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We revisit the intriguing magnetic behavior of the paradigmatic itinerant frustrated magnet
SrCo2As2, which shows strong and competing magnetic fluctuations yet does not develop long-
range magnetic order. By calculating the static spin susceptibility χ(q) within a realistic sixteen
orbital Hubbard-Hund model, we determine the leading instability to be ferromagnetic (FM). We
then explore the effect of doping and calculate the critical Hubbard interaction strength Uc that is
required for the development of magnetic order. We find that Uc decreases under electron doping
and with increasing Hund’s coupling J , but increases rapidly under hole doping. This suggests that
magnetic order could possibly emerge under electron doping but not under hole doping, which agrees
with experimental findings. We map out the leading magnetic instability as a function of doping
and Hund’s coupling and find several antiferromagnetic phases in addition to FM. We also quantify
the degree of itinerant frustration in the model and resolve the contributions of different orbitals
to the magnetic susceptibility. Finally, we discuss the dynamic spin susceptibility, χ(q, ω), at finite
frequencies, where we recover the anisotropy of the peaks at Qπ = (π, 0) and (0, π) observed by in-
elastic neutron scattering that is associated with the phenomenon of itinerant magnetic frustration.
By comparing results between theory and experiment, we conclude that the essential experimental
features of doped SrCo2As2 are well captured by an itinerant Hubbard-Hund multiorbital model if
one considers a small shift of the chemical potential towards hole doping.

I. INTRODUCTION

The tetragonal 122 cobalt arsenides SrCo2As2,
CaCo2−yAs2, and BaCo2As2 are members of a wider
class of cobalt pnictides that exhibit strong competi-
tion between ferromagnetic (FM) and stripe-type anti-
ferromagnetic (AF) fluctuations in the square Co lay-
ers. Unlike the structurally and chemically similar 122
iron-based systems AFe2As2 (A = Ca, Sr, Ba) that
exhibit long-range stripe-type AF order in the Fe lay-
ers [1], the cobalt arsenides show either FM order in the
Co layers, e.g. CaCo2−yAs2 [2–5], or remain paramag-
netic (PM) down to the lowest temperatures measured,
e.g. SrCo2As2 [6–8] and BaCo2As2 [9, 10]. Different
stackings of the two-dimensional (2D) FM planes are
observed. While CaCo2−yAs2 shows AF stacking (A-
type), one finds 3D FM in Sr1−xLaxCo2As2 [11] and
a more complex helical stacking of the FM planes in
Sr(Co1−xNix)2As2 [12] and Ca1−xSrxCo2As2 [13–16].
Stripe-type AF fluctuations are believed to play a key

role for the emergence of superconductivity in the Fe-
pnictides [17, 18]. Inelastic neutron scattering (INS) [8,
19, 20] and NMR [7] measurements have revealed that
strong stripe-AF fluctuations are also present in the Co-
arsenides. Contrary to the doped Fe-based materials,
the Co-based materials, however, do not exhibit super-
conductivity under slight doping. This may be related to
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the coexistence of strong FM fluctuations and long-range
FM order, which generally tend to inhibit superconduct-
ing singlet pairing. It is therefore interesting to explore
the fate and possible suppression of FM with electronic
doping.
A general underlying open question is what causes the

observed competition of stripe-AF and FM fluctuations
in the cobalt arsenides, whose Fermi surfaces lack clear
nesting wavevectors [6, 8, 21] In previous works, this
competition was phenomenologically captured within a
frustrated local-moment J1-J2 Heisenberg model on the
square lattice with FM first-neighbor interactions J1 and
AF second-neighbor interactions J2 [16, 19]. Close to the
value η = J1/(2J2) = −1, where the ground state of the
classical model transitions from FM order (η < −1) to
stripe-AF order (η > −1), the local-moment description
captures several features of the INS results. For example,
the unusually steep and ridge-like magnetic fluctuation
dispersion observed for CaCo2−yAs2, which is atypical
for an A-type antiferromagnet, and the anisotropic shape
of the INS peaks at the stripe wavevectors Qπ = (π, 0)
and (0, π) are recovered in the local-moment model close
to maximal frustration η ≈ −1.
In SrCo2As2, which is the focus of this work, one ex-

perimentally extracts a more modest frustration ratio be-
tween η ≈ −0.5 at T = 5 K and η ≈ −0.7 at T >∼ 100 K
from the anisotropy of the INS peaks at Qπ [8]. This still
corresponds to substantial magnetic frustration and one
expects stripe-AF fluctuations to prevail at low temper-
atures. Indeed, INS results indicate that stripe-AF fluc-
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tuations develop and suppress FM fluctuations at tem-
peratures below T ≈ 100 K [8]. A detailed comparison
reveals, however, that one cannot obtain a fully consis-
tent description within a local-moment model. Experi-
mentally, it appears that SrCo2As2 is much more frus-
trated than expected for −0.7 < η < −0.5, where stripe-
AF fluctuations should clearly dominate over FM ones.
Instead, the observed competition between FM and AF
fluctuations is much more severe and some properties,
such as the size and temperature scale of the FM fluc-
tuations compared to the characteristic magnetic energy
scale, can only be captured by a maximally frustrated
local moment model with η ≈ −1. This was traced back
to a large magnetic energy scale, which has been argued
to be more characteristic of itinerant magnets, and led
to the characterization of SrCo2As2 as an itinerant frus-
trated magnet [8].
The notion of itinerant frustration is supported by

the observation that SrCo2As2 remains paramagnetic
down to the lowest temperatures. The absence of mag-
netic order in SrCo2As2 was confirmed in NMR mea-
surements down to 50 mK [8]. While magnetic order is
absent under hole doping to KCo2As2 [22, 23], minute
amounts of electron doping induce long-range FM order
in the Co layers. This suggests a complex and delicate
balance between FM and AF fluctuations. For exam-
ple, Sr(Co1−xNix)2As2 exhibits long-range magnetic or-
der for 0.013 < x < 0.25 with a complex helical mag-
netic structure, where FM Co layers (with moments in
the layer) stack to form an incommensurate helix [12].
We note that a symmetry equivalent incommensurate
spin-density wave structure is also consistent with the
diffraction results. Electron doping via La substitu-
tion in Sr1−xLaxCo2As2 and 2.5% Nd substitution in
Sr0.975Nd0.025Co2As2 [24] leads to the formation of 3D
FM order [11].

Here, we provide a more complete understanding of
the intriguing magnetic behavior of doped SrCo2As2 by
investigating the magnetic susceptibility of a multiorbital
itinerant model of doped SrCo2As2. We obtain a realis-
tic tight-binding band structure from density functional
theory (DFT) calculations and include electronic inter-
actions via a Hubbard-Hund Hamiltonian. The leading
magnetic instability in the PM state is found by comput-
ing the static transverse spin susceptibility χ(q) within
the random-phase approximation (RPA). This method
was previously successfully applied to study the low-
temperature phase diagram of multiorbital models of Fe
pnictides [25–29].

We map out the weak-coupling RPA magnetic phase
diagram as a function of carrier doping x (which, in our
convention, is positive for electron doping and negative
for hole doping) and the ratio J/U of Hund’s coupling J
to the Hubbard interaction U . Since the ratio J/U that
describes the experimental systems is not known exactly,
we consider a range of realistic J/U values. It contains
a wide region of FM order around the undoped parent
compound, but stripe-AF phases appear for sufficiently

large hole doping. The critical Hubbard interaction Uc

that triggers the development of long-range magnetic or-
der at a given temperature increases under hole doping,
but is reduced for electron doping. Since increasing U
has similar effects as decreasing the temperature T (it is
known to be qualitatively equivalent in the single band
case), the behavior of Uc is a good proxy for the expected
behavior of the critical temperature Tc [29]. We choose
to tune U in our calculations and fix the temperature
to T = 30 meV as it requires significantly less compu-
tational effort than tuning T . We note that the RPA is
known to overestimate transition temperatures as it ne-
glects certain types of fluctuations [28, 30], and the simu-
lation temperature should thus not be directly compared
with the experimental transition temperatures. Rather,
our choice of T = 30 meV arises from balancing the com-
putational demand with the ability to properly resolve
spectral features in the bandstructure and the density of
states.
Our findings of Uc(x) are thus in good agreement with

the experimental observation that magnetic order only
occurs under electron doping. Interestingly, we find that
Uc at x = 0 is located close to a shallow minimum, which
explains why SrCo2As2 lies on the verge to magnetic or-
dering and shows a high sensitivity to small changes of
electron density - as observed for Ni-doped SrCo2As2.
It can also be related to a peak in the density of states
(DOS) that occurs at small positive x. We generally asso-
ciate the theoretically observed slow variation of Uc with
x with the phenomenon of itinerant frustration, since it
corresponds to an accidental fine tuning of the system
close to an instability. Magnetic ordering can thus be
induced by small increases in carrier density x. Alterna-
tively, we find that Uc decreases for increasing interac-
tion parameter ratio J/U , suggesting that systems with
larger J/U are more likely to exhibit magnetic order.
We note that recent first-principles studies have reported
that J/U can be controlled to some extent via pressure
or strain [31, 32]. Pressure tuning of SrCo2As2, however,
is complicated by the presence of a structural phase tran-
sition to a collapsed tetragonal phase that occurs under
pressure [33].

We also quantify the degree of competition between
FM and AF fluctuations and identify the leading or-
bital contributions to the different magnetic states. This
allows us to make a direct connection between the
orbitally-resolved DOS at the Fermi energy and the lead-
ing magnetic instability. Close to an instability towards
FM order, the susceptibility is dominated by contribu-
tions arising from the Co dxy orbitals, while hybridiza-
tion of dxy with the other Co d orbitals is much more
prominent close to a stripe-AF instability. The close-
ness of the Fermi energy to the DOS peak arising from
partially flat bands with dxy character thus largely de-
termines the type of magnetic instability as a function of
doping. While (Stoner) FM order is found if the Fermi
level lies close to the DOS peak consisting of dxy (and
dz2) states, we observe stripe-AF states when the other
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orbitals contribute equally to the DOS. Finally, we cal-
culate the dynamic magnetic susceptibility, χ(q, ω), and
find good agreement with INS, demonstrating that the
defining features of itinerant frustration are well captured
by the interacting multiorbital model.

