LA-UR-24-32342

Approved for public release; distribution is unlimited.
Title: Generating Multiphase Fluid Configurations in Fractures using Diffusion Models

Author(s): Lin, Yen Ting
Chung, Jaehong
Marcato, Agnese
Guiltinan, Eric Joseph
Mukerji, Tapan
Estrada Santos, Javier Andres

Intended for: Annual Conference on Neural Information Processing Systems (NIPS),
2023-12-15/2023-12-16 (New Orleans, Louisiana, UNITED STATES)

Issued: 2024-11-19

NATIONAL LABORATORY

1% Los Alamos



1% Los Alamos NYSE

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.



arXiv:2312.04375v1 [physics.geo-ph] 7 Dec 2023

Generating Multiphase Fluid Configurations in
Fractures using Diffusion Models

Jaehong Chung!®*  Agnese Marcato?> Eric J. Guiltinan3
Tapan Mukerji' Yen Ting Lin®  Javier E. Santos®

!Stanford University ~ 2Politecnico di Torino  3Los Alamos National Laboratory
{jhchungl, mukerjil}@stanford.edu
{amarcato, eric.guiltinan, yentingl, jesantos}@lanl.gov

Abstract

Pore-scale simulations accurately describe transport properties of fluids in the
subsurface. These simulations enhance our understanding of applications such as
assessing hydrogen storage efficiency and forecasting CO- sequestration processes
in underground reservoirs. Nevertheless, they are computationally expensive due to
their mesoscopic nature. In addition, their stationary solutions are not guaranteed
to be unique, so multiple runs with different initial conditions must be performed to
ensure sufficient sample coverage. These factors complicate the task of obtaining
representative and reliable forecasts. To overcome the high computational cost
hurdle, we propose a hybrid method that couples generative diffusion models and
physics-based modeling. Upon training a generative model, we synthesize samples
that serve as the initial conditions for physics-based simulations. We measure
the relaxation time (to stationary solutions) of the simulations, which serves as
a validation metric and early-stopping criterion. Our numerical experiments re-
vealed that the hybrid method exhibits a speed-up of up to 8.2 times compared
to commonly used initialization methods. This finding offers compelling initial
support that the proposed diffusion model-based hybrid scheme has potentials to
significantly decrease the time required for convergence of numerical simulations
without compromising the physical robustness.

1 Motivation

Hydrogen storage and CO3 sequestration within the subsurface stand out as promising solutions
for large-scale emission reductions, contributing significantly to climate change mitigation efforts
[[Z, 177, 11]. Thus, there is a growing interest in understanding the fluid dynamics of these processes
better. When fluids (such as Hy or COs) are injected into the subsurface, they undergo complex
interactions with pre-existing fluids and the host rock. In addition, the presence of fractures—acting
as preferential pathways for flow—further complicates this scenario, posing potential risks to the
effectiveness of underground storage systems [4}, 16} [13]].

Pore-scale simulations of multiphase flow provide an accurate picture of how fluids travel through
underground reservoirs and capture their stable configurations given flow paths [3, 2. However,
scaling these simulations to the field level is impractical, primarily as simulating larger and more
intricate samples entails significantly larger computational costs. In addition, the existence of multiple
solutions for identical geometries and the requirement for numerous simulations to deduce constitutive
relationships pose substantial challenges.

Diffusion models are powerful generative models capable of approximating high-dimensional data
distributions [|8, [12]]. We hypothesize that diffusion models can learn and synthesize near-optimal
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Figure 1: Diagram depicting the diffusion process and the integration of a geometry channel to guide
fluid configurations within predefined geometric constraints.

fluid configurations for pre-specified geometries, addressing the both physical complexities and
computational issues inherent in the pore-scale modeling. In this study, we demonstrate the capabili-
ties of diffusion models for generating multiphase fluid configurations. By introducing geometric
conditioning to the model and assessing its performance with both computer vision metrics and
numerical-solver-based metrics, the findings affirm the physical robustness and computational effi-
ciency of our approach with diffusion models.

2 Data: Fractures and Multiphase Simulations

To train our model, we generate a diverse dataset of 1,000 2D synthetic fractures (shown in Figure
[AT)) using pySimFrac, a Python-based fracture surface generator [5]. We ran two-phase steady-state
fluid simulations using the MP-LBM library [11]. For each simulation, the two fluids are initialized
at different ratios (from 20% to 60%) and are driven forward by an external force. The simulations
iterate until they converge, indicated by a minimum in energy. The converged simulation depicts the
most conductive pathways for each sample given the solid geometry and the initial ratios of fluid. It is
worth noting that these paths may not be unique. The average simulation takes around 1M iterations
in time (time-steps) to converge. Examples of converged simulations are shown in Figure

