen that including a time history 
of the input features increases model accuracy for both the 
MLP and LSTM models, compared to their non-temporal 
equivalents. Furthermore, the architectures designed for time 
series data more accurately predict the CGI for values in the 
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yellow or red, compared to the MLP model. Generally, there 
is an observed tradeoff between the yellow/red accuracy and 
the overprediction ratio, whereas when this accuracy 
increases, more green CGI samples are predicted to be in the 
yellow or red categories. The LSTM-based model exhibits the 
lowest tendency to overpredict the CGI category, while 
performing marginally worse than the TCNN model at 
predicting the CGI in the yellow/red.  

Table 1. Results of Architecture Evaluation. 

Architecture Sequence Y/R Error 
(%) 

Overprediction 
Ratio 

MLP 1 19.8 1.3 
MLP 8 17.2 0.5 
LSTM 1 18.0 2.6 
LSTM 4 14.8 2.2 
LSTM  8 15.5 1.7 
TCNN 4 16.2 2.8 
TCNN 8 14.4 3.8 
Transformer 4 15.2 3.4 
Transformer 8 12.4 4.2 

To better understand the meaning of the two presented 
metrics, Y/R error and overprediction ratio, plots of the vCGI 
predictions for two of the unseen test flights are presented in 
Figures 7, 8, and 9, for the nontemporal MLP, the LSTM with 
sequence length 4, and the transformer with sequence length 
8, respectively. The first unseen test flight contains pullups, 
partial power descents, and high-velocity level flight, while 
the second unseen test flight contains autorotation maneuvers. 
The baseline MLP model tracks the primary signal mode of 
the CGI with some spurious peaks and overpredictions for the 
second test flight. In general, this model underpredicts the 
magnitude of many of the peaks, even when accounting for 
the uncertainty estimate; this model only correctly predicts 
that the CGI is in the red/yellow 24.8% of the time and only 
48% of underpredictions are within three standard deviations 
of the threshold for yellow CGI. By comparison, this model 
also predicts large uncertainty bands, which is likely due to 
the simpler description of the input features resulting in wide 
range of CGI values for many similar sets of inputs. 

Utilizing the time history of the input features enables the 
models to better disambiguate by contextualizing flight 
conditions against the short-term history. This results in lower 
model uncertainty for the LSTM model, compared to the 
MLP model, with the exact same training data, as seen in 
Figure 8. The additional information enables the model to 
more accurately predict the CGI while in the yellow or red as 
well. However, even with the additional information, this 
model still underpredicts many of the CGI peaks and predicts 
spurious features, particularly in the second unseen flight with 
the autorotation maneuvers.  

 

Figure 7. Predictions on two unseen test flights 
simulating normal flight (top) and normal flight with 

autorotation (bottom) made using a multi-layer 
perceptron model. The model uncertainty is shown for ± 

3 standard deviations in orange. 

 

Figure 8. Predictions on two unseen test flights 
simulating normal flight (top) and normal flight with 
autorotation (bottom) made using an LSTM neural 
network with a time sequence of four. The model 

uncertainty is shown for ± 3 standard deviations in 
orange. 

The transformer model demonstrated both the best accuracy 
in red CGI prediction and the highest overprediction ratio. 
Figure 9 demonstrates that these models capture many of the 
large peaks in CGI at the cost of predicting a large amount of 
spurious features, particularly for the second unseen test 
flight. In general, every model performed the worst on this 
flight, which suggests it is not well represented within the 
training set. However, comparing models with this flight 
demonstrates their ability, or lack thereof, to generalize. Both 
the MLP and the transformer appear to overfit the training 
data, as both models exhibit large uncertainties for the 
majority of the second unseen flight. While the MLP lacks the 
complex description of the input features provided by the time 
history, the transformer still appears to overpredict to some 
subset of features through the attention mechanism.  
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Figure 9. Predictions on two unseen test flights 
simulating normal flight (top) and normal flight with 

autorotation (bottom) made using a transformer-based 
neural network with a time sequence of eight. The model 

uncertainty is shown for ± 3 standard deviations in 
orange. 

The results presented in this section were the final findings 
after automated tuning and hand-tuning of hyper-parameters, 
data scaling, and the training procedure. As mentioned 
previously, the raw dataset is heavily imbalanced towards 
lower values of CGI with the green regime. While it may be 
expected that this would result in underprediction of the CGI 
peaks, the poor generalization and spurious overpredictions 
were also expected to be caused by overfitting to noise within 
the imbalanced dataset. To further improve the vCGI model 
accuracy and generalization, dataset augmentation was 
explored. 