The remainder of the article is organized as follows: in
Sec. II we introduce a realistic 16-band Hubbard-Hund
model for SrCo2As2 and describe how to obtain the RPA
magnetic susceptibility χ(q, ω). Results for the static
susceptibility χ(q, 0) as a function of electronic doping
x, Hubbard U , and Hund’s coupling J are discussed in
Sec. III. We determine the leading magnetic instability
and its critical Hubbard Uc as a function of x and J .
To quantify magnetic frustration we calculate the differ-
ence between Uc and the critical U of the first subleading
instability. We also discuss the individual orbital contri-
butions to the physical susceptibility, which are markedly
different at FM and AF magnetic instabilities. In Sec. IV,
we present results for the dynamic RPA spin susceptibil-
ity χ(q, ω) and in Sec. V we compare theory and exper-
imental results. We present conclusions in Sec. VI and
delegate details of the calculations into several Appen-
dices.

II. MODEL AND METHODS

The crystal structure of SrCo2As2 lies in the body-
centered (bcc) tetragonal symmorphic space group
I4/mmm (#139) with c > a and has the ThCr2Si2 struc-
ture type. We focus on the uncollapsed tetragonal struc-
ture, where c >∼ 2.8a [6, 33]. The corresponding point
group is D4h. The crystal contains square layers of Co
atoms with puckered As atoms lying above and below
the square centers. The conventional unit cell is shown
in Fig. 1(a) and contains two Sr, four Co and four As
atoms. The primitive unit cell of the bcc lattice (not
shown) contains only one Sr, two Co and two As atoms.
A top view of the unit cell shows two Co d orbitals, where
dxy has a large spectral weight close to the Fermi energy.
In our convention of using a global coordinate system,
the Co dxy orbitals point along the nearest-neighbor Co-
Co bonds, while the Co dx2−y2 orbitals point in between
those bonds along the second-neighbor Co-Co bonds.
Figure 1(b) depicts the corresponding first Brillouin zone
(1BZ) together with the primitive reciprocal lattice vec-
tors (orange) and the conventional ones (grey). In the
following, we describe the realistic electronic structure
and a downfolded sixteen band Wannier tight-binding
model that is valid in a wide region of ±2 eV around the
Fermi energy. We then derive the RPA susceptibility for
this model in the presence of electronic interactions.

A. Electronic structure of SrCo2As2

We obtain a realistic electronic band structure of
SrCo2As2 using first-principles DFT calculations. We

FIG. 1. (a) Conventional unit cell of SrCo2As2 containing
two square layers of Co atoms with As atoms centered above
and below. The primitive unit cell contains one Sr, two Co
and two As atoms as labelled. The material has a bcc tetrag-
onal crystal structure of ThCr2Si2 type and is described by
space group I4/mmm (c > a) with Z = 2 formula units
per unit cell. The Sr atoms are located at the Wyckoff site
2a (0 0 0), the two equivalent Co atoms are at the 4d (0 1

2
1
4
)

sites and the two equivalent As atoms are at the 4e (0 0 zAs)
sites with zAs = 0.36. Top view of unit cell depicts dxy (blue)
and dx2−y2 (olive) orbitals on Co sites. (b) First Brillouin
zone with primitive reciprocal lattice vectors b1, b2 and b3

(orange), conventional reciprocal basis vectors (grey vectors)
and high-symmetry points. The black dashed line follows the
high symmetry path used in Fig. 2.

neglect the effects of spin-orbit coupling in the DFT cal-
culations, since they are expected to be rather small in
the material, since the spin-orbit coupling energy scale
of Co is about 70 meV, but Hubbard and Hund cou-
pling energies are expected to be larger than 1.0 eV and
0.1 eV, respectively [34]. The details of the DFT ap-
proach are discussed in Appendix A. We construct a
multiorbital tight-binding model from a set of maximally
localized Wannier functions (MLWFs) on both the Co-
and the As-atoms that are computed by the tool Wan-
nier90 [35–37]. We keep all five d orbitals on both Co
atoms and all three p orbitals on the two As atoms in
the unit cell, resulting in a 16 orbital model. We have
checked that including Sr s orbitals in the Wannierization
has negligible effects on the tight-binding band structure

BZ point Primitive coordinate Conventional coordinate

X (0, 0, 1
2
) ( 1

2
, 1
2
, 0)

P ( 1
4
, 1
4
, 1
4
) ( 1

2
, 1
2
, 1
2
)

N (0, 1
2
, 0) ( 1

2
, 0, 1

2
)

M ( 1
2
, 1
2
,− 1

2
) (0, 0, 1)

TABLE I. Momentum space coordinates of several high-
symmetry points in primitive and conventional unit cell no-
tation.
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in the region of ±1 eV around the Fermi energy. We
find that the MLWFs closely resemble the Co d-orbitals
and the As p-orbitals, respectively. We thus use nota-
tion that identifies the MLWF with the atomic orbital
it approximately represents and introduce the following
16-dimensional Wannier orbital basis vector

ϕR(r) =
(
dCo1,R(r),dCo2,R(r),pAs1,R(r),pAs2,R(r)

)
.

(1)
Here, R denotes a Bravais lattice site, the vectors
(dCo1,R)j and (dCo2,R)j contain all five atomic d or-
bitals j ∈ {z2, xz, yz, x2 − y2, xy} at the Co sites, and
the vectors (pAs1,R)k and (pAs2,R)k contain all three
p orbitals k ∈ {x, y, z} at the As sites. In the fol-
lowing, we use a, b = 1, . . . , 16 to label the orbital ba-
sis: ϕRa(r) = ⟨r|ϕRa⟩. We work with the tight-binding
Hamiltonian matrix

hab(R) = ⟨ϕ0a|H|ϕRb⟩ , (2)

which we obtain from downfolding the DFT bandstruc-
ture using the tool Wannier90 [35–37]. Here, H refers
to the Hamiltonian used in DFT. We choose to selec-
tively localize the Co d orbitals at the Wyckoff sites that
the Co atom occupies in the crystal. This was shown
to help preserve the point-group symmetry of the result-
ing tight-binding Hamiltonian, which can otherwise be
weakly violated during the maximal-localization proce-
dure [38]. Note that we only selectively localize the ten d
orbitals, but not the six p orbitals, which ensures a good
tight-binding representation of the DFT band structure.

When going to momentum space, we use the conven-
tion to include the orbital basis location τa (in the prim-
itive lattice vector convention) in the Fourier transform

|ϕka⟩ =
1√
N

∑
R

eik·(R+τa) |ϕRa⟩ . (3)

Here, N refers to the number of real space unit cells.
As shown in detail in Appendix B, this phase convention
that keeps the information of the intra-unit cell place-
ment of the different orbitals through the vector τa turns
out to be crucial to retain the spatial symmetries when
calculating the magnetic susceptibility and recover the
expected transformation properties under symmetry op-
erations. The Hamiltonian matrix elements in the orbital
Bloch basis then becomes

hab(k) =
∑
R

eik·(R−τa+τb)hab(R) . (4)

Even with selective localization of the d orbitals at the Co
sites, we find that the tight-binding Hamiltonian weakly
violates some of the point symmetries of D4h. While
this is a small effect, we choose to enforce fourfold ro-
tation symmetry: we explicitly symmetrize the Hamilto-
nian by averaging over points in the Brillouin zone that
are related by a four-fold rotation. The procedure is de-
scribed in detail in Appendix C (a similar procedure is

implemented in WannierTools [39]). This explicit sym-
metrization together with the phase convention in Eq. (4)
ensures that the tight-binding model properly obeys the
symmetries of the space group I4/mmm. Keeping the
point-group symmetry of the Wannier eigenstates and
energies intact is important to obtain a properly sym-
metric magnetic susceptibility.
Diagonalization of the tight-binding matrix hab(k)

yields the energy band dispersion ϵn(k), which is shown
in Fig. 2(a) along a high-symmetry path in the 1BZ. A
comparison to the full DFT band structure is provided
in Fig. 11 of Appendix A. The appendix also contains
the orbitally-resolved Fermi surfaces of the undoped com-
pound in Fig. 13. We note again that spin-orbit coupling
is neglected and the band structure is thus identical for
the two spin states σ = ±1. The Fermi level (E = 0) is
set to correspond to a filling of n = 13 electrons per spin
per unit cell, corresponding to 6 electrons per As atom
and 7 electrons per Co atom. Deviations from this filling
are parametrized using

x = n− 13 , (5)

where x > 0 corresponds to electron and x < 0 to hole
doping. As shown in Fig. 2(a), the band structure ex-
hibits partially flat bands along the Γ −X, Γ −M , and
X −P directions. While the first direction describes dis-
persion arising from electron hoppings within the Co lay-
ers, the flatness along Γ−M , and X − P correspond to
weakly dispersing bands along the kz direction due to a
weak coupling between the Co layers. The orbital char-
acter of the flat bands is mostly dxy, which leads to a pro-
nounced peak in the density of states (DOS) close to (but
slightly above) the Fermi energy, as shown in Fig. 2(b).
The plot is obtained for 80 × 80 × 80 k-points. Close to
the Fermi energy, the DOS is dominated by states with
dxy and dz2 orbital weight, while the three other d or-
bitals and the As p-orbitals are subdominant. As noted
above, we here use a global coordinate system (or unit-
cell coordinate system) when defining the orbitals such
that the dxy orbitals point along the nearest-neighbor
Co-Co bonds (see Fig. 1). We note that the literature on
the Fe pnictides typically uses a local coordinate system,
which is rotated by 45 degrees around the c axis with re-
spect to the global system we use. This rotation results
in a permutation of the dxy and dx2−y2 orbitals.

