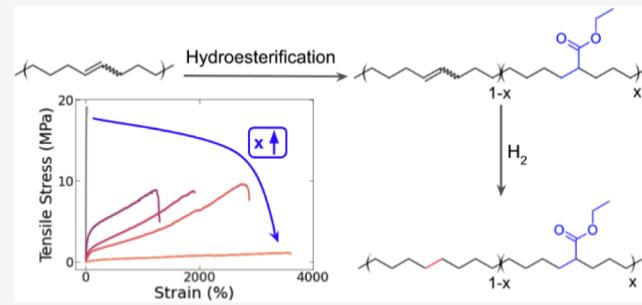


1 Hydroesterification of Polycyclooctene to Access Linear Ethylene 2 Ethyl Acrylate Copolymers as a Step Toward Polyolefin 3 Functionalization

4 Ikechukwu Martin Ogbu,[#] Eli J. Fastow,[#] Karen I. Winey,* and Marisa C. Kozlowski*

Cite This: <https://doi.org/10.1021/acs.macromol.4c02074>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

5 ABSTRACT: To advance a strategy of polymer-to-polymer
6 upcycling of waste polyolefin by dehydrogenation then function-
7 alization, we report successful hydroesterification of polycyclooc-
8 tene (PCOE), an analogue for partially unsaturated polyethylene.
9 Here, we convert PCOE to a linear analog for poly(ethylene-*co*-
10 ethyl acrylate) (EEA) across a range of ethyl acrylate incorpo-
11 ration (0 to 18 mol % of ethylene units). The ester incorporation
12 was well controlled by reaction time, and the remaining C=C
13 bonds were subsequently hydrogenated. The bulky ethyl acrylate
14 groups did not incorporate into orthorhombic PE crystals,
15 decreasing the crystallinity, crystallite size, and melting temperature
16 with increasing functionalization. Additionally, hydroesterification tuned the dynamic mechanical properties, decreasing both the
17 glass transition temperature and the storage modulus in the rubbery regime with greater functionalization. The linear EEA analogs
18 reported here achieve remarkable extensibility (strain > 4000%) and high toughness, comparable to commercial random and
19 branched EEA. Ultimately, we demonstrate successful conversion of an analogue to dehydrogenated PE to a linear EEA with
20 favorable mechanical properties.

21 **INTRODUCTION**

22 Polyolefins constitute the majority of polymer production,
23 primarily as single-use plastics with an average product lifetime
24 of half a year.^{1,2} The incorporation of pendant polar
25 functionality into polyolefins produces copolymers with greater
26 performance in applications that require high strength,
27 toughness, and adhesion. Synthesis of polyolefin copolymers
28 typically proceeds by free radical polymerization, producing a
29 random distribution of functional groups and branched chain
30 architecture.^{3,4} Postpolymerization modification is, however,
31 another strategy to incorporate functional groups on
32 polyolefins to upgrade them to value-added functional
33 polymers. This complementary approach also allows access
34 to novel polymers with previously inaccessible chain
35 architecture.^{5,6} In addition, postpolymerization modification
36 of waste polyolefins to generate functional polymers promises
37 to recover value and keep atoms in the economy for longer.
38 Here, we investigate the postpolymerization modification of a
39 model for partially unsaturated polyolefin waste.^{7–9}

40 We target the synthesis of ethylene acrylate copolymers,
41 valued for flexibility, toughness, and adhesive properties.^{20,21}
42 They have wide applications in hot melt adhesives, sealants,
43 plasticizers, food packaging and cable jacketing.^{22–24} The
44 market value of ethylene acrylate copolymers is increasing and
45 expected to reach 70 billion US dollars by 2033.²⁵ For
46 example, poly(ethylene-*co*-ethyl acrylate) (EEA) is typically

47 valued for its high toughness, thermal stability, and extensibility,
48 and is often used in cable jacketing applications.^{24,26–28}

49 Conventionally, commercial EEA is made by copolymeriza-
50 tion of ethylene and ethyl acrylate comonomers by a free
51 radical process as metal-catalyzed copolymerization is challeng-
52 ing due to catalyst deactivation by the polar comonomers.^{3,4}
53 This free radical process leads to polymer branching. An
54 unbranched EEA version can be prepared by ring-opening
55 metathesis polymerization of ester-functionalized cycloalkenes
56 or its copolymerization with other cycloalkenes.^{29–31} Post-
57 polymerization modifications to incorporate pendant ester
58 units on polyolefins through photocatalysis or free-radical C–
59 H alkylation or using a diazo reagent have also been
60 reported,^{32,33} but the obtained polymers structurally differ
61 from conventional ethylene acrylate copolymers in that there
62 are additional carbon atoms between the carboxylic acid and
63 the polymer backbone. Here, we contribute to an alternative
64 route to EEA by hydroesterification of polycyclooctene

Received: August 30, 2024

Revised: October 21, 2024

Accepted: October 24, 2024

66 (PCOE), a model for partially dehydrogenated high density 67 polyethylene (HDPE), using CO and alcohol to access linear 68 EEA that cannot be obtained using conventional free radical 69 methods.

70 Hydroesterification result in the conversion of an alkene 71 ($\text{RCH}=\text{CHR}'$) to a saturated unit bearing an ester (RCH_2- 72 $\text{CHRCO}_2\text{R}'$).^{34–36} This reaction has been used industrially on 73 large scale with small molecules; for instance, ~100 kt of 74 methyl propionate was produced by hydroesterification of 75 ethylene from 2000 to 2010.^{34,37,38} Further, Alper and Ajjou 76 have employed hydroesterification to functionalize more 77 soluble and readily processable 1,2-polybutadiene.³⁹ This 78 polymer contains vinyl alkene units, which react faster than 79 internal alkenes,⁴⁰ and may not serve as a good model for 80 partially dehydrogenated polyethylene containing predomi- 81 nantly internal alkenes.¹⁹ Disubstitution of the carbon–carbon 82 double bond exerts steric hindrance, which hampers its 83 reactivity.⁴⁰

84 We envision the hydroesterification approach reported here 85 as part of a two-step approach to polymer-to-polymer 86 upcycling involving partial dehydrogenation to introduce 87 carbon–carbon double bonds and subsequent functionaliza- 88 tion.^{10–13} Upcycling of polyolefins via postpolymerization 89 functionalization has remained a big challenge due to their 90 chemical inertness. Although efforts have been made to 91 directly incorporate functional groups on polyolefins using 92 free-radical methods, this approach is often limited by poor 93 reaction control with attendant polymer cross-linking and 94 chain scission.⁶ Other methods, such as the use of carbene- 95 based precursors and transition metal C–H activation, often 96 suffered from limited reactivity. Our proposed two-step 97 approach allows easier and more controlled functionalization 98 of polyolefins, and diverse functionalization is possible given 99 the numerous alkene functionalizations available, as we have 100 previously demonstrated.^{10–12,14} Partial dehydrogenation of 101 aliphatic polyolefins has been reported by Goldman and 102 Coates groups using iridium pincer catalyst,^{15–18} and has 103 successfully been used to deconstruct polyolefins via cross- 104 metathesis to obtain functionalized macromonomers, which 105 could be repolymerized into higher value functional 106 polymers.¹⁹ Direct functionalization of partially dehydrogen- 107 ated polyolefins is another strategy that can lead to 108 functionalized polyolefins without the deconstruction of the 109 starting polymer, thereby reducing process steps and cost.

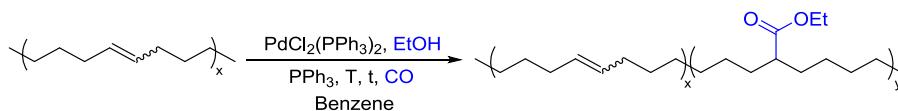
110 In the present study, we functionalize PCOE, as a model for 111 partially dehydrogenated HDPE, with ethyl acrylate units by 112 hydroesterification. We characterize the thermal, structural, 113 surface, and mechanical properties of this linear ethylene ethyl 114 acrylate copolymer. Ethyl acrylate does not incorporate into 115 crystallites, decreasing the crystallinity and melting temper- 116 ature with greater functionalization. Increasing the functional- 117 ization also reduced the rubbery storage modulus and 118 significantly increased the extensibility. Ultimately, we generate 119 a linear equivalent of EEA and establish its mechanical 120 properties.

121 ■ EXPERIMENTAL DETAILS

122 **Materials.** *cis*-Cyclooctene (95%, stabilized) and *trans*-4-octene 123 were obtained from Acros Organic. $\text{PbCl}_2(\text{PPh}_3)_2$ was purchased from 124 Ambeed. Hoveyda–Grubbs catalyst M720 Umicore, tri-*n*-propyl- 125 amine, *p*-toluenesulfonyl hydrazide, and anhydrous benzene were 126 sourced from Sigma-Aldrich. Triphenylphosphine was purchased from 127 Alfa Aesar. Carbon monoxide (CO, 99.99%) was obtained from

128 Argas company. The gas was used directly without further 129 purification. Absolute ethanol (99.5%) and *p*-xylene were purchased 130 from Fisher Scientific. Commercial EEA (CAS# 9010-86-0) was 131 purchased from Scientific Polymer Products with ethyl acrylate 132 content of 3.0 mol % as determined by high temperature ^1H NMR. 133 We refer to this polymer as 3-rEEA.

134 **Synthesis of Polycyclooctene (PCOE).** *cis*-Cyclooctene (12 mL, 92 135 mmol) and *trans*-4-octene (0.11 mL, 0.67 mmol) were added into a 136 two-neck round flask containing dry CH_2Cl_2 (10 mL) and magnetic 137 stirrer. The mixture was purged with argon for 10 min. Hoveyda– 138 Grubbs catalyst (M720) (5.8 mg) dissolved in dry CH_2Cl_2 (5 mL) 139 under argon was added, and the reaction mixture was stirred under a 139 positive pressure of argon for 30 min. After 5 min, the mixture became 140 too viscous to stir and was diluted with additional CH_2Cl_2 (20 mL). 141 The reaction was quenched by adding ethyl vinyl ether (0.5 mL). 142 After stirring for 5 min, the product was precipitated with MeOH (400 143 mL) and washed with additional MeOH. The residual solvent 144 was removed under reduced pressure overnight. The product was 145 obtained as a white soft solid, 9.7 mg, 81%, *trans/cis* ratio = 1:0.23, 146 soluble in CH_2Cl_2 at room temperature.