Dataset Augmentation 

Initial investigations of dataset augmentation focused on 
dataset culling (Ref. 13) by thresholding or removing entire 
flight sections without any yellow/red CGI values. These 
approaches provided minor improvements to the yellow/red 
CGI error, but significantly degraded the model accuracy 
flight segments with green CGI. This finding led to the 
exploration of more complex methods based on unsupervised 
learning. 

Using the methodology outlined in the Technical Approach 
section, the training dataset for the same 37 test flights was 
reduced from 4.5M samples to about 1M samples. Because 
the procedure includes the replication of samples within 
smaller clusters, it should be noted this does not amount to a 
removal of 3.5M samples; the data reduction was likely more 
significant. The clustering algorithm utilized 16 clusters and 
up to 2,000 samples from each cluster in each flight were 
drawn to construct the modified training set. Because of the 
training set size reduction, the time to train the vCGI models 
was also reduced by about a factor of four. Table 2 shows the 
results for the temporal forecasting architectures using 
sequence lengths of 4 and 8. The augmented dataset resulted 
in a reduction of the overprediction ratio across all models, 
while not significantly depreciating the accuracy for 

yellow/red CGI prediction. For some model formulations, 
such as the LSTM model with a sequence of 8, the accuracy 
increased along with the reduction in the overprediction ratio. 

Table 2. Model Performance with Subsampling. 

Architecture Sequence Y/R Error 
(%) 

Overprediction 
Ratio 

LSTM 4 15.6 1.4 
LSTM  8 12.5 1.3 
TCNN 4 15.7 1.7 
TCNN 8 17.4 2.6 
Transformer 4 14.6 1.8 
Transformer 8 12.1 1.8 

Accounting for both the yellow/red CGI accuracy and 
overprediction ratio, the LSTM model with the longer 
sequence produced the best overall results. Figure 10 shows 
the prediction with uncertainty for the same two unseen test 
flights as used in the previous section. It is apparent that the 
subsampling drastically improves the model generalization in 
the second flight containing the autorotation maneuvers, but 
careful inspection also indicates that the CGI peaks are also 
better resolved in the first unseen test flight.  

 

Figure 10. Predictions on two unseen test flights 
simulating normal flight (top) and normal flight with 

autorotation (bottom) made using a LSTM-based neural 
network with a time sequence of eight trained on 

subsampled flight data. The model uncertainty is shown 
for ± 3 standard deviations in orange. 

This finding is significant, because it contradicts a common 
assumption in artificial intelligence research, which has been 
previously criticized in Ref. 19., that more data produces 
better models. For science and engineering applications, rare 
events are often the most important. For example, to ensure 
their model would accurately capture high-energy transitions 
states, the authors in Ref. 20 generated a synthetic dataset to 
train their machine-learned interatomic potential model. The 
synthetic data was generated through performing simulations 
with an external bias that made high-entropy configurations 
more likely to occur than under natural circumstances. 
Although the same approach cannot be adopted to 
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experimental flight test data, the flight regime subsampling 
approach outlined in this work follows the same principle of 
placing more equal importance on events with unequal natural 
probabilities, where probability manifests as frequency of 
occurrence within the dataset. By constructing datasets with 
more uniform statistical representations of all salient 
phenomena, models can be trained which generalize better 
across the full flight envelope. To further leverage this 
concept, feature set augmentation was explored using a 
maximum entropy approach. 

Feature Augmentation and Architecture Modification 

The methodology described in the Technical Approach was 
used to rank the input features from most information entropy 
to least. The top 20 entropy features were then selected for 
inclusion as temporal CVs. A single additional fully-
connected network was added to each temporal forecasting 
architecture to process the 80 CV features. The encoded CV 
latent space was concatenated with the vector output of the 
first fully-connected layer following the time series encoder 
portion of each architecture. Table 3 shows the results for 
each architecture with sequence lengths of 4 and 8.  

Table 3. Model Performance with Subsampling and 
Maximum Entropy Collective Variables. 

