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ABSTRACT

The U.S. Department of Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS)

program aims to develop predictive capabilities by applying computational methods to the anal-

ysis and design of advanced reactor and fuel cycle systems. This program has been providing

engineering-scale support for the development of BISON, a high-fidelity and high-resolution fuel

performance tool.

Stress-based failure probability has been developed and analyzed to assess the integrity of

tri-structural isotropic (TRISO) fuel particles during fuel life cycles. While simple, stress-based

approaches to failure probability leveraging the Weibull statistical distribution entails a number

of drawbacks when stress concentration occurs near crack tips, including finite element mesh size

dependency. In this report, we use an interaction integral approach to the computation of stress

intensity factors in functionally graded materials (FGM) for axisymmetric models. The inner

pyrolytic carbon (IPyC) cracking induced silicon carbide (SiC) failure is one of the dominated

failure modes in TRISO failure analysis. In this study, we consider a crack in the IPyC layer

perpendicular to the SiC layer. The interface between these two TRISO layers is considered to be

porous, which we simulate considering a transition of mechanical properties over the porous length.

These aspects are considered in the computation of stress intensity factor (SIF) from a fracture

mechanics approach and compared with the known stress-based failure probability approach.



Acknowledgment

This report was authored by a contractor of the U.S. Government under contract no. DE-AC07-

05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to pub-

lish or reproduce the published form of this contribution, or allow others to do so, for U.S. Gov-

ernment purposes.

This research made use of the resources of the High Performance Computing Center at Idaho

National Laboratory (INL), which is supported by the Office of Nuclear Energy of the U.S. Depart-

ment of Energy and the Nuclear Science User Facilities under contract no. DE-AC07-05ID14517.

Orcid

Antonio Recuero � 0000-0002-2611-1812
Gyanender Singh � 0000-0003-1828-4438

Wen Jiang � 0000-0001-6978-9159
Ryan Sweet � 0000-0002-7919-4623

https://orcid.org/0000-0002-2611-1812
https://orcid.org/0000-0003-1828-4438
https://orcid.org/0000-0001-6978-9159
https://orcid.org/0000-0002-7919-4623


Contents

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
LIST OF CODE LISTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 INTRODUCTION 2

2 DOMAIN INTEGRAL APPROACH FOR COMPUTING SIF 3
2.1 Interaction Integral Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Development and Verification in Axisymmetric Coordinate System . . . . . . . . . . 7
2.3 Input File Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Application to a TRISO Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 SENSITIVITY STUDY 11
3.1 Mesh Sensitivity of the Fracture Mechanics Approach . . . . . . . . . . . . . . . . . 11
3.2 Sensitivity to Fracture Mechanics Approach Parameters . . . . . . . . . . . . . . . . 13
3.3 Sensitivity to TRISO Particle Parameters . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Interaction Integral vs Stress-Based Failure Probability . . . . . . . . . . . . . . . . . 19
3.5 Sensitivity to Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Assessing Mesh-Distributed Tensile Strength on SiC Failure Behavior . . . . . . . . . 23

4 CONNECTION TO FISSION PRODUCT RELEASE 26
4.1 Fission Product Release Calculation using a Fracture Mechanics-based Approach . . 26

5 CONCLUSIONS AND FUTURE WORK 28

REFERENCES 29

vi INL/RPT-23-75024-Rev000



List of Figures

2.1 von Mises stress distribution in FGM with a narrow transition region in a cracked
plate where the crack’s mouth points to the left. . . . . . . . . . . . . . . . . . . . . 4

2.2 Verification of SIF from the interaction integral against published literature. . . . . . 5
2.3 Sensitivity of crack SIF in softer material with transition region size. . . . . . . . . . 6
2.4 yy Cauchy stress component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Dependence of the stress-based failure probability of SiC layer for two mesh densities.
Coarse mesh has an element size of 1.54 µm, while finer mesh has a mesh size of 1.0
µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Dependence of the evaluated SIF with various levels of mesh refinement. . . . . . . . 13
3.3 Inner radius and width of the domain used for evaluating the SIF. . . . . . . . . . . 14
3.4 Sensitivity of SIF to the ring width. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Sensitivity of SIF to the ring inner radius. . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Sensitivity of fracture mechanics-based failure probability to the ratio of elasticity

moduli of SiC and PyC layers, with the elastic modulus of the SiC layer held constant. 16
3.7 Sensitivity of fracture mechanics-based failure probability to the ratio of elasticity

moduli of SiC and PyC layers, with the elastic modulus of the PyC layer held constant. 17
3.8 Sensitivity of fracture mechanics-based failure probability to the SiC layer thickness. 17
3.9 Dependence of fracture mechanics-based failure probability on the operating tem-

perature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 Dependence of fracture mechanics-based failure probability on the thickness of the

IPyC-SiC transition zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 Comparison of stress-based (SB in the figure) and fracture mechanics (FM in the

figure)-based SiC failure probability, given that the PyC layer has failed, at different
temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.12 Comparison of stress-based (SB) and fracture mechanics (FM)-based failure proba-
bility of PyC and SiC layers at different temperatures. . . . . . . . . . . . . . . . . . 21

3.13 Sensitivity of the estimated failure probability to KIc (b=10). . . . . . . . . . . . . . 22
3.14 Sensitivity of estimated failure probability to the fracture toughness distribution

distribution parameter b (KIc= 4.0 MPa
√
m). . . . . . . . . . . . . . . . . . . . . . . 23

