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ABSTRACT

The role of building thermal and battery storage is pivotal in advancing smart cities and achieving sustainability
goals through effective energy management. Despite their significance, there are several limitations in the
sizing approach and value stream analysis with various objectives for their widespread adoption in buildings.
This work proposes a flexible and scalable multi-objective optimization framework for optimal sizing and
dispatch of building thermal and battery storage, addressing multiple objectives simultaneously using mixed-
integer linear programming. The weighted-sum method is adapted, combining multiple objectives into a single
function. The two-stage procedure iterates over different weights, generates optimal solutions, and forms the
Pareto front. Case studies are performed to assess the energy, economic, and environmental benefits of building
energy storage systems for a large office building in three climate locations. The results demonstrate that
the proposed framework efficiently determines optimal sizing and dispatch strategies, addressing the balance
between economic viability and emission reduction. The dynamic relationship between time-of-use energy
charges and emission factors leads to diverse strategies based on whether economic or environmental concerns
are prioritized. This research enhances our understanding of the benefits of thermal and battery storage systems
in buildings, providing valuable guidance to stakeholders.

1. Introduction

Thermal and battery storage play important roles in the develop-
ment of smart cities, to contribute to sustainability goals by effectively
managing energy resources. Thermal storage systems store thermal
energy and release it when required for heating or cooling in buildings.
Similarly, battery systems charge electrical energy and discharge it
when needed. As strategically harnessing energy resources, this proac-
tive approach helps to balance between energy supply and demand. Its
peak load management can reduce the need for fossil fuel power plants
during peak demand, and it can enhance the overall utilization of clean
energy sources with the nature of energy storage.

Moreover, end-users can further save operational costs by leverag-
ing time-of-use (TOU) rates to get economic benefits with the energy
storage [1]. TOU rate tariffs encourage customers to reduce their en-
ergy consumption during peak hours when electricity costs are higher
and increase consumption during off-peak hours when rates are lower.
In addition, building energy storage can utilize more direct resources
to lower emissions for a cleaner and more sustainable environment.

These days, many resources provide data to quantify the locational
carbon intensity to be more carbon-aware and potentially reduce the
emission [2,3]. In each region, the emission factor varies due to the
sources of the electricity generation, which plays a significant role
in determining carbon intensity. For instance, regions with a higher
generation of renewable energy sources can have lower emission factors
compared to those relying heavily on fossil fuels [2,4]. The marginal
emission rates also vary over the time of day due to several factors,
including intermittent renewable resources, operational characteristics
of power plants, energy demand, and more. Thus, it becomes evident
that the operation of thermal and battery storage can provide more
environmental benefits.

However, there are several barriers preventing the widespread
adoption of thermal and battery storage in buildings. First, the current
approach to sizing the storage systems lacks consideration of opera-
tional efficiency. The sizing strategies for thermal storage (e.g., full
storage operation, partial storage operation) are recommended based
on the peak day load profile, however, this would require a larger
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plant system [5]. Without energy storage systems in buildings, the
capacities of the building plant system are often determined based
on the design day and peak demand, which may result in oversized
systems that mostly run inefficiently at lower part load ratios [6].
Furthermore, capital costs and physical constraints are often neglected
when addressing the optimal sizes. Optimal sizing considering oper-
ation and space constraints can lead to economical system sizes and
improved efficiency compared to conventional sizing methods. Second,
value stream analysis with various objectives has not been addressed.
There can be multiple purposes for using thermal and battery storage
in buildings. While it is widely known that storage systems are eco-
nomically advantageous due to their own characteristics, particularly in
utilizing the TOU rates to contribute to peak demand reduction [1,7],
research focusing on minimizing carbon emissions is still insufficient.

To address these issues, many researchers focused on developing
sizing methods for thermal and battery storage in buildings [8-14].
The optimal design of thermal storage has been explored with the
operation of the HVAC systems to consider related system-level oper-
ation characteristics and efficiency [15,16]. For instance, the charge
and discharge strategy of chilled water thermal storage has been stud-
ied with chiller dispatch and load conditions [8]. As the problem
includes non-linear system behaviors, heuristic algorithms have been
proposed; particle swarm optimization (PSO) and genetic algorithm
(GA) have been widely used in the optimization framework [9,10,15-
17]. A simulation-based optimization framework using PSO has been
developed to maximize the energy benefits of the water storage system
coupled with a chiller while considering investment and operational
costs [16]. The PSO algorithm has also been leveraged to address
the optimal sizing and dispatch problem for both thermal and bat-
tery storage coupled with renewable energy resources in a residential
building [17]. In the meantime, a GA-based optimal design of thermal
storage has been proposed to reduce life cycle costs [9]. Moreover, a
comprehensive study comparing the performance of five metaheuristic
algorithms for optimizing the operating schedule of energy systems
with battery and thermal energy storage systems, as well as an air-
source heat pump has been conducted [15]. From previous studies,
the methods using heuristic algorithms have been validated to provide
near-optimal solutions for efficient energy utilization and cost-saving
with building thermal storage [10].

The optimal energy and power capacity of battery storage in build-
ings have been studied using mathematical optimization algorithms
[12-14,18]. Linear programming has been leveraged for the optimized
battery size to provide economical benefits considering the battery
cost and operational costs [12]. The economic benefits and optimal
sizes have been analyzed in various regions with different utility rate
structures. In addition, the battery size has been studied when inte-
grated with renewable energy resources in residential buildings for
nearly zero-energy buildings [13]. The lifespan of the energy assets
and capital costs have been considered to minimize the life cycle costs
by using the storage to show the life-long efficacy. Another research
considered environmental impacts when sizing the battery for zero
energy buildings [14,18]. This research considered the environmental
impact index indicating climate change and emissions to limit the
battery operation in the sizing problem. The problem is solved using
mixed-integer linear programming.

While most research on the optimal sizing of batteries used math-
ematical algorithms to solve the problem, many previous works on
thermal storage sizing heavily relied on the heuristic algorithm. Even
though the heuristic algorithm can provide nearly optimal solutions, it
has limitations in finding the global optimum solution for complex and
nonlinear problems. Mathematical optimization algorithms can handle
large and complex systems more efficiently and can provide guaranteed
optimal solutions. Mathematical optimization algorithms also allow for
sensitivity analysis, which helps in understanding the impact of changes
in the problem’s parameters on the solution. While heuristics can also
be used for sensitivity analysis, mathematical optimization algorithms

often provide more structured and theoretically grounded methods for
conducting such analyses. Some prior studies formulated mixed-integer
linear programming and quadratic programming to address the optimal
dispatch problem of building thermal storage [19,20] and explored the
flexibility potential; however, optimal sizing was not investigated in
these works.

In addition to the existing research that focused on the single
objective approaches for peak load management and cost saving in
sizing and dispatch problems, there is a need for a more comprehensive
understanding of value streams with multiple objectives. The optimal
size of building thermal and battery storage is a challenging task due to
the conflicting nature of the objectives. For instance, building energy
storage with large capacity would increase the energy and economic
benefits. However, it would lead to unrealistic capital costs. More-
over, significant energy consumption during the charging operation
can lead to substantial emissions. Thus, the multi-objective methods
have been introduced to design and operate the thermal and battery
storage in buildings to concurrently achieve various objectives [21-24].
One research studied the best trade-off between heating and cooling
performances when designing thermal storage [21]. Beyond addressing
different technical objectives, both economic and technical objectives
are considered when integrating the energy storage operation strat-
egy with renewable energy resources [22]. In that regard, previous
researchers considered the TOU rates as well as the utilization of renew-
able energy in the objective functions. This optimization problem was
addressed through a GA to obtain the optimal capacity. The GA was also
leveraged in the development of thermal and battery storage systems
within the building community [23,24]. This problem simultaneously
considered economic and emission objectives to minimize both life
cycle costs and greenhouse gas emission costs [23].

Even though previous research demonstrated the merit of integrat-
ing multiple objectives into the decision-making process, it is essen-
tial to note that there are limitations in these approaches relying on
heuristic algorithms, as mentioned above. Furthermore, even though
emissions were considered in the objectives, the previous studies ap-
plied constant emission coefficients for power usage, which does not
account for the time-varying nature of emission factors throughout the
day. Given the variations in electricity rates and emission factors across
regions and during times of the day, more comprehensive research is
imperative to maximize the economic and emission benefits of thermal
and battery storage. This will provide stakeholders with substantial
information to accelerate the large-scale adoption of these building
energy storage systems.

Overall, the main limitations in previous research include reliance
on heuristic algorithms, which make it difficult to create a flexi-
ble framework and perform sensitivity study. Additionally, the multi-
objective function needs to consider both varying electricity prices and
emission factors throughout the day to fully capture the benefits of
using thermal and battery storage.

To bridge these gaps, our work proposes a novel framework that
takes into account both thermal and battery storage in buildings,
utilizing mixed integer linear programming. Our approach considers
the impact of the power market, which has different TOU pricing
and demand charge pricing in various regions, for a more realistic
and practical solution. We also incorporate the time-varying marginal
emission factor to enhance the sophistication of our emission reduction
solution.

The key contributions of this article are:

1. A multi-objective optimization based on mixed integer linear
programming for optimal sizing and dispatch of building thermal
and battery storage to consider multiple objectives (i.e., eco-
nomic and environmental concerns) and provide a balanced
understanding of value streams for better decision-making. Both
varying electricity prices and emission factors throughout the
day are considered to not only save the customer’s electricity
bills but also consider using electricity during lower emission
periods.
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Fig. 1. Energy flow of building energy systems with thermal storage and battery.

2. Adapting a weighted-sum method, multiple objectives are com-
bined into a single function and the Pareto front solutions are
generated, allowing stakeholders to choose the final solution
based on their priorities. Considering the different weights, sen-
sitivity analysis helps understand the impact of changes in the
problem’s parameters on the solution.

3. Development of a building emulator with physic-based asset
modeling to represent the system characteristics and operations
for validation of the optimal sizing and dispatch solutions.

The remaining part of the paper is organized as follows: Section 2
describes the building energy asset modeling with the energy flow;
Section 3 presents the optimization methods to solve the sizing and
dispatch problem of thermal and battery storage in the building and
describes the objective functions; Section 4 explains the building em-
ulator to validate the optimal dispatch and co-simulation setup with
optimization procedure; Section 5 describes the case study conditions
to test the proposed methods; Section 6 shows the case study results,
followed by the conclusions and discussion described in Section 7.

2. Building energy asset modeling

This section elaborates the thermal and battery storage models,
along with the essential building energy assets, such as the HVAC (heat-
ing, ventilation, and air-conditioning) plant system, required to meet
the building’s thermal and electric demands for the optimal sizing and
dispatch of this study. As the thermal storage operations are integrated
with the HVAC plant system, it is required to model the systems taking
into account operational characteristics and efficiency, for optimizing
the sizing and dispatch of the overall system. The primary focus of
this paper is on the cooling mode, where the chiller model operates
for both charging the thermal storage and providing cooling. Fig. 1
shows the energy flow of the building energy systems with the thermal
storage and battery. The ice storage model is used as thermal storage
for cooling purposes. It is important to note that depending on the
building types and operational requirements, alternative systems can
be employed. For example, a heat pump can serve as an alternative to
the chiller, and a boiler can be utilized for heating purposes with hot
water thermal storage.

2.1. Thermal energy storage

In this work, the thermal energy storage (TES) dynamics are mod-
eled considering the system capacity, temperature, mass flow rate of
the loop, and demand. Based on the charging and discharging rates
in the TES dynamics, the state of charge (SOC) level is estimated and

leveraged to show the potential utilization of thermal energy storage,
as in (1)-(8).
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where I{ is the SOC of thermal storage at ¢, e.(I},,) and ¢,(I ;) are the
heat transfer effectiveness at [{,., m is the maximum mass-flow rate,
¢, is specific heat capacity, Ty is the freezing temperature, Ty, is
the chiller water output temperature for ice-storage charging, Ty norm
is the chilled water supply temperature from ice storage, Cqpijer is the
chiller capacity, Oy is the TES capacity, L. and L. are the minimum
and maximum of SOC level. -

The charging rate g;,_ , should be lower than the chiller capacity
that provides the thermal energy to the storage. In addition, the charg-
ing rate is constrained by a specific maximum charging rate g, (/)
estimated with the maximum mass flow rate of the system (e.g., pump),
temperature differences, heat transfer effectiveness (¢, (/ies)), and more
as in (1),(3),(5). Similarly, the discharging rate qées’ dis should be lower
than the required building cooling demand g, and a specific maxi-
mum discharging rate g . (l;es) as in (2),(4),(6). Both TES charging and
discharging rates shoul_ddl:fllso be limited by the SOC level constraints as
in (7)-(8).

The TES tank volume V, can be calculated with the thermal
capacity Qe [5] assuming the unit of Q.. is Wh and it should fit in

the space as (9).
Oes - 3600(J/Wh)
¢y + AT - 1000(kg/m?) - e

Vies = S Ates - Hies 9
where AT is the temperature difference, 7, is the storage efficiency,
H, is the height of the space, and A, is the floor area allocated to
TES.