3 Denoising Diffusion Probabilistic Models with Geometric Conditioning

We employ Denoising Diffusion Probabilistic Models (DDPMs) [8]] to synthesize stable fluid configu-
rations in fractured media. A forward Markov chain is defined to perturb samples drawn from the
data distribution, xg ~ ¢(xg), towards a limiting isotropic Gaussian distribution. The conditional
mean of the reverse-time process were derived [12, 8] as the training target of a U-Net, which is
used to propagate samples drawn from the limiting distribution back to the data distribution after
training, generating novel samples. Variational inference (VI) is used to train the diffusion model via
minimizing the evidence lower bound (ELBO), a lower bound of the Bayes evidence of the model
[12}18]]. Ho et al. [|8]] showed that VI can be effectively performed by training the model to predict the
noise, €, that is added to x4, given a noisy image x;, via the loss function

L(0) = Etnf1.7) 00 elll€ — €0 (@1, 1)]|°) M

In the realm of fluid configurations, the geometry of flow paths significantly influences the configura-
tions of fluids. Thus, for practical applications, the model needs to demonstrate its ability to generate
fluid configurations that align with desired geometries rather than adopting arbitrary shapes. This task
is similar to inpainting in computer vision [[15}[16], which requires the model to synthesize images in
unknown areas that are both realistic and consistent with the surrounding background. One unique
challenge in our inpainting tasks lies in the fracture geometries that feature sharp and irregular shapes,
unlike the rectangular or smoothly varying unknown regions often seen in previous studies [9, [10].

To ensure that our model generates fluid configurations that adhere to given geometries (i.e., not
solely based on random Gaussian noise), we introduce an auxiliary binary image G' € {0, 1} to
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Figure 2: Summary of results: evolution of MSE loss, variation in iteration number for DNS
convergence, and comparison of simulation times across different initialization methods.

encode the fracture geometry. Here, H is the height and W is the width of the image:
Gis) = {

Figure[I|shows a schematic diagram of the diffusion process of our model, which generates denoised
images (x;_1) given x; and G. By providing this additional channel in every denoising step during
the reverse process, we give additional information for the model to synthesize images given a
geometry. After training the model, we can feed an out-of-sample fracture geometry input (G) and a
sample of the isotropic Gaussian random variable (1) to generate fluid configurations in the desired
domain similar to input geometry for numerical simulation procedures detailed below.

1, if pixel at (4, 7) is part of the solid
0, otherwise

@

4 Results

4.1 Training and Model Performance

We employ two evaluation metrics to assess the performance of our model during training. The
first one is the Mean Squared Error (MSE), a metric in computer vision to quantify the discrepancy
between the predicted and the ground-truth images. Although the MSE loss in the U-Net provides
its denoising capability, evaluating the optimal model for the physical domain is challenging. Thus,
we apply a second metric that focuses on the number of iterations required for Direct Numerical
Simulation (DNS) to converge, starting from the initial configuration given by the diffusion model.
The underlying rationale for this metric is grounded in the functionality of numerical simulators that
approximate solutions of partial differential equations (PDE) through iterative methods. Consequently,
if the fluid configuration generated by our diffusion model closely approximates the numerical PDE
solution, the number of iterations needed for DNS convergence should be reduced.

Throughout training, we generate fluid configurations for unseen fracture geometries at 800-iteration
intervals. These configurations serve as initial conditions for multiphase flow simulations, and the
requisite iterations for DNS convergence are recorded. The convergence is monitored through relative

kinetic energy [9], represented as (1/2) ||07/0t||®, where 07/t signifies the time rate of change of
the velocity vector. The simulation is deemed converged once the integration of this quantity over
the simulation domain is below a threshold x (set to 5 x 1075 in our study). Figureand Figure
[2b]illustrate the evolution of the MSE loss and the DNS convergence iterations over training time.
Notably, the MSE loss starts from a high value and plateaus around 2K training iterations, indicating
effective denoising for the training dataset. Moreover, we observe a significant reduction in the
number of iterations required for DNS convergence. Specifically, the average number of iterations
dropped from 2.588 x 10° to 0.137 x 10, a reduction of approximately 95%. The standard deviation
also decreased by 95%, further emphasizing the model’s increasing stability. These results suggest
that our diffusion model is not only able to capture the visual similarity of the training dataset but
also learn to generate physical configurations conditioned on the fracture geometry.



Table 1: Computational times for different initialization methods, based on a 50-core numerical
simulator. The total time for our diffusion-based simulation is 858.8s (image generation time (120s)
+ numerical simulation time (738.8s))

Initialization Method Mean Time (s) Standard Deviation (s)

DNS Solution 14.2 73
Diffusion 738.8 425.5
Euclidean 1515.3 1281.2

Random 7075.0 7880.2

4.2 Computational Cost Comparison

Upon completion of the training, we explore the computational advantages of utilizing the hybrid
approach—deploying the diffusion model for fluid initialization—by analyzing the requisite simula-
tion time for convergence. To validate our strategy, we benchmark against four fluid initialization
methods: (1) DNS solution, (2) diffusion-based initialization, (3) Euclidean distance-based initializa-
tion, and (4) random initialization. Detailed descriptions and examