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Introduction

=  Processes such as energy generation, metals/glass manufacturing, coal gasification
and aerospace technology applications require health and process monitoring in
harsh-environments.

Harsh-environments conditions include:
¢ High temperature (500-1800°C)
+¢* High pressure (up to 1000 psi)

+* Corrosive, erosive and reducing environments.

Ability to monitor:
** Temperature
+* Structural stability of systems components.

= US DOE Overall Goal: Develop health and temperature sensors (and sensor
arrays) embedded into refractory compositions.

V& WestVirginiaUniversity



Objectives of This Work

** To synthesize doped lanthanum oxides perovskites by Sol-Gel method and prepare
conductive refractory composites.

** To study the electrical conductivity and Seebeck coefficients of such compositions at
temperatures up to 1500 °C under different working atmospheres (oxidizing, reducing).

*»» To fabricate surface printed thick-film sensors utilizing these materials and to determine
their thermoelectrical response.

*»* Fabricate sensors embedded into refractory and perform thermoelectrical testing.
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Lanthanum Chromite: General Aspects

**» High melting point (~2500 °C).

** Chemically stable under oxidative and reducing
atmospheres.

“*Pure LaCrO; shows semiconducting behavior
with no to low ionic conduction.

+* Calcium substitution increase conductivity from
1.0 to 40.0 S-cm at 1000°C (Mori et al. 1997)

*»* Compatibility (thermal expansion coefficients
matching) near refractory materials, ~10%x10°
°Cl.

Polaron hopping electrical conduction
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Sol Gel Synthesis and Pellet Fabrication

La(NO3)6H20 Sr(NOs)2 Cr(NO3)39H20
Citric Acid
Mixing/Complex
Sol
Dried 80°C
Gel
Calcination 1100°C Calcination 900°C
v Inks < _ _
v’ Composites Powder Reactive Sinter
Pellet Heat treatment @ 1600°C — 2 Hours
High density

ceramic pellet
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v’ Pechini-like process used.

v High homogenous and adequate sintering.

v’ High density (typical in literature <93% density).
O Low yields and not easy to scale-up

Compositions Studied:
A-site: La1xSrxCrOs, La1xCaxCrOs
(x= 0.1,0.2,0.3,0.4)

B-site: Lao.sSro.2Cr1-yMnyO3
(y=0.1,0.2,0.3,0.4)



*The composites were prepared mixing 30% Ca doped LaCrO; (LCC30) with Al,O; at different
(v/v)% ratios: [90-10], [80-20] and [70-30] where the first number corresponds to LCC30 volume
content and the second to Al,O;.






Electrical Conductivity
Characterization

V& WestVirginiaUniversity



DC Electrical Conductivity (Oxidizing Atmosphere)
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*»» Conductivity typically exponentially
increases with increase in carrier mobility,
but 30 to 40% all drop in conductivity
(believe slight second phase or higher
lattice strain).

** Sr doped shows three regions, not seen in
literature, since most tests <850°-1000°C.
(believe V, at high temperature)

** Arrhenius relationship fits for higher

temperature regimes.

+** Calcium doped compositions present higher
conductivity due the lower distortion
effects on lattice structure.

Electrical conductivity vs temperature and Arrhenius Plot La, 5r,CrO; La, ,Ca,CrO;

\
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DC Electrical Conductivity (Reducing Atmosphere)
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Electrical conductivity vs temperature and Arrhenius Plot for La, ,Sr,CrO; La, ,Ca,CrO,
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Thick Film Sensors Fabrication

Thermoelectrical
Characterization
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High Temperature Sensors Fabrication

AL Cold zone junction
/‘ 120 mm k R

e mm Leg 1 (Pt or pure-LaCrO;) —l l_ Leg 2 (Doped LaCrO,)

30m
Ball milling in isopropanol for 8 h and drying
Cr diffusion and evaporation!!! l
Alumina Substrate . . . . c .
120 mm Pt or pure LC leg Ink preparation by mixing W.Ith 'an organic vehicle
— v and ultrasonication
Hot zone junction l
6 mm
30 mm Cold zone o )
" 3D printing on as-prepared alumina substrates
100 mm (120 x 30 mm) and drying
f |
Doped LC leg

Sintering of the thermocouples

*» Research team currently fabricating thermistors and
(2°C/min, 1500°C, 1 h)

thermocouples by 3D printing.
¢ High-temperature thermocouples that function

>1200°C (in R-type range) new exciting development.
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Seebeck Coefficient Estimation (Using Pt Standard)

Thermoelectric Voltage (mV)
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+** Linear correlation between temperature difference and thermoelectric voltage was observed for all the compositions.
** Doped-LaCrO,/Pt couples were fabricated to estimate intrinsic Seebeck coefficient (Sp,~ -18 uV/K*) up to 1000°C.
+»» Ca doping shows lowest intrinsic Seebeck coefficient with increasing Ca content.

*Moore, J. P. (1973). Journal of Applied Physics. 44 (3): 1174-1178
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Thermoelectric Characterization of Thermocouples

Thermoelectric voltage (mV)
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** Thermocouples were tested in a range between 30 to 850°C during 3 heating cycles, showing an excellent
reproducibility.