147 **Functionalization of PCOE. Hydroesterification of PCOE.** 148 Hydroesterification was done in a well-ventilated hood using a Parr 149 5000 multireactor with 45 mL Hastelloy vessels equipped with Teflon 150 liners and magnetic stirring. Note: for safety reasons, the fume hood 151 was equipped with carbon monoxide detector (detection range: 0– 152 1000 ppm, response time < 30 s), and high-pressure regulator was 153 used on the gas cylinder. PCOE (270 mg, 2.45 mmol C=C), 154 $\text{PdCl}_2(\text{PPh}_3)_2$ (3 mol %, 0.0735 mmol), PPh_3 (6 mol %, 0.368 mmol), 155 and TsOH (2 mol %, 0.049 mmol) were weighed into the liner. 156 Absolute ethanol (4.0 mL) and dry benzene (3.0 mL) were added. 157 The reactor was sealed and purged with argon, followed by seven 158 cycles of CO pressure (4 atm) pressurization and depressurization. 159 Final pressurization with CO (40 atm) was followed by heating at 140 160 °C for 48 h under constant stirring (1400 rpm). After it was cooled to 161 room temperature, the reactor was depressurized, and the liquid 162 component of the reaction mixture was decanted. The remaining soft 163 solid was dissolved in CH_2Cl_2 (5 mL), precipitated in MeOH (50 164 mL), and recovered by decantation. Further purification was 165 conducted by redissolving the polymer in CH_2Cl_2 and reprecipitation 166 in MeOH. This process was repeated several times to obtain the 167 functionalized polymer as a soft white solid, 320 mg.

168 **Gelation Test.** Polymer gelation was determined by dissolving the 169 polymer (20 mg) in CH_2Cl_2 (5 mL) at room temperature for 4 h. 170 With vacuum filtration, the undissolved polymer was separated and 171 dried for 3 h at 50 °C under vacuum. The solid was weighed and used 172 to determine percent gel content.

173 **Palladium Black Removal.** In some cases, palladium black was 174 observed in the polymer, especially after a prolonged reaction time. 175 This was removed by dissolving the polymer in excess dichloro- 176 methane (10 mL). The mixture was refrigerated overnight, during 177 which the palladium particles sediment. The clear polymer solution 178 was pipetted out, concentrated down to 5 mL and precipitated in 179 MeOH. The polymer was dried at 35 °C under vacuum.

180 **Hydrogenation of the Ethyl Acrylate Functionalized PCOE.** To a 181 two-neck round-bottom flask equipped with a reflux condenser, the 182 functionalized polymer (300 mg), tri-*n*-propylamine (5 equiv relative 183 to residual C=C in the polymer), *p*-toluenesulfonyl hydrazide, TSH 184 (2.5 equiv relative to the residual C=C in the polymer), and xylene 185 (20 mL) were added. The mixture was purged with argon for 10 min 186 and, thereafter, heated in a preheated 125 °C oil bath for 1.5 h under 187 positive argon pressure. Another portion of TSH (2.5 equiv) was 188 added, and the reaction continued for an additional 1.5 h. The 189 reaction mixture was allowed to cool for about 2 min and directly 190 precipitated in methanol while still warm. The polymer was collected 191 by filtration, washed twice with methanol, and dried at 35 °C 192 overnight under reduced pressure.

193 The functionalized and hydrogenated polymer is termed α -EEA, 194 where α represents the fraction of ethylene units bearing ethyl acrylate 195 functionality. We refer to this value as the functionalization, which can 196 range from 0 to a maximum of 25% at full conversion of C=C.

Table 1. Hydroesterification of PCOE Catalyzed with $\text{PdCl}_2(\text{PPh}_3)_2$ Under Different Reaction Conditions^a

#	CO (atm)	T (°C)	t (h)	EtOH (mL)	Cosolvent	Ligand	Additive	Gelation (%)	Funct. (mol %) ^b	Funct. yield (%) ^c
1	40	140	24	4	Benzene	PPh_3	—	0	9	36
2	40	140	24	4	Benzene	PPh_3	TsOH	0	16	64
3	40	140	24	7	—	PPh_3	TsOH	0	3	12
4	20	140	24	4	Benzene	PPh_3	TsOH	0	13	52
5	40	170	24	4	Benzene	PPh_3	TsOH	0	12	48
6	40	140	24	4	Benzene	PPh_3	TsOH, H_2 (5 atm)	0	16	64
7	40	140	24	4	Benzene	dppb	TsOH	>90	0.3	1.2
8	40	140	24	4	Benzene	dtbpbm	TsOH	>95	0.2	0.8
9	40	140	48	4	Benzene	PPh_3	TsOH	0	18	72
10	40	140	72	4	Benzene	PPh_3	TsOH	0	21	84
11	40	100	72	4	Benzene	PPh_3	TsOH	0	19	76
12 ^d	40	140	96	4	Benzene	PPh_3	TsOH	0	16	64

^aAll reactions were performed in a Parr reactor (45 mL) using PCOE (270 mg, 2.45 mmol C=C), $\text{PdCl}_2(\text{PPh}_3)_2$ (3 mol %, 0.0735 mmol), PPh_3 (6 mol %, 0.368 mmol), TsOH (2 mol %, 0.049 mmol), ethanol (4 mL), and benzene (3 mL). dppb: 1,4-bis(diphenylphosphino)butane. dtbpbm: 1,2-bis(di-*tert*-butylphosphinomethyl) benzene. ^bDetermined from ¹H NMR at 298 K, 600 MHz, using CDCl_3 as solvent. Maximum (all alkenes reacted) = 25 mol %. ^cFunctional mol % relative to maximum (25 mol %). ^d1 g-scale.

Spectroscopic Characterization. Nuclear Magnetic Resonance (NMR). Room temperature NMR (¹H and ¹³C) spectra were recorded on a Fourier transform NMR spectrometer at 298 K and 600 MHz, 201 using CDCl_3 as the solvent. High temperature ¹H NMR was recorded 202 at 363 K and 500 MHz using 1,1,2,2-tetrachloroethane-*d*₂ as the 203 solvent.

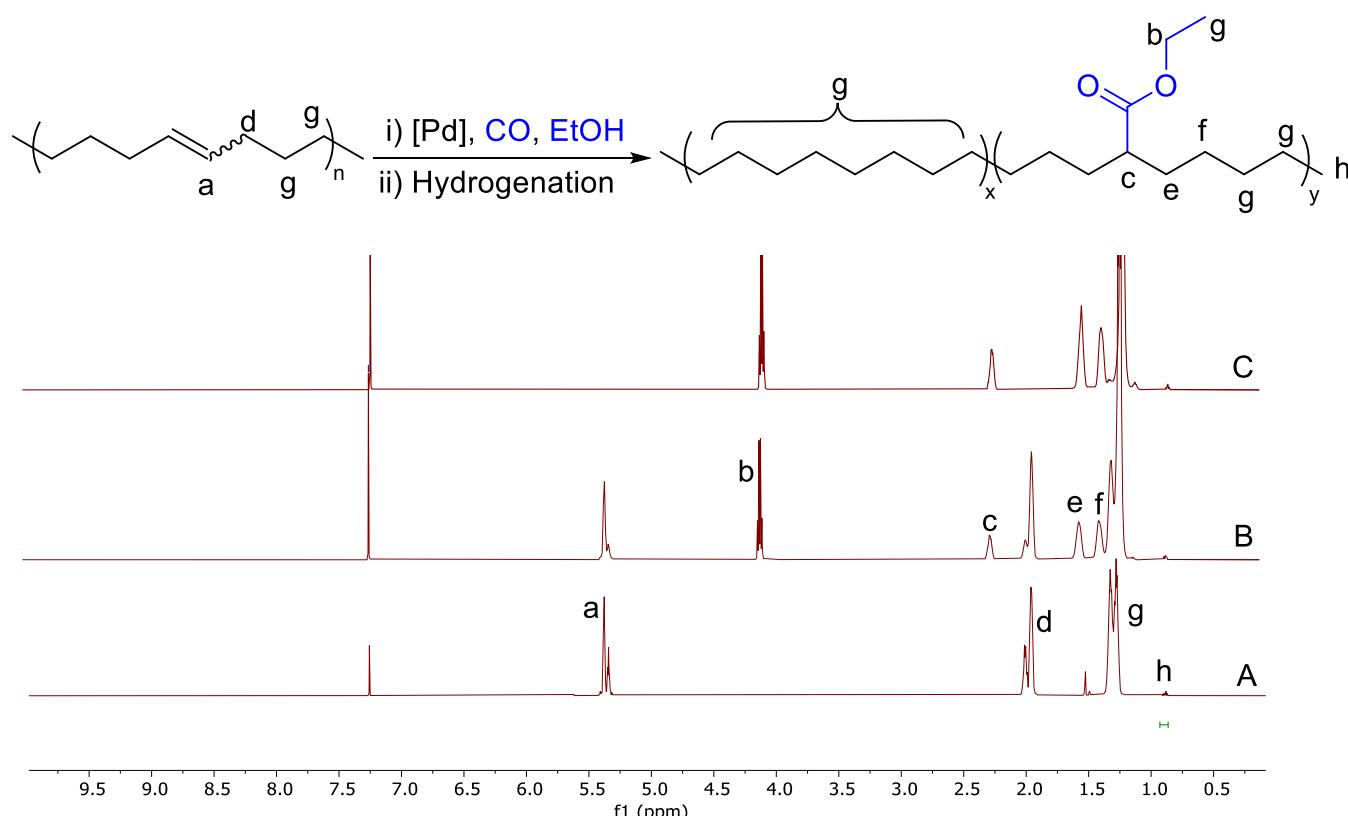
Attenuated Total Reflectance (ATR)–Fourier Transform Infrared (FTIR) Spectroscopy. FTIR-ATR was taken using a Nicolet 20 FTIR 206 with ATR attachment. Spectra were measured using an ambient 207 temperature DTGS. Following drying at 120 °C for 4 h, polymer 208 powder was compressed under an anvil against the diamond ATR 209 crystal, then spectra were collected at 0.2 cm^{-1} resolution from the 210 sum of 100 scans.