3.15 Example section of the mesh-based distribution of the SiC tensile strength across a
tensile specimen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii INL/RPT-23-75024-Rev000



3.16 Illustration of the propagation of a crack front across a tensile specimen through the
distribution of the axial stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Methodology to predict failure probability and fission product release. . . . . . . . . 27



List of Tables

2.1 Convergence of normalized SIF computed from the interaction integral. . . . . . . . 6
2.2 Convergence of SIF computed from the interaction integral for an axisymmetric

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Influence of porous zone length on SIF. . . . . . . . . . . . . . . . . . . . . . . . . . 10

ix INL/RPT-23-75024-Rev000



Listings

2.1 Input file excerpt for the addition of spatially-dependent Young’s modulus and its
use in the domain integral action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

x INL/RPT-23-75024-Rev000



Acronyms

SIF stress intensity factor

DOE U.S. Department of Energy

FGM functionally graded materials

INL Idaho National Laboratory

IPyC inner pyrolytic carbon

MOOSE Multiphysics Object-Oriented Simulation Environment

NEAMS Nuclear Energy Advanced Modeling and Simulation

SiC silicon carbide

SIF stress intensity factor

TRISO tri-structural isotropic

1



1. INTRODUCTION

A stress-based approach for estimating the failure probability was developed and demonstrated to
assess the integrity of TRI-structural ISO-tropic (TRISO) particles during fuel life cycles in recent
work (see Jiang et al. (2022)). While simple, a stress-based approach to estimate failure probabil-
ity, leveraging the Weibull statistical distribution, entails a number of drawbacks, including finite
element mesh size dependency. In this report, we present a fracture mechanics-based approach to
compute the stress intensity factors (SIFs) in functionally graded materials (FGM) for axisymmet-
ric models. We consider a crack in a TRISO inner pyrolytic carbon (IPyC) layer perpendicular to
the silicon carbide (SiC) layer. The interface between both TRISO layers is considered to be porous,
which we model via a transition of mechanical properties over the porous length. These aspects are
considered in the computation of an SIF from a fracture mechanics approach and compared with
the known stress-based failure probability approach. We also perform a sensitivity study to better
understand the influence of material porosity, the thickness of the TRISO particle layers, and the
relative stiffness of the IPyC/SiC layers.

An idea introduced in this report is the consideration of material grading on the IPyC/SiC inter-
face for the structural solution. That modeling aspect, which is based on experimental observation,
regularizes the fracture mechanics problem, which then yields non-trivial fracture metrics. Such
fracture mechanics-based methodology for the assessment of TRISO particle structural integrity
is presented herein as an improved strategy for predicting the failure probability of this type of
nuclear fuel.

2 INL/RPT-23-75024-Rev000



2. DOMAIN INTEGRAL APPROACH FOR
COMPUTING SIF

2.1 Interaction Integral Approach

The Multiphysics Object-Oriented Simulation Environment (MOOSE) framework features the abil-
ity to compute path integrals using domain integration. This feature is used to obtain J-integral
values and SIFs via a domain interaction integral. These capabilities have been verified for ho-
mogeneous materials and Cartesian models. For the fracture analysis of TRISO particles, two
additional aspects for the prediction of SIF using the interaction integral were identified. First, the
analysis of a radial crack in a spherical particle can be studied using axisymmetric equations in two
dimensions. Second, the porosity of TRISO layers can be mechanically modeled via a functional
description of material parameters, such as FGM. These two developments have been carried out
and verified in this work.

We expanded on the existing solid mechanics capabilities in MOOSE to generally determine
the SIF of materials whose material properties vary through space according to some analytically-
defined functions (i.e., FGM). We use here the “non-equilibrium” formulation to include space-
dependency of elastic material properties. Particularly, we allow the isotropic elasticity modulus
to vary according to an arbitrary analytical function. The domain integral-based approach we
use to include the additional physics due to functional grading is introduced in Kim and Paulino
(2004). This “non-equilibrium” formulation assumes the original auxiliary fields from homogeneous
materials and defines the auxiliary stress field as σaux

ij = Cijkl(X)ϵauxkl . This expression does not
satisfy the equilibrium equation because it differs from σaux

ij = Cijkl(tip)ϵ
aux
kl . The derivatives of the

auxiliary stress field involve spatial derivatives of the elasticity tensor (i.e., Cijkl,m(X), in which m
denotes a global direction). By omitting the kinetic and thermal strain terms, the local form of the
interaction integral may be written as follows:

M local
1 =

∫
V

(
σiju

aux
i,1 + σaux

ij ui,1 − σikϵ
aux
ik δ1j

) ∂q

∂Xj
dV︸ ︷︷ ︸

Existing homogeneous terms

+

∫
V

(
Cijkl,j(X)ϵauxkl − Cijkl,1ϵklϵ

aux
ij

)
qdV,︸ ︷︷ ︸

Non-equilibrium formulation

(2.1)
where subscript 1 refers to the local direction of crack propagation and q is a scalar that takes
value from zero to one depending on whether the integral is evaluated within the domain. Assum-
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ing mode I only deformation, one can obtain the stress intensity factor as KI = M local
1 E

′
tip/2.0.

Note that E
′
tip refers to the material properties at the crack tip.