2.2. Electric chiller
The electric chiller model is developed with the functions of tem-

perature and part load ratio (PLR) [25]. The power consumption of the
chiller Pger is calculated for the chiller compressor, as in (10)—(15).

W1 (Tews: Teonde) = @0 + @1 Tes + T2+ &3 Teond e

+ 04Tc20nd_e + 45T s Teond-e 10)
Ochiller-a = Cehiller¥1 an
PLR = q192q/ Qchiller-a (12)
Wy (Tew.s: Teonde) = bo + b1 T + 3T s + b3 Teond e

+ b, T2 g+ b5 Towes Teondee a3)
w3(PLR) = ¢y + ¢, PLR + ¢, PLR? a4
Peniller = Qché{lg-}z;l’;‘/@ (15)

where y, is defined to estimate the chiller’s available capacity Opiiter-a
with the function of chilled water supply setpoint temperature 7, s and
condenser entering temperature T,,,4.., PLR is the ratio of the load gj,,q
to its available capacity Ogpijier-a» W2 iS defined to adjust the ratio of
energy to actual load with the function of temperature (T, Teond-c)>
3 is to adjust the ratio of energy input to actual load with the function



of PLR, Pjie; i estimated with the ratio of energy input to actual load,
chiller’s available capacity and reference coefficient of performance
(COPeep).

2.3. Battery

The battery energy storage (BES) dynamics are modeled with the
charging p . and discharging rates p__ . considering the charging
Nbesch and discharging efficiency #yes.4is- The SOC level of the battery
is leveraged to represent the percentage of the stored energy to the
battery capacity G, as in (16)—(19).
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where /i _ is the SOC of battery at 7, L, and Lpes are the minimum
and maximum SOC level of battery, P, is the maximum power rates.

The battery volume V;.s can be calculated with the capacity Cpeg
and the battery’s energy density and it should fit in the space allocated
to the battery installation as (20).

G

Vhes = bes < Apes * Hpes (20)
Pbes

where Ay is the floor area allocated to battery, p;qs is the energy

density of the Li-ion battery, and Hy,, is the height of the space.

2.4. Building loads

The total building electric load Py, is the sum of non-flexible load
P,on (e.g., lighting, plug load, etc.) and flexible load that is changed by
chiller power for TES charging and cooling and the battery power, as
(21).

Piotal = Pron + Peniter T Poes (21)
3. Multi-objective optimization for sizing and dispatch

This section describes the optimization approach including the ob-
jective functions, optimization method, and detailed algorithm. The
objective function that we used in our optimization engine includes
operational costs, capital costs, and carbon emission costs.

Operational costs include two components: energy charges and de-
mand charges. Calculating the energy charge involves TOU rate tariffs
for energy consumption across different periods (e.g., peak, off-peak,
and shoulder hours); while demand charges are based on the highest
electric demand within a specified time interval, typically one month.
The total operational cost can be mathematically expressed as (22):

T
_ t pt
COP - Z 4 Ptotal + Z v P;:aak (22)
t=1 m

where A’ and v denote the energy charge at time ¢ given the length of
the time horizon is T and the demand charge for month m, respectively.
Additionally, P . denotes the peak demand within month m.

The annuity of the capital cost of the whole system can be repre-
sented by (23):

Ccap = ﬂ (al Cchiller + aZQtes + a3 Pbes + 0‘4Cbes) (23)

where coefficients a;, -+, @, represent the unit prices for the energy
assets, and # denotes the capital recovery factor.

Finally, the emission cost represents the cost associated with the
emissions resulting from the energy consumption. A general mathemat-
ical expression of the emission cost can be as (24):

T
Com = Z (Cearbon Py M EF") 24
t=1

where M EF’ denotes the marginal emission factor varying by time 7.
Cearbon denotes the carbon value ($/kg).

3.1. Optimal dispatch formulation
The optimal dispatch proposed in this work is to determine the

charging/discharging rates of TES and BES, aiming to minimize the
total operational cost, as well as the emission cost:

min  Cyp, + wyCepy (25)
subject to P;’éak > P> V1€ {r| month(r) = m} (26)
TES model (1)-(8), Chiller model (10)-(15) 27)
BES model (16)-(19) (28)

where in the objective function (25) w, denotes a nonnegative weight
added to balance the emission cost for iteration in the algorithm 1.
To decide the charging/discharging rates of TES and BES, the decision
variables are q’ies-ch’ q:es»dis’ lt’pLes-ch’pLes-dis’ ki’ Pcrhiller’ Pl;es’ Pti)tal’ P;:r:eak'
Note that the optimal dispatch problem is to estimate the benefits
with a given size of the whole system, where all energy asset sizes
Cenillers Otess Press Ches are treated as parameters. The capital cost is

fixed and therefore is excluded from the optimization.
3.2. Optimal sizing formulation
The optimal dispatch formulation can be easily adapted to address

sizing problems by including the system cost as a function of energy
sizes in the objective function:

min  Cop + Ceap + Wi Cem 29
subject to P;'éak > P, o V1€ {r| month(r) = m} (30)
TES model (1)-(9), Chiller model (10)-(15) 31
BES model (16)-(20) (32)

where the constraint set remains the same as the optimal dispatch
problem except constraints (9), (20). These are to constrain the phys-
ical volume of the TES and BES in the optimal sizing problem. The
optimal sizing aims to determine the size of the all energy assets

(Cchiller’ Qtes’ Pbess Cbes)'
3.3. Multi-objective optimization method

In this work, multi-objective optimization deals with optimal siz-
ing and dispatch problems considering conflicting objectives simul-
taneously. In the context of mixed-integer linear programming, both
continuous and discrete decision variables are considered, and the ob-
jective function and constraints are formulated as linear relationships.
The multi-objective optimization extends the single-objective case by
having multiple objective functions, each representing a different goal.
These objectives are usually conflicting, meaning that improving one
objective might worsen another.

The weighted-sum method is chosen for practical and effective
solutions of multi-objective optimization problems due to its compu-
tational efficiency, simplicity, and flexibility in objective trade-offs
with decision-making processes. This approach allows for rapid explo-
ration of the solution space. Furthermore, we can explore trade-offs
between competing objectives by adjusting the weights assigned to
each objective, making the process more intuitive and interpretable.
This flexibility enables stakeholders to prioritize objectives according
to their preferences and constraints, leading to tailored solutions that
align with specific project goals and requirements.

The weighted-sum method provides a way to combine multiple
objective functions into a single objective function. Our work adapted
the weighted-sum method in solving the multi-objective problem in two
stages as follows.



In Stage 1, we solve the multi-objective optimal sizing problem for
the building energy storage system with the given weight value using
the weighted-sum method. In Stage 2, the optimal dispatch problem
is solved with the optimal sizing results from Stage 1. The two-stage
procedure iterates over all the given weights and generates a set of
optimal solutions corresponding to each weight value, hence the Pareto
front can be formulated.

The detailed algorithm is formulated in Algorithm 1.

Algorithm 1: Two-stage Weighted-sum Approach for Multi-
Objective Optimization

1 Set the range of weight vectors for updating w, € {w, ..., Wg};

2 Initialize the weights w;, ;

3 for k <« 0to K by 1 do

4 Stage 1: Solve the updated optimal sizing problem
(25)-(28) with updated weights, obtain the optimal sizing
result set 7, = {TZES, TEES}

5 Stage 2: Solve the optimal dispatch problem (29)—(32) with

the optimal sizing parameters 7, and weight w,

6 Evaluate the optimal dispatch results and objective

functions given (w, 7;).

7 Update weights to w; ;.

8 end

Return w; = (W, 7;), where k =0,1,...,K

o

3.4. SP-metric for Pareto front evaluation

The SP-metric (Sparsity metric) is used to evaluate the diversity of
solutions on the Pareto front. It measures how evenly the solutions
are distributed and how well they cover the extent of the Pareto
front. We defined it as the standard deviation of the distances between
consecutive solutions in the Pareto front as Eq. (33).

oo At T | - d]

33
d; +d 33)

where M is the number of solutions on the Pareto front, d; is the Eu-
clidean distance between consecutive solutions in the objective space,
d; is the Euclidean distance between the first solution and the second
solution, d; is the Euclidean distance between the last solution and the
second-to-last solution, and d is the average of all d; values.

The Spread value ranges from O to co. A Spread value of O in-
dicates that all solutions are evenly distributed, which is the ideal
scenario. A larger Spread value indicates that the solutions are not
evenly distributed.

4. Cosimulation
4.1. Building emulator

Building emulators are developed to validate and test the prospec-
tive sizing options and operation for thermal and battery storage sys-
tems in buildings. It simulates the thermal behavior and energy dynam-
ics of building thermal zones and associated equipment to assess the
performance in a virtual environment.

This study leverages the DOE prototype large office building mod-
els [26] to showcase the efficacy of the proposed framework. These
models are chosen specifically because they are widely known as
significant energy consumers. The DOE prototype building models
have versions in 16 different climate zones to reflect different loads
due to the climate conditions in the models. It consists of 12 floors
designated for occupancy, as well as a designated zone on each floor
for a data center. The zones designated for occupancy are arranged in a
perimeter-and-core configuration, with 4 perimeter zones surrounding
a core zone, as seen in Fig. 2. The occupied zones are serviced by a

Table 1
Annual peak and average demands in three climate locations.
Boston, MA San Diego, CA El Paso, TX
Cooling Peak 2778 1207 3106
demand (kW) Average 389 181 652
Electric Peak 3811 2470 4205
demand (kW) Average 959 823 1252

multi-zone VAV system via a chilled water loop for cooling and a hot
water loop for heating and reheat. The chilled water loop consists of
two water-cooled chillers servicing chilled-water cooling coils in the
air-handling unit (AHU). The hot water loop consists of a natural gas-
fired boiler servicing hot-water heating coils in the AHU and the VAV
terminals. The data center zones are serviced by water-source heat
pumps that reject heat to a common water loop. The model assumes
time-varying occupancy mainly between the hours of 9 AM and 6
PM on weekdays, with the lighting, ventilation setpoints and zone
temperature setpoints varied accordingly. Similarly, the datacenter has
a time-varying schedule, with the electrical energy consumption (and
associated radiation to the thermal zone) cycling in 4-month periods.
Based on the prototype large office building model, we developed
our building emulator using EnergyPlus, a detailed whole-building
energy simulation tool. The chilled water loop is modified to place
thermal storage to charge the ice storage tank and then extract energy
from it to meet the cooling load, as shown in Fig. 3. The ice storage tank
is coupled with one of the two chillers, dedicated to charging the ice
tank, to store the thermal energy, while the other chiller is dedicated
to meeting the cooling loads in the building. Automated control loops
operate the HVAC system and the base chiller to meet cooling loads.
TES control is exposed to the optimal controller via an FMU interface.

4.2. Cosimulation setup

To test the optimal dispatch, the simulation is coupled with an
optimal controller implementing MPC in a co-simulation setup, with
Python-developed TES and BES models and a building emulator based
on EnergyPlus, as illustrated in Fig. 4. The controller uses anticipated
load, weather data, and measurements from the building model at each
timestep to determine the optimal control action (described in Sec-
tion 3). The Python-developed TES and BES models receive the charge
or discharge rates from the optimal dispatch algorithm that is based on
the current SOC. As for TES, the maximum possible charge/discharge
rate is determined by given measurements from the chilled water loop
and is compared with the rate requested by the controller. The lower of
those two values is then passed on to the EnergyPlus model packaged
as an FMU, with an interface exposed using the ExternalInter-
face:FunctionalMockupUnitExport:To:Schedule  class.
The EnergyPlus model has Energy Management System (EMS) class
objects that automate the required actions based on the requested rate.
These programs operate the chilled water loop components, including
the chiller, chilled water pumps, heat exchangers, and thermal energy
storage to achieve the requested charge/discharge rate. The simulation
model progresses through each timestep, as measurements are obtained
and subsequently sent to the controller. This iterative process continues
as a continuous loop.

5. Case study conditions

The proposed multi-objective optimal sizing and dispatch is applied
to the large office building models to assess the potential benefits of
building energy storage systems depending on the climate location, util-
ity rate tariffs (e.g., time-of-use (TOU), demand charge), and emission
factors. Three locations are selected based on climate zones: Boston,
MA, San Diego, CA, and El Paso, TX.
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Fig. 2. Zone configuration on each occupied floor and building shape of a large office prototype building model.

Pump Chiller
Primary base
A chilled water v
loop

Heat |
exchanger-1

{ Pump } Chillerl

Primary TESS
chilled water
loop

| Ice
| storage ﬂ

2

Pump

" Secondary
chilled water
loop

Building
loads

Fig. 3. Schematic of modified chilled water loop in EnergyPlus.

v

Controller
Py Optimal
Charge/ TES
Discharge
Rate BES

> — julia

 —

Measurements (demand, temperature, flow rates, ..)

Charge/
Discharge
Rate

 ——

Implementation

—_—

Fig. 4. MPC-based controller validation.

