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• MFIX-Exa is a massively-parallel, high-performance multiphase flow code

• Targeted physics: reacting gas-solid flows from dilute particle-laden to dense granular

• CFD+ high-fidelity DEM or low-fidelity PIC

https://mfix.netl.doe.gov/products/mfix-exa/

overview 
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• MFIX-Exa is a massively-parallel, high-performance multiphase flow code

• Targeted physics: reacting gas-solid flows from dilute particle-laden to dense granular

• CFD+ high-fidelity DEM or low-fidelity PIC

• Developed as part of the DOE’s Exascale Computing Project (ECP) 

• Built on the AMReX HPC framework which provide iterators, linear solvers, parallel 
communication routines and other utilities that make the code performant and agnostic

• Demonstrated to at least 512 GPUs on all of the DOE LCF systems

• Scaled up to 60k GPUs on OLCF’s Frontier 
(65,535 weak scaling, 62078 challenge problem)

• Challenge problem: NETL’s 50kW CLR

https://mfix.netl.doe.gov/products/mfix-exa/

overview 
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https://www.engineeringtoolbox.com/slurry-transport-velocity-d_236.html

• Liquid fluid and solid particle slurry flow (coal liquefaction driving interest)

• Plethora of data for horizontal pipe flow which is very industrially relevant

• Start with pressure drop (head loss) vs velocity relationship 

• Reference: Gillies & Shook (2000) “Modelling High Concentration Settling Slurry Flows” 
Canadian J. of Chem. Eng., 78, 709-716. 
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https://www.engineeringtoolbox.com/slurry-transport-velocity-d_236.html

• Liquid fluid and solid particle slurry flow (coal liquefaction driving interest)

• Plethora of data for horizontal pipe flow which is very industrially relevant

• Start with pressure drop (head loss) vs velocity relationship 

• Reference: Gillies & Shook (2000) “Modelling High Concentration Settling Slurry Flows” 
Canadian J. of Chem. Eng., 78, 709-716. 

Gillies & Shook (2000)

Schaan et al. (2000)

Fluid: water

• T = 25°C

• assume rf = 1000 kg/m3 

• assume mf = 0.001 Pa-s

Particles: sand

• dp = 420 micron 

• rp = 2655 kg/m3

• assume monodispersed

Pipe diameter

• D = 10.5, 26.4 and 49.6 cm
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Messa & Matoušek (2020)



model setup

11/23/2024 10

Model overview: 

• cylindrical EB: Lx = 8D

• periodic in x with enforced Dpf

• no slip wall EB

• uniform grid 

• boundary adjacent cut-cells

• dx = D/16   →   Wst = 72.9   →   too coarse for LES

• dx = D/32   →  Wst = 9.11   →   this work

• dx = D/64   →   Wst = 1.14   →   why use PIC? 

y

x
z

D = 0.105 cm

Lx
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Nomenclature: 

• “bulk” fluid velocity
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Lagrangian: discrete particles as parcels

Eulerian: continuous fluid 

“base model”
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Lagrangian: discrete particles as parcels

Eulerian: continuous fluid 



suspension viscosity
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Suspension viscosity model:

• Gillies et al. (1999)

 

• Cheng & Law (2003)
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Suspension viscosity model:

• Gillies et al. (1999)

 

• Cheng & Law (2003)

Solids stress model:

• Snider (2001), Harris & Crighton (1994)
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results
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cs = 0.065

Darcy’s law (Superpipe fit)



Smagorinsky constant
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For a wide range of resolutions, we find that 
a constant of cs = 0.08 is ideal, but this is too
diffusive for this coarse grid



results 
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dx = D/64 and cs = 0.08



results 
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set: dp/dx = 2000 Pa/s

target bulk velocity: 3.8 ~ 5 m/s
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“base model”
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Lagrangian: discrete particles as parcels

Eulerian: continuous fluid 
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bound the data but we have a lot of work left to do



summary & conclusions
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(are there any?)

• Developing a multiphase PIC model for slurry flow with MFIX-Exa 

• “Switching” from gas-solid to liquid-solid is non-trivial

• Previously neglected void fraction transient term is important to include in the divergence constraint

• Unclear why virtual mass seems to have such a significant influence on quasi-steady pipe flow
(need to validate implementation!)

• Still need to add lift force

• Much more work left to do! 
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