2.1.1 Verification

We verify the implementation of FGM in the interaction integral for the computation of SIF against
two independent sets of results obtained by finite element methods. We use numerical results for
a cracked plate under tension loading (see Figure 7 of Kim and Paulino (2003)). The SIFs used
to verify the implementation of MOOSE are obtained from Kim and Paulino (2003) and Rao and
Rahman (2003). A plane strain, two-dimensional model capturing the setup in Kim and Paulino
(2003), but leveraging symmetry along the X2 (Y) axis, was built in MOOSE. The crack is
assumed to lie on the Y symmetry plane in our case. The material is assumed to transition from
an elasticity modulus of 3MPa to 1MPa. ϵ̄, which denotes the axial strain imposed at one end of
the cracked plate, is chosen to be 0.001. A boundary condition at the top surface is defined by such
normal traction of σtraction = ϵ̄Ē(X1). We adopt here the following analytical form of the spatial
distribution the material’s Young’s moduli.

E(X) =
E1 + E2

2
+

E1 − E2

2
tanh (β [X1 + 0.1]) (2.2)

Figure 2.1. von Mises stress distribution in FGM with a narrow transition region in a cracked plate where
the crack’s mouth points to the left.

We vary the parameter β in Equation 2.2. A value of β = 0 denotes a homogeneous material,
whereas a value of β = ∞ describes a sharp interface with an infinite gradient (i.e., a theoretical
bimaterial interface).

Figure 2.2 shows a normalized SIF for Mode I computed with MOOSE (using various levels
of mesh refinement) and the numerical results from the references (Kim and Paulino, 2003; Rao
and Rahman, 2003). A few aspects are noteworthy. (1) The results between Rao and Rahman

4
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Figure 2.2. Verification of the implementation against published literature. Additional numerical results
from MOOSE are provided to illustrate the effect of narrowing the area of transition of material properties.
As the functionally-graded material tends to become a bimaterial, sharp interface, the SIF continues to grow.

(2003) and MOOSE agree very well for the values reported in the published article, where agree-
ment with Kim and Paulino (2003) is of a lesser quality and a divergence is observed as the β
value becomes larger (i.e. transition region becomes narrower). (2) A sufficiently refined mesh is
required to capture sharp material transitions. For example, for a value β = 1000, a few levels of
mesh refinement are required. Refinement leads to larger SIFs for this setup, which means mesh
convergence is a must to obtain conservative estimates of fracturea. The labels “refined one,” “re-
fined two,” and “refined three” refer to additional levels of uniform refinement for one, two, and
three additional levels, respectively. (3) SIFs continue to grow as the transition region over the “in-
terface” becomes sharper. This relation is such that KI ∝ log10(β) ∝ log10(1/∆X1). (4) Failure to
consider “non-equilibrium” terms in the interaction integral may result in a severe underestimation
of the risk of failure of graded materials with a sharp interface length (see Table 2.1). Note that the
dependency of the SIFs with the size of the transition region obtained from the numerical results
using the interaction integral is consistent with an analytical approach that uses dislocations of a
crack perpendicular to a bimaterial interface, but at a distance b. In other words, as the distance
of the crack to the bimaterial interface is linearly reduced, the resulting SIF increases (decreases)
with ∝ log10(b) (see Figs. 2 and 3 in Wang and Stȧhle (1998)) if the crack would extend into softer
(stiffer) material.

To demonstrate the influence of the location of the crack, we swap the materials such that the

aNote that this mesh dependency is due to the need to accurately model the spatial evolution of material parameters
(i.e., finer meshes are generally required to model sharper changes in material properties).
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Table 2.1. Convergence of normalized SIF computed from the interaction integral. Dismissing terms that
capture spatial variation of material properties may lead to severe underprediction of fracture risk.

β Kim and Paulino (2003) Rao and Rahman (2003) Present Work Uniform Interaction Integral

5 2.289 2.348 2.310 2.232

10 2.549 2.670 2.681 2.518

15 2.729 2.879 2.923 2.600

50 3.050 3.579 3.639 2.842

500 N.A. N.A. 4.787 2.975

crack exists in the softer subdomain. Repeating the numerical procedure that generated Figure 2.2,
we obtain the following results shown in Figure 2.3. Note that, in this case, as the β value increases
(thus reducing the transition zone), the corresponding SIF value follows a descending trend. Also
consistent with Wang and Stȧhle (1998), Figure 2.3 shows that when approaching the theoretical
limit, a crack located in this way will not propagate. Abrupt interfaces, however, may not always
occur; the assumption of transition over a small region may be useful for layered materials as well,
as discussed in the next section.
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Figure 2.3. Sensitivity of crack SIF in softer material, extending into stiffer materials, with a transition
region size (no refinement study is performed for this set of numerical results).
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2.2 Development and Verification in Axisymmetric Coordinate
System

The implementation of the interaction integral in MOOSE assumed Cartesian coordinates for two-
and three-dimensional model setups. As part of the effort to develop a linear fracture mechanics
approach to analyze failure in TRISO particles, we developed an axisymmetric (“RZ”) form of the
interaction integral terms. The axisymmetric form of the equations allow to study many thermome-
chanical problems with irradiation effects in two dimensions, without resorting to computationally
costly three-dimensional finite element domains. Comparable to the first term of Equation 2.1, the
interaction integral in the axisymmetric coordinate system can be described as follows:

M local
RZ,1 =

1

R

∫
V

[
σiju

(aux)
j,1 + σ

(aux)
ij uj,1 − σjkϵ

(aux)
jk δ1i

]
q,i

+

[(u1
r
σ
(aux)
θθ

)
+

u
(aux)
1

r
σθθ − σjkϵ

(aux)
jk

]
q

r

+
1

r

[
σ
(aux)
1j uj,1 − σ

(aux)
θθ u1,1 + σθθ

(
u
(aux)
1,1 − u

(aux)
1

r

)]
qr dV,

(2.3)

where R is the radial location of the crack, r is a relative location with respect to the crack tip,
u(aux) is the auxiliary displacement field, and 1 refers to the local direction of crack advancement,
which in the case of a radial crack, would coincide with the radial direction. As the radius of
the problem becomes larger, the axisymmetric result converges to the Cartesian numerical result
(see Nahta and Moran (1993) for details). Note that this form of the interaction integral can be
integrated with other features such as its application to functionally graded materials. FGM terms
of Equation 2.1 apply also to Equation 2.3 within the axisymmetric form of the interaction integral.

The recently implemented axisymmetric interaction integral was verified against the results
presented in the literature (see Van-Xuan and Samuel (2012); Shariati et al. (2017)). The problem
is defined as follows: A solid cylinder with an internal radial crack with a crack radius to a cylinder
radius ratio of 0.2 and a crack radius to a cylinder height ratio of 0.1, where a tensile, axial load of
1MPa is applied. Results are given in Table 2.2.

Table 2.2. Convergence of SIF computed from the interaction integral for a solid cylinder with a circumfer-
ential crack with a sufficiently refined mesh. To analyze the fracture of TRISO particles in 2D-RZ problems,
the new form of the interaction integral presented in Equation 2.3 is used.

Van-Xuan and Samuel (2012) (analytical) MOOSE (axisymm.)

1.596 1.602
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2.3 Input File Details

In this section, we detail the additional blocks and definitions required in BISON, which is a finite
element-based nuclear fuel performance code, to leverage the ability to describe TRISO particle
layer stiffness with spatial dependence, the computation of Mode I SIF via the interaction integral,
and the consideration of the gradient of the elasticity tensor along the crack propagation direction.

The functions “elastic_mod_material”and “elastic_mod_material_der” define the spatial
evolution of the Young’s modulus of the assumed isotropic materials comprising the SiC and
the IPyC layers and its spatial derivative along the crack propagation direction, respectively.
This spatial description of stiffness accounts for the stiffness of the SiC and PyC materials and
an interface region on which the actual structural behavior is assumed to be a mix of both
materials. We create materials with such spatially varying stiffness descriptions in the object
“generic_materials” and we apply it to both the IPyC and SiC layers—which happen to be
identified as blocks too. As discussed in Section 2.1, we require that both the elasticity ten-
sor’s spatial distribution and its gradient along the crack propagation direction, which are pro-
vided to the “DomainIntegral” input block via the “functionally_graded_youngs_modulus”
and “functionally_graded_youngs_modulus_crack_dir_gradient” input parameters.

The extension of the methodology described in this chapter to cracks of orientations other than
radial remains as future work.

2.4 Application to a TRISO Particle

The terms of the interaction integral developed in previous sections are used herein to assess the
SIF of a Mode I crack through the IPyC layer. This metric can be used in assessing the possibility
of crack propagation into the SiC layer. We set up a two-dimensional model of a TRISO particle,
leveraging symmetry on both the X and Y planes and introducing a radial crack through the IPyC
layer by omitting the Dirichlet boundary conditions where the fixed Y displacement boundary
condition applied to all other layers is not applied to the IPyC layer (see Figure 2.4).

We use the similar material properties and inputs to the simulation as Jiang et al. (2022)
(see baseline parameters with conditions “2” of Section 4.1 therein). Additionally, we assume
that the interface between the SiC and iPyC layers is porous. From a mechanical standpoint, one
consequence of such porosity is a smooth transition of the layer interface stiffness where the elasticity
modulus does not vary sharply over the interface, but across a transition zone (see Arregui-Mena
et al. (2021); Seibert et al. (2019) for a discussion on the experimental results). We employ a
transition zone of 8µm to capture the material porosity on the iPyC-SiC interface. In our case, we
use an elasticity modulus of 25GPa for the iPyC layer, which transitions to a value of 312GPa for
the SiC layer outside the transition zone and that is functionally defined with a hyperbolic tangent
of the type shown in Eq. 2.2. Note that the transition of a crack from a soft material to a stiffer
material makes its failure probability less likely when a porous or transition zone exists (i.e., the
layer interface can be described as a graded material and the failure can properly be modeled by
the energy release of the J-integral).

Considering a transition zone of 8µm, with the developed axisymmetric formulation and FGM

8



Listing 2.1. Input file excerpt for the addition of spatially-dependent Young’s modulus and its use in the
domain integral action.

