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Introduction
▪ Processes such as energy generation, metals/glass manufacturing, coal 

gasification and aerospace technology applications require health and process 
monitoring in harsh-environments.

▪ Harsh-environments conditions include:

❖ High temperature (500-1800oC)

❖ High pressure (up to 1000 psi)

❖ Corrosive, erosive and reducing environments.

▪ Ability to monitor: 

❖ Temperature

❖ Structural stability of systems components.

▪ US DOE Overall Goal: Develop health and temperature sensors (and sensor 
arrays) embedded into refractory compositions.
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Objectives of This Work

❖ To synthesize doped lanthanum oxides perovskites by Sol-Gel method and prepare 

conductive refractory composites.

❖ To study thermoelectrical properties: Seebeck coefficients of such compositions at 

temperatures up to 1500 oC. 

❖ To study cation interdiffusion and phase development in fabricated composites at high 

temperatures. 

❖ To fabricate embedded multilayer sensors utilizing these materials and to determine 

their thermoelectrical response.
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Lanthanum Chromite: General Aspects

❖High melting point (~2500 °C).

❖Chemically stable under oxidative and 
reducing atmospheres. 

❖Pure LaCrO3 shows semiconducting behavior 
with no to low ionic conduction. 

❖Calcium substitution increase conductivity 
from 1.0 to 40.0 S‧cm at 1000°C (Mori et al. 
1997) 

❖Compatibility (thermal expansion coefficients 
matching) near refractory materials, ~10×10-6 
oC-1.  
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Sol Gel Synthesis

✓ Pechini-like process used.
✓ High homogenous and adequate sintering.
✓ High density (typical in literature <93% density).
      Low yields and not easy to scale-up

Precurs

ors 

Solution

La, Cr, 

Sr

Citric 

Acid

La(NO3)6H2O Sr(NO3)2 Cr(NO3)39H2O

Citric Acid

Sol

Gel

Powder

Mixing/Complex

Dried 80oC

Calcination 1100oC

Compositions Studied:
A-site: (LSC) La1-xSrxCrO3, (LCC) La1-xCaxCrO3  
 (x =  0.1, 0.2, 0.3, 0.4) 

B-site: (LSCM) La0.8Sr0.2Cr1-yMnyO3  
 (y = 0.1, 0.2, 0.3, 0.4)
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*Pure or Calcium LaCrO3 Powder Zirconia milling media + Al2O3/Cr2O3 Powder 

Ball milling in isopropanol for 2 h

Dried pure/ doped LaCrO3 -Al2O3 based composite 
powders sieving

Zirconia milling media removal

Isopropanol evaporation and composite powder 
drying at 80 oC

*The composites were prepared mixing 30% Ca doped LaCrO3 (LCC30) with Al2O3 at different 
(v/v)% ratios: [90-10], [80-20] and [70-30] where the first number corresponds to LCC30 volume 
content and the second to Al2O3.

Composites Fabrication
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Thick Film Thermocouple Fabrication

▪ High-temperature thermocouples that function 
>1200°C (in R-type range) new exciting development. Leg 1 (Pt or pure-LaCrO3) Leg 2 (Doped LaCrO3)

Ball milling in isopropanol for 8 h and drying

Ink preparation by mixing with an organic vehicle 
and ultrasonication

Stencil printing on as-prepared alumina substrates 
(120 x 30 mm) and drying

Sintering of the thermocouples 
(2°C/min, 1500°C, 1 h)
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Thermoelectrical
Characterization
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Seebeck Coefficient Determination (Using Pt Standard)

*Moore, J. P. (1973). Journal of Applied Physics. 44 (3): 1174–1178 

❖Linear correlation between temperature difference and thermoelectric voltage was observed for all the compositions. 

❖Doped-LaCrO3/Pt couples were fabricated to estimate intrinsic Seebeck coefficient (SPt~ -18 µV/K*) up to 1000°C. 

❖Ca doping shows lowest intrinsic Seebeck coefficient with increasing Ca content.

Heikes Equation
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Thermoelectric Characterization of Thermocouples

❖Electrical conductivity and Thermoelectric voltage of LCC30-Al2O3 composites-based thick layer 
thermocouples were obtained. 

❖Inverse correlation between thermoelectric voltage response and electrical conductivity trends. Al2O3 
content the resistivity of the composites. and increase the thermoelectric output. 

Electrical conductivity vs. temperature of  LCC30-Al2O3 compositesThermoelectrical response of  LCC30-Al2O3 composites // Pt
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Thermoelectric Characterization of Thermocouples

❖LC-Al2O3 and LCC30-Al2O3 composites-based thick layer thermocouples fabricated were tested in a range 
between 30 to 850°C during showing linear correlation between thermoelectric voltage and temperature. 

❖Increase of Al2O3 content in thermocouples materials increase the driving potential by formation of 
aluminates secondary phases and higher concentration of Al2O3 grains. 