High Temperature Gel Permeation Chromatography (HT-GPC). Molecular weights and dispersities (\bar{D}) were measured by using 213 high temperature gel permeation chromatography with infrared 214 detection (HT-GPC) on a Polymer Char GPC-IR instrument. This 215 HT-GPC had a guard column, three Agilent Omniplex columns, and 216 an IR4 detector from Polymer Char. The IR4 detector measures both 217 total CH signal and CH_3 signal, Figure S4. All samples were dissolved 218 in 1,2,4-trichlorobenzene at 150 °C by the instrument's autosampler 219 with a 90 min dissolution time. Measurement proceeded at a 220 concentration of ~1 mg/mL and molecular weights were determined 221 against 16 narrow molecular weight polystyrene (PS) standards.

Thermal Analysis. Thermogravimetric Analysis (TGA). The 223 TGA measurements were taken with a TA SDT650 scanning 224 differential thermogravimetric analyzer. TGA measurements were 225 conducted on ~5 mg of polymer loaded into 90 μL alumina pans at a 226 ramp rate of 10 °C/min from 50 to 550 °C under a nitrogen 227 atmosphere.

Differential Scanning Calorimetry (DSC). DSC measurements 229 were conducted on dried polymer powder (~5 mg) was loaded into 230 TZero hermetic aluminum pans. Samples were first heated to 150 °C 231 at 20 °C/min and then held for a 5 min isotherm to erase thermal 232 history. Samples were then cooled to -125 °C and heated to 150 °C 233 at 10 °C/min. Heat flux data was taken from the final heating, and 234 crystalline fraction (X_c) was determined by dividing the enthalpy of 235 melting by 293 J/g, or the enthalpy of melting from 100% crystalline 236 polyethylene (PE).

Film Preparation. Following drying at 120 °C for 4 h, films of α - 237 EEA and 3-rEEA were prepared by loading polymer powder into 239 window molds between two polytetrafluoroethylene (PTFE) liners 240 and then melt pressing on a Carver hot press at 135 °C under 1.5 T of 241 pressure. Samples were then allowed to return to room temperature


on the benchtop. After melt pressing, ~5 mg of excess film was 242 dissolved in 5 mL of tetrahydrofuran at 50 °C to confirm a lack of 243 gelation. All α -EEA samples were dissolved. Melt pressed films were 244 used for contact angle, X-ray scattering, and mechanical testing. 245

Contact Angle Testing. Contact angle was measured on films 246 1 cm in diameter prepared by the hot pressing procedure described 247 above. Measuring the water contact angle first required applying a 10 248 μL droplet of water to the polymer surface and taking an image with a 249 flat CCD camera. Contact angle was determined by fitting the drop 250 shape to the Young–Laplace equation for an asymmetric droplet.⁴¹ 251

X-Ray Scattering. Polymer films prepared by hot pressing were 252 affixed to a standard transmission holder from Xenocs by polyimide 253 tape. X-ray scattering was performed on a Xeuss 2.0 instrument with a 254 Cu $\text{K}\alpha$ source. Small angle X-ray scattering (SAXS) data were 255 collected using a Pilatus 1 M solid state detector, and wide-angle X- 256 ray scattering (WAXS) data were collected using a Dectris 100k 257 detector. Crystallinity from X-ray scattering was determined by first 258 fitting crystalline peaks in the WAXS signal to Lorentzian functions 259 and the amorphous halo to a double-Gaussian function. These 260 functions were integrated to identify I_c (total crystalline intensity) and 261 I_a (total amorphous intensity). Crystallinity was determined by using 262 $X_c = I_c / (I_c + I_a)$.²⁶³

Mechanical Testing. Dynamic Mechanical Analysis (DMA). 264 DMA measurements were conducted using a RSA III DMA from TA 265 using 25 mm × 3 mm × 0.3 mm samples. Temperature sweep 266 measurements proceeded at 1 Hz frequency, 0.2% strain amplitude, 267 10 °C/min ramp rate from -90 to 50 °C, and autotension 268 adjustments. Autotension applied a constant strain to keep the 269 minimum force to 20 g-equivalent and the maximum force to 300 g- 270 equivalent in tension. Frequency/temperature sweep measurements 271 proceeded at 0.03 to 90 Hz frequency with 10 points per decade, 0.2% 272 strain amplitude, 10 K temperature steps from -70 to 30 °C, and 273 autotension adjustments. Construction of the master curve was 274 performed by identifying the horizontal shift with a custom Python 275 script that minimized the interpolated difference between adjacent 276 measurements normalized by the overlap window. Vertical shifts were 277 taken from the thermal expansion of poly(ethylene-*co*-ethyl acrylate) 278 (thermal expansion coefficient = $205 \times 10^{-6} \text{ m}/(\text{m K})$).⁴² 279

Tensile Tests. Tensile tests were conducted on an Instron 5564 280 Tabletop Universal Testing Machine with a 2 kN load cell and 281 pneumatic grips. Microtensile sample dimensions comply with ASTM 282 D1708-18.⁴³ Five dog bone samples per polymer were strained at 1 283 mm/min ($de = 0.0033 \text{ s}^{-1}$), following the Speed B conditions in 284 ASTM D1708-18, until failure. 285

Figure 1. ^1H NMR of ethylene acrylate copolymers (11-EEA) before and after hydrogenation using *p*-toluenesulfonyl hydrazide, spectra recorded at 298 K, 600 MHz, using CDCl_3 as solvent. (A) PCOE, (B) after hydroesterification, and (C) after hydroesterification and hydrogenation.

286 ■ RESULTS AND DISCUSSION

287 **Optimization of Hydroesterification Reaction Con-**
 288 **ditions.** The PCOE used as a model for partially
 289 dehydrogenated polyethylene has $M_n = 12.6$ kDa, $M_w = 41.0$
 290 kDa, $D = 3.1$, as determined by HT-GPC after hydrogenation,
 291 and *trans/cis* double ratio of 1/0.23 as determined by ^1H
 292 NMR. Based on the efficiency of palladium catalysts in the
 293 hydroesterification of small alkenes, $\text{PdCl}_2(\text{PPh}_3)_2$ was chosen
 294 as catalyst for the reaction, and PPh_3 was chosen as low-cost
 295 ligand. We targeted ethyl ester adducts to compare to
 296 commercial materials, and hence used EtOH as solvent.
 297 Benzene was selected as cosolvent to solubilize the polymers.¹²
 298 Initial trials without any additive resulted in a moderate
 299 functionalization, and no polymer gelation was observed;
 300 Table 1, entry 1. TsOH as cocatalyst provided an almost 2-fold
 301 acceleration of the reaction and also did not induce any
 302 polymer gelation, entry 2. The acid cocatalyst likely promotes
 303 the reaction by helping to generate catalytically more active
 304 palladium-hydride species, and limiting palladium black
 305 formation.^{35,40} With neat ethanol, a lower ester yield was
 306 observed due to limited solubility, entry 3. Reactivity also
 307 diminished with a lower CO pressure, entry 4. Higher
 308 temperature not suitable as catalyst decomposition to Pd
 309 black and lower yield were observed, entry 5. Hydrogen as an
 310 additive⁴⁴ has no effect on the hydroesterification, entry 6.
 311 Notably, no polymer gelation was observed with PPh_3 as
 312 ligand; however, reaction with bidentate phosphines, (1,4-
 313 bis(diphenylphosphino)butane, dppb, and 1,2-bis(tert-butyl-
 314 phosphinomethyl) benzene, dtbpmb),⁴⁵ led to significant
 315 polymer gelation, and less ester incorporation, entries 7,8. A
 316 time-dependent increase in ester incorporation was observed,

317 which is useful for controlling the degree of functionalization,
 318 entries 2,9,10. Lower temperature provided similar yields with
 319 less catalyst decomposition, entry 11. However, the choice of
 320 higher temperature was to rule out any possible solubility
 321 limitations especially for the reaction conducted using neat
 322 ethanol (Table 1, entry 3). Finally, a 1 g-scale reaction was
 323 performed using the same amount of catalyst/ligand (0.7 mol
 324 %), resulting in a good yield by extending the reaction time to
 325 96 h, entry 12.

326 The mass of EEA isolated after the hydroesterification
 327 ranged from 265–330 mg (98–79%), indicating good mass
 328 recovery. Purification after hydroesterification was done by
 329 dissolving the polymer in CH_2Cl_2 and reprecipitating in
 330 MeOH several times to obtain white material. If the resultant
 331 material was grayish, which we attribute to the presence of
 332 palladium black, it was diluted with CH_2Cl_2 and allowed to
 333 stand overnight in a refrigerator, which allowed the palladium
 334 black to sediment. The clear polymer solution was pipetted out
 335 and precipitated in MeOH to afford white polymer. Residual
 336 MeOH was finally removed under reduced pressure at 30 °C.
 337 ^1H NMR (Figure 1) and ^{13}C NMR (Figure S2) spectroscopy
 338 did not exhibit signals for side-products, such as polyketones,
 339 and methylene proton of the ethyl ester group was clearly
 340 observed around 4.13 ppm. Notably, only one type of ester
 341 group was observed in the spectra, indicating that extensive
 342 double bond isomerization did not occur during the hydro-
 343 esterification.

344 **Hydrogenation of Functionalized PCOE.** Residual
 345 double bonds in the functionalized polymers were hydro-
 346 genated using diimide generated *in situ* with *p*-toluenesulfonyl
 347 hydrazide.⁴⁶ The resultant saturated polymer was precipitated
 348

Table 2. Alkoxy Carbonylation of PCOE Catalyzed with $\text{PdCl}_2(\text{PPh}_3)_2$ at Different Reaction Conditions^a

Sample	<i>t</i> (h)	Funct. (mol %) ^b	Normalized C=O peak area (arb units) ^b	Acrylate (wt %) ^c	<i>M_n</i> (g/mol) ^d	<i>M_w</i> (g/mol) ^d	<i>D</i> ^d
0-EEA	0	0	0.0	0	12.6	41.0	3.2
1-EEA	1	1	0.9	4	16.1	46.4	2.8
6-EEA	2	6	1.5	18	19.8	51.3	2.6
11-EEA	6	11	2.2	31	24.7	86.9	3.5
18-EEA	48	18	3.3	44	26.4	126.0	4.7

^aAll reactions were performed in a Parr reactor (45 mL) using CO (40 atm), $\text{PdCl}_2(\text{PPh}_3)_2$ (3 mol %), PPh_3 (15 mol %), TsOH (2 mol %), ethanol (4 mL), and benzene (3 mL) at 140 °C. ^bCalculated from C=O stretch in FTIR ($\sim 1745 \text{ cm}^{-1}$) normalized to the C–H symmetric stretch ($\sim 2850 \text{ cm}^{-1}$). ^cDetermined from ^1H NMR, at 298 K, 600 MHz, using CDCl_3 as solvent. ^dDetermined from HT-GPC at 150 °C using trichlorobenzene as the mobile phase, calibrated with polystyrene standards.