Table 1 provides the annual peak and average of the electric and
cooling demands of the office building models in three different climate
locations. As observed in the table, the peak and average cooling
demands vary depending on the climate locations. The highest cooling
demand is observed in El Paso with its hot summers, while the lowest
cooling demand is shown in San Diego with its mild temperatures
throughout the year. The average cooling demand is around 14%-21%
of the peak demand. Considering the cooling systems are generally
sized with the peak demand, the systems will run at their low part
load ratio for most of the time and it will lead to inefficient operations.
Fig. 5 further illustrates the duration curve of the cooling demand for
each location. It is observed that the peak cooling demands occur a
very small percentage of the time. As the load factor is significantly

low, there are many opportunities to manage the peak demand more
effectively. The electric demands also vary by the climate locations
reflecting the HVAC electric demand to support the cooling and heating
demand. The average electric demand is around 25%-33% of its peak
demand. With this load analysis, we expect integrating the thermal
and battery storage can help downsize the plant system. This will also
contribute to smoothing out peaks by storing excess energy during
non-peak periods and discharging it during peak demand periods.
Based on the hourly data, Fig. 6 illustrates monthly average elec-
tric and cooling demands for seasonal variations in different climate
locations. As observed in Table 1, the cooling demands show larger
variations compared to the electric demands. Particularly, El Paso
shows the highest cooling demand with the largest variation ranging
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Fig. 6. Monthly average electric and cooling demands in three climate locations.

from 90 to 920 kWh. El Paso has cooling demands even during the
winter months. In contrast, Boston generally shows cooling demands
during the summer months, ranging from 0 to 613 kWh. San Diego
shows a relatively flat cooling demand throughout the year, ranging
from 5 to 179 kWh. Unlike the cooling demand patterns, the electric
demands show relatively smaller variations across both the time and
location throughout the year. Note that the power consumption by the
data center in the building model is excluded in this plot as it increases
the power consumption level by 25% each month, and then reset every
4 months, as described in Section 4.1.

Table 2
Utility rate tariffs during June-September in different climate locations.
Boston, MA San Diego, CA El Paso, TX
Demand charge ($/kW) 19 11.45 9.79
Peak 0.02145 0.46893 0.15675
TOU charge .t peak NA 0.24385 NA
($/kWh) Off-peak 0.01935 0.19273 0.0152
300
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Fig. 7. Hourly marginal emission factor of a day for three locations.

To identify the economic benefits of building energy storage,
Table 2 summarizes the utility rate tariffs applied to the energy con-
sumption for three locations, which are based on the United States Util-
ity Rate Database [27]. The tariffs including demand charges and TOU
charges may vary depending on the seasons and between weekends and
weekdays. The presented table specifically outlines the applied utility
rate tariffs during the months of June to September. The TOU charges
vary based on the time of day, with different rates for peak, part-peak,
and off-peak periods. In Boston, the TOU peak time is between 12 PM-7
PM. Although the gap between peak and off-peak rates is relatively low,
the demand charge is the highest at $19/kW among the three locations.
Meanwhile, San Diego has a highly dynamic TOU pricing structure with
three distinct rates throughout the day. The peak rates occur during
4 PM-8 PM, which are approximately 4.8 times higher than the off-
peak rates. El Paso has peak rates during 12 PM-5 PM and it shows
the largest gap between the peak and off-peak rates, with an eightfold
difference. Despite this, the demand charge is the lowest at $9.79/kW
among the selected locations.

To consider the emission benefits of building energy storage, Fig. 7
illustrates the variation of the hourly marginal emission factor through-
out the day generated from NREL’s 2022 Cambium data sets [2].
Across all locations, the marginal emission factors are the lowest during
daytime hours due to solar generation. These factors spike in the
evening, as the sun goes down and conventional generators run to
generate power. In the case of CA, the highest marginal emission factor
occurs during the early morning hours. The marginal emission factor is



Table 3 Table 4
Sizing parameters. Pareto front sizing solution for Boston (MA)
Unit price Max. capacity Max. space # w Cop + Ceap Cem Base TES TES BES BES
Chillers $120/kW 10000 kw ) ... chiller  chiller Power
TES $40/kWh 10000 kWh 500 m? (10°$) ae’s)  &w)  &w)  Gwh) &W)  (kWh)
BES $355/kWh 10000 kWh 500 m? 1 0 7,901 978 2300 300 4400 500 600
BES power $153/kW 10000 kW 2 10 7,882 956 2300 300 4600 600 1000
3 33 8,021 949 2300 300 4400 700 1500
4 56 9,117 925 2300 300 3100 1000 3600
5 79 11,950 878 2300 300 2400 1000 8100
the lowest in CA due to the extensive integration of renewable energy 6 101 12799 868 2300 300 3100 1000 9200
in electricit " hile it is at its highest in MA. It i 7 124 13,392 863 2300 300 3300 1000 10100
source.s in electricity generz} 19n, while i .1s at its highes : in LItis s 147 13.540 861 2300 300 3700 1000 10000
essential to note that these findings are derived from Cambium data and 9 170 13,643 861 2300 300 4300 1000 10000
may not directly represent the actual emission rates of each location. 10 200 13,726 860 2300 300 4600 1000 10000

Additionally, we observe relationships between TOU pricing and
MEF in these three locations. In CA, even though the MEF is the largest
in the early morning, the MEF rise in the evening aligns with the peak
TOU pricing (during 4-8 PM). In TX, as the MEF is low around 12
PM and spikes around 5 PM, it is not closely aligned throughout the
entire peak TOU pricing period (12-5 PM). For MA, the MEF is at its
lowest around 12 PM and spikes around 6 PM. Similar to TX, the TOU
rate and MEF do not perfectly align during the peak TOU period (12—
7 PM). While there is some correlation between TOU rates and MEF,
particularly in the evening peak hours, the relationship is not consistent
throughout the entire peak TOU pricing period across all locations. As
the TOU pricing is designed to encourage customers to save electricity
bills while MEF represents the emission factors associated with the
electricity generation side, the TOU and MEF patterns are not perfectly
aligned. However, combining two factors can allow customers to not
only save electricity bills but also consider using electricity during
periods with lower emissions.

The optimal sizing problem will cover a period of 20 years with a
presumed discount rate of 5%. Table 3 outlines the unit price sourced
from Energy Storage Cost and Performance Database [28] and physical
constraints. The assumed efficiencies for both charging and discharging
are set at 0.93, considering both battery and inverter. The case study
aims to showcase the efficacy of a multi-objective optimal sizing and
dispatch framework for forward-looking analysis and decision support.
In this analysis, as for the baseline case, chiller capacities are deter-
mined based on the peak cooling demand without incorporating TES
and BES.

6. Results

In this section, the multi-objective optimal sizing and dispatch of
building energy systems with TES and BES will be explored. The
framework based on Algorithm 1 is implemented in this case study for
large office buildings located in three states under different TOU rates
and marginal emission factors.