Architecture Sequence Y/R Error 
(%) 

Overprediction 
Ratio 

LSTM 4 13.5 1.8 
LSTM  8 12.0 1.0 
TCNN 4 14.7 2.2 
TCNN 8 14.3 2.4 
Transformer 4 9.8 1.9 
Transformer 8 12.9 2.4 

In this approach, the time sequence length affects both the 
history interpreted by the time series encoder and the 
information basis for the CV features. For all three 
architectures, including the CVs and using a sequence length 
of 4 improved yellow/red CGI accuracy and increased the 
overprediction ratio. The extent of both these changes varied, 
but the transformer model showed the best improvement with 
only a slight increase in overprediction ratio and an almost 
5% reduction in the red/yellow CGI mean error. In fact, the 
transformer performed better in both metrics with the shorter 
sequence, which was not true for either the TCNN or the 
LSTM. The sequence length was found to make little 
difference in the TCNN results, with a mild tradeoff between 
red/yellow accuracy and overprediction ratio, with the longer 
sequence improving high-CGI accuracy. The LSTM model 
produced superior results by both metrics with the longer 
sequence, further demonstrating the recurrent architecture’s 
suitability for interpreting the time series features. Including 
the maximum entropy CV features reduced the overprediction 
ratio from 1.8 to 1.0 with a mild improvement to the high-CGI 
accuracy.  

Although the transformer produced lower error in the 
yellow/red CGI, it still appeared to generalize poorly 

compared to the LSTM model. The best model would depend 
upon the error tolerance for overpredictions and for 
underpredicting the vCGI. Accounting for accurate high-CGI 
predictions and overpredictions, the LSTM model predicts the 
total time spend in red/yellow CGI to be 115% of the ground 
truth, while the transformer model predicts 224% of real time 
spent in yellow/red CGI. Based on this, the LSTM model with 
data and feature augmentation and a sequence length of 8 was 
determined to be the best overall model. Figure 11 shows the 
predictions of this model for the two unseen test flights. While 
determining the overall best model depends on the use-case 
needs, the LSTM model appears to be the best architecture for 
the purpose of monitoring fatigue damage-causing scenarios 
based on its accuracy and minimal net overprediction 
yellow/red CGI events. 

 

Figure 11. Predictions on two unseen test flights 
simulating normal flight (top) and normal flight with 

autorotation (bottom) made using a LSTM-based neural 
network with a time sequence of eight, augmented with 

maximum entropy feature collective variables, and 
trained on subsampled flight data. The model 

uncertainty is shown for ± 3 standard deviations in 
orange. 

Classification-Regression 

The final avenue explored to improve vCGI accuracy was the 
implementation of a classification-regression MoE approach. 
Several classifiers were trained on five flights with manually 
labeled segments. Only about 20% of the flight time was 
associated with a maneuver label. The initial classifier model 
was an LSTM network used to perform logistic regression 
using SoftMax activations. However, because of the small 
dataset this model was found to overfit the training data. 
Although the model predicted the correct label for a subset of 
the labeled flight data with an accuracy of greater than 99%, 
the model predictions did not coincide with expectations 
about the dataset. When inferenced on unseen, unlabeled 
flights this model predicted that 38% of time in the air was 
spent in dynamic maneuvers, a general label associated with 
maneuvers like pullups and pushovers, which are short-lived 
(between a few seconds and 2 minutes in the training set). By 
contrast, it predicted only 2% of time in the air spent in level 
flight and 13% in hover, which are expected to be larger 
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portions of these flights. Despite the apparent flaws in the 
model, it had a nearly 0% prediction rate of unknown class 
(where the difference between the maximum and minimum 
probability was not greater than the probability of guessing 
the correct label at random). 

To address these issues, an alternative approach to maneuver 
classification was developed, as discussed in the Technical 
Approach. For the same five unseen flights, this classifier 
predicted that for the same flights the time spent in the air 
contained 1% unknown maneuvers, 12% dynamic 
maneuvers, 10% level flight, and 24% hover. Although the 
dynamic population may still be a bit high, it is more in line 
with expectations than the direct classification approach, 
which predicted this to be the most common maneuver label.  

Two MoE models were trained using this classifier as a gate 
to split the flight data into maneuver-specific training sets and 
determine the expert model weights at inference. The first 
model used the entirety of the flight data in the maneuver 
category to train and the second used the same subsampling 
method as used with the general vCGI model. Both models 
used the top 20 entropy feature CVs as additional inputs. The 
MoE models yielded an average yellow/red CGI error of 
14.8% with subsampling and 17.2% without. The 
overprediction ratios were 0.85 with subsampling and 0.65 
without. Figure 12 shows the vCGI predictions and the 
adversarial classifier assigned maneuver label for the two 
unseen test flights discussed previously. Depending on the 
dataset used, the MoE models offer a tradeoff between the 
yellow/red CGI accuracy and overprediction ratio, compared 
to the general vCGI model. The version with subsampling 
predicts 75% of the real time spent in CGI yellow/red and the 
version without predicts 65% of real time for the same. 
Although these models have greater global accuracy when 
considering the green CGI regime, they do not perform as 
well for high-CGI regimes for the test flights evaluated.  