B. Multiorbital Hubbard-Hund model

To study the magnetic spin susceptibility in doped
SrCo2As2 we include onsite electronic interactions be-
yond DFT and consider the following multiorbital
Hubbard-Hund Hamiltonian

H = H0 +Hint . (6)

Here, the noninteracting part reads

H0 =
∑
kσ,ab

(hab(k)− µδab) c
†
kaσckbσ (7)
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FIG. 2. (a) Orbitally resolved tight-binding band structure εn(k) for SrCo2As2 along a high-symmetry path through the
Brillouin zone shown in Fig. 1(b) in the energy window [−2, 2] eV. The bands are colored according to their dominant orbital
weight. The Fermi level corresponds to a filling of n = 13 electrons per spin per unit cell. (b) Density of states (DOS) peaks
near the Fermi level on the electron-doped side. Different colors denote the orbital contributions to the DOS, which shows that
the dominant weight of the peak at E ≈ 0 is carried by d orbital states of type dxy and dz2 . The As weight is about half of the
Co weight at the Fermi energy. The orbitals are given in a global coordinate system. (c) Orbitally-resolved DOS near Fermi
level.

and corresponds to the 16 orbital Wannierized tight-
binding model introduced in Sec. II A. The onsite

Coulomb interaction part takes the standard Hubbard-
Kanamori form in momentum space [40–43]

Hint =
U

N

∑
qa

nqa↑n−qa↓+
U ′

2N

∑
qσσ′

a ̸=b

nqaσn−qbσ′ +
J

2N

∑
kk′q
σσ′

a ̸=b

c†k+qaσckbσc
†
k′−qbσ′ck′aσ′ +

J ′

2N

∑
kk′q
σ

a ̸=b

c†k+qaσc
†
k′−qaσck′bσckbσ .

(8)

We note that Eq. (8) is obtained by Fourier transforma-
tion from a purely local real-space Hubbard-Kanamori

interaction Hamiltonian. The operator c†kaσ creates an
electron with momentum k in the first Brillouin zone in
orbital a ∈ {1, . . . 16} and spin σ ∈ {↑, ↓}. The symbol
σ takes the opposite value of σ and N is the number of
unit cells (or equivalently k points in the first Brillouin
zone). The orbital basis is defined in Eq. (1). The orbital
and momentum dependent density operator is defined as

nqaσ =
∑

k c
†
k+qaσckaσ, where k runs over the momenta

in the 1BZ. The interaction Hamiltonian contains intra-
orbital repulsion with strength U and inter-orbital repul-
sion with strength U ′ at the same site. It also contains a
Hund’s coupling J and a pair-hopping term proportional
to J ′. In the following, we assume spin and orbital ro-
tation invariance. This restricts the parameter space to
J ′ = J and U ′ = U − 2J , such that one is left with two
interaction parameters U and J .

C. Magnetic spin susceptibility

We are interested in calculating both the static and
dynamic spin susceptibility in the paramagnetic phase of
doped SrCo2As2. The static susceptibility is used to de-
termine the leading magnetic instability as a function of
U and J , which yields the weak-coupling magnetic phase
diagram. Theoretical results for the dynamic susceptibil-

ity can be directly compared to INS experimental results
and help interpreting these results.
Longitudinal and transverse spin susceptibilities are

proportional to each other in the paramagnetic phase and
we will thus focus on the transverse part here. The bare
transverse spin susceptibility is given by

χ
(0)
abcd(q, iωn) =

1

N

∫ β

0

dτeiωnτ
〈
TτS

+
ad(q, τ)S

−
bc(−q, 0)

〉
0
.

(9)
Here Tτ is the time-ordering operator in imaginary time

τ and S+
ab(q, τ) =

∑
k c

†
k+qa↑(τ)ckb↓(τ) is the spin rais-

ing operator. The spin lowering operator is given by

S−
ab(q, τ) =

[
S+
ab(−q, τ)

]†
. The brackets ⟨ · ⟩0 denote

the thermal expectation value with respect to the non-
interacting Hamiltonian, H0, and β ≡ 1/kBT is the in-
verse temperature. Applying Wick’s theorem and per-
forming a summation over Matsubara frequencies we find
the bare spin susceptibility

χ
(0)
abcd(q, iωn) =

1

N

∑
k,mn

Mmn
abcd(k,q)

nF (ε
m
k )− nF (ε

n
k+q)

εnk+q − εmk − iωn
.

(10)
Here, N is the number of unit cells, the labels m,n de-
note energy bands εnk of the tight-binding Hamiltonian

H0 and nF (ε
n
k) = 1/[eε

n
k/T + 1] denotes the Fermi-Dirac

distribution function at temperature T . Note that the
energies εnk are defined with respect to the chemical po-
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FIG. 3. Comparison of the two ways to reach the magnetic instability corresponding to a divergence of the physical RPA
susceptibility χ at the ordering wavevector. The panels show χ−1 for SrCo2As2 (x = 0) along a high symmetry path in
the first Brillouin zone and are obtained using a k-point discretization with N = 253 points in the first Brillouin zone. In
panel (a) we reach χ−1(Q) = 0 by tuning U → Uc = 1.85 eV at fixed temperature T = 30 meV and fixed J/U = 0.25.
The bare susceptibility is obtained in the noninteracting system. We observe that the leading magnetic instability occurs at
the wavevector Q = 0 (Γ point), corresponding to the development of long-range ferromagnetic order. In panel (b), we fix
U = Uc(T = 30 meV) = 1.85 eV, set J/U = 0.25 and vary the temperature T between 40 meV and 30.15 meV corresponding to
the indicated ratios of T/Tc with Tc = 30 meV (at this value of U). We observe that the effect of tuning U away from criticality
(at fixed J/U) is qualitatively similar to tuning T away from Tc at fixed U (and J). This can be understood from the fact that
the leading magnetic instability is determined by the smallest eigenvalue of (χ−1)abcd (and the associated eigenvector). Close
to Uc, this eigenvalue is largely determined by x and J/U and to a lesser extent by T (which e.g. determines the size of the
magnetic order parameter below Tc) (see also Ref. [29]).

tential µ, which is included in H0 in Eq. (7). The tensor
Mmn

abcd(k,q) contains information about the orbitals via
the eigenfunctions of the Bloch tight-binding Hamilto-
nian when going from orbital to band space:

Mmn
abcd(k,q) = una(k+q)∗umb (k)∗unc (k+q)umd (k) . (11)

Here, una(k) is the nth eigenstate of hab(k) − µδab in
Eq. (7) at momentum k whose eigenenergy is εnk.
We include the effect of onsite Coulomb interactions

H1 through RPA. Diagrammatically, this corresponds to
summing all ladder diagrams with no crossing interac-
tions [26, 44]. The summation involves only interaction
processes connected by opposite spins, and can be exactly
carried out to yield the RPA spin susceptibility

χabcd(q, ω) =
(
δaeδdf − χ

(0)
eghf (q, ω)U

ga
hd

)−1

χ
(0)
ebcf (q, ω) .

(12)
Here, we have carried out the analytical continuation
iωn = ω + iηω and suppressed the infinitesimal iηω for
brevity. Moreover, Uga

hd is given in terms of the U , U ′, J ,
and J ′ interaction parameters on the Co and As atoms
(see Appendix D). Note that this expression reduces to
the known Stoner formula in the case of a single orbital.
One can derive a physical RPA susceptibility that trans-
forms as a scalar (see Appendix B for details) via the
contraction [26, 45]

χ(q, ω) =
1

2

∑
ab

χabba(q, ω) . (13)

A divergence of the static physical spin susceptibility
χ(q) ≡ χ(q, ω = 0) with infinitesimal ηω at a specific

wavevector Q indicates a weak-coupling magnetic insta-
bility and the condensation of magnetic order with order-
ing vector Q. We confine ourselves to ordering wavevec-
tors along the high-symmetry path in the 1BZ shown in
Fig. 1(b).
In our work, the wavevector Q of the leading magnetic

instability is found by increasing the Hubbard interaction
parameter U , keeping the ratio J/U and the temperature
kBT = 30 meV fixed, and recording the first Q among 60
uniformly chosen points along the high-symmetry path
for which the physical susceptibility diverges, i.e.,

χ−1(Q, ω = 0;Uc, J/Uc, T, µ) = 0 . (14)

Here, we have explicitly added the dependence on U, J , T
and µ. To map out the behavior under electronic doping,
we vary the electronic density per spin per unit cell, n =
13 + x, through a rigid shift of the chemical potential
µ(x, T ). The dependence of µ as a function of x is shown
in Fig. 12 of Appendix A. For the summation over k in
Eq. (10) we use a momentum space grid with 25×25×25
k-points and we set ηω = 3 meV when computing the
static susceptibility.
The magnetic instability can be induced either by in-

creasing the interaction strength at a fixed temperature
T , or by reducing T at fixed interactions. In Fig. 3,
we compare the two ways of reaching the instability,
χ−1(Q, Uc, J/Uc, Tc, µ) = 0. We keep the relative in-
teraction energy ratio J/U fixed when tuning U → Uc

in order to not change the relative importance of Hub-
bard to Hund interactions. In this case, we observe that
both ways of tuning towards the instability are qualita-
tively equivalent. This is expected as the temperature
T ≈ 30 meV we consider is smaller than the typical en-
ergy scale of the relevant features in the bandstructure
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and the density of states. This is consistent with the
fact that the spin-orbit coupling constant of Co 3d or-
bitals can be estimated to 74 meV, more than two times
larger than the T we use. Since it is numerically much
less costly to tune U compared to tuning T , because one
needs to perform the numerically intensive computation
of χ0 for each temperature T , we here choose to induce
the instability by increasing U towards Uc at fixed T . To
a very good approximation, this can be regarded as tun-
ing T towards Tc, provided that Tc > 0 for the chosen
value of U .

Specifically, Fig. 3(a) shows the behavior of χ−1 at
fixed temperature T = 30 meV and J/U = 0.25 when
tuning U → Uc. Changing U largely corresponds to a
rigid shift of the bare inverse susceptibility and the min-
imal value occurs at q = 0 for all values of U . Panel (b)
shows χ−1 at fixed U = Uc(T = 30 meV) and J/U = 0.25
when varying T between 40 meV and 30.15 meV, close
to the critical temperature T = 30 meV (for this value of
U). Comparing the two panels shows that tuning T over
this range 1.005Tc ≤ T ≤ 1.33Tc corresponds to chang-
ing 0.9Uc ≤ U ≤ Uc. The susceptibility is thus more
sensitive to changes in U compared to changes in T .
Finally, we make two remarks. First, our analysis

does not determine whether the resulting magnetic order
contains only Q or also symmetry related (inequivalent)
partners of Q. To address this question, one would have
to perform a self-consistent mean-field calculation [46] or
calculate higher-order coefficients of the free energy [28],
which we leave for future studies. Second, the orbital
content of χabba on right-hand side of Eq. (13) yields
additional information about which orbitals contribute
most to the diverging physical susceptibility. We analyze
the orbital content of the susceptibility for different dop-
ing x and in the different magnetic phases in Sec. III E.