348 in MeOH, washed with MeOH, and residual solvent was
349 removed under vacuum overnight at room temperature to
350 furnish a soft white solid. Complete saturation of residual
351 double bonds in the polymer was confirmed by ^1H NMR, as
352 shown in Figures 1 and S3. Prior to measurement of materials
353 properties, the polymer samples were placed under vacuum
354 overnight at 70 °C to remove any volatile components.

355 **Controlling Level of Functionalization.** The reaction
356 was well controlled by reaction time, allowing adjustment of
357 ester content, Table 2. ATR-FTIR spectroscopy corroborates
358 ^1H NMR findings of functionalization values ranging from 0 to
359 18 mol % of ethylene units along with complete hydro-
360 genation, Figure S3. Specifically, the C=O stretch peak at
361 1745 cm^{-1} indicates the presence of ethyl acrylate, which
362 demonstrates that the acrylate group does not participate in
363 hydrogen bonding.^{41,42} The lack of a C=C stretch at ~ 1640
364 cm^{-1} or vinyl C–H bending at $\sim 970 \text{ cm}^{-1}$ supports complete
365 hydrogenation.

366 HT-GPC analysis of the functionalized polymers indicated
367 little or no backbone chain scission relative to the starting
368 PCOE, Table 2. We observe a decrease in elution time
369 corresponding to a larger hydrodynamic radius. By calibration
370 to 16 low dispersity polystyrene standards, we correlate the
371 elution time to molar mass. Gradual increases in our calculated
372 M_n and M_w with reaction time are readily attributable to both
373 the added acrylate group and changes in configuration in
374 solution as polarity increases with functionalization, Table 2.
375 With only a subtle increase in dispersity and no appearance of
376 a high molar mass shoulder, GPC indicates little or no
377 branching or cross-linking with functionalization, Figure S4.

378 **Thermal Stability of Functionalized Polymers.** The
379 thermal stability of the functionalized polymers was measured
380 by TGA, as shown in Figure 2. The unfunctionalized 0-EEA
381 sample exhibits a 5 wt % degradation temperature ($T_{d,5 \text{ wt \%}}$) of
382 455 °C. We attribute this mass loss to scission of C–C bonds.
383 From 0 to 1.2 mol % functionalization, the $T_{d,5 \text{ wt \%}}$ drops to
384 413 °C, though further functionalization decreases the $T_{d,5 \text{ wt \%}}$
385 to a smaller extent; $T_{d,5 \text{ wt \%}}$ for 18-EEA is 394 °C, Figure 2b.
386 Prior investigations into EEA ranging from 7.9 to 28.6 mol %
387 also identify a subtle decrease (~ 10 °C) in $T_{d,5 \text{ wt \%}}$ with
388 greater functionalization.⁴⁷ This mass loss likely stems from
389 decarboxylation and alcohol production mechanisms previ-
390 ously reported for ethyl acrylate pendant groups.^{23,48}

391 Notably, the linear α -EEA reported here exhibits a slightly
392 higher $T_{d,5 \text{ wt \%}}$ than 3-rEEA, indicating favorable thermal
393 stability when compared to commercial equivalents. Ulti-
394 mately, TGA reveals that α -EEA exhibits sufficient thermal
395 stability for melt processing, Figure 2.

396 **Morphology.** DSC reveals a substantial monotonic
397 decrease in melting temperature and melting enthalpy with

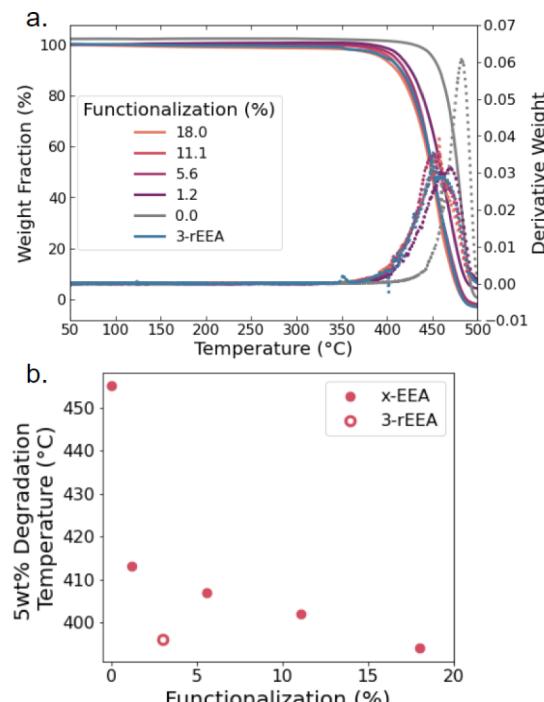
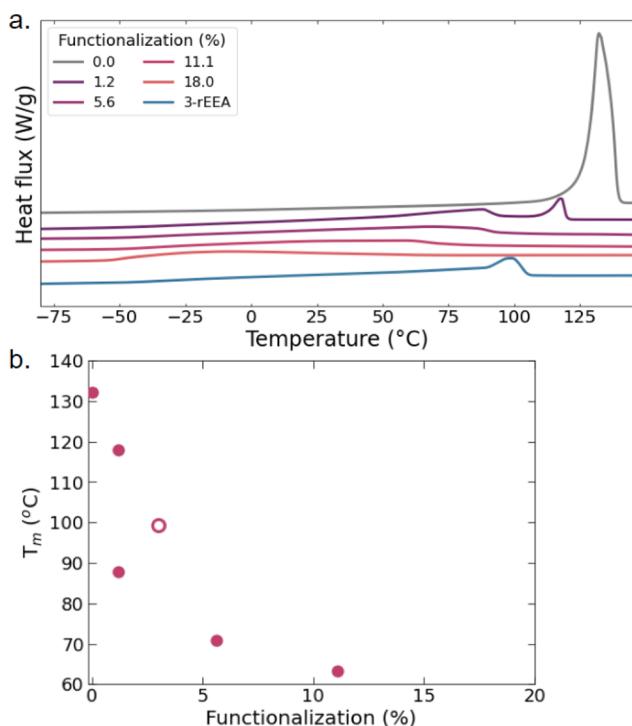



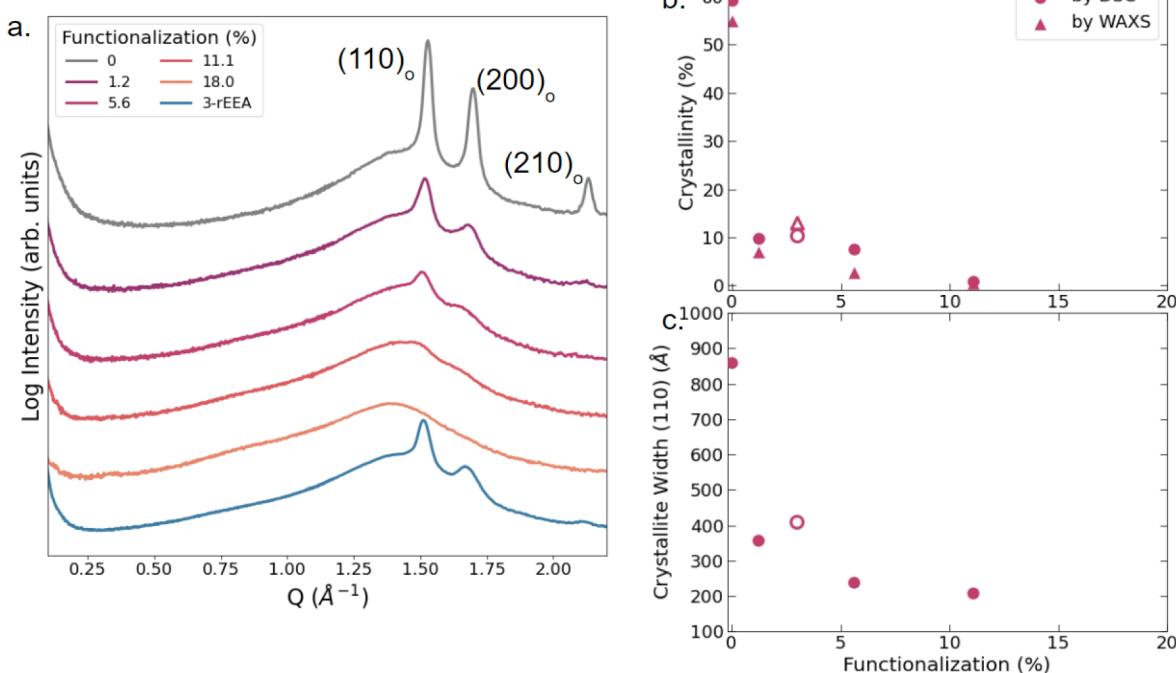
Figure 2. (a) TGA at 10 °C/min ramp rate of α -EEA (purple to orange) and 3-rEEA (blue) with weight fraction represented in solid lines and derivative weight fraction shown in dashed lines; (b) temperature corresponding to 5% weight loss plotted against functionalization from ^1H NMR.

greater functionalization, Figure 3. Notably, 1-EEA exhibits two melting exothermic peaks, a sharp peak at higher temperatures and a broad peak at lower temperatures. All of the other α -EEA polymers (except 18-EEA) exhibit a single melting feature. Commercial 3-rEEA exhibits greater T_m than the lower melting feature of 1-EEA and 6-EEA by >25 °C, Figure 3b.