[Functions]
...
[elastic_mod_material_der]

type = ParsedFunction
symbol_names = 'Eipyc ESiC beta'
symbol_values = '25e9 312e9 4e8'
expression = '(ESiC -Eipyc) * x * beta * (1.0 - tanh(beta*(x*x+y*y -0.0003525*0.0003525)) * '

'tanh(beta*(x*x+y*y -0.0003525*0.0003525))) '
[]
[elastic_mod_material]

type = ParsedFunction
symbol_names = 'Eipyc ESiC beta'
symbol_values = '25e9 312e9 4e8'
expression = '(Eipyc + ESiC) / 2 + (ESiC -Eipyc )/2 * tanh(beta*(x*x+y*y -0.0003525*0.0003525)) '

[]
...

[]

[Materials]
...
[generic_materials]

type = GenericFunctionMaterial
prop_names = 'elastic_mod_material_mat elastic_mod_material_der_mat '
prop_values = 'elastic_mod_material elastic_mod_material_der '

[]
...

[IPyC_SiC_elasticity_tensor]
type = ComputeVariableIsotropicElasticityTensor
youngs_modulus = elastic_mod_material_mat
poissons_ratio = 0.21
args = ''
block = 'IPyC SiC'

[]
...

[]

[DomainIntegral]
integrals = 'JIntegral InteractionIntegralKI '
boundary = 9999
radius_inner = '0.01e-3 0.005e-3 0.01e-3'
radius_outer = '0.01e-3 0.005e-3 0.02e-3'
crack_direction_method = CrackDirectionVector
crack_direction_vector = '0 1 0'
2d = true
axis_2d = 2
incremental = true
symmetry_plane = 1

functionally_graded_youngs_modulus = elastic_mod_material_mat
functionally_graded_youngs_modulus_crack_dir_gradient = elastic_mod_material_der_mat

temperature = temperature
eigenstrain_names = 'SiC_thermal_eigenstrain IPyC_TE_strain '

youngs_modulus = 169e9
poissons_ratio = 0.21
block = 'IPyC SiC'

[]

9



Figure 2.4. yy Cauchy stress component.

terms, the resulting SIF is ≈ 9.04MPa
√
m. A comparison of SIFs with various lengths of the

transition zone is shown in Table 2.3.

Table 2.3. Influence of porous zone length for the iPyC-SiC layer interface on the SIF characterizing the
likelihood of propagation into the SiC layer.

4µm 8µm 12µm

7.36MPa
√
m 9.04MPa

√
m 10.2MPa

√
m

As expected, increasing the porosity layer thickness causes an increase in the resulting SIF
(see Figure 2.3) since this type of crack grows from the relatively softer material into the stiffer ma-
terial. Generic SiC materials can feature fracture toughness within the range of 4.0 to 9.0MPa

√
m

(see Yuan et al. (2003)), depending on specific temperature conditions and material composition.
For these reasons, an accurate description of the thermomechanics of the interface can be key to
properly predicting the ability of the crack to propagate into the SiC layer.
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3. SENSITIVITY STUDY

3.1 Mesh Sensitivity of the Fracture Mechanics Approach

As mentioned in Section 1, major limitations of the stress-based approach to fracture prediction
combined with the Weibull distribution for determining failure probability include mesh dependency
(see, e.g., Towse et al. (1999); Mitchell et al. (2003); Singh (2015)) and the consequent significant
misestimation of the failure probability. When there is a stress concentration in the structure,
either due to geometry or due to a developed discontinuity such as a crack, the stress computed at
the quadrature points in the elements, located in the region of stress concentration, is greater than
the experimental values. For the cases with a crack, the stress near the crack tip is greater due to
a stress singularity condition (i.e., stress being infinite at the crack tip). The finer the mesh is, the
higher the computed stress will be at the crack tip. Since the computed stress is mesh-dependent,
the calculated failure probability using the stresses is also mesh-dependent, as shown in Figure 3.1.
In addition, the stress term in the Weibull failure probability model (σ/σ0) is raised to the power
of the Weibull modulus (m), as shown in Equation 3.1. The high value of stress at or near the
crack tip has shown to lead to overestimation of the failure probability in our results. The fracture
mechanics-based approach overcomes this limitation.

Pf = 1− exp

(
−
∫
V

[
σ

σ0

]m
dV

)
(3.1)

In the fracture mechanics approach, the SIF is used to estimate the stresses corrected near the
crack tip. When the SIF increases and becomes equal to the fracture toughness of the material,
the crack is assumed to propagate. The domain integral approach estimates the value of the SIF
using the stress and strain in a domain that is located away from the crack tip. Since the stresses
and strains used to compute the SIF are computed away from the crack tip, the obtained SIF is
practically mesh independent, as shown in Figure 3.2. Use of domain integral approaches to the
computation of SIF via the numerical integration of rings allows for avoiding singularity issues Yu
and Kuna (2021). The failure probability obtained using a fracture mechanics approach is therefore
not overestimated due to local stress concentration captured by finer meshes. The expression for
the conditional probability of fracture initiation is given in equation 3.2. That approach, proposed
already in Williams et al. (2016), has been applied to predict fracture in reactor pressure vessels
using the same underlying Weibull model in Spencer et al. (2019). In that formula, KI can be
obtained in a deterministic manner from the domain integral approach described in the first part
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of this document.

Pf = 1− exp

(
−
[
KI

KIc

]b)
(3.2)

where KI is the SIF, KIc is the fracture toughness of the material, and b is the Weibull modulus,
an empirical parameter based on the distribution of the fracture toughness.
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Figure 3.1. Dependence of the stress-based failure probability of SiC layer for two mesh densities. Coarse
mesh has an element size of 1.54 µm, while finer mesh has a mesh size of 1.0 µm
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Figure 3.2. Dependence of the evaluated SIF with various levels of mesh refinement.