III. STATIC SPIN SUSCEPTIBILITY RESULTS

In this section, we present results for the static RPA
spin susceptibility χabcd(q, ω = 0) for both undoped and
doped SrCo2As2. We discuss the behavior of the static
physical RPA susceptibility χ(q) in momentum space and
map out the leading magnetic instability as a function of
x and J/U . Then we investigate the competition be-
tween FM and stripe-AF fluctuations by calculating the
closeness of the first subleading magnetic instability. Fi-
nally, we analyze the orbital content of χabcd(q) close to
the different magnetic instabilities and relate it to the
density of states.

A. RPA susceptibility of the parent compound

In this subsection, we discuss both the bare and RPA
spin susceptibility of the undoped parent compound
SrCo2As2. Our results show that both the bare and RPA
susceptibilities peak at the Γ point. The leading insta-

FIG. 4. (a) Inverse static bare physical susceptibility χ−1
0

(black) and inverse static RPA physical susceptibility χ−1

(blue, brown) for undoped SrCo2As2, plotted along a high-
symmetry path in the 1BZ. The plot shows χ−1 for J/U = 0
(blue) and J/U = 0.25 (brown) in the vicinity of ordering
U/Uc = 0.995. The arrow indicates that the leading instabil-
ity is at Γ towards FM order in both cases. (b) Static RPA
spin susceptibility χ(q) as function of (qx, qy) for fixed values
of qz = {0, 1

2
, 1}π

c
in conventional coordinates. Interaction

parameters are J/Uc = 0.25 and U = 0.995Uc. The black
line denotes the 1BZ. The temperature and the broadening
used in the calculations are T = 30 meV and ηω = 3 meV,
respectively.

bility when increasing interactions is towards FM order
with a critical Hubbard Uc that decreases with increasing
Hund’s coupling J .
Figure 4(a) shows the inverse physical susceptibility

along a high symmetry path in the 1BZ. We observe
that the bare susceptibility χ0(q) peaks at the Γ point
and shows a local minimum along the path to the X
point. Nonzero interactions enhance this trend and, as
a result, the RPA physical susceptibility diverges at Γ
for all values of J/U . The figure shows χ−1 at two dif-
ferent values of J/Uc, which qualitatively agree. The
critical value of U , however, significantly reduces from
Uc(J = 0) = 2.10 eV to Uc(J/Uc = 0.25) = 1.75 eV as
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FIG. 5. (a) Inverse static bare physical susceptibility χ−1
0 (black) and inverse static RPA physical susceptibility χ−1 (blue,

brown) at x = −0.2 hole doping, plotted along a high-symmetry path in the 1BZ. The plot shows χ−1 for J/U = 0 (blue) and
J/U = 0.25 (brown) in the vicinity of ordering U/Uc = 0.995. In contrast to the undoped case in Fig. 4, χ depends strongly
on J/U . The arrows indicate the leading instabilities which shift from Γ at J = 0 to X at J/Uc = 0.25. Notice the flatness of
χ−1 along the X − P direction, which is a sign of itinerant frustration. (b, c) Static RPA spin susceptibility χ(q) as function
of (qx, qy) for fixed values of qz = {0, 1

2
, 1}π

c
. The interaction parameters are identical to (a) and the black line denotes the

1BZ. Note that the susceptibility exhibits peaks at multiple distinct wavevectors, in particular for stronger Hund’s coupling
J/Uc = 0.25. The temperature and the broadening used in the calculations are T = 30 meV and ηω = 3 meV, respectively.

Hund’s coupling J increases, which is in agreement with
expectations that Hund’s coupling favors FM order. The
fact that the peak in the bare χ0 determines the order-
ing vector for sufficiently strong interactions agrees with
standard Stoner theory. We will see below that this pic-
ture does not always hold true for the doped system.

Figure 4(b) shows a color map of χ(q) at U = 0.995Uc

and J/U = 0.25 for three different slices of fixed qz in the
full 2D BZ plane. One clearly recognizes the peak at Γ
from which streaks emerge along the in-plane directions
Γ − X and Γ − Y and to a lesser extent also along the
out-of-plane direction Γ −M . Here, magnetic order at
X = ( 12 ,

1
2 , 0) and Y = (− 1

2 ,
1
2 , 0) (in conventional coor-

dinates) corresponds to stripe-AF order. The observed
overall behavior of χ(q) qualitatively remains the same
for a wide range of interaction ratios J/U down to J = 0.
We conclude that SrCo2As2 exhibits dominant FM fluc-
tuations and a leading instability towards FM order for
all values of J/U . This can be traced back to the par-
tially dxy-type flat bands along the X − P direction and
the resulting large DOS that peaks on the lightly electron
doped side (see Fig. 2).

B. RPA susceptibility of the hole doped system

In this subsection, we present the physical susceptibil-
ity of the hole doped system with x = −0.2. The be-
havior of the susceptibility at sufficiently large hole dop-
ing x <∼ −0.2 is different from the undoped and lightly
doped material. We find that the bare susceptibility at
x = −0.2 peaks at the X and Y points, and further-
more, that the leading magnetic instability depends on
the interaction ratio J/U .
Figure 5 shows the inverse bare physical susceptibility

χ−1
0 at x = −0.2 together with the inverse RPA suscep-

tibility χ−1 for two different ratios J/Uc = 0 and J/Uc =
0.25. The Hubbard interaction is set to be close to the
instability U = 0.995Uc, where Uc(J = 0) = 3.16 eV
and Uc(J/Uc = 0.25) = 2.94 eV. These values are about
50-70% larger than those at x = 0, which can be under-
stood from the fact that the DOS is reduced under hole
doping (see Fig. 2). Figure 5(a) displays the inverse sus-
ceptibilities along a high-symmetry path in the BZ, while
Figs. 5(b,c) contain χ as a function of qx and qy for three
values of qz and two different Hund’s coupling values.
Interestingly, while χ0 peaks at the X point (and the

symmetry related Y point, which is not shown), χ di-
verges at Γ for J/U = 0. In contrast, for J/U = 0.25
the leading instability has shifted to X (and to Y ). In-
creasing Hund’s coupling thus suppresses FM in favor of
stripe-AF order. As we show below in Sec. III E, this
can be related to the dominant orbital contributions to
χ. While the FM instability is mostly driven by the xy
orbital contribution, other orbital components make a
larger contribution to stripe-AF. Since Hund’s coupling
tends to favor alignment of spins in different orbitals, it
is generally expected to increase the orbital participation
of subleading orbitals z2, xz, yz and x2 − y2, which we
find to favor stripe-AF over FM. Importantly, this is an
example where the leading magnetic instability is not de-
termined by the peak in the bare physical susceptibility
alone, a multiorbital phenomenon that does not occur
for single-band systems with onsite interactions only [see
Eq. (12)].
In addition, we notice that χ−1

0 is nearly-flat and com-
parable along the X − P and the Γ −M directions. It
exhibits a local minimum at an incommensurate wavevec-
tor along Γ−M . The flatness along the kz direction is due
to the weak coupling of the Co layers and the resulting
flat dispersion along kz. More interesting is that χ0 is of
similar size at Γ and X,Y , which we interpret as a signa-
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FIG. 6. (a) Phase diagram showing the leading magnetic instability as a function of J/Uc and doping x. We find four
commensurate magnetic orders: FM order with ordering wavevector Q = Γ = (0, 0, 0), A-type order with Q = M = (0, 0, 1),
2D stripe-AF order with Q = X = ( 1

2
, 1
2
, 0) and 3D stripe-AF order with Q = P = ( 1

2
, 1
2
, 1
2
). The transition between 2D

and 3D stripe-AF occurs through incommensurate phases with ordering vectors Q = ( 1
2
, 1
2
, τ), where 0 < τ < 1

2
. The phase

diagram is obtained for UAs = 0, JAs = 0 and the pink lines trace the phase boundaries for UAs = UCo and JAs = JCo. (b)
Phase diagram with data shown in (a) and smoothed boundaries, but using Hund’s coupling J in units of eV as the x-axis
scale. No data is shown in grey region for which U ′ < 0. Colored lines denote cuts at fixed J/Uc = 0.1, 0.25, 0.4 (yellow, red,
purple) [see also panel (c)]. Due to the variation of Uc with J , the straight vertical lines in panel (c) appear distorted. (c)
Critical Hubbard Uc as a function of J/Uc and x. While electron doping (x > 0) lowers Uc, hole doping increases Uc. Increasing
Hund’s coupling J/Uc tends to reduce Uc. White lines follow phase boundaries shown in (a). Vertical colored lines denote cuts
at fixed J/Uc shown in panel (d). (d) Uc versus x for different values of J/Uc shown in (c). While Uc steeply increases on the
hole doped side, Uc is almost flat but slightly decreases on the electron doped side near x = 0. We associate this behavior
with the presence of flat bands (see Fig. 2). Horizontal dotted lines denote Uc at x = 0 for the three J/Uc values. The vertical
yellow line illustrates the value of x (for J/Uc = 0) on the electron-doped side which has the same value of Uc as the undoped
compound. This bounds the region where we expect magnetic order to exist, since SrCo2As2 is not ordered. The size of this
region is almost independent of J/Uc. (e) The value of J in units of eV at the instability as a function of J/Uc and x. Data
is obtained directly from Uc shown in panel (c) and the x axis value J/Uc. (f) Frustration between in-plane ferro- and stripe
AF-type phases defined via the parameter ΘF in Eq. (15) as a function of interaction ratio J/Uc and filling x. Smaller values
of ΘF correspond to a higher level of frustration. Black lines trace phase diagram of panel (a).

ture of itinerant frustration, as it signals large and com-
parable fluctuations close to in-plane FM and stripe-AF
wavevectors. Close to the instability at U = 0.995Uc, the
RPA susceptibility χ−1 still remains flat along the X−P
direction, corresponding to a high-degree of competition
between in-plane stripe-AF orders with commensurate
and incommensurate qz components. The fact that dif-
ferent magnetic states remain nearly degenerate in the
immediate proximity of the magnetic transition is one of
the hallmarks of itinerant frustration. The flatness along
the Γ−M direction, however, is largely lifted close to Uc

and there now appears a clear minimum at Γ (and a local
minimum atM for J/Uc = 0.25). We conclude that while
the parent compound SrCo2As2 is clearly dominated by
FM fluctuations for all values of J/U , the competition
between FM and stripe-AF fluctuations increases with
hole doping and is much stronger and dependent on J/U
for a system with x = −0.2.