** The LCC30/LC, LCC20/LC and LCC10/LC thermocouples showed a maximum higher voltage by two orders of magnitude
in comparison with Pt/Pt-Rh, with values of 138.61 mV, 119.50 mV and 79.10 mV respectively (at AT~750°C).
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Thermoelectric Characterization of Thermocouples

Thermoelectrical response of LCC30-Al,0; composites // Pt Electrical conductivity vs. temperature of LCC30-Al,0, composites
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** Electrical conductivity and Thermoelectric voltage of LCC30-Al,0, composites-based thick layer thermocouples were
obtained.

“* Inverse correlation between thermoelectric voltage response and electrical conductivity trends. Al,O, content the
resistivity of the composites and increase the thermoelectric output.
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Thermoelectric Characterization of Thermocouples

BSE - SEM
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“* LC-Al,O; and LCC30-Al,0, composites-based thick layer thermocouples fabricated were tested in a range between 30 to
850°C during showing linear correlation between thermoelectric voltage and temperature.

“* Increase of Al,O, content in thermocouples materials increase the driving potential by formation of aluminates
secondary phases and higher concentration of Al,O, grains.
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Sensors Embedded into
Refractory



Embedded Sensors Fabrication

General Smart Refractory Processing Method
1%t Part of a Refractory Ceramic Preform or Organic Film ExampleS Of Sensor PFEfOrmS

Brick with Sensor Pattern

Thermocouple/Thermistor Resistive Circuit
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PIEIGHIGE , Temperature Spallation
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Embedded Thermocouples Characterization
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5-~_L§C2,9.7:A'2~.9?“rr ++ Different 3D printing gradients were printed and

embedded into high alumina refractory cement.

. High Alumina Cement. . % umina i +* Embedded thermocouples showed thermoelectric voltage
' ' P e e responses ~ 0.15 V in at AT~1200°C
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Conclusions

¢ Electrical conductivity shows correlated dependence with high temperature (up to 1500°C)
for all compositions. The exponential Arrhenius trend is evidence for the polaron hopping
electrical conduction mechanism.

** All the Seebeck coefficients were determined as the slope of the obtained plots, observing
constant behavior as expected for polaron hopping active semiconductors such as doped
LaCrO;.

** It was observed that Seebeck coefficient reduces with the increase in dopant substituents as
expected by Heikes model.
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Conclusions

+* Embedded thermocouples into oxide refractories were fabricated using an easy approach.

** The embedded thermocouples showed a correlated increase in thermoelectric voltage (as
expected) in function of temperature difference increment.

** Chromium diffusion was observed, there is a necessity for protect conductive layers and
reduce chromium lost.

V& WestVirginiaUniversity
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Electrical Conductivity (Oxygen partial pressure)
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Electrical conductivity dependence of oxygen partial pressures at different temperatures for La, Sr,CrO;

s At lower temperatures (600°C - 900°C) not significant changes in conductivity occurs for lanthanum doped
compositions during the equilibrium time used (90 minutes).

s At higher temperatures (1200°C and 1500°C) the conductivity drops exponentially at lower oxygen partial
pressures. Increasing the strontium concentration, the conductivity drop significantly.
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Electrical Conductivity (Oxygen partial pressure)
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Electrical conductivity dependence of oxygen partial pressures at different temperatures for La, ,Ca,CrO;

* When the oxygen partial pressure goes below a critical value, the oxygen vacancies are generated at expense of

electron holes and conductivity decrease for all compositions.
* The charge imbalance caused by the introduction of Calcium starts to be compensated by the formation of oxygen

vacancies.
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Sr doped lanthanum chromite stability experiments
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X-ray diffractograms of 20% strontium doped lanthanum chromite annealed at different temperatures.
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Crystalline Structure/Phase Analysis

*

s Single phase doped Ilanthanum

L)

(112) chromites materials were obtained
iy successful (no residual oxide or
024)
(110) (022) s @20) 44y O pyrochlore peaks).
LSC-40
s n j | N % Using Pechini Sol-Gel method
2 A - M. A permitted doped lanthanum chromites
z J 18630 at high solubility levels (40%).
=
— L T U | o A
. < Solubility limits >40% substitution level
(Sujatha et al. 1992).
A A }\ A }\_ A
I T ! T y T y T ! T L'SC-IO
20 30 40 50 60 70 80 b . ...
 No impurities extra peaks were
20 (°) present in the final prepared powders
X-ray diffractograms for the samples of the and ceramic pellets.

La, Sr,CrO; series
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Lattice Parameters, Unit Cell Volume and Density
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X-ray diffractograms showing shifting of (110) peak
for the La,_Sr,CrO; series
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Lattice parameters, unit cell volume and XRD theoretical density

for doped lanthanum chromites perovskites

. Lattice parameters (A) Volume PXRD hooretical

Composition a b g (A3) (g/cm?)