6.1. Multi-objective optimal sizing

6.1.1. Pareto-front solutions

We minimize the objective function (29) with economic (COlD +Ccap)
and environmental (C,,,) concerns to get the Pareto front optimal sizing
solutions. As the weighted-sum method is applied to balance the two
objectives, the analysis was performed using a diverse set of weight
combinations to explore various trade-offs between the objectives.

The Pareto fronts for three locations, derived from a combina-
tion of 10 weight configurations with optimized sizing results, are
illustrated in Fig. 8. To ensure a comprehensive exploration of the
objective space, we selected weights ranging from 0 to 200. The initial
weight is set to 0 to capture scenarios where one objective is entirely
prioritized over the other. The last weight is set to 200 to observe
the converse scenario. Intermediate weights were linearly distributed
between 10 and 170 to build a 10-element weights collection: w €
{0,10,33,56,79,101, 124, 147, 170,

200}. This selection and distribution of weights were based on pre-
liminary analyses that suggested these values effectively delineate the
trade-offs between objectives. By calibrating the weights in this man-
ner, we ensured a detailed and representative mapping of the Pareto
frontier, highlighting the distribution of optimal objective values. The
blue lines in Fig. 8, representing Pareto fronts from optimal TES and
BES sizes, identify a set of non-dominated, optimal solutions, demon-
strating the trade-offs between minimizing economic objective (C,p, +
Ceap) and environmental objective (Cep). The representation confirms
that the identified solutions lie on the Pareto frontier, highlighting their
optimality in balancing the considered objectives.

The Pareto fronts from three different locations all depicted a clear
trade-off between minimizing economic objective (C,, + Ccyp) and
environmental objective (C,y,). Solutions at one end of the Pareto
front favored low emission costs, suitable for sustainability-focused
strategies. Conversely, solutions at the other end prioritized cost-saving
strategies but with marginally higher emission costs. Starting with zero
weight value, the optimal solutions demonstrated a range of scenarios,
from minimal cost-saving with acceptable emission levels to aggressive
emission reduction with moderate cost increases. Notably, mid-range
solutions provided a balanced approach, achieving significant reduc-
tions in both emission and total costs, which can be identified from
Fig. 8, e.g., 4th solution in the middle of the blue lines.

The change of weights on each objective led to notable shifts in the
Pareto front, reflecting the sensitivity of the optimization outcomes to
the prioritization of objectives. The mid-range weights show a larger
increase in C,, + Cqp, especially for the Boston case. With the same
range of weights, between the 4th and 5th solution, the change of
emission cost in the El Paso and San Diego cases are less than $30,000,
while the emission cost decreases about $50,000. The Cy, +Ce,p, is more
sensitive to the change of weights in all three locations. Given the same
range of weight values, a higher weight on emission cost reduction
shifted the Pareto front towards from $100,000 to $150,000 in three
different cases, while the Cy;, +C¢,, can be shifted $6 million in Boston
case, almost 40 times the emission cost changes.

Specific weight ranges, e.g., between the 3rd and 5th weights,
33 < w < 79, revealed good balancing for the competing relationship
between the two objectives. Beyond this range, the leftmost region
leads to a more cost-saving strategy with less consideration of emission
levels, while the rightmost region leads to a more aggressive emis-
sion reduction strategy and their corresponding optimal sizing and
dispatching solutions.

Tables 4-6 and Fig. 9 summarize the Pareto front sizing solutions for
each location. In Boston’s case, the C,j, + C,p, (economic) is dominant
in the sizing strategy where a larger TES capacity is prioritized over
BES, resulting in a smaller BES. This is because of the small TOU rate
gaps between peak and off-peak periods, making the investment in
more expensive BES less economically advantageous compared to TES.
With the TES, the base chiller’s capacity could be reduced by 17.2%
compared to the peak demand-based sizing. As we increase the signif-
icance of C,, (environmental consideration), the BES capacity rises,
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Table 5 Table 6
Pareto front sizing solution for San Diego (CA) Pareto front sizing solution for El Paso (TX)
#ow Cop+Cep  Cem Base TES TES BES BES #ow Cop+Cep Cem Base TES TES BES BES
chiller  chiller Power chiller  chiller Power
(10°$) (10°$) (kW) kW) (kwh) (kW) (kWh) (10°$) (10°8) (kW) (kW) kwh) (kW) (kWh)
1 0 15,649 278 900 200 3400 1000 8000 1 0 11,215 738 2700 200 4200 1000 7000
2 10 15,836 269 900 200 3800 1000 7400 2 10 11,382 710 2700 200 3600 1000 5600
3 33 17,074 204 900 200 2800 1000 6600 3 33 11,754 691 2700 200 3500 1100 3100
4 56 17,807 188 900 200 2600 1000 5800 4 56 12,783 667 2700 200 2300 1100 3500
5 79 20,145 156 1100 200 1500 1100 5700 5 79 13,819 652 2700 200 2100 1000 4400
6 101 21,614 139 1100 200 1500 1000 5900 6 101 14,118 649 2700 200 2100 1000 4700
7 124 22,774 128 1100 200 1700 1000 6900 7 124 15,014 641 2700 200 1900 1000 5700
8 147 23,050 126 1100 200 1900 1000 7000 8 147 15,319 638 2700 200 2100 1100 5900
9 170 25,329 112 1100 200 2100 1100 8800 9 170 15,601 637 2700 200 2600 1000 5900
10 200 27,005 102 1100 200 2600 1100 10000 10 200 15,701 636 2700 200 2900 1100 5900




while the TES capacity reduces from 2nd to 4th solutions. The trend
shifts when the C,,, takes dominant, resulting in large capacities for
both TES and BES, irrespective of their higher investment costs. Unlike
the Boston case, when the Cy, + Cg,p, (economic) is dominant in the
sizing strategy, investing in larger TES and BES is cost-effective for both
San Diego and El Paso cases. As the focus shifts from purely economic
benefits towards environmental concerns (C,,,), the capacities of both
TES and BES decrease from the second to the fifth solutions. How-
ever, starting from the sixth solution, capacities rise again. This shift
indicates a strategy towards prioritizing larger TES and BES capacities
to maximize environmental benefits rather than primarily emphasizing
economic advantages. Leveraging TES utilization in San Diego and El
Paso leads to a significant reduction in base chiller capacities ranging
from 9%-25% and 13%, respectively.

Overall, it is important to note that when the economic consider-
ations (C,, + Ccyp) dominate the sizing strategy, the optimal sizing
solutions are primarily determined by the utility tariffs specific to each
location. Both San Diego and El Paso have large differences between
the peak and off-peak TOU rates, making substantial energy storage
investments economically viable. On the other hand, the Boston case is
characterized by small differences between the peak and off-peak TOU
rates, leading to the low economic viability of larger energy storage
investments. When the environmental concerns (C,,) dominate the
sizing strategy, larger TES and BES capacities are recommended to
maximize environmental benefits. Please note that these optimal sizing
solutions serve as guiding purposes. In practical applications, limited
models are available from manufacturers, and commercial sizes should
be selected considering real-world constraints and market offerings.