C. Phase diagram of leading magnetic instabilities

This section discusses the phase diagram of the lead-
ing magnetic instability as a function of electronic fill-
ing x and J/U . To obtain the phase diagram shown
in Figs. 6(a,b), we use the same method as described
in the context of Figs. 4 and 5. Specifically, for a
given filling x, we first determine the chemical potential
µ(x, T = 30 meV) using the curve shown in Fig. 12. We
thus approximate the effect of doping x by a rigid band
shift. The covered range in x ∈ (−0.4, 0.4) corresponds to
a rigid shift in the chemical potential ∼ (−0.2, 0.1) meV.
While the approximation of a rigid band shift is justified
for small values of |x|, it is known that chemical substi-
tution can affect other properties of the system in ad-
dition to the electron filling. This includes introducing
site disorder and modifications of the lattice structure.
Specifically, in Ni-doped SrCo2As2 (i.e. on the electron
doped side) the uncollapsed tetragonal phase is found
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FIG. 7. Stoner-type phase diagrams as a function of electronic doping x and Hubbard interaction U . Three panels are for
Hund’s couplings J/Uc = 0.1, 0.25, 0.4 from left to right (a-c). The lines denoting Uc are identical to the ones in Fig. 6(d).
We find that for U < Uc the system is paramagnetic (PM) and that the critical Hubbard interaction Uc is minimal for slight
electron doping and towards the FM phase. The minimal critical value minxUc(x) at a fixed Hund’s coupling J/Uc is reduced
from Uc ≈ 2 eV for J/Uc = 0.1 to Uc ≈ 1.5 eV for J/Uc = 0.4. As we increase Hund’s coupling a stripe-AF phase appears
at hole doping x < −0.2, whose width increases with J . We do not observe any specific feature in Uc in the highly frustrated
regime where FM and AF phases meet.

over a wide range of x < 0.4 at T = 300 K [12]. On
the hole doped side, the band structure of KCo2As2 also
exhibits features such as a partially flat band between Γ
and X that are consistent with a rigid band description.
Given µ(x, T ), we then calculate the bare static suscep-

tibility χ
(0)
abcd(q) for 60 equally spaced points along the

high-symmetry path in the BZ shown in Fig. 4(a). The
chemical potential is set to µ(x, T = 30 meV) and the
temperature is T = 30 meV. We use a small broadening
parameter ηω = 3 meV and sum over 25×25×25 k-points
in Eq. (9). Computationally, this is the most expensive
step in the calculation. Once we have obtained the bare
susceptibility, we calculate the physical RPA susceptibil-
ity χ using Eqs. (12) and (13) for different U at fixed
J/U . We increase U until χ(q) diverges, or χ−1(q) be-
comes zero at one of the 60 wavevectors q along the path
in the BZ.

As shown in Figs. 6(a,b), we find the leading instability
to be towards FM in a wide region around x = 0, regard-
less of the value of Hund’s coupling J . FM prevails for
electron doping x > 0 at all values of 0 ≤ J/Uc ≤ 0.5.
We note that larger values of J are unphysical as they
correspond to inter-orbital attraction due to the relation
U ′ = U − 2J ; this region is shown in grey in Fig. 6(b).
On the hole doped side, other magnetic phases appear
at x <∼ −0.2 and J/Uc > 0.1 (or J > 0.35 eV). In the
range of smaller Hund’s coupling, a dome of AF A-type
magnetic order appears, where FM planes are AF stacked
along the c direction. We find the transition from FM to
A-type order to be abrupt. At larger Hund’s couplings
J/Uc

>∼ 0.25 (or J >∼ 0.7 eV), we observe the emergence
of stripe-AF phases, both with qz = 0 and qz = π/c.
The order with qz = 0 corresponds to the magnetic order
observed in the Fe-based 122 systems. The crossover be-
tween these two stripe-AF phases occurs gradually via in-
commensurate magnetic orders withQ = ( 12 ,

1
2 , τ), where

0 < τ < 1
2 .

In Fig. 6(c), we plot the critical Hubbard Uc required

to develop magnetic order versus x and J/Uc. One ob-
serves that Uc generally decreases with increasing J , i.e.,
Hund’s coupling enhances the tendency to develop mag-
netic order. As a function of x, we find that Uc increases
quickly under hole doping x < 0, as the chemical poten-
tial moves away from the peak in the DOS (see Fig. 2).
In contrast, Uc decreases slightly and is almost flat un-
der electron doping as the chemical potential reaches the
peak in the DOS. This behavior is independent of the
value of J as shown in Fig. 6(d). We thus conclude that
magnetic order is not expected on the hole doped side,
but may occur on the electron doped side. The flatness
of Uc versus x > 0 and the fact that one experimen-
tally observes the emergence of magnetic order already
for small x in fact suggests that SrCo2As2 lies close to
a FM instability. Assuming that U is only slightly be-
low Uc at x = 0, our calculations predict a region of
width ∆x ≈ 0.2 where magnetic order should occur on
the electron doped side [vertical dashed lines in Fig. 6(d)].
This is in good agreement with experimental results on
Sr(Co1−xNix)2As2 [12]. In Fig. 7, we plot this data in
a Stoner-type phase diagram as a function of x and U .
This phase diagram includes a paramagnetic (PM) phase
at U < Uc and the different magnetically ordered phases
(FM, A-type, stripe-AF) for U > Uc. Our calculations do
not show any specific features of Uc across phase bound-
aries into different magnetic regions, where we expect
magnetic frustration to be strongest.

Another finding of our study is that stripe-AF order
only emerges at sufficiently large values of the Hund’s
coupling J > 0.7 eV [see Figs. 6(b,e)]. This may ex-
plain the absence of stripe order in real systems, even
though the system exhibits prominent stripe-AF fluctu-
ations [8]. Finally, we investigate the impact of Hubbard
and Hund’s interactions on the As sites and find that
these play a minor role in the phase diagram. As shown
in Fig. 6(a), the inclusion of significant correlations on
the As sites by setting UAs = UCo and JAs = JCo shifts
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the phase boundaries (pink lines) only by a small amount
compared to the ones obtained with UAs = JAs = 0 (col-
ored phases).

D. Quantifying itinerant magnetic frustration

We can quantify the degree of itinerant magnetic frus-
tration between FM and stripe-AF magnetic order as a
function of x and J/U by determining the closeness of
the subleading instability. Mathematically, we introduce
a frustration parameter that depends on the difference
between the critical Hubbard Uc for the leading and the
subleading instability

ΘF =
|Uc(QFM)− Uc(QAF)|

max
[
Uc(QFM), Uc(QAF)

] . (15)

Here, QFM = (0, 0, τ) with 0 ≤ τ ≤ 1 is a wavevector
that corresponds to in-plane FM order and Uc(QFM) is
the minimal Hubbard-U for which χ−1(QFM) = 0. The
stripe AF wavevector QAF = ( 12 ,

1
2 , τ) with 0 ≤ τ ≤ 1

2
describes the competing stripe-AF order and Uc(QAF) is
the minimal Hubbard U for which χ−1(QAF) = 0. Small
values of ΘF thus correspond to high levels of frustration.
We additionally checked that no other ordering vector
occurs as a subleading instability along the BZ path in
Fig. 1(b), which includes the Γ −X and P − N − Γ di-
rections. Note that we neglect the presence of magnetic
order for U values greater than the critical Uc of the
leading instability and are simply increasing U further in
our results of the paramagnetic χ until a competing sub-
leading instability is reached. This still provides a simple
approximate method to quantify and compare the degree
of frustration in different regions of the phase diagram.

In Fig. 6(f), we show ΘF as a function of x and J/U .
First, we observe that, as expected, ΘF vanishes at the
phase boundaries between FM and AF order. However,
we also notice an interesting and nontrivial behavior of
ΘF: the local minimum of ΘF that occurs between A-
type and stripe-AF phases at larger hole doping contin-
ues into the FM region at smaller doping and reaches
x ≈ −0.1 at J/U = 0. The parent compound at x = 0
is in this sense much more connected to the hole doped
region, where ΘF is noticeably smaller, than to the elec-
tron doped region. At x = 0 one still finds a substantial
amount of itinerant frustration: ΘF (x = 0, J/U = 0) =
0.16.

Comparing Figs. 6(c) and (f), we also learn that the
behavior of Uc and ΘF as a function of x and J/U are
quite different. While Uc is correlated with the value
of the DOS at the Fermi energy and the size of Hund’s
coupling J , the frustration parameter ΘF is largely de-
termined by the distance to the location of the FM-AF
phase boundary. As noted above, it extrapolates the A-
type-to-stripe-AF phase boundary line even into the FM
regime. This can help explain the puzzling experimen-
tal behavior that the magnetic fluctuations in the par-
ent compound (x = 0) are dominantly stripe-AF at low

temperatures (due to the small value of ΘF) yet small
amounts of electron doping lead to FM order (due to the
reduction of Uc by approaching the DOS peak).