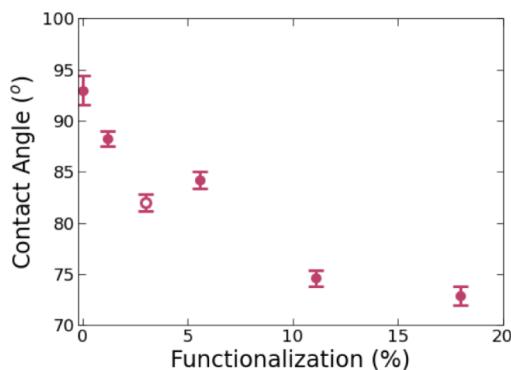
X-ray scattering detects crystalline peaks at lower functionalization levels and an amorphous halo at wide angles ($q > 1.0 \text{ \AA}^{-1}$). WAXS clearly reveals that all samples with detectable crystalline peaks take an orthorhombic crystal structure with lattice parameters $a = 7.4 \text{ \AA}$ and $b = 5.0 \text{ \AA}$, similar to HDPE.⁴⁹ The large ethyl acrylate pendants are not expected to incorporate into the crystallites,^{50,51} consistent with the WAXS peak positions changing by $<0.02 \text{ \AA}^{-1}$ with functionalization, Figure 4a. This orthorhombic crystal structure allows us to use the enthalpy of melting corresponding to 100% crystalline PE (293 J/g) to identify the crystallinity from the heat flux in DSC, Figure 4b. DSC and X-ray scattering results are in good agreement and detect a decrease in crystallinity

Figure 3. (a) Heat flux measured on second heating cycle (at 10 °C/min) following a 5 min isothermal hold at 150 °C and cool at 10 °C/min to −125 °C to erase thermal history and (b) melting temperature as a function of functionalization (filled circles represent x -EEA and open circles represent 3-rEEA).

from ~60% in the unfunctionalized polymer to 0% at 18% functionalization. A similar decrease in crystallinity with


functionalization levels, was also observed when PCOE was functionalized with thio-ether pendants.^{10,11}

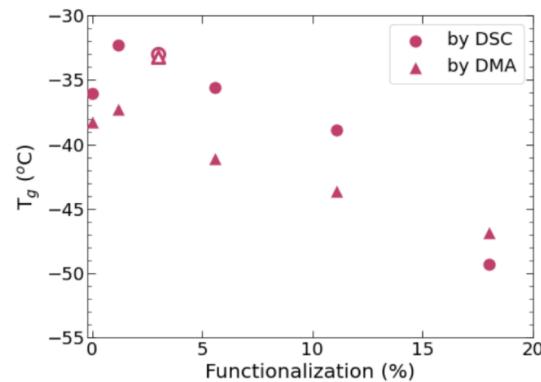
Crystallite size was approximated using Scherrer analysis of the full width half-maximum value extracted from the Lorentzian fit of the (110) orthorhombic peak.⁵² With increasing functionalization, we observe a decrease in crystallite width from ~850 to 200 Å, Figure 4c, that is consistent with the drop in percent crystallinity and melting temperature, Figure 3b. Additionally, the exclusion of functional groups from crystallites decreases the melt entropy, contributing to the decrease in melting temperature.⁵⁰


Finally, we attribute the difference in melting temperature and crystallinity between x -EEA and 3-rEEA to the difference in the pendant arrangement along the backbone. Unlike the x -EEA reported here, 3-rEEA contains ethyl acrylates randomly distributed along the backbone with a minimum separation of 1 backbone carbon.^{53,54} Thus, at similar compositions, 3-rEEA has some longer runs of PE that enable the formation of larger crystals that melt at higher temperatures.^{50,55} Specifically, 3-rEEA exhibits a crystallite width ~30% larger than expected for x -EEA at the same composition, Figure 4c, which is consistent with the higher T_m found in 3-rEEA.

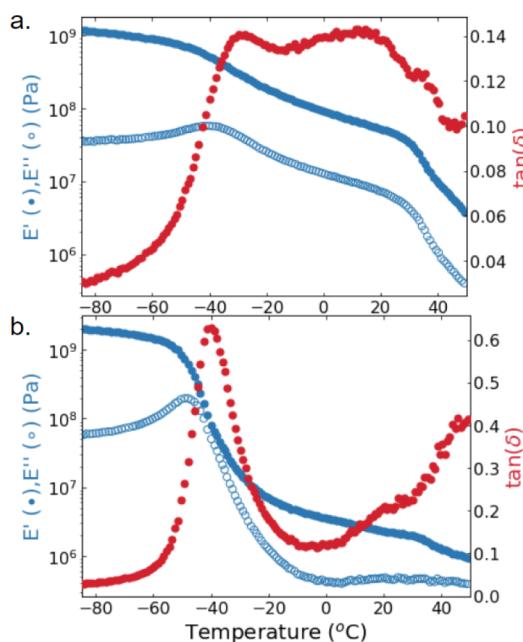
Surface Polarity Increases with Functionalization.

From 0 to 18 mol % functionalization contact angle decreases from $93.0 \pm 1.4^\circ$ to $72.9 \pm 0.9^\circ$, indicating a more polar surface, Figure 5. This matches expectations as acrylate groups are more polar than the unfunctionalized ethylene monomeric units and the large ethyl acrylate pendants are expelled from the crystals and disproportionately reside in the amorphous phase expected at the surface.^{12,56} The linear x -EEA polymers reported in this paper exhibit surface polarities similar to those of commercial EEA at comparable ethyl acrylate incorporation.

Figure 4. (a) X-ray scattering of x -EEA and 3-rEEA. We attribute the peaks at wide angles ($>1 \text{ \AA}^{-1}$) to crystalline scattering from an orthorhombic lattice and fit them to Lorentzian functions to calculate (b) crystallinity along with (c) crystallite width as a function of functionalization. Crystallinity was also identified by dividing the enthalpy of melting measured in DSC by 293 J/g, the reference enthalpy for 100% crystalline PE. Filled symbols correspond to x -EEA and empty symbols correspond to 3-rEEA.


Figure 5. Contact angle of α -EEA (solid circles) and 3-rEEA (open circle) plotted against functionalization from ^1H NMR.

452 Thus, the linear polymers reported here may offer similar
453 adhesion properties to commercial material; a favorable
454 characteristic in a material often used in multilayer cable
455 jackets or laminates.^{24,28}


456 **Tensile and Dynamic Mechanical Properties.** Func-
457 tionalizing PCOE with ethyl acrylate tunes the dynamic
458 mechanical properties, as investigated by DMA, as shown in
459 **Figure 6.** The measured temperature range (-90 to 50 °C)
460 captures the glassy plateau, glass transition, rubbery plateau,
461 and the start of the terminal relaxation, allowing us to
462 determine the T_g and plateau moduli.⁵⁶ Glassy and rubbery
463 plateaus were determined from E' values 30 K above and below
464 the T_g identified from the peak in the $\tan(\delta)$ curve. The glassy
465 moduli of α -EEA are comparable to that of 3-rEEA, and are
466 independent of the functionalization level. This result
467 demonstrates that the ethyl acrylate concentration does not
468 significantly influence glassy response.⁵⁷ This matches our
469 prior observations of the glassy modulus of PCOE function-
470 alized with thioether methylene carboxylic acid pendants as
471 well as previous measurements of EEA.^{11,51} However, the
472 rubbery modulus decreases by nearly 3 orders of magnitude

473 over the functionalization range explored, **Figure 6c.** From 0-
474 EEA to 1-EEA, the rubbery modulus drops by over an order of
475 magnitude. We attribute this significant decrease to the 6-fold
476 loss of crystallinity between the two samples ($X_c \sim 60$ to 10%),
477 wherein the crystalline phase stiffens the polymers in the
478 rubbery state.
479

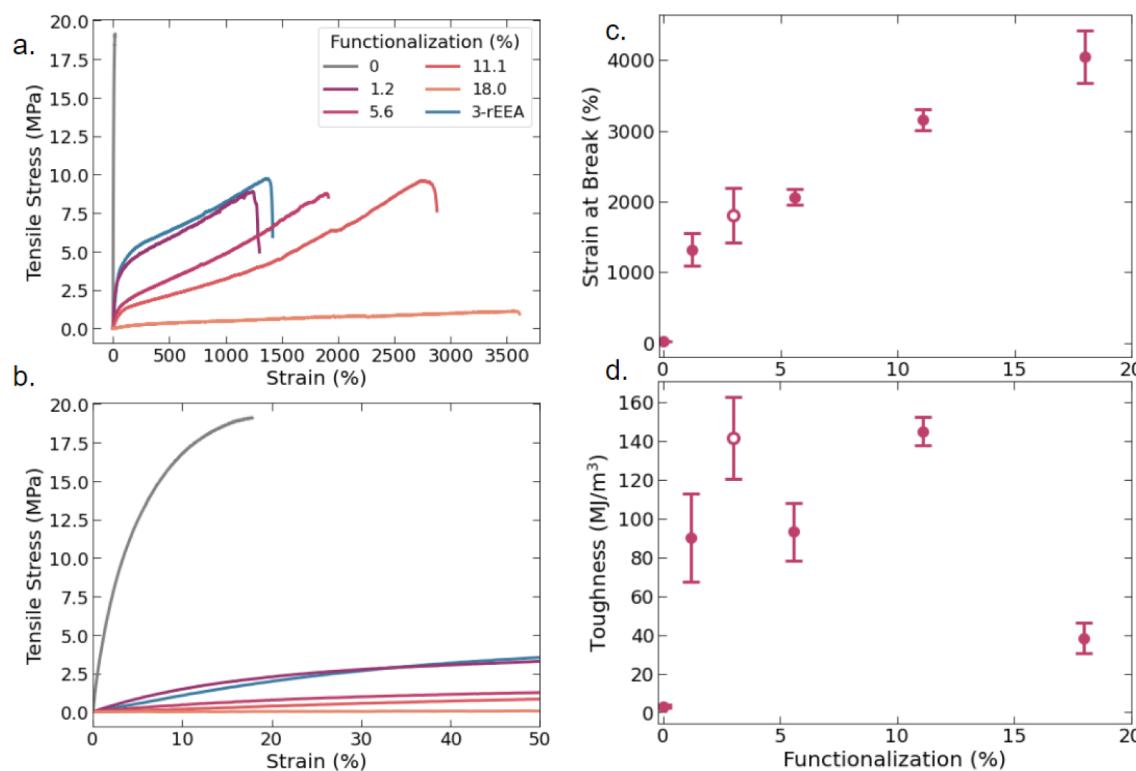

480 Glass transition temperatures of α -EEA polymers are < -30
481 °C, with a ~ 18 °C decrease in T_g from 1 to 18%
482 functionalization, **Figure 7**. These acrylate pendants act as
483

Figure 7. Glass transition temperature from both DSC and the peak
484 of $\tan(\delta)$ in DMA of α -EEA (solid circles) and 3-rEEA (open circle)
485 plotted against functionalization from ^1H NMR.