3.2 Sensitivity to Fracture Mechanics Approach Parameters

Figure 3.3 shows the schematic of the domain used for computing the SIF. The geometric parame-
ters of the domain, inner radius, and width are also shown. Figures 3.4 and 3.5 show the influence
of width and inner radius, respectively, on the computed SIF for a TRISO particle. The influence
of the inner radius on the SIF seems to be stronger than that of the widtha. Another assumption
of this work refers to the evolution of the irradiation eigenstrain: (1) The SiC layer is assumed
to not experience irradiation swelling; and (2) The radial gradient of the irradiation eigenstrain of
the IPyC layer is considered to be significantly smaller than that of thermal eigenstrains for the
purpose of computing the SIF with the interaction integral.

aResults shown here feature noticeable path dependency. This is likely due to the presence of creep (see Tiwari
(2022) for a recent study on J-integral and C-integral as proxies for plastic and creep failure, respectively). Given
this unresolved aspect of the present methodology, we would recommend shorter widths and an inner radius closer
to the crack tips to obtain conservative estimates from the interaction integral.
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Figure 3.3. Inner radius and width of the domain used for evaluating the SIF.
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Figure 3.4. Sensitivity of SIF to the ring width.
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Figure 3.5. Sensitivity of SIF to the ring inner radius.

3.3 Sensitivity to TRISO Particle Parameters

The failure probability of the TRISO SiC layer assuming a crack in the IPyC layer is evaluated
using the fracture mechanics-based approach. Equation 3.3 expresses the probability of failure of
the SiC layer (PSiCfailure

) in terms of the probability of failure of the IPyC layer (PPyCfailure
), the

probability of the IPyC layer remaining intact (PPyCintact), the probability of failure of the SiC
layer given that IPyC layer has failed (PSiCfailure|PyCfailure

), and the probability of failure of the
SiC layer given that the IPyC layer remains intact (PSiCfailure|PyCintact

):

PSiCfailure
= PPyCfailure

× PSiCfailure|PyCfailure
+ PPyCintact × PSiCfailure|PyCintact

(3.3)

When the PyC layer is intact, the SiC layer stays in compression and the failure probability
PSiCfailure|PyCintact

is very small. In this section, the dependence of PSiCfailure|PyCfailure
and PPyCfailure

· PSiCfailure|PyCfailure
on several parameters is presented. (Note that the domain integral-based re-

sults always assume an existing IPyC crack.) The KIc value is considered to be 3.46 MPa
√
m

and the b parameter is considered to be 23 for the SiC layer for these analyses. These values for
KIc and b are inferred from the normal distribution parameters for the fracture toughness of CVD
β-SiC given in Snead et al. (2007). For the stress-based approach, the Weibull parameters for the
SiC layer characteristic strength (σo) and Weibull modulus (m) are considered to be 9.64 MPa and
6.0, respectively (Miller et al. (2018)). Note that the fracture mechanics-based approach is used
for evaluating PSiCfailure|PyCfailure

, while PPyCfailure
is evaluated using stress-based approach.

The TRISO particle analyzed here has a spherical geometry, the fuel is UCO, and the irradiation
temperature is 1573 K. The rest of the simulation conditions correspond to the parameters of Jiang
et al. (2022) for the set of “conditions 3” (see Table 2 therein). Figures 3.6 and 3.7 show the
sensitivity of PSiCfailure|PyCfailure

and PPyCfailure
· PSiCfailure|PyCfailure

to the ratio of elastic moduli

15



of SiC and PyC. To account for some sensitivity in the material’s elastic moduli, we vary their ratio
across the interface; thus, Figure 3.6 corresponds to the cases when the SiC elastic modulus is held
constant and the PyC elastic modulus changes, while Figure 3.7 is for the cases when PyC elastic
modulus is kept the same and the SiC elastic modulus varies. It can be noted from these figures
that with an increase in the ratio of the elastic moduli of SiC and PyC, the failure probability
decreases. The failure probability is smaller because the SIF is smaller. Intuitively, this means that
a crack in a softer material will have increasing difficulty penetrating through the stiffer material
as the relative stiffness (elastic modulus) of the stiffer material increases. After reaching a fluence
of about 7.0 ×1024n/m2, the PSiCfailure|PyCfailure

reaches a value of 1.0, indicating that the SiC
layer will fail at this point if the PyC layer is already cracked. The probability that both the
PyC and SiC layers will fail (PPyCfailure

· PSiCfailure|PyCfailure
) is also shown in Figure 3.6. Note

that PPyCfailure
· PSiCfailure|PyCfailure

is much lower than PSiCfailure|PyCfailure
because the failure

probability of PyC layer is low. The figure indicates that the ratio of elastic moduli of SiC and
PyC has a strong influence on the probability of failure of PyC and SiC.
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Figure 3.6. Sensitivity of fracture mechanics-based failure probability to the ratio of elasticity moduli of SiC
and PyC layers, with the elastic modulus of the SiC layer held constant.
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Figure 3.7. Sensitivity of fracture mechanics-based failure probability to the ratio of elasticity moduli of SiC
and PyC layers, with the elastic modulus of the PyC layer held constant.