E. Orbitally resolved RPA susceptibility

In this section, we discuss the orbital resolved con-
tributions χabba to the physical RPA susceptibility χ =
1
2

∑
a,b χabba. We focus on the behavior close to a mag-

netic instability and set U = 0.995Uc in the following. As
U approaches Uc, the relative weight of the orbital con-
tributions to χabba get amplified, but the general trend is
already present further away from Uc (we have explicitly
checked it at U = 0.9Uc). We find χabba to be different
for each of the four magnetic instabilities in the phase
diagram in Fig. 6(a). For brevity, we will refer to the
four phases by the magnetic ordering wavevector in this
section, i.e., refer to FM as Γ, to A-type as M , to 2D
stripe-AF as X, and to 3D stripe-AF as P . We also note
that the orbital labeling uses a global (unit cell) coordi-
nate system, shown in Fig. 1.
The RPA susceptibility components χabba that enter

the physical susceptibility χ = 1
2

∑
a,b, χabba can be con-

veniently arranged in a 16 × 16 matrix form. In Figs 8
and 9 we show the absolute value of the components, nor-
malized by the maximum element, as a color matrix plot.
Fig. 8 contains results for the x = 0 parent compound at
two different values of J/U = 0, 0.4, where the leading
instability is towards a FM state. The four different pan-
els in Fig. 9 show χabba for the four magnetic instabilities
Γ, M , X, P in the hole doped region at x = −0.2 (up-
per row) and x = −0.3 (lower row). While we find some
degree of variation of the form of χabba within a given
phase, the main features are invariant and the four plots
are thus representative of the form of χabba in the full
phase region.
Let us describe the main features of these plots and the

conclusions we draw from it. First, we observe that the
diagonal contributions from the dxy orbital are dominant
in all four phases, and we find significant contributions
from both intrasite elements (Co1-Co1 and Co2-Co2) as
well as from the intersite elements (Co1-Co2). The next
largest elements at x = 0 arise from off-diagonal elements
between the dxy and dz2 orbitals. As shown in Table II,
this can be understood from the large spectral weight
of the dxy orbitals at the Fermi energy and the second
largest contribution from dz2 at x = 0. To understand
the dominance of dxy elements for x = −0.3 we note
that our calculations are performed at finite temperature
T = 30 meV. Even though dxy states at the x = −0.3
Fermi energy µ = −0.13 meV have the least weight [see
Fig. 2(a) and Table II], the susceptibility still includes
contributions from the region with large dxy weight at
finite T . Similarly, the DOS peak of the dz2 orbitals at
x = 0 explains that off-diagonal elements between dxy
and dz2 are still the largest at x = −0.3 and T > µ.
Second, we notice that increasing Hund’s coupling J
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FIG. 8. Absolute value of RPA susceptibility elements χabba

for x = 0 close to an FM instability. The elements are normal-
ized by the maximal element. Panel (a) is for J = 0 and panel
(b) is for J/Uc = 0.4 at U = 0.995Uc. Here, T = 30 meV and
ηω = 3 meV.

results in larger off-diagonal elements, since Hund’s cou-
pling tends to align spins in different orbitals, i.e., it ben-
efits from electrons occupying and scattering among dif-
ferent orbitals. Third, we generally find that close to
the stripe-AF instabilities X and P , there is a larger hy-
bridization of dxy with the other d orbitals in the suscep-
tibility, including dxz, dyz, and dx2−y2 . Close to the A-
type instability, the susceptibility resembles that of FM
with slightly increased dz2 contributions, which may arise
from the AF coupling of FM layers along z. Finally, we
observe that contributions from As p orbitals are negligi-
ble, except close to the FM instability, where off-diagonal
elements between As px, py orbitals and dxy contribute
about 10% of the relative weight. Note that we here set
UAs = JAs = 0. This shows that while hybridization
with As contributes quantitatively to χ close to the FM
instability, especially at larger J , the Co d orbitals are
the main factors differentiating between the magnetic in-
stabilities.

x µ(0)[meV] µ(30meV) DOS eV−1 dx2−y2 dxz, dyz dz2

0 0 −12 7.3 0.14 0.18 0.34
−0.2 −75 −82 2.8 0.77 0.62 0.31
−0.3 −129 −132 2.5 2.82 2.12 1.09

TABLE II. Total DOS per spin at the Fermi energy and
different d orbital contributions for different dopings x (see
Fig. 2), chemical potential µ(T ) (in units of meV) at T = 0
and T = 30 meV. The DOS contributions of different d or-
bitals are normalized by the dxy contribution.

FIG. 9. Normalized elements of the RPA susceptibility χabba

close to four magnetic instabilities, Γ, X, M , and P , as in-
dicated. First row is for x = −0.2 and J/Uc = 0.2 (left, Γ)
and J/Uc = 0.4 (right, X). Second row is for x = −0.3 and
J/Uc = 0.2 (left, M) and J/Uc = 0.4 (right, P ). The figures
are obtained for U/Uc = 0.995, T = 30 meV, and ηω = 3 meV.
The orbital content looks qualitatively the same within each
phase at other parameter values, i.e., these results are repre-
sentative for the four different types of magnetic instabilities
in the system.

IV. DYNAMIC RPA SPIN SUSCEPTIBILITY
RESULTS

In this section, we present results for the imaginary
part of the physical RPA susceptibility at finite frequen-
cies Imχ(q, ω). This allows for a direct comparison with
inelastic neutron scattering (INS) results [8, 20]. We con-
sider both the parent compound with x = 0 and a hole
doped system with x = −0.2 at moderate Hund’s cou-
pling J/Uc = 0.25. We focus on a Hubbard-U value close
to the magnetic instability U = 0.995Uc. The instability
is towards FM for x = 0 and towards 2D-stripe (X) at
x = −0.2. The temperature is set to T = 30 meV as in
the rest of the paper.

Figure 10 contains results of Imχ(q, ω) for x = 0 [pan-
els (a), (c), (e)] and for x = −0.2 [panels (b), (d), (f)]. Let
us first focus on x = 0. Fig. 10(a) shows Imχ(q, ω) along
a high-symmetry path in the qz = 0 plane (note that
M ′ is the M point in the second zone, see Fig. 1). We
observe well-defined paramagnon modes emerging from
the Γ point with velocity vΓ ≈ 1100 meV Å along Γ−X
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and a velocity vΓ ≈ 2800 meV Å along Γ − M ′ direc-
tion determined from a linear fit in an energy range of
(0 − 200) meV. The width is roughly independent of
energy and given by γΓ <∼ 0.07 Å−1. The linewidth is
smaller along the Γ−M ′ than along the Γ−X direction.
Low-energy excitations are also present close to the X
and the M ′ point in the Brillouin zone. The excitations
close to M ′ arise from the small energy scale associated
with the weak coupling of the different Co-As layers. In
contrast, the presence of low-energy excitations at in-
plane momenta X (and Y ) is a sign of competition and
itinerant frustration between FM and stripe-type fluc-
tuations. The large spectral weight around X is also
observed experimentally [8].

To investigate the impact of frustration on the dynamic
response more systematically, we calculate χ(q, ω) in the
complete qz = 0 plane and ω = 50 meV. As shown in
Fig. 10(c) and in agreement with panel (a), we observe a
main peak close to Γ, but also significant spectral weight
close to X and M ′. Inspecting the anisotropy of the
Γ peak, we observe that there is slightly more (about
10% more) spectral weight along the direction Γ − M ′

than along the direction Γ −X. The peak around X is
also anisotropic and the degree of anisotropy was used
in the literature to quantify the degree of itinerant frus-
tration [8, 13]. Following these works, we quantify the
anisotropy of the elliptical peak at X by the ratio r of
the two radii of the ellipse. We relate r to frustration by
defining the frustration parameter

η =
r2 − 1

r2 + 1
. (16)

The parameter η captures the anisotropy of the cor-
relation lengths along two orthogonal directions in the
PM phase. Within a phenomenological local-moment
model description of SrCo2As2 using the J1-J2 Heisen-
berg model on the square lattice, the anisotropy of cor-
relation lengths is related to the ratio of nearest J1 to
next-nearest neighbor interactions J2 and one can iden-
tify η = J1/(2J2) [8, 13]. Thus, η is a direct measure of
frustration with |η| = 1 corresponding to maximal frus-
tration. Here, we obtain η from Gaussian fits of the peak
in χ(q, ω) close to X and at fixed ω = 50 meV. As shown
in Fig. 10(e), a fit of the spectrum along the X − M ′

and X − Γ directions around the X point yields a mod-
erate anisotropy (or frustration) parameter η = −0.20 at
x = 0. Experimentally, one finds a larger anisotropy in
the parent compound with ηINS ≈ −0.5 at low temper-
atures T = 5 K [8, 13]. The anisotropy increases with
temperature and becomes ηINS ≈ −0.7 at T = 100 K,
where the competition between FM and stripe-AF fluc-
tuations is experimentally most pronounced (FM fluctu-
ations seem to be suppressed below that temperature).
In our model, we have to choose parameters closer to
the stripe-AF instability in order to reproduce such a
large degree of anisotropy. At hole doping x = −0.2 and
J/Uc = 0.25, for example, we find η = −0.66 [see panel
(f) and discussion below].

Analyzing the hole doped system at x = −0.2 in
more detail, we observe in Fig. 10(b) a steep and broad
paramagnon mode emerging from the X point. This
agrees with the analysis of the static susceptibility χ(q)
in Fig. 5, which diverges at the X point (2D stripe-AF)
for U → Uc. The mode has a large stiffness in the range
(0− 100) meV with a broadening of γX ≈ 0.07 Å−1. We
estimate a lower bound on the velocity vX >∼ 1100 meV Å
that is consistent with the lower bound on the trans-
verse velocity of 250 meV Å determined from the INS
measurements [8]. Fig. 10(d) contains a two-dimensional
map at fixed ω = 50 meV and qz = 0 that shows a
main peak at X, but also significant spectral weight
along the X −M ′ and X − Γ directions. As shown in
Fig. 10(f), we observe that the peak amplitude around
Γ is much smaller along the Γ − M ′ compared to the
Γ − X direction, which is opposite to our findings at
x = 0. The anisotropy of the peak at X is much more
pronounced compared to the parent compound and we
extract a significant anisotropy (or frustration) parame-
ter of η = −0.66, as mentioned above.
Regarding the degree of frustration and the anisotropy

of the inelastic peak around X, we thus conclude from
our model calculations that SrCo2As2 behaves experi-
mentally like a slightly hole-doped model that lies closer
to the AF instability than the undoped x = 0 model.

V. THEORY-EXPERIMENT COMPARISON

In this section, we compare the results of our model
calculations to the experimental ones. First, experimen-
tally one finds SrCo2As2 to be paramagnetic down to the
lowest measured temperatures T = 50 mK [4, 8]. This
is reproduced in our model when the Hubbard interac-
tion is below the critical value U < Uc. Like the experi-
mental system, our model calculations show pronounced
anisotropic fluctuations at the Γ, X and Y points when
U lies close to Uc. We thus conclude that SrCo2As2 lies
on the verge of ordering magnetically with correlations
as described by U being only slightly smaller than the
required critical Uc value.