Figure 6. Temperature sweep DMA (1 Hz oscillation at a 10 °C/min ramp rate) of (a) 1-EEA and (b) 18-EEA. (c) Glassy and rubbery plateau moduli taken from the E' at $T_g \pm 30$ K.

Figure 8. Representative stress-strain curves of x -EEA and 3-rEEA (a) until failure and (b) focused on the low strain regime. (c) Strain at break and (d) toughness were taken from the average of five measurements with error bars from the standard deviation.

Table 3. Characteristic tensile properties of x -EEA along with functionalization and crystallinity calculated from the heat flux in DSC^a

	X_c (%)	YS (MPa)	E (MPa)	UTS (MPa)	ε at break (%)	Toughness (MJ/m ³)
0-EEA	59.2	14.0 ± 0.9	265.9 ± 7.7	20.0 ± 0.9	20.2 ± 4.9	3.04 ± 0.8
1-EEA	9.9	2.3 ± 0.1	17.8 ± 1.1	8.3 ± 1.7	1320 ± 233	90 ± 22.8
6-EEA	7.5	0.9 ± 0.6	3.4 ± 0.9	8.0 ± 1.4	2060 ± 110	93 ± 14.8
11-EEA	0.9	0.9 ± 0.7	1.2 ± 0.5	9.4 ± 0.3	3160 ± 149	145 ± 7.3
18-EEA	0	0.2 ± 0.1	0.2 ± 0.1	1.9 ± 0.4	4050 ± 374	38 ± 7.8
3-rEEA	10.4	2.1 ± 1.2	6.6 ± 3.5	11.5 ± 1.4	1800 ± 381	141 ± 41.0

^a X_c represents % crystallinity, YS represents yield strength, E represents Young's modulus, and UTS represents ultimate tensile strength.

490 branched polyethylene decreasing by ~ 20 $^{\circ}$ C from 1 to 10 mol
491 % 1-hexene comonomer.^{58–60}

492 Consistent with previous measurements of HDPE, the 0-
493 EEA sample exhibited an elastic modulus of 265.9 ± 7.6 MPa
494 and yield stress of 14.0 ± 0.6 MPa, Figure 8a,b.^{61,62} The 0-EEA
495 exhibits a lower elongation than other HDPE samples, readily
496 attributable to the lower molecular weight in 0-EEA compared
497 to HDPE in prior measurements.⁶¹ As functionalization
498 increases, the room temperature extensibility increases
499 significantly, from a strain at break of $1320 \pm 233\%$ to 4050
500 $\pm 375\%$ from 1-EEA to 18-EEA, Figure 8c. This 3-fold increase
501 in extensibility corresponds with a notable decrease in elastic
502 modulus (E) and yield stress (YS), Table 3.

503 From DMA, we observe a decrease in rubbery plateau
504 modulus with increasing functionalization, Figure 6, indicating
505 decreasing entanglement density in the amorphous that
506 facilitates greater extension.^{63–66} Additionally, the fraction of
507 the soft amorphous domain increases with functionalization.
508 Thus, the high significant extensibility of linear x -EEA is
509 expected and is in line with the result from 3-rEEA.

510 These new x -EEA polymers add to the cannon of the 510
511 polyolefin elastomer literature. Adding short-chain branching 511
512 to polyethylene by copolymerization, usually with an n -alkene 512
513 comonomer or with an acrylate, is a well-established strategy to 513
514 generate polyolefin elastomers and is understood to increase 514
515 ductility while decreasing E and YS as comonomer content 515
516 increases.^{67–69} For example, poly(ethylene-*co*-octene) poly- 516
517 mers with comparable molecular weights and comonomer 517
518 fractions to our x -EEA polymer exhibit three times less 518
519 extensibility than reported here.⁷⁰ The significant decrease in 519
520 the rubbery plateau modulus with functionalization observed 520
521 in x -EEA and the corresponding decrease in entanglement 521
522 density contribute to the high extensibility of these new 522
523 polyolefin elastomers.⁵²³

524 From 0-EEA to 11-EEA, the toughness increases signifi- 524
525 cantly, from 3 ± 0.8 to 145 ± 7.3 MJ/m³, respectively, Figure 525
526 8d. This increase in toughness is largely attributed to the 526
527 increase in extensibility and the stabilizing role of crystalline 527
528 domains. As expected, the completely amorphous 18-EEA 528
529 sample exhibits a lower toughness than any other function- 529
530 alized sample.⁵³⁰

531 ■ CONCLUSION

532 Hydroesterification followed by hydrogenation of PCOE
533 successfully generates linear analogs of ethylene/ethyl acrylate
534 copolymers. Spectroscopic analysis indicated clean conversion
535 with no observed side product formation. Moreover, we did
536 not observe significant chain scission or cross-linking as a
537 consequence of functionalization, and the resulting α -EEA was
538 easily purified.

539 All α -EEA samples exhibited favorable thermal stability,
540 comparable to that of commercial 3-rEEA. The bulky ethyl
541 acrylate pendant groups disrupt PE orthorhombic crystalliza-
542 tion, decreasing crystallite size, crystallinity, and T_m . Increasing
543 functionalization significantly decreases the rubbery plateau
544 storage modulus and increases extensibility. Toughness
545 increases from 0 to 11% functionalization and compares
546 favorably to commercial 3-rEEA.

547 In summary, we report a pathway to generate thermoplastics
548 with remarkable extensibility and toughness from an analog of
549 partially dehydrogenated HDPE. Notably, current poly-
550 ethylene dehydrogenation strategies achieve ~1% alkene
551 bonds.^{13,15–17} Fully converting these alkene bonds to ethyl
552 acrylate groups using the chemistry described here would
553 result in polymers comparable to 1-EEA, which exhibits
554 mechanical properties similar to 3-rEEA. These results suggest
555 a linear EEA prepared by dehydrogenation followed by
556 functionalization exhibits sufficient properties for applications.
557 Further studies would include development of a more stable
558 ligand for the reaction, especially one that could permit catalyst
559 recyclability,⁷¹ thereby improving the viability of the method
560 for polymer functionalization.

561 ■ ASSOCIATED CONTENT

562 ■ Supporting Information

563 The Supporting Information is available free of charge at
564 <https://pubs.acs.org/doi/10.1021/acs.macromol.4c02074>.

565 Supporting Information contains additional experimen-
566 tal details along with additional results from ^{13}C NMR,
567 ^1H NMR, FTIR, GPC, DMA, and tensile tests (PDF)

568 ■ AUTHOR INFORMATION

569 Corresponding Authors

570 Karen I. Winey — Department of Materials Science and
571 Engineering, University of Pennsylvania, Philadelphia,
572 Pennsylvania 19104, United States; Department of Chemical
573 and Biomolecular Engineering, University of Pennsylvania,
574 Philadelphia, Pennsylvania 19104, United States;
575 orcid.org/0000-0001-5856-3410; Email: winey@seas.upenn.edu

577 Marisa C. Kozlowski — Department of Chemistry, University
578 of Pennsylvania, Philadelphia, Pennsylvania 19104, United
579 States; orcid.org/0000-0002-4225-7125;
580 Email: marisa@sas.upenn.edu

581 Authors

582 Ikechukwu Martin Ogbu — Department of Chemistry,
583 University of Pennsylvania, Philadelphia, Pennsylvania
584 19104, United States; orcid.org/0000-0002-9053-7519

585 Eli J. Fastow — Department of Materials Science and
586 Engineering, University of Pennsylvania, Philadelphia,
587 Pennsylvania 19104, United States; orcid.org/0000-0003-2674-2056

589 Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.macromol.4c02074>

590

591 ■ Author Contributions

592 #Co-first A.M.O. conducted data curation, formal analysis,
593 investigation, methodology, visualization, writing of original
594 draft, and review and editing. E.F. performed data curation,
595 formal analysis, investigation, methodology, visualization,
596 writing of original draft, and review and editing. K.I.W. worked
597 on conceptualization, funding acquisition, project adminis-
598 tration, supervision, review and editing of the manuscript.
599 M.C.K. carried out conceptualization, funding acquisition,
600 supervision, review and editing of the manuscript. ‡These
601 authors contributed equally.

602 ■ Notes

603 The authors declare no competing financial interest.

603

604 ■ ACKNOWLEDGMENTS

605 The authors gratefully acknowledge funding by DOE BES
606 (DESC0022238). The authors also wish to acknowledge Prof.
607 Russel Composto (Univ. Pennsylvania) for the use of his
608 contact angle measurement system and Steve Szweczyk (Univ.
609 Pennsylvania) for his assistance with the DSC, DMA, and
610 tensile testing instruments. The authors thank Roshni J.
611 Chethalen and Prof. E. Bryan Coughlin (Univ. Massachusetts,
612 Amherst) for assistance and helpful discussions. Partial NMR
613 instrumentation support was provided by the NIH
614 (3R01GM118510-03S1, 3R01GM087605-06S1) and Vagelos
615 Institute for Energy Science and Technology. E.J.F. and K.I.W.
616 acknowledge the use of the Dual Source and Environmental X-
617 ray Scattering facility operated by the Laboratory for Research
618 on the Structure of Matter at the University of Pennsylvania
619 supported by NSF through DMR-2309043 grant.