6.1.2. Evaluation of the Pareto-front solutions

We assessed the SP values of the Pareto-front solutions, utilizing
data from Tables 4-6. The SP values for the cases in Boston (MA),
San Diego (CA), and El Paso (TX) cases are 51.43, 3.91, and 11.88,
respectively. Among the evaluated scenarios, the Boston case shows
the least uniform distribution of solutions which means a potential
clustering of solutions in specific regions of the Pareto front, while
other areas remained sparse. The San Diego case has the most evenly
distributed solutions among the three cases, with the SP value closest
to the ideal scenario of having all solutions evenly distributed. The El
Paso case has more evenly distributed solutions than the Boston case
but there is still some variation in the distribution.

The analysis of the SP-metric highlights the variability in the dis-
tribution of Pareto-front solutions across different cases. However, it is
important to note that the weight factor was fixed for all cases.

The relatively higher SP value in the Boston case indicates that
adjusting the weight factors could enhance the robustness of its Pareto
front to achieve a more uniform distribution. Introducing variable
weight factors tailored to each case could address the unfairness caused
by using a fixed weight factor. This would allow for a more customized
approach that takes into account the unique aspects of each case.
While the SP value for the Boston case is relatively higher, it does not
necessarily indicate poor solutions. Instead, it signifies a need for po-
tential adjustment in the weighting scheme to achieve a more balanced
distribution of solutions. The Boston case solutions still represent valid
trade-offs between economic and environmental objectives, but the re-
sult suggests that these solutions are more clustered, which can provide
insight into specific areas where trade-offs are more pronounced.

6.2. Performance and benefit evaluation

Based on the Pareto front sizing, this section evaluated the optimal
dispatch solutions and performed the energy, cost, and emission benefit
analysis. Fig. 10 visualizes the electric load and SOC trends for both TES
and BES across different solutions (#1, #4, #10, and baseline case)
from July 1st to 8th in San Diego to provide a comparative analysis.
The top subplot shows the load comparison, while the bottom subplots

Table 7
Comparison of the energy and costs under the optimal solutions and the baseline case
in Boston.

Baseline #1 #4 #10
839 853 856 859
Total energy (MWh) B 1.7% —2.0% —9.4%
Emission (5) 7,854 7,983 7,862 7,794
- ~1.6% ~0.1% 0.8%
Energy charge (§) 16,920 17,191 17,220 17,257
8y charg - ~1.6% ~1.8% ~2.0%
34,487 30,731 32,446 36,669
Demand charge ($) - 10.9% 5.9% -6.3%
Total operation cost ($) 51,407 47,922 49,666 53,926
P - 6.8% 3.4% ~4.9%

Table 8
Comparison of the energy and costs under the optimal solutions and the baseline case
in San Diego.

Baseline #1 #4 #10
723 757 753 764
Total energy (MWh) —4.7% —4.1% -5.7%
Emission (§) 1,59 2,175 1,579 928
- ~36.3% 1.1% 41.9%
Energy charge (§) 135,714 85,582 101,966 149,560
8y charg - 36.9% 24.9% ~10.2%
18,390 18,247 22,746 28,334
Demand charge ($) - 0.8% ~23.7% ~54.1%
Total operation cost (§) 154,104 103,829 124,712 177,894
P - 32.6% 19.1% ~15.4%

illustrate the SOC trends for each solution. Solution #1, primarily
driven by economic consideration (Cop), charges both TES and BES
during early morning hours and utilizes the stored energy during the
day, to maximize the economic benefits from the TOU pricing structure.
In addition, TES charging is prioritized over BES charging when the
required electric demand is lower. On the other hand, Solution #10,
which emphasized the environmental concerns (C,,,), charges the TES
and BES during the day when the emission factors are lower, even
leading to a higher peak load compared to the baseline. Solution #4
balances the optimal dispatch between the economic and environmen-
tal concerns, charging energy in the morning and at night to leverage
relatively lower emission and energy charge rates while avoiding peak
hours.

Fig. 11 presents the energy charge and emission costs for the
different solutions (#1, #4, #10, and baseline case) from July 1st to
8th in San Diego. As observed in the optimal dispatch patterns, Solution
#1 showed high emission costs by charging during early morning hours
with relatively high emission factors. However, the energy charge was
the lowest throughout the day among the other cases. Solution #10
showed significantly large energy costs during the day as it charges
both TES and BES during the day when the emission factors are the
lowest. Solution #4 tries to find a balance between Solution #1 and
#10. Thus, there are low energy charges during the peak hours, and
although it shows higher emissions at night by charging the energy, the
charging duration is short enough to keep overall emissions relatively
low compared to Solution #1.

We conducted a comprehensive performance analysis of optimal
dispatch strategies over a one-month operation during the summer,
comparing a baseline approach with a multi-objective solution to assess
their impact on energy, economic, and environmental factors. The
results are presented in Tables 7-9, highlighting the total energy con-
sumption, peak load, energy charge, demand charge, and emission costs
in August. In the Boston case, we observe 1.7-2.4% more energy con-
sumption with the optimal solutions compared to the baseline, which
has no energy storage system. As its utility rate tariffs are characterized
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Table 9
Comparison of the energy and costs under the optimal solutions and the baseline case
in El Paso.

Baseline #1 #4 #10
920 969 959 951
Total energy (MWh) Z5.3% Z49% Z3.4%
. 4,731 5,132 4,574 4,588
Emission ($) - ~8.5% 3.3% 3.0%
N 53,863 30,803 44,742 51,046
Energy charge ($) - 42.8% 16.9% 5.2%
18,840 17,691 25,009 22,774
Demand charge ($) - 6.1% ~32.7% ~20.7%
Total operation cost (§) 72,703 48,494 69,751 73,820
P - 33.3% 4.1% ~1.5%

by a small difference between peak and non-peak TOU energy charges,
it does not show economical benefits in terms of energy charge with
energy storage system utilization. With a high demand charge, Solu-
tion 1, which prioritized economical benefits the most, demonstrates
a 10.9% demand charge saving due to peak load reduction and a
6.8% total operation cost saving while 1.6% higher emission than the
baseline. Solution 10, which prioritized environmental concerns the
most, shows emission savings at 0.8% compared to the baseline but
has a total operation cost 4.9% higher than the baseline. The relatively