[ Lag 45T 1CrO; 55124 55668  7.7926  239.1299 64932
Lag ST, ,CrO; 54988 55425  7.7853  237.2747 6.4004
Lag 757 5CrO; 54760 55233  7.7580  234.6839 6.3259

U Lagesr,Cro, 54524 55122 7.7407 2326441 62350

N ( LageCay,Cro, 54180 55039  7.7332  230.6050 65963 )
Lay 4Ca, ,CrO; 54092 54982  7.7264  229.7898 6.3341
La,,Ca5Cro; 53994 54877  7.7058  228.3264 6.0872

VoL La, .Ca, ,CrO, 5.3897 5.4622 7.6853 226.2520 5.8528 J

1 (" LagSry s CroegMny 1005 54734 55648 77765  236.8595 61533 )
L 6575 20 Co ssMno 200 54705 55587  7.7702  236.2829 6.1766
L 55T 20 Cro 70Mno 300 54598 55308  7.7498  234.4020 6.2344

¥ { LaosSToan CroggMig 05 54146 54981  7.7065  229.4225 63783

% Decrease in lattice parameters (and volume) were observed

when dopant cations is introduced in the lattice.

% To achieve neutrality chromium change from Cr* to Cr*,

reduction in the chromium size occurs (Hyun Choi et al. 2013) .



Microstructure/Grain Size Distribution

Average grain size and bulk density distribution for La, ,Sr,CrO; La, ,Ca,CrO; series

Relative Percentage Bulk

Composition Average Grain Size (um) Density (%)
[ Lag ¢Sry ,CrO, 3.6 94 )
Lagy gSry,CrO, 3.5 95 %Srt
Lag ,Sry3CrO, 3.6 95
("Lay oCay,CrO, 4.1 96 N
La, gCa,,CrO, 3.7 97 %Cal
La,,Ca, ;CrO; 3.7 97
i % Pechini Sol Gel prepared calcium, strontium, manganese doped lanthanum chromite powders
j ‘, 7N s i exhibit better sinterability and densification under oxidizing conditions (undoped |90%).
N D s The samples of Ca doped lanthanum chromite powder have more dense microstructures.
Vet )/_f_/,jl 10 pm. ; Furthermore, it was found that the incorporation of Ca, Sr in the A site of the lanthanum chromite
‘a‘a“-,"d;::.f}:]‘.‘12.1.mmx»‘LSEIl::S"ElM’]‘E,F:E‘J,‘FEDéW‘ ‘ ‘]' ' I10.‘Dul‘w‘1;4 Increases graln grOWth (undoped <3 um)'
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DC Electrical Conductivities/Activation Energies

Air Atmosphere Reducing Atmosphere
Composition C,onﬂuttiis:fr} @ 1000°C  Activation energy Conductivity @ 1000°C Activation energy (eV) - a, cxp‘ —-AE,
(5/cm) (eV) (5/cm) T T
Lay gSrq 1CrO;5 16.671 0.1552 2.691 0.3238
Lag g51g ;€05 418812 0.1427 4572 0.2597
Lag 7519 3Cr03 49.032 0.1055 5.534 0.1719 l
Lay 5519 4CrO4 23.399 0.1498 3.462 0.3102
ag gCap 1CrO; 13.211 0.1417 3.152 0.3240 Slope < E,,
Lap 3Cag 3CrO; 24.170 0.1298 4.118 0.2103
La ;Cag 2:CrO4 52.823 0.1028 7.602 0.1367
La sCag 4CrO4 38.152 0.1175 6.626 0.1747

s Conductivity increase as function of doping level up to 30% for all dopants (strontium, calcium and
manganese).

s At 40% doping levels conductivity decrease due to higher lattice distortion in all systems (solubility limit).

s Lower conductivity values under reducing atmospheres are explained by oxygen vacancies formation
(near >1.5x in activation energy).
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Ca doped lanthanum chromite stability experiments
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X-ray diffractograms of 20% strontium and calcium doped lanthanum chromite annealed at different temperatures.
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XRD - Composites characterization

® La,,Ca, ,CrO, ALaAlO, 6CaAl,0, VALD,
. ' ' (a) (b) [90-10]

(7030 S % LCC30-Al,0; [90-10] indicates that LCC30
A N | phase was present, and a secondary
e Ll h lanthanum aluminate was formed during the
o L sintering process.

Intensity (a.u.)
Intensity (a.u.)
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LCC30 and lanthanum aluminate (LaAlO,),
o 7030 calcium aluminate (Ca,Al,Oc) and pure Al,O5

| “* Increasing the Al,O, volume content in the
| composite, increase the chemical reactivity at
| . 1500°C.
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SEM - Composites characterization

Aluminum Calcium

Lanthanum Chromium

Overlay

“* At 10 vol% of Al,O, there is not connectivity between grains indicating the formation of a (3-0) composite.
*» At 20 vol% and 30 vol% the connectivity of the grains is more notable, indicating the formation of (3-3) composites.

% These results demonstrated that the degree of percolation of Al,O,, LaAlO; and Ca,Al,O; grain size increased by

increasing Al,O; content from 10 to 30 vol%.

V& WestVirginiaUniversity
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