620 ■ REFERENCES

- (1) Vogt, B. D.; Stokes, K. K.; Kumar, S. K. Why Is Recycling of Postconsumer Plastics so Challenging? *ACS Appl. Polym. Mater.* **2021**, *3* (9), 4325–4346.
- (2) *New Plastics Economy: Rethinking the future of plastics.* <https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics>. (Accessed July 7, 2024).
- (3) D'Auria, I.; Saki, Z.; Liu, M.; Sun, W.-H.; Pellecchia, C. Copolymerization of Ethylene and Methyl Acrylate by Dibenzocycloheptyl-Substituted Aryliminopyridyl Ni(II) Catalysts. *Macromol.* **2022**, *2* (4), 500–508.
- (4) Xiong, S.; Shoshani, M. M.; Zhang, X.; Spinney, H. A.; Nett, A. J.; Henderson, B. S.; Miller, T. F.; Agapie, T. Efficient Copolymerization of Acrylate and Ethylene with Neutral P, O-Chelated Nickel Catalysts: Mechanistic Investigations of Monomer Insertion and Chelate Formation. *J. Am. Chem. Soc.* **2021**, *143* (17), 6516–6527.
- (5) Neidhart, E. K.; Hua, M.; Peng, Z.; Kearney, L. T.; Bhat, V.; Vashahi, F.; Alexanian, E. J.; Sheiko, S. S.; Wang, C.; Helms, B. A.; Leibfarth, F. A. C–H Functionalization of Polyolefins to Access Reprocessable Polyolefin Thermosets. *J. Am. Chem. Soc.* **2023**, *145* (50), 27450–27458.
- (6) Williamson, J. B.; Lewis, S. E.; Johnson, R. R.; Manning, I. M.; Leibfarth, F. A. C–H Functionalization of Commodity Polymers. *Angew. Chem. Int. Ed.* **2019**, *58* (26), 8654–8668.
- (7) Matthews, M.; Van Reenen, A. Recycling of Polyolefins for Multiple Lifecycles. *Macromol. Mater. Eng.* **2024**, *309*, 2300421.
- (8) Goring, P. D.; Priestley, R. D. Polymer Recycling and Upcycling: Recent Developments toward a Circular Economy. *JACS Au* **2023**, *3* (10), 2609–2611.
- (9) Cen, Z.; Han, X.; Lin, L.; Yang, S.; Han, W.; Wen, W.; Yuan, W.; Dong, M.; Ma, Z.; Li, F.; Ke, Y.; Dong, J.; Zhang, J.; Liu, S.; Li, J.; Li, Q.; Wu, N.; Xiang, J.; Wu, H.; Cai, L.; Hou, Y.; Cheng, Y.; Daemen,

652 L. L.; Ramirez-Cuesta, A. J.; Ferrer, P.; Grinter, D. C.; Held, G.; Liu, 653 Y.; Han, B. Upcycling of Polyethylene to Gasoline through a Self- 654 Supplied Hydrogen Strategy in a Layered Self-Pillared Zeolite. *Nat. 655 Chem.* **2024**, *16*, 871.

656 (10) Chethalen, R. J.; Fastow, E. J.; Coughlin, E. B.; Winey, K. I. 657 Thiol-Ene Click Chemistry Incorporates Hydroxyl Functionality on 658 Polycyclooctene to Tune Properties. *ACS Macro Lett.* **2023**, *12* (1), 659 107–112.

660 (11) Fastow, E.; Chethalen, R. J.; Coughlin, E. B.; Winey, K. I. 661 Thiol-Ene Click Chemistry Incorporates Carboxylic Acid-Terminated 662 Alkane Pendants on Polycyclooctene to Tune Properties. *Giant* **2024**, 663 *17*, 100231.

664 (12) Ogbu, I. M.; Fastow, E. J.; Zhu, W.; Wells, L. A.; Chethalen, R. 665 J.; Nair, V.; Hinton, Z. R.; Balzer, A. H.; Hu, W.; Coughlin, E. B.; 666 Winey, K. I.; Kozlowski, M. C. Hydrocarboxylation of C=C Bonds in 667 Polycyclooctene: Progress Toward Valorization of Waste Polyolefins. 668 *Macromolecules* **2024**, *57* (12), 5860–5869.

669 (13) Hunt, S. B.; Delferro, M. Dehydrogenated Polyethylene from 670 Discarded Plastics as a Synthon for Functional Polyolefins. *ACS Appl. 671 Polym. Mater.* **2024**, *6* (15), 8727–8732.

672 (14) Ogbu, I. M.; Tu, C.-H.; Fastow, E.; Hinton, Z. R.; Winey, K. I.; 673 Kozlowski, M. C. N₂O Deconstruction of Polycyclooctene to 674 Generate Carbonyl-Functionalized Macromonomers. *Polym. Degrad. 675 Stab.* **2024**, *229*, 110987.

676 (15) Ray, A.; Zhu, K.; Kissin, Y. V.; Cherian, A. E.; Coates, G. W.; 677 Goldman, A. S. Dehydrogenation of Aliphatic Polyolefins Catalyzed 678 by Pincer-Ligated Iridium Complexes. *Chem. Commun.* **2005**, *27*, 679 3388–3390.

680 (16) Ellis, L. D.; Orski, S. V.; Kenlaw, G. A.; Norman, A. G.; Beers, 681 K. L.; Román-Leshkov, Y.; Beckham, G. T. Tandem Heterogeneous 682 Catalysis for Polyethylene Depolymerization via an Olefin-Inter- 683 mediate Process. *ACS Sustainable Chem. Eng.* **2021**, *9* (2), 623–628.

684 (17) Ray, A.; Kissin, Y. V.; Zhu, K.; Goldman, A. S.; Cherian, A. E.; 685 Coates, G. W. Catalytic Post-Modification of Alkene Polymers. *J. Mol. 686 Catal. A: Chem.* **2006**, *256* (1–2), 200–207.

687 (18) Zhu, K.; Achord, P. D.; Zhang, X.; Krogh-Jespersen, K.; 688 Goldman, A. S. Highly Effective Pincer-Ligated Iridium Catalysts for 689 Alkane Dehydrogenation. DFT Calculations of Relevant Thermody- 690 namic, Kinetic, and Spectroscopic Properties. *J. Am. Chem. Soc.* **2004**, 691 *126* (40), 13044–13053.

692 (19) Arroyave, A.; Cui, S.; Lopez, J. C.; Kocen, A. L.; LaPointe, A. 693 M.; Delferro, M.; Coates, G. W. Catalytic Chemical Recycling of Post- 694 Consumer Polyethylene. *J. Am. Chem. Soc.* **2022**, *144* (51), 23280– 695 23285.

696 (20) *ELVALOYTM AC 2103 Acrylate Copolymer*. <https://www.dow.com/en-us/pdp/elvaloy-ac-2103-acrylate-copolymer.503551z.html>. 697 (Accessed December 9, 2023).

698 (21) Peykova, Y.; Lebedeva, O. V.; Diethert, A.; Müller-Buschbaum, 699 P.; Willenbacher, N. Adhesive Properties of Acrylate Copolymers: 700 Effect of the Nature of the Substrate and Copolymer Functionality. 701 *Int. J. Adhes. Adhes.* **2012**, *34*, 107–116.

702 (22) Pereira, G. G.; Figueiredo, S.; Fernandes, A. I.; Pinto, J. F. 703 Polymer Selection for Hot-Melt Extrusion Coupled to Fused 704 Deposition Modelling in Pharmaceutics. *Pharmaceutics* **2020**, *12* 705 (9), 795.

706 (23) Wargotz, B. Thermal-oxidative Behavior of Ethylene Alkyl 707 Acrylate Copolymers. *Polym. Eng. Sci.* **1968**, *8* (1), 50–57.

708 (24) Halle, R. W. New Ethylene-Methyl Acrylate Copolymers for 709 Multilayer Flexible Packaging Applications. *J. Plast. Film Sheeting* 710 **1989**, *5* (1), 56–65.

711 (25) Ethylene Copolymers Market Size, Share | CAGR of 3.7%: 712 Market.us. <https://market.us/report/ethylene-copolymers-market/>. 713 (Accessed July 14, 2024).

714 (26) Geussens, T. Thermoplastics for Cables. *The Global Cable 715 Industry*; Beyer, G., Eds.; Wiley, 2021; pp 21–55. .

716 (27) Mildner, R. A Review of Resistive Compounds for Primary 717 URD Cables. *IEEE Trans. Power Appar. Syst.* **1970**, *PAS-89* (2), 313– 718 318.

719 (28) Moyano, M. A.; París, R.; Martín-Martínez, J. M. Viscoelastic 720 and Adhesion Properties of Hot-Melts Made with Blends of Ethylene- 721 Co-n-Butyl Acrylate (EBA) and Ethylene-Co-Vinyl Acetate (EVA) 722 Copolymers. *Int. J. Adhes. Adhes.* **2019**, *88*, 34–42.

723 (29) Song, S.; Xing, Z.; Cheng, Z.; Fu, Z.; Xu, J.; Fan, Z. Functional 724 Polyethylene with Regularly Distributed Ester Pendants via Ring- 725 Opening Metathesis Polymerization of Ester Functionalized Cyclo- 726 pentene: Synthesis and Characterization. *Polymer* **2017**, *129*, 135– 727 143.

728 (30) Lena, J.-B.; Jackson, A. W.; Chennamaneni, L. R.; Wong, C. T.; 729 Lim, F.; Andriani, Y.; Thoniyot, P.; Van Herk, A. M. Degradable 730 Poly(Alkyl Acrylates) with Uniform Insertion of Ester Bonds, 731 Comparing Batch and Semibatch Copolymerizations. *Macromolecules* 732 **2020**, *53* (10), 3994–4011.

733 (31) Zhong, H.; Zhou, F.; Zhang, F.; Xu, J.; Peng, D.; He, X. 734 Original Synthesis of Ethylene-Acrylic Acid (Ester) Copolymers 735 Derivatives from 5-substituted Cyclooctenes with A Controllable Way 736 Via Ring-Opening Metathesis Polymerization. *Macromol. Chem. Phys.* **2024**, *225* (2), 2300171.

737 (32) Zhang, Z.; Zhang, Y.; Zeng, R. Photoinduced Iron-Catalyzed 738 C–H Alkylation of Polyolefins. *Chem. Sci.* **2023**, *14* (35), 9374–9379.

739 (33) Díaz-Requejo, M. M.; Wehrmann, P.; Leatherman, M. D.; 740 Trofimko, S.; Mecking, S.; Brookhart, M.; Pérez, P. J. Controlled, 741 Copper-Catalyzed Functionalization of Polyolefins. *Macromolecules* 742 **2005**, *38* (12), 4966–4969.

743 (34) Clegg, W.; Elsegood, M. R. J.; Eastham, G. R.; Tooze, R. P.; 744 Wang, X. L.; Whiston, K. Highly Active and Selective Catalysts for the 745 Production of Methyl Propanoate via the Methoxycarbonylation of 746 Ethene. *Chem. Commun.* **1999**, *18*, 1877–1878.

747 (35) Jameel, F.; Kohls, E.; Stein, M. Mechanism and Control of the 748 Palladium-Catalyzed Alkoxy carbonylation of Oleochemicals from 749 Sustainable Sources. *ChemCatChem* **2019**, *11* (19), 4894–4906.