10 um10 um

LCC30-Al2O3   [80-20]             LCC30-Al2O3   [70-30]
Microstructures: LCC30 (white grains) - Al2O3/Aluminates (grey grains) 

BSE - SEM
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❖Cr+3 concentration decreases in LCC30, while Ca+2 diffuses into Al2O3, forming aluminates.

❖LCC30-Al2O3: After 72 hours at 1500 °C, Cr+3 cations distribute homogeneously. 

❖Cation interdiffusion and the formation of secondary phases, could impact electrical conductivity and 
thermoelectrical output.

Composites Chemical Reactivity Studies
LCC30-Al2O3 80-20

LCC30 LCC30 LCC30

Al2O3 Al2O3 Al2O3

1500 °C
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Composites Chemical Reactivity Studies

❖ TEM and SEM show CaCrO4 grains among LCC and Al2O3 
grains.

❖ Formation of CaCrO4 secondary phase observed at 30% 
vol/vol Cr2O3 content.

❖ Despite this, a uniform mix of LCC30 and Cr2O3 observed in 
composites sintered at 1500°C.SEM and TEM characterization 

XRD characterization 
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DC Conductivity Long-Term Characterization

❖Initial conductivity ~70 S/cm, decreases slightly over time due to Al+3 diffusion into LCC20 and Ca+2 migration to Al2O3.

❖XRD shows LaAlO3 and minor Al1.9Cr0.1O3 formation after annealing. Peak conductivity ~90 S/cm, more stable than Al2O3-based 
composites.

❖XRD reveals LCC20, Cr2O3, and CaCrO4 phases. LCC20-Cr2O3 90-10 composite shows promise for high-temp sensor layers.

XRD characterization Long-term Electrical Conductivity 
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Sensors Embedded into 
Refractory
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Embedded Sensors Fabrication

Temperature Spallation

Stress/Strain

Strain Sensor (Rosette) Capacitive Sensor

Resistive CircuitThermocouple/Thermistor

Examples of Sensor Preforms

General Smart Refractory Processing Method
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Embedded Sensors Fabrication

CROSS-SECTION VIEW

Conductive Phase

Insulator Protective Phase

Refractory Cement

Refractory Cement Refractory Cement

TOP VIEW
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Thermoelectric Long-Term Characterization
Thermocouples 

Conductive Phase

Thermocouples 
Protective Phase

Percentual Drift 

Rate (%/ h)

LC/LCC20 Al2O3 - Cr2O3 [50-50] 0.017

LC- Cr2O3 [90-10]/                    

LCC20- Cr2O3 [90-10]
Al2O3 - Cr2O3 [50-50] 0.007

LC- Cr2O3 [90-10]/                    

LCC20- Cr2O3 [90-10]
Cr2O3 - Al2O3 [30-70] 0.020

LC- Cr2O3 [90-10]/                    

LCC20- Cr2O3 [90-10]
Cr2O3 - Al2O3 [10-90] 0.029

LC- Cr2O3 [80-20]/                    

LCC20- Cr2O3 [80-20]
Cr2O3 - Al2O3 [30-70] 0.008

❖Thermocouples with LC-Cr2O3 [90-10]/LCC20-Cr2O3 [90-10] legs and Al2O3-Cr2O3 [50-50] layers exhibit 
improved stability.

❖Drift rates for tested thermocouples range from 0.007% to 0.029% per hour over 60 hours, indicating sensor 
accuracy.

Long-term Thermoelectrical characterization 
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Conclusions
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Conclusions

❖All the Seebeck coefficients were determined as the slope of the 
obtained plots, observing constant behavior as expected for polaron 
hopping active semiconductors such as doped LaCrO3. 

❖It was observed that Seebeck coefficient reduces with the increase in 
dopant substituents as expected by Heikes model. 

❖Secondary phases observed on composites  incl. LaAlO3, Ca2Al2O5, 
CaCrO4, and Cr-doped Al2O3.
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Conclusions

❖Conductivity variations were investigated, notably in LCC20-Al2O3 [90-10].

❖LCC20-Cr2O3 composites show enhanced conductivity and stability.

❖Promising results with Al2O3-Cr2O3 50-50 protective layers and LC-Cr2O3 
[90-10]/LCC20-Cr2O3 [90-10] conductive layers, hinting at long-term 
industrial potential.
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Seebeck Coefficient Determination
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XRD - Composites characterization

❖ LCC30-Al2O3 [70-30] diffractogram 
shows LCC30 and lanthanum aluminate 
(LaAlO3), calcium aluminate (Ca2Al2O5) 
and pure Al2O3. 

❖ X-ray diffractograms of junctions 
between composites show secondary 
phases such as LaAlO3 and Ca2Al2O5 
due to cation interdiffusion.

❖ Evidence of chromium diffusion to the 
substrate phase is observed in all 
junctions.

LCC30-Al2O3 Composites                          LC-LCC30// Al2O3 junctions

Al2O3 substrates before and after legs printing and sintering
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