low environmental benefit is due to its MEF difference between the
lowest and highest is around 1.8 times. It is observed that the difference
is not sufficient to generate larger environmental benefits by utilizing
the building energy storage systems. Solution 4 balances economic and
environmental concerns well in its dispatch strategy so that it achieves
a 3.4% operation cost saving with only a 0.1% increase in emissions.
In the San Diego case, the optimal solutions lead to an increase of
4.1-5.7% in total energy consumption. Due to its relatively larger gap
between the TOU non-peak and peak pricing structure, Solution 1,
which dominates the economic concerns, shows a 36.9% energy charge
saving and a corresponding 32.6% total energy cost saving. However,
emissions are 36.3% higher than the baseline. In the San Diego case,
the MEF difference between the lowest and highest values exceeds
7.7 times, thus the integration of environmental concerns into the
strategy significantly influences the overall benefits. Solution 10 which
prioritizes emission reduction, achieves a substantial 41.9% carbon
emission decrease compared to the baseline, although it could not
generate either energy or demand charge benefits. In the El Paso case,
similar to the San Diego case, when the optimal solution prioritized
the economic benefits, it achieved significant savings in total operation
cost, up to 33.3%, with a slight increase in emissions by 8.5% compared
to the baseline. Conversely, when the optimal solution concerns the
environmental benefits more, the strategy results in a 3% emission
reduction with a 1.5% higher total operation costs compared to the
baseline. The solution considered both economic and environmental



Table 10
Computation Time per iteration for different locations.

Case name Total time (min) Sizing time (min) Dispatch time (min)
Boston, MA 47 40 7
San Diego, CA 58 50 8
El Paso, TX 48 37 11

benefits could find a balance and demonstrate that the optimal strategy
can save both emission and total operation costs.

In summary, all optimal solutions consume more energy compared
to the baseline, as they leverage the building energy storage systems
to achieve more economic or environmental benefits. Depending on
the power pricing structure and the emission rates throughout the day,
these solutions can get the benefit of both or either of these based on
their prioritized concerns. Our analysis highlights the balanced trade-
offs between economic gains, energy efficiency, and environmental
impact across different locations.

6.3. Computation time

In this section, we delve into the computation time analysis for our
multi-objective optimization framework applied to different geograph-
ical scenarios: Boston, San Diego, and El Paso. Each region presents
unique energy profiles and environmental characteristics, influencing
the complexity and computational requirements of the optimization
process.

The analysis employed the same mixed-integer linear programming
model across all cases, with region-specific data inputs such as TOU
rates, emission factors, and energy demand profiles. The average com-
putation time was calculated from the initiation to the completion
of the optimization process for each iteration of the weights. The
optimization engine runs on a MacOS 13.6 with 2.6 GHz 6-Core In-
tel Core i7 CPU and 16 GB RAM. The default software settings are
Julia 1.6.3, JuMP v1.11, and HiGHS v1.5.2. For quality solution and
computational efficiency, the HiGHS performed optimization with pre-
solving, parallel computing, a specific relative gap for mixed-integer
programming (MIP), and a maximum time limit for the solving process.
The computation time results are shown in Table 10.

The computation time analysis across different geographical scenar-
ios emphasizes the importance of considering regional energy profiles,
regulatory environments, and demand patterns in the optimization of
energy storage systems. We observed that the predominant factor con-
tributing to time consumption across all cases was the resolution of the
sizing problem, while the variation in weight values between iterations
did not significantly impact the overall time. This understanding is cru-
cial for developing efficient and regionally tailored energy management
solutions.

7. Conclusion and discussion

To achieve economic and environmental synergy, this paper pre-
sented the multi-objective framework for optimal sizing and dispatch
of building thermal and battery storage systems based on mixed in-
teger linear programming and a weighted-sum approach. The pro-
posed method addresses key challenges in optimal sizing, including
operational efficiency oversights and conflicting objectives. Moreover,
implementing a multi-objective optimization framework offers a com-
prehensive understanding of value streams, allowing decision-makers
to balance conflicting goals effectively. As the framework adapts the
weighted-sum approach, it is practical for decision-makers to explore
various weight values and generate Pareto-front with economically
viable and environment-friendly optimal solutions. Please note that this
approach is introduced to find the dominant solutions on the Pareto-
front, thus some points may be overlooked due to the non-convexity
of the feasibility space, and they are considered non-dominated and

isolated. For future work, we plan to refine the weighted-sum method
with additional constraints for a more comprehensive exploration of
the Pareto front.

The results demonstrated that the optimal building energy storage
size varies with climate locations and prioritized objectives. It provides
cost-effective sizing when the economic concerns are dominant, as the
utility tariff with higher energy charge and demand charge significantly
impacted the sizing of building energy storage systems, particularly
BES, due to its higher capital costs. On the other hand, the substantial
sizing for both TES and BES is determined when the environmental
consideration is emphasized. Also, this proposed framework shows its
capability for customers to not only save the electricity bills but also
consider the emissions while using electricity.

Our work provides a foundation by generating initial optimal so-
lutions promptly, enabling stakeholders to utilize them as a starting
point for their final decision-making processes. Decision-makers should
tailor the decision-making process to their specific context, taking into
account additional factors as needed. They can utilize their preferred
techniques, such as the TOPSIS or AHP method. Our approach ensures
that decision-makers can explore and understand the value streams
inherent in various objective streams.

While our method is developed and validated in specific contexts,
demonstrating its effectiveness in diverse real-world scenarios will
enhance confidence in its applicability. There are existing tools for
battery storage analysis (e.g., ESET, DER-CAM, and QuEst); however,
there is a lack of tools specifically for building thermal storage, making
it difficult to compare our results in a real-world context. In future
work, we plan to conduct more comprehensive validation studies across
various building types, geographic regions, and operational settings and
benchmark comparisons once more established and relevant bench-
marks become available. It can support the generalizability of our
method as well as enhance confidence in its applicability. This will also
involve collaborating with industry partners and leveraging real-world
data to assess the practical applicability of our method.

This research not only advances the theoretical understanding of
building thermal and battery storage optimization but also offers prac-
tical methodologies for real-world implementation. As we continue to
strive for sustainable and smart city development, our contributions
support the affordable adoption of building energy storage for a more
resilient and environmental urban landscape.

Considering the growing importance of electrification, our future
work will explore how electrification impacts the integration of thermal
and battery storage in buildings. For instance, how the intermittent
nature of photovoltaic (PV) energy generation and dynamic electric
vehicle (EV) loads can be incorporated into the overall building load
to effectively use renewable energy resources and enhance the overall
energy efficiency. Moreover, the proposed framework is scalable and
flexible so that we can explore the potential benefits of building energy
storage systems at the community level. This approach will provide a
comprehensive understanding of energy dynamics in urban settings.
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