750 (36) Del Río, I.; Claver, C.; van Leeuwen, P. W. N. M. On the 751 Mechanism of the Hydroxycarbonylation of Styrene with Palladium 752 Systems. *Eur. J. Inorg. Chem.* **2001**, *2001* (11), 2719–2738.

753 (37) Yang, J.; Liu, J.; Ge, Y.; Huang, W.; Ferretti, F.; Neumann, H.; 754 Jiao, H.; Franke, R.; Jackstell, R.; Beller, M. Efficient Palladium- 755 Catalyzed Carbonylation of 1,3-Dienes: Selective Synthesis of 756 Adipates and Other Aliphatic Diesters. *Angew. Chem. Int. Ed.* **2021**, *757 60* (17), 9527–9533.

758 (38) Dong, K.; Fang, X.; Gülk, S.; Franke, R.; Spannenberg, A.; 759 Neumann, H.; Jackstell, R.; Beller, M. Highly Active and Efficient 760 Catalysts for Alkoxy carbonylation of Alkenes. *Nat. Commun.* **2017**, *8* 761 (1), 14117.

762 (39) Ajjou, A. N.; Alper, H. Catalytic Hydrocarboxylation and 763 Hydroesterification Reactions of 1,2-Polybutadiene. *Macromolecules* 764 **1996**, *29* (5), 1784–1788.

765 (40) Kiss, G. Palladium-Catalyzed Reppe Carbonylation. *Chem. Rev.* 766 **2001**, *101* (11), 3435–3456.

767 (41) Stalder, A. F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; 768 Unser, M. Low-Bond Axisymmetric Drop Shape Analysis for Surface 769 Tension and Contact Angle Measurements of Sessile Drops. *Colloids 770 Surf. A* **2010**, *364* (1–3), 72–81.

771 (42) Wypych, G. *Handbook of Polymers*; Elsevier, 2016.

772 (43) D20 Committee. *Standard Test Method for Determining 773 Molecular Weight Distribution and Molecular Weight Averages of 774 Polyolefins by High Temperature Gel Permeation Chromatography*: 775 ASTM International.

776 (44) Cavinato, G.; Toniolo, L.; Botteghi, C.; Gladiali, S. Hydrocarbo 777 Alkoxylation of N-Vinylphthalimide Catalyzed by Palladium Com- 778 plexes. *J. Organomet. Chem.* **1982**, *229* (1), 93–100.

779 (45) Gaide, T.; Behr, A.; Arns, A.; Benski, F.; Vorholt, A. J. 780 Hydroesterification of Methyl 10-Undecenoate in Thermomorphic 781 Multicomponent Solvent Systems-Process Development for the 782 Synthesis of Sustainable Polymer Precursors. *Chem. Eng. Process.* **2016**, *99*, 197–204.

783 (46) Buszek, K. R.; Brown, N. Improved Method for the Diimide 784 Reduction of Multiple Bonds on Solid-Supported Substrates. *J. Org. 785 Chem.* **2007**, *72* (8), 3125–3128.

786

789 (47) Li, Z.-L.; Li, L.; Deng, X.-X.; Lv, A.; Wang, C.-H.; Du, F.-S.; Li,
790 Z.-C. Ethylene–Ethyl Acrylate Copolymers via ADMET Polymer-
791 ization: Effect of Sequence Distribution on Thermal Properties. *J.
792 Polym. Sci., Part A: Polym. Chem.* **2013**, *51* (13), 2900–2909.

793 (48) McNeill, I. C.; Mohammed, M. H. A Comparison of the
794 Thermal Degradation Behaviour of Ethylene–Ethyl Acrylate Copoly-
795 mer, Low Density Polyethylene and Poly(Ethyl Acrylate). *Polym.
796 Degrad. Stab.* **1995**, *48* (1), 175–187.

797 (49) Bunn, C. W.; Alcock, T. C. The Texture of Polythene. *Trans.
798 Faraday Soc.* **1945**, *41*, 317.

799 (50) Crist, B. Thermodynamics of Statistical Copolymer Melting.
800 *Polymer* **2003**, *44* (16), 4563–4572.

801 (51) Lehman, S. E.; Wagener, K. B.; Baugh, L. S.; Rucker, S. P.;
802 Schulz, D. N.; Varma-Nair, M.; Berluche, E. Linear Copolymers of
803 Ethylene and Polar Vinyl Monomers via Olefin Metathesis–
804 Hydrogenation: Synthesis, Characterization, and Comparison to
805 Branched Analogues. *Macromolecules* **2007**, *40* (8), 2643–2656.

806 (52) Patterson, A. L. The Scherrer Formula for X-Ray Particle Size
807 Determination. *Phys. Rev.* **1939**, *56* (10), 978–982.

808 (53) Becker, P.; Busch, M. Modeling of Ethylene Copolymerizations
809 with Acrylate Monomers. *Macromol. Theory Simul.* **1998**, *7* (4), 435–
810 446.

811 (54) Watson, M. D.; Wagener, K. B. Ethylene/Vinyl Acetate
812 Copolymers via Acyclic Diene Metathesis Polymerization. Examining
813 the Effect of “Long” Precise Ethylene Run Lengths. *Macromolecules*
814 **2000**, *33* (15), 5411–5417.

815 (55) Sanchez, I. C.; Eby, R. K. Thermodynamics and Crystallization
816 of Random Copolymers. *Macromolecules* **1975**, *8* (5), 638–641.

817 (56) Virág, A. D.; Juhász, Z.; Kossa, A.; Molnár, K. Combining
818 Oscillatory Shear Rheometry and Dynamic Mechanical Analysis to
819 Obtain Wide-Frequency Master Curves. *Polymer* **2024**, *295*, 126742.

820 (57) Bowden, P. B. The Elastic Modulus of an Amorphous Glassy
821 Polymer. *Polymer* **1968**, *9*, 449–454.

822 (58) Luo, X.; Xie, S.; Liu, J.; Hu, H.; Jiang, J.; Huang, W.; Gao, H.;
823 Zhou, D.; Lü, Z.; Yan, D. The Relationship between the Degree of
824 Branching and Glass Transition Temperature of Branched Poly-
825 ethylene: Experiment and Simulation. *Polym. Chem.* **2014**, *5* (4),
826 1305–1312.

827 (59) Martín, S.; Vega, J. F.; Expósito, M. T.; Flores, A.; Martínez-
828 Salazar, J. A Three-Phase Microstructural Model to Explain the
829 Mechanical Relaxations of Branched Polyethylene: A DSC, WAXD
830 and DMTA Combined Study. *Colloid Polym. Sci.* **2011**, *289* (3), 257–
831 268.

832 (60) García-Franco, C. A.; Harrington, B. A.; Lohse, D. J. Effect of
833 Short-Chain Branching on the Rheology of Polyolefins. *Macro-
834 molecules* **2006**, *39* (7), 2710–2717.

835 (61) Nunes, R. W.; Martin, J. R.; Johnson, J. F. Influence of
836 Molecular Weight and Molecular Weight Distribution on Mechanical
837 Properties of Polymers. *Polym. Eng. Sci.* **1982**, *22* (4), 205–228.

838 (62) Jang, Y.-J.; Nguyen, S.; Hillmyer, M. A. Chemically Recyclable
839 Linear and Branched Polyethylenes Synthesized from Stoichiometri-
840 cally Self-Balanced Telechelic Polyethylenes. *J. Am. Chem. Soc.* **2024**,
841 *146* (7), 4771–4782.

842 (63) Fetters, L. J.; Lohse, D. J.; García-Franco, C. A.; Brant, P.;
843 Richter, D. Prediction of Melt State Poly(α -Olefin) Rheological
844 Properties: The Unsuspected Role of the Average Molecular Weight
845 per Backbone Bond. *Macromolecules* **2002**, *35* (27), 10096–10101.

846 (64) Fetters, L. J.; Lohse, D. J.; Milner, S. T.; Graessley, W. W.
847 Packing Length Influence in Linear Polymer Melts on the
848 Entanglement, Critical, and Reptation Molecular Weights. *Macro-
849 molecules* **1999**, *32* (20), 6847–6851.

850 (65) Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A.
851 Connection between Polymer Molecular Weight, Density, Chain
852 Dimensions, and Melt Viscoelastic Properties. *Macromolecules* **1994**,
853 *27* (17), 4639–4647.

854 (66) Hoy, R. S.; Kröger, M. Unified Analytic Expressions for the
855 Entanglement Length, Tube Diameter, and Plateau Modulus of
856 Polymer Melts. *Phys. Rev. Lett.* **2020**, *124* (14), 147801.

857 (67) Bensason, S.; Nazarenko, S.; Chum, S.; Hiltner, A.; Baer, E. 857
858 Elastomeric Blends of Homogeneous Ethylene-Octene Copolymers. 858
859 *Polymer* **1997**, *38* (15), 3913–3919. 859

860 (68) Koo, C. M.; Hillmyer, M. A.; Bates, F. S. Structure and 860
861 Properties of Semicrystalline–Rubbery Multiblock Copolymers. 861
862 *Macromolecules* **2006**, *39* (2), 667–677. 862

863 (69) Maynard, L. A.; DeButts, B. L.; Barone, J. R. Mechanical and 863
864 Thermal Properties of Polyolefin Thermoplastic Elastomer Blends. 864
865 *Plast., Rubber Compos.* **2019**, *48* (8), 338–346. 865

866 (70) Adhikari, R.; Godehardt, R.; Lebek, W.; Frangov, S.; Michler, 866
867 G. H.; Radusch, H.-J.; Calleja, F. J. B. Morphology and Micro- 867
868 mechanical Properties of Ethylene/1-octene Copolymers and Their 868
869 Blends with High Density Polyethylene. *Polym. Adv. Technol.* **2005**, *16* 869
870 (2–3), 156–166. 870

871 (71) Sang, R.; Kucmierczyk, P.; Dühren, R.; Razzaq, R.; Dong, K.; 871
872 Liu, J.; Franke, R.; Jackstell, R.; Beller, M. Synthesis of Carboxylic 872
873 Acids by Palladium-Catalyzed Hydroxycarbonylation. *Angew. Chem. 873
874 Int. Ed.* **2019**, *58* (40), 14365–14373. 874