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Introduction

" Processes such as energy generation, metals/glass manufacturing, coal
gasification and aerospace technology applications require health and process
monitoring in harsh-environments.

= Harsh-environments conditions include:
¢ High temperature (500-1800°C)
¢ High pressure (up to 1000 psi)
++» Corrosive, erosive and reducing environments.

= Ability to monitor:
** Temperature
+* Structural stability of systems components.

= US DOE Overall Goal: Develop health and temperature sensors (and sensor
arrays) embedded into refractory compositions.
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Objectives of This Work

*** To synthesize doped lanthanum oxides perovskites by Sol-Gel method and prepare

conductive refractory composites.

**» To study thermoelectrical properties: Seebeck coefficients of such compositions at

temperatures up to 1500 °C.

*** To study cation interdiffusion and phase development in fabricated composites at high

temperatures.

**» To fabricate embedded multilayer sensors utilizing these materials and to determine

their thermoelectrical response.
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Lanthanum Chromite: General Aspects

***High melting point (~2500 °C).

**Chemically stable wunder oxidative and
reducing atmospheres.

“*Pure LaCrO,; shows semiconducting behavior
with no to low ionic conduction.

**Calcium substitution increase conductivity

from 1.0 to 40.0 S-cm at 1000°C (Mori et al.
1997)

** Compatibility (thermal expansion coefficients

matching) near refractory materials, ~10%10°
°C1
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Sol Gel Synthesis
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v" Pechini-like process used.

v High homogenous and adequate sintering.

v" High density (typical in literature <93% density).
Low vields and not easy to scale-up

Compositions Studied:
A-site: (LSC) La1xSrxCrOs, (LCC) La1xCaxCrOs
(x= 0.1,0.2,0.3,0.4)

B-site: (LSCM) Lao.sSro.2Cr1-yMnyOs3
(y=0.1,0.2,0.3,0.4)
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Composites Fabrication

Ball milling in isopropanol for 2 h

l

Zirconia milling media removal

!

L? Isopropanol evaporation and composite powder
drying at 80 °C

= oo l

Dried pure/ doped LaCrO; -Al,O, based composite

’: j.’. powders sieving
& » Q/ 5

y B
—— *The composites were prepared mixing 30% Ca doped LaCrO; (LCC30) with Al,O,; at different
ARG ARG ARG (v/v)% ratios: [90-10], [80-20] and [70-30] where the first number corresponds to LCC30 volume

content and the second to Al,O;.
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Thick Film Thermocouple Fabrication

High-temperature thermocouples that function

>1200°C (in R-type range) new exciting development. Leg 1 (Pt or pure-LaCrO,) —L__ Leg 2 (Doped LaCrO,)

RSk Cold zone junction
i 120 mm > R

6 mm
30m

Alumina Substrate

120 mm / Pt or pure LC leg
Z
Hot zone junction
6 mm
30 mm Cold zone
100 mm
'

Doped LC leg

Ball milling in isopropanol for 8 h and drying

!

Ink preparation by mixing with an organic vehicle
and ultrasonication

l

Stencil printing on as-prepared alumina substrates
(120 x 30 mm) and drying

|

Sintering of the thermocouples
(2°C/min, 1500°C, 1 h)
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Thermoelectrical
Characterization
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Seebeck Coefficient Determination (Using Pt Standard)
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Heikes Equation

¢ Linear correlation between temperature difference and thermoelectric voltage was observed for all the compositions.
+* Doped-LaCrO,/Pt couples were fabricated to estimate intrinsic Seebeck coefficient (S,,~ -18 uV/K*) up to 1000°C.
¢ Ca doping shows lowest intrinsic Seebeck coefficient with increasing Ca content.

*Moore, J. P. (1973). Journal of Applied Physics. 44 (3): 1174-1178
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Thermoelectric Characterization of Thermocouples

Thermoelectrical response of LCC30-Al,0; composites // Pt Electrical conductivity vs. temperature of LCC30-Al,0; composites
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“*Electrical conductivity and Thermoelectric voltage of LCC30-Al,0; composites-based thick layer
thermocouples were obtained.

“*Inverse correlation between thermoelectric voltage response and electrical conductivity trends. Al,O;
content the resistivity of the composites.
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Thermoelectric Characterization of Thermocouples

BSE - SEM
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| jemm= LCC30-Al,0, // LC-AlLO, 80-20
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0.10

0.05 +

e

Ye 15 5% 0w B » . 21 e

) Y'( .\  w - ’ . g A | o Y ~ -

. > g Dy leo%e 4
y ) " o \ % "'&_ Ay 21

2 r % ) $ ¥ J 2 W 3
@k 3“& ! <R S!}\, ﬁ q "
s 4 ¥i P ¢ m r\
P AT~ o 4 g o = o ome *‘At;; ' o B, 9.\

_ 3
?‘\w l"J:QI L S SV i

LCC30-Al,0, [80-20] LCC30-Al,0, [70-30]
Microstructures: LCC30 (white grains) - Al,O,/Aluminates (grey grains)
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“*LC-Al,O; and LCC30-Al,0, composites-based thick layer thermocouples fabricated were tested in a range
between 30 to 850°C during showing linear correlation between thermoelectric voltage and temperature.