Figure 3.8 shows the dependence of the failure probabilities on the thickness of the SiC layer.
The PSiCfailure|PyCfailure

is found to be almost independent of the SiC layer thickness. The
PPyCfailure

· PSiCfailure|PyCfailure
is found to be slightly dependent on the SiC layer thickness,

which is due to the influence of the thickness on the PPyCfailure
.
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Figure 3.8. Sensitivity of fracture mechanics-based failure probability to the SiC layer thickness.

Figure 3.9 shows the influence of temperature on the failure probabilities obtained using the
fracture mechanics approach. The primary effect of the temperature is on the creep behavior of the
PyC layers. Due to greater creep at higher temperature, the stress exerted by the PyC layer on the
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SiC layer (and vice-versa) is greatly reduced, leading to the reduced failure probability of the PyC
and SiC layers. However, this phenomenon is true only when the PyC layer remains intact. When
the IPyC layer has failed, the increased creep strain in the IPyC layer has hardly any influence
on the failure of SiC, as can be noted from the PSiCfailure|PyCfailure

versus fluence plot. Due to
the reduced failure probability of the IPyC layer at elevated temperature, the failure probability
PPyCfailure

· PSiCfailure|PyCfailure
is also significantly smaller at higher temperature.
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Figure 3.9. Dependence of fracture mechanics-based failure probability on the operating temperature.

As discussed in Section 2.4, we consider a transition region at the interface of the two material
layers, IPyC and SiC, where the elastic properties of one layer gradually transitions to that of the
other layer. The width of this transition region, which can be informed by laboratory experiments
can be influenced by the manufacturing process and have an impact on the evaluated failure proba-
bility. Figure 3.10 shows the influence of the transition region thickness on the failure probabilities.
It is clear from the figure that the transition region thickness has a strong influence on the failure
probabilities. The thickness of the transition region can be obtained from the TRISO particle
characterization; here we use values within the ranges reported in the literature (see Arregui-Mena
et al. (2021)).
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Figure 3.10. Dependence of fracture mechanics-based failure probability on the thickness of the IPyC-SiC
transition zone.

3.4 Interaction Integral vs Stress-Based Failure Probability

Figure 3.11 and Figure 3.12 show a comparison of the failure probabilities obtained using the stress-
based approach with the Weibull distribution and the fracture mechanics approach—note that the
stress-based approach is mesh density sensitive; one mesh realization is chosen for comparison
in this section. It can be noted from the figures that, during the initial fluence, the stress-based
Weibull failure probability overestimates the failure probability and is much higher than the fracture
mechanics-based failure probability. The rise in the fracture mechanics-based failure probability is
much sharper than the one seen for the stress-based failure approach. Under the late-life fluence
(≥ 1.0 ×1025n/m2), the difference in the failure probabilities from the two approaches becomes
larger with an increase in temperature—at higher temperature the failure probabilities are lower
and the relative difference between the probabilities from the two approaches is greater, while at
lower temperatures the failure probabilities are higher and the relative difference is lower.
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Figure 3.11. Comparison of stress-based (SB in the figure) and fracture mechanics (FM in the figure)-based
SiC failure probability, given that the PyC layer has failed, at different temperatures.
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Figure 3.12. Comparison of stress-based (SB) and fracture mechanics (FM)-based failure probability of PyC
and SiC layers at different temperatures.
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3.5 Sensitivity to Fracture Toughness

In this section, we use the stress-based failure prediction approach to quantify the IPyC probability
of failure (i.e. PPyCfailure

), whereas the failure of the SiC layer given a fully cracked IPyC layer
(i.e. PSiCfailure|PyCfailure

) is computed with the interaction integral adapted to functionally-graded
materials.

The conditional probability of failure (Equation 3.2) has two important material parameters: the
fracture toughness (KIc) and its Weibull modulus b. These two parameters are material properties
and are obtained empirically through mechanical testing. Figures 3.13 and 3.14 show the sensitivity
of the failure probability with respect to the fracture toughness and its distribution, respectively. As
the value of fracture toughness increases, the estimated failure probability decreases. As the value
of distribution parameter increases, the failure probability rises. These results indicate that the
failure probability is more sensitive to the fracture toughness value than its distribution parameter
for reasonable values.
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Figure 3.13. Sensitivity of the estimated failure probability to KIc (b=10).
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Figure 3.14. Sensitivity of estimated failure probability to the fracture toughness distribution distribution
parameter b (KIc= 4.0 MPa

√
m).

3.6 Assessing Mesh-Distributed Tensile Strength on SiC Failure
Behavior

As a separate exercise from previous sections and chapters—and in order to evaluate the stochastic
failure of the SiC layer, a method for assessing a fracture based on distributed material properties
was investigated. This method samples a normal distribution to determine the tensile strength at
each quadrature point in the domain. As the tensile strength is exceeded, the elastic properties of
the mesh are reduced to nearly zero. Releasing the SiC elastic strength after appropriate damage
allows a pseudo-crack front to propagate through the material, thereby allowing the material to
deform perpendicularly to the crack direction.

This method was investigated and tested briefly this year using simulated tensile specimens. In
these simulations, a tensile bar was slowly loaded until a through-sample crack was detected.

As an initial approximation of the tensile strength, a normal distribution was used, which
compares well with a 2-parameter Weibull distribution, to determine SiC material failure. An
example of the tensile strength seeded across the mesh is shown in Figure 3.15. This distribution
and its parameters are expected to change as more thorough model calibration and testing are
performed. Because of the mesh-based sampling procedure, as mesh density is increased, the
likelihood of low-strength elements acting as critical flaws increases. In order to adjust for this, a
volume-weighting was applied to increase the material strength correspondingly. This allows similar
Weibull failure criteria to be achieved for increasing mesh densities.

Figure 3.16 shows the progression of a crack front starting in the material using this fracture
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Figure 3.15. Example section of the mesh-based distribution of the SiC tensile strength across a tensile
specimen.
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method. Initially, elements near the sample periphery surpass the fracture strength and their
elastic properties are reduced. This results in a local stress concentration where red colors are
tensile stresses and blue are neutral, as shown in Figure 3.16.a. As the local stresses are increased
due to the concentration, the crack slowly progresses across the material, further increasing the
local stresses as more of the material is no longer load-bearing (see Figure 3.16.b). Finally, stresses
across the sample increase beyond the fracture strength and the crack progresses across the material
nearly instantly, resulting in a failed sample (see Figure 3.16.c).

Figure 3.16. Illustration of the propagation of a crack front across a tensile specimen through the distribution
of the axial stress.

This initial effort will allow future simulation of specific fracture experiments—specifically the
hemispherical SiC crush tests that were used to derive the current fracture criteria. By duplicating
the exact conditions the data was derived from, a more accurate fracture model can be developed
and applied.
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4. CONNECTION TO FISSION PRODUCT
RELEASE

4.1 Fission Product Release Calculation using a Fracture Mechanics-
based Approach

The use of fracture mechanics-based approaches to determine failure in TRISO coating layers have
shown to yield higher fidelity models that can predict more accurately and consistently. As a
coating layer is determined to be failed, it will lose its capability for fission product retention.
In BISON, we utilize the Monte Carlo scheme to calculate the fission product release from all
TRISO particles. Figure 4.1 depicts our methodology used to calculate the failure probability
and fission product release of a population of TRISO particles using the fracture mechanics-based
approach. Each analyzed particle is a realization of a set of statistically sampled parameters from
the distributions of as-fabricated fuel characteristics (e.g., dimensions, densities, other parameters)
that can be found among the particles in a fuel element. For each sample, BISON runs a one-
dimensional/two-dimensional TRISO particle over the irradiation history. The standard stress-
based Weibull approach will be used to evaluate the IPyC failure. When the IPyC is determined
to be failed, the fracture mechanics approach will be used to compute the stress intensity factor KI

and compare it with fracture toughness KIC of the SiC layer. If KI is greater than KIC , then the
SiC layer is failed and a large diffusivity (e.g., 10−6 m2/s) will be assigned to model the loss of its
retention power. After all the samples are finished, fission product release values from all TRISO
particles will be summed together to provide the overall release amount. The impact of our new
failure analysis approach on fission product release calculations will be demonstrated in the near
future.
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Figure 4.1. Methodology to predict failure probability and fission product release.
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5. CONCLUSIONS AND FUTURE WORK

The stress-based approach to estimate failure probability has several shortcomings: over-estimation
for structures having stress concentration, dependency on the finite element mesh-size, etc. For
these reasons, such stress-based approach is not ideal for estimating the failure probability of struc-
tures having cracks. In the work presented herein, a fracture mechanics-based approach, involving
computation of the interaction integral, to estimate the failure probability in functionally graded
materials is presented. The demonstration examples on the TRISO fuel shows that the failure prob-
ability estimated using this approach is independent of the mesh and is likely to overestimation.
A sensitivity study on the effect of parameters used for computing interaction integral, and the
parameters for TRISO material properties (e.g., IPyC and SiC elastic moduli) and geometry (e.g.,
transition region width and SiC layer thickness) is performed to gain insights into the influence of
these parameters on SIF and the estimated failure probability.

The current implementation of this approach, although it primarily considers the thermal
strains, does not take other inelastic phenomena into account, such as creep and irradiation induced
strains, into the failure probability prediction. The gradient of inelastic strains, if significant in
magnitude, can affect the crack propagation and ultimately the failure probability of the structure.
Future efforts should include incorporating these inelastic strains for computing the interaction
integral value. The sensitivity study presented in this work does not extensively cover the thermo-
mechanical properties of the TRISO particle layers, parameters of irradiation swelling model, and
other geometric parameters. A deeper understanding of how the uncertainties in these properties
and of the PyC and SiC layers translate to the uncertainties in the failure probability estimation
is important.

A study on the application of volume-weighting to stress-based failure probability also remains
as future work.

In this report, we have developed a fracture mechanics methodology for the analysis of fracture
in TRISO particle layers; in particular, the structural failure of the SiC layer once the IPyC
is already cracked. An analysis on the sensitivity of the fracture predictions with respect to the
material properties (e.g., fracture toughness, interlayer porosity, model parameters) was also carried
out. These analyses can allow the analysts to better quantify model uncertainties. The developed
fracture modeling capability is intended to inform fission gas release calculations resulting from
mechanical failure. Connecting the modeling of fracture mechanics and fission gas release will
allow for better failure risk estimates. This critical multiphysics connection has not been addressed
over the course of this fiscal year and is expected to be tackled in the near future.
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