To better assess the relative accuracies of the general vCGI 
and MoE vCGI models, a study was conducted using all 55 
test flights with 10 randomly generated splits between 50 
training flights and 5 evaluation flights. Both models were 
trained and evaluated independently, and the results were 
averaged. This was done to simulate deployment on unseen 
flight data after training on the entire dataset. From this study, 
it was found that the general vCGI model correctly predicted 
when the CGI was in the yellow/red 65.7% of the time and 
the MoE model predicted this correctly 70.4% of the time; 
additionally, the variance in this prediction was lower for the 
MoE model. The general model exhibited a lower 
overprediction ratio of 0.08 to the 0.10 of the MoE model. 
Finally, the general vCGI had a higher average yellow/red 
CGI error of 11% with a standard deviation of 15% for the 
ensemble. By comparison, the MoE model had an average 
error of 7.3% with a standard deviation of 3%, while 
maintaining a green CGI error of 10%. Based on this study, 
the MoE approach is able to more accurately and more 
consistently predict the CGI than the best general model 

presented, when considering randomly selected test flight 
instead of a hand-picked set of evaluation flights. These 
results also show the MoE model is able to obtain 93% 
accuracy predicting the yellow/red CGI and 90% accuracy for 
green CGI. This computational experiment indicates that the 
MoE model is better able to leverage the information from the 
additional flights used as training data and that the previous 
set of flights used for training were insufficient to yield a 
model with greater than 90% accuracy. For production 
deployment, all flights would be used for training, but this test 
demonstrates that the final MoE model architecture can 
consistently achieve 90% yellow/red CGI accuracy on unseen 
flights when trained on at least 50 of the test flights available. 

 

Figure 12. Predictions on two unseen test flights 
simulating normal flight (top) and normal flight with 

autorotation (bottom) made using a mixture of experts 
approach with an adversarial classifier gate and the 

model design shown in Figure 10. The model uncertainty 
is shown for ± 3 standard deviations in orange. 

CONCLUSIONS 
A machine-learned virtual cruise guide indicator was 
developed based on features extracted from hours of test data 
recorded over 55 test flights conducted with CH-47 rotorcraft. 
During the development of the ML vCGI, a series of different 
neural network architectures were explored using accuracy of 
the predicted CGI yellow/red conditions and overprediction 
of CGI green conditions as key performance metrics. 
Important results and findings include: 

1) The raw dataset is suboptimal for the intended goal of 
accurately predicting conditions which result in 
component fatigue damage, due to the relatively small 
population of these events. This is likely to be a common 
issue in developing machine learning models for 
engineering applications, particularly those focused on 
component failure, and must be addressed to advance this 
technology.  

2) A dataset augmentation approach was developed to 
address the natural imbalance in the flight test data and 
was employed to improve model generalization. The 
input feature set was further augmented with temporal 
collective variables of the input features with the highest 
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information entropy, as determined by a novel approach 
presented in this study.  

3) Multiple neural network architectures were evaluated for 
prediction of the vCGI from time-dependent input 
features. The model utilizing an LSTM encoder for 
temporal features was found to be the most reliable. This 
is believed to be the result of the time-dependent nature 
of the input features and prediction target. The recurrent 
layer interprets the directionality of time, while the 
TCNN is bidirectional and the transformer must learn the 
relationship between each element of the sequence. 

4) Finally, an adversarial classification approach was 
developed to predict the maneuver category of flight 
segments from limited labeled data. This classifier was 
implemented in a classification-regression mixture-of-
experts approach that achieved 93% accuracy predicting 
yellow/red CGI while maintaining 90% accuracy on 
green CGI.  

A virtual sensor model, particularly for a component such as 
the CGI, has the potential to improve fleet management, 
reliability, and readiness by providing the Army with tools to 
track usage and loads. The issue of dataset suboptimality was 
in part the result of usage of existing datasets acquired for 
other purposes. This work can help inform future data 
acquisition efforts and provides approaches that can be 
leveraged during development of machine learning models 
across other rotorcraft applications. Future efforts aim to 
improve accuracy and robustness towards post-flight data 
processing for usage, anomalies and exceedances and shifting 
focus to AI/ML prediction of loads for component damage 
tracking. 
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