We find that Uc(x) quickly increases under hole dop-
ing for all values of J , but is almost flat and slightly de-
creasing under electron doping [see Fig. 6(d)]. The origin
of this behavior is that hole doping moves the chemi-
cal potential further away from the peak in the DOS at
ω ≈ 30 meV, which is caused by a partially flat dxy band
that lies just above EF at x = 0. Since our calculations
are performed at finite temperatures of T = 30 meV, the
DOS peak is already within the thermal window around
EF , and moving µ closer to the peak by electron doping
has not much of an effect. Based on these results, we
predict magnetic order to not occur under hole doping,
but potentially develop under electron doping, where Uc

decreases. This prediction agrees well with experimental
observation: while magnetic order has not been found
in lightly hole doped materials, already minute amounts
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FIG. 10. Imaginary part of the dynamical magnetic suscepti-
bility, Imχ(q, ω), for x = 0 [panels (a), (c), (e)] and x = −0.2
[panels (b), (d), (f)]. Other parameters are J/Uc = 0.25,
U = 0.995Uc, and T = 30 meV. Panels (a,b) show Imχ(q, ω)
along a high-symmetry path in the qz = 0 plane of the BZ.
Panels (c,d) show the susceptibility for (qx, qy, qz = 0) at
ω = 50 meV [see white dashed line in (a,b)]. Note that the
center of the plots corresponds to the X point. Panels (e,f)
show 1D cuts close to Γ (upper row) and X (lower row) along
directions indicated in panels (c,d) with the same color. We
extract the frustration parameter η from the ratio of the peak
widths that we obtain from a Gaussian fit.

of electron doping trigger the development of magnetic
order in Sr(Co1−xNix)2As2 (helical order with in-plane
FM) and LaxSr1−xCo2As2 (FM).
We note that the RPA method is known to overes-

timate transition temperatures since it neglects certain
types of fluctuations [28, 30]. Thus, the temperature
at which the calculations are performed should not be
directly compared with experimental transition temper-
atures. We choose T = 30 meV to balance the com-
putational costs with a sufficient resolution of spectral
features in the band structure and the DOS. The compu-
tational complexity increases at lower temperatures since
a finer k-grid discretization is required to accurately cap-
ture sharper features in the susceptibility. The result-
ing critical Uc that we extract at T = 30 meV would
be reduced if the simulation was performed at a lower
temperature, but the phase diagram would not change
much. We note that the spin-orbit coupling constant of

the Co-3d orbital can be estimated to be around 74 meV
which is also significantly larger than the temperature we
consider, ensuring that effects of spin-orbit coupling are
already well captured at this T .
Our model also captures the essential features asso-

ciated with itinerant frustration: the presence of both
FM and stripe-AF fluctuations and the interesting ob-
servation that FM fluctuations dominate only at higher
T > 150 K [8], but stripe-AF fluctuations take over at
lower T . To reproduce such a behavior in our model,
one needs to consider finite hole doping x <∼ −0.1 and
finite Hund’s coupling J/Uc > 0.2, where we find the
leading instability to be at the stripe-AF wavevector [see
Fig. 6(a)]. We generally observe that FM and stripe-AF
instabilities lie close to each other in the hole doped re-
gion for all values of J , even when FM is the leading
instability. When we quantify the degree of frustration
using ΘF in Eq. (15), we find the slightly hole doped re-
gion (−0.2 < x < 0) to be substantially frustrated even
at smaller values of J , where FM is the leading instability
[see Fig. 6(f)]. We note that tuning U to larger values has
a similar effect as lowering temperature and both move
the system closer to an instability. We choose to increase
U in our calculations as it requires significantly less com-
putational effort than lowering T and it is known (at least
in the single band case) to be qualitatively equivalent.
We also find good qualitative agreement between ex-

periment and theory at finite frequencies [8, 13, 20]. The-
oretically extracting the frustration parameter η from
the anisotropy of the finite frequency peak of χ(q, ω)
at q = X and ω = 50 meV yields η(x = 0, J/Uc =
0.25) = −0.20 and η(x = −0.2, J/Uc = 0.25) = −0.66.
This shows that the model at x = 0 is slightly less frus-
trated than the experimental one, for which one finds
ηINS ≈ −0.5 at low T = 5 K and ηINS ≈ −0.7 at higher
T = 100 K. One can thus reproduce the degree of exper-
imental frustration by moving to the slightly hole doped
system x ≈ −0.2. Again, this suggests that the ex-
perimental system SrCo2As2 behaves like a slightly hole
doped model and is consistent with conclusions drawn
from our static susceptibility results.

VI. CONCLUSIONS

In this work, we investigate the magnetic properties
of doped SrCo2As2 in a realistic 16-orbital Hubbard-
Hund model. By calculating the RPA magnetic sus-
ceptibility, we determine the leading magnetic instabil-
ity as a function of doping x and Hund’s coupling J .
We find FM to be the leading instability in a wide re-
gion around x = 0 and for all values of J . Various
AF phases that are characterized by the wavevectors M ,
X and P appear under hole doping x <∼ −0.1 and for
sufficiently large Hund’s coupling J/Uc > 0.1. With
Uc ≈ 2 − 3 eV, this corresponds to a Hund’s coupling
strength J ≈ 200− 300 meV, which is realistic [34]. We
find that the distance of the chemical potential to par-
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tially flat bands (with dxy orbital character) and to a
resulting DOS peak at E = 30 meV determines the value
of the critical Hubbard U , where magnetic order devel-
ops. We observe that Uc(x) experiences a shallow min-
imum at x ≈ 0.1 and steeply increases for x < 0. This
explains the experimental observation that SrCo2As2 de-
velops magnetic order only under electron doping but not
under hole doping.

We observe that a larger Hund’s coupling J tends to
reduce Uc and to distribute electrons among different or-
bitals, which we find to favor AF phases. We relate this
to the orbitally resolved magnetic susceptibility χabba,
which shows significant mixing between the dominant dxy
orbital and the other d orbitals only at the AF instabili-
ties. In contrast, χabba at the FM instability is dominated
by contributions from the dxy orbitals only. This suggests
that hole doped systems with a larger J/U could stabi-
lize the sought-after stripe-AF phase. We note that the
exact value of J/U in the experimental systems is un-
known. Furthermore, recent ab initio studies have found
that J/U can be tuned over some limited range by ap-
plying pressure or strain [31, 32]. We leave a detailed
theoretical study of possible experimental tuning param-
eters such as pressure or strain for future work. Note
that relatively small pressures trigger a structural tran-
sition to a collapsed tetragonal phase, where the DFT
electronic band structure is quite different [33].

Our results demonstrate that the phenomenon of itin-
erant magnetic frustration can be captured within a mul-
tiorbital Hubbard-Hund model. In particular, by quan-
tifying frustration as the difference of Hubbard-U val-
ues where FM and stripe-AF instabilities occur, ΘF ∝
|Uc,FM−Uc,stripe-AF|, we show that the parent compound
experiences a significant degree of frustration. This is
signaled by a small value of ΘF due to a near degen-
eracy between FM and stripe-AF orders. Interestingly,
we find that the region of small ΘF is smoothly con-
nected to the region in the phase diagram at larger hole
doping levels, where stripe-AF is the leading instability
[see Fig. 6(f)]. This explains the intriguing experimental
fact that the parent compound experiences dominant AF
fluctuations at low T , but orders FM at minute electron
doping. Our study reveals that the first phenomenon is
associated with the closeness of the AF instability (i.e.
a small value of ΘF ), whereas the second one is due to
a reduction of Uc with electron doping. The itinerant
magnetic frustration in SrCo2As2 is thus directly tied to
the predicted emergence of stripe-AF order at finite hole
doping and sufficiently large Hund’s coupling J . Its para-
magnetic behavior is related to the fact that U < Uc, i.e.,
that correlations are slightly too weak to trigger magnetic
ordering at x ≤ 0.
Finally, we calculate the RPA susceptibility χ(q, ω)

at finite frequencies and directly relate our findings to
inelastic neutron scattering results. We extract the
anisotropy η of the peaks close to the X point in the Bril-
louin zone, which was previously related to the degree of
frustration of the system. We find that one needs to con-

sider a small amount of hole doping to reproduce the ex-
perimental value, since the x = 0 model is less frustrated
than the experimental parent compound SrCo2As2. We
generally find that the hole doped model with x ≈ −0.15
and intermediate values of J best captures the experi-
mental observations on SrCo2As2. Our results offer an
alternative and fully itinerant description of the tanta-
lizing phenomenon of itinerant magnetic frustration in
doped SrCo2As2, which we find to arise from the inter-
play of flat band physics and finite Hund’s coupling in
a correlated multiorbital model. Future work could fur-
ther explore these observations, e.g. by including fur-
ther range interactions in the model or by considering
the presence of disorder. It would also be worthwhile to
apply such an analysis to other compounds in the family
of cobalt arsenides.
We provide all required programs as open-source soft-

ware, and we make the raw data of our results openly
accessible [47].
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The research at Iowa State University and Ames Na-
tional Laboratory was supported by the U.S. Depart-
ment of Energy, Office of Basic Energy Sciences, Divi-
sion of Materials Sciences and Engineering. Ames Na-
tional Laboratory is operated for the U.S. Department
of Energy by Iowa State University under Contract No.
DE-AC02-07CH11358. This computing support for the
research reported in this paper in part was supported by
the two National Science Foundation grants MRI1726447
and MRI2018594. M.H.C. and R.M.F. were supported by
the U.S. DOE, Office of Science, Basic Energy Sciences,
Materials Science and Engineering Division, under award
no. DE-SC0020045. The research was funded also in part
by the Philip and Virginia Sproul Professorship at Iowa
State University. All opinions, findings, and conclusions
expressed in this papers are those of the authors.

Appendix A: Details of the first principle
calculations

DFT calculations were carried out using the pro-
jected augmented-wave method as implemented in the
Vienna ab initio simulation package (Vasp) [48, 49].
For the exchange-correlation functional, we employed the
Perdew, Burke, and Ernzerhof (PBE) [50] parametriza-
tion in the generalized gradient approximation (GGA).
Experimental lattice parameters (a = b = 3.9471 Å,
c = 11.801 Å, and zAs = 0.3588) [6] are used in the
calculations, and the plane wave cutoff is set at 300 eV.
We constructed the TB Hamiltonian via the maximally

localized Wannier functions (MLWFs) method [51] as im-
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FIG. 11. Comparison of the band structure calculated using
DFT (dotted line) and the tight-binding model (green lines)
along the high symmetry paths as denoted in Fig. 1.

FIG. 12. Chemical potential µ as a function of the electronic
density per unit cell x = n − 13 at T = 0 (purple) and T =
30 meV (red).

plemented in wannier90 [35] through a postprocessing
procedure [51–53] using the output of the self-consistent
DFT calculations. The basis set consists of 16 MLWFs,
corresponding to five Co-3d orbitals and three As-p or-
bitals on each Co site and As site, respectively. The
selectively localized Wannnier function method was used
to ensure the Co-3d orbitals centered on the Co sites. As
shown in Fig. 11, the resulting 16× 16 real-space Hamil-
tonian H(R) accurately reproduces the band structures
in the energy window of interest near the Fermi level,
validating its use for susceptibility modeling. The shift
in chemical potential as a function of the electronic den-
sity per unit cell at T = 0 and T = 30 meV is shown in
Fig. 12.

Fig. 13 shows two-dimensional cuts of the orbitally-
resolved Fermi surfaces for the parent compound x = 0
and under hole doping x = −0.2 and x = −0.3. The
Fermi surfaces illustrate a quasi-2D character of the sys-
tem, without signs of a clear nesting. The orbital charac-
ter of the Fermi surfaces is dominantly dxy-like at x = 0.

At finite hole doping, the weight of the dxz and dyz or-
bitals increases. Hole-doping also promotes the forma-
tion of two small electron pockets around the Γ and
the M point. The dominant orbital character of these
pockets is dxz, dyz for the pocket around Γ and is domi-
nantly dx2−y2 for the pocket around M . Notice also the
smoothening of the elliptic-like electron pocket around
the X and Y points with hole doping resulting in a re-
duction of the dxy orbital weight in favor or weight from
dxz (at X) and /dyz orbitals (at Y ), respectively.

Appendix B: Symmetry transformations for
different conventions

From the basis of tight-binding orbitals given in
Eq. (1), the basis of Bloch-like wavefunctions can be con-
structed using one of the conventions [36]:

ψa(k) =
1√
N

∑
R

eik(R+τa)ϕRa(r)

ψ̃a(k) =
1√
N

∑
R

eikRϕRa(r)

(B1)

differing up to a phase factor eikτa of the fractional posi-
tions of atoms within a unit cell. Both conventions give
the same band structure, as shown in Fig. 2(a), while
the phase factor difference shows up in the eigenvectors.
The two conventions are identical when working with the
orbitals of one atom only, e.g. in usual 5-bands models
for the Fe-based superconductors.
Using the convention ψ, the periodicity in momentum

space is not preserved anymore, so one has to work with
the Wigner-Seitz cell. With this convention, the eigen-
vectors at symmetry-related points are related just by a
unitary matrix of a point group transformation Û , and
non-degenerate eigenvectors differ only up to a global
phase ϕ.

una(k) =
∑
b

Uabu
n
b (U−1k)eiϕ (B2)

While more commonly used convention ψ̃ has the ad-
vantage of 2π-periodicity of Bloch functions; it has a dis-
advantage when working with systems with more than
one atom per unit cell. When the symmetry opera-
tion acting on orbitals centered at one unit cell map
them to different unit cells, the transformation matrix be-
tween the eigenvectors at the symmetry-related points is
a momentum-dependent transformation in orbital space
ˆ̃
U(k).

ũna(k) =
∑
b

Ũab(k)ũ
n
b (U−1k)eiϕ (B3)

As an example, the C4 rotation maps orbitals As1 →
As1, As2 → As2, Co1 → Co2, Co2 → Co′1, where As1,
As2, Co1, Co2 all belong to the same unit cell, and Co′1
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FIG. 13. Two-dimensional cuts of the Fermi surface at fixed
qz = {0, 1

2
, 1}π

c
(columns from left to right). Different rows

correspond to different dopings: x = 0 (first row), x = −0.2
(second row) and x = −0.3 (third row). Color denotes the
dominant d orbital weight of the band. Note that some bands
have a dominant p orbital character, but we here focus on the
d orbital content which is more important for the magnetic in-
stability. We plot bands within an energy window of ±5 meV
around ω = 0 with a discretization of 200 × 200 k-points in
the 2D cut of the BZ. The figures also include the locations
of high-symmetry points.

is positioned in the neighboring unit cell R′. Using the

convention ψ̃, the transformation matrix acquires a shift
eikR

′
for the transformation that includes orbitals outside

of the unit cell. As a consequence, the physical suscep-
tibility calculated in Eq. (13) has momentum-dependent

transformation under C4 rotation when convention ψ̃ is
used and transforms like a scalar under the symmetries
of the system when convention ψ is used.
In what follows, we use convention ψ and prove that

the physical susceptibility is invariant under C4 rotations
in this convention.

From Eq. (10) and Eq. (13), the bare physical suscep-
tibility is:

χ(0)(q) =
1

2N

∑
ab
k

mn

Mmn
abba(k,q)

nF (ε
m
k )− nF (ε

n
k+q)

εnk+q − εmk
.

(B4)
The eigenvalues for C4 symmetry related points, q and
C4q, are identical and summing over the BZ (

∑
C4k

=∑
k), we find

χ(0)(C4q) =
1

2N

∑
ab
k

mn

Mmn
abba(C4k, C4q)

nF (ε
m
k )− nF (ε

n
k+q)

εnk+q − εmk
,

(B5)

where the tensor M̂ , introduced in Eq. (11), contains
the information about the transformation of eigenvectors
given in Eq. (B2) where Û = Û(C4),

Mmn
abba(C4k, C4q) =

∑
a′b′c′d′

UT
aa′UT

bb′Ubc′Uad′Mmn
a′b′c′d′(k,q) .

(B6)
Note that for physical susceptibility, the acquired global
phases cancel exactly.

Finally, using∑
a

UT
aa′Uad′ =

∑
a

Ua′aUad′ = δa′d′ , (B7)

lead to bare physical susceptibilities at q and C4q being
equivalent, while the individual components contributing

to χ(0)(C4q) and χ
(0)
phys(q) will be shuffled.

With Hubbard-like interactions that preserve the sym-
metry of the original Hamiltonian introduced in Eq. (8),
it follows that

χ(q) = χ(C4q). (B8)

Appendix C: Symmetrization of the Hamiltonian

The Wannier Hamiltonian obtained from the first prin-
ciple calculations is known to slightly break crystal sym-
metries of the system due to band disentanglement. This
symmetry breaking can be controlled for the band struc-
ture, enforcing the symmetry conservation within the
desired precision at the cost of the agreement between
first-principle and fitted band structure. We found this
enforcement does not improve the precision of the eigen-
vectors, which generally differ on third or fourth, but
sometimes already on the second digit. Furthermore, us-
ing a software package WannierTools to restore the crys-
tal symmetries of the Hamiltonian in real space by gener-
ating all rotation matrices and applying them on orbitals
on each atom [39] does not work perfectly on restoring the
properties of the eigenvectors. We proceed with restoring
the C4 symmetry of our Hamiltonian explicitly, averaging
over the symmetry-related points in momentum space.

When sampling the k-point mesh in the more com-
plicated Brillouin zones with edges and points shared
between more than two neighboring unit cells, it is not
trivial to treat boundaries correctly. One often-used ap-
proach is the Monkhorst-Pack grid with an even number
of points along each direction spanned by primitive lat-
tice vectors that avoid sampling high-symmetry points
that usually lie on some boundaries. We deal with this
differently by introducing a small constant shift to all
points, much smaller than the step size in a sampled grid.
The results do not depend on the introduced small shift
to the desired precision.

We start by sampling the k-point mesh in the recip-
rocal unit cell, introduce a small constant shift to all
points and translate them to the Wigner-Seitz cell. We
symmetrize the Hamiltonian in momentum space explic-
itly to preserve the C4 symmetry of the system, using
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the convention ψ, where Û = Û(C4). The symmetrized Hamiltonian

hsymab (k) =
1

4

(
hab(k) +

∑
cd

Uachcd(C
−1
4 k)U−1

db +
∑
cd

U2
achcd(C

−2
4 k)U−2

db +
∑
cd

U3
achcd(C

−3
4 k)U−3

db

)
(C1)

UAs 0 0 0 JAs 0 0 0 JAs
0 U ′

As 0 J ′
As 0 0 0 0 0

0 0 U ′
As 0 0 0 J ′

As 0 0

0 J ′
As 0 U ′

As 0 0 0 0 0
JAs 0 0 0 UAs 0 0 0 JAs
0 0 0 0 0 U ′

As 0 J ′
As 0

0 0 J ′
As 0 0 0 U ′

As 0 0
0 0 0 0 0 J ′

As 0 U ′
As 0

JAs 0 0 0 JAs 0 0 0 UAs

TABLE III. Onsite interaction on As atom in folded orbital
space.

conserves the symmetries of the system down to machine
precision.

Appendix D: Interaction matrix

Here we explicitly write the matrix elements of the in-
teraction of the Hubbard-Hund Hamiltonian introduced

in Eq. (8) in folded orbital space. The interactions we
consider are intra-orbital Coulomb interaction U ll

ll = U ,
inter-orbital Coulomb interaction U ll

mm = U ′, Hund’s
coupling U lm

lm = J , and the pair-hopping U lm
ml = J ′. We

distinguish onsite interactions for Co and As atoms. In
order to work with matrix equations, we fold indices in
the orbital tensor introduced in Eq. 8 using A = (ad) and
B = (bc), such that Uab

dc = UAB . The interaction matrix
for the As (Co) orbitals positioned on a single atom in
folded orbital space is a 9 × 9 (25 × 25) matrix, given
for the As and Co atoms in Table III and Table IV, re-
spectively. Rotational invariance in orbital space for each
atom separately is satisfied when J = J ′ and U ′ = U−2J
on each atom.
The full interaction matrix for 16 orbitals is a block-

diagonal 256 × 256 matrix in folded orbital space con-
sisting of 2 Co blocks of size 80 × 80 and 2 As blocks
of size 48 × 48. Each of these blocks are sparse matri-
ces with non-zero elements on the positions of the on-site
interactions for Co and As atoms.
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