“*Increase of Al,O, content in thermocouples materials increase the driving potential by formation of
aluminates secondary phases and higher concentration of Al,O, grains.
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Composites Chemical Reactivity Studies

LCC30-Al,0, 80-20 1500 °C
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“*Cr*3 concentration decreases in LCC30, while Ca*2 diffuses into Al,O,, forming aluminates.
%*LCC30-Al,0,: After 72 hours at 1500 °C, Cr*3 cations distribute homogeneously.
*»Cation interdiffusion and the formation of secondary phases, could impact electrical conductivity and
thermoelectrical output.
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Composites Chemical Reactivity Studies

XRD characterization
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% TEM and SEM show CaCrO, grains among LCC and Al,O,
grains.

% Formation of CaCrO, secondary phase observed at 30%
vol/vol Cr,0, content.

% Despite this, a uniform mix of LCC30 and Cr,0; observed in
composites sintered at 1500°C.

SEM and TEM characterization

MS& I 24 MATERIALS SCIENCE & TECHNOLOGY  Technical Meeting and Exhibition N e Ul GET _ 13




DC Conductivity Long-Term Characterization

. - XRD characterization
Long-term Electrical Conductivity
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“*Initial conductivity ~70 S/cm, decreases slightly over time due to Al*3 diffusion into LCC20 and Ca*2 migration to Al,O;,.

“*XRD shows LaAlO; and minor Al, ,Cr, ,0; formation after annealing. Peak conductivity ~90 S/cm, more stable than Al,0;-based
composites.

“*XRD reveals LCC20, Cr,0;, and CaCrO, phases. LCC20-Cr,0, 90-10 composite shows promise for high-temp sensor layers.
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Sensors Embedded into
Refractory
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Embedded Sensors Fabrication

General Smart Refractory Processing Method
1% Part of a Refractory Ceramic Preform or Organic Film EXa mples Of SenSOF Pl'efOI'mS

Brick with Sensor Pattern

2" Part of Refractory

Thermocouple/Thermistor Resistive Circuit

Ceramic
Preform or
Organic Film
Applied on 15
Part of
Refractory

Temperature Spallation

Combined (or

Stacked) Parts «~— |

form Embedded = Strain Sensor (Rosette) Capacitive Sensor
Sensor '

Structure Stress/Strain
Refractory

with %
Embedded
Sensor is
Thermally-
Processed
(Sintered)
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Embedded Sensors Fabrication

< LCC20 - Al,0, [80-20]

LCC20 - Al, 0, [80-20] LC - Al, 0, [80-20]
. o > A'zOs
junction I!L -
. ' ‘~ » Al, O, refractory composition
LCC20 P
TOP VIEW «ALO3™~

— " Conductive Phase

> Insulator Protective Phase

— Refractory Cement

Refractory Cement Refractory Cement
Al,0,-Cr,0,[70-30] Al,0,-Cr,0,[70-30]
LaCr0,-Cr,0,[90-10] _
Al,0,-Cr,0,[70-30] ALLO,-Cr,0,[70-30]

CROSS-SECTION VIEW
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Thermoelectric Long-Term Characterization

o
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“*Thermocouples with LC-Cr,0; [90-10]/LCC20-Cr,0, [90-10] legs and Al,0,-Cr,0; [50-50] layers exhibit
improved stability.

+»*Drift rates for tested thermocouples range from 0.007% to 0.029% per hour over 60 hours, indicating sensor
accuracy.
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Conclusions

*All the Seebeck coefficients were determined as the slope of the
obtained plots, observing constant behavior as expected for polaron
hopping active semiconductors such as doped LaCrO;.

It was observed that Seebeck coefficient reduces with the increase in
dopant substituents as expected by Heikes model.

“*Secondary phases observed on composites incl. LaAlO,, Ca,Al,O,,
CaCrO,, and Cr-doped Al,O;.
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Conclusions

“* Conductivity variations were investigated, notably in LCC20-Al,0, [90-10].

“* LCC20-Cr,0, composites show enhanced conductivity and stability.

“* Promising results with Al,0,-Cr,0; 50-50 protective layers and LC-Cr,O,
[90-10]/LCC20-Cr,0; [90-10] conductive layers, hinting at long-term
industrial potential.
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XRD - Composites characterization

% LCC30-Al,0, [70-30] diffractogram
LCC30-Al,0; Composites LC-LCC30// Al,O; junctions shows LCC30 and lanthanum aluminate
* Lay,Cay;CrO; ALaAlO;  6CaAl0; VALO; SLCC20 *LC  AlaAlO3  0CaAlyO7 VALO3  &MgAly 1Cry g0, (I—aAIO3); Ca|C|Um aluminate (CaZAIZOS)
and pure Al,O5

g lo W?e.iovl S oh__ 0 fo & & E

g . S E ¢ X-ray diffractograms of junctions
5 2 A A E M

2lb ¢ . 3 £ between composites show secondary

LCC30-A1,03 [90-10]

phases such as LaAlO; and Ca,Al,Oq
due to cation interdiffusion.

3 O W N Y

LCC30

20 3‘0 410 5IO GIO 7IO 80
20(°) 20 (%)
Al,O, substrates before and after legs printing and sintering

** Evidence of chromium diffusion to the
substrate phase is observed in all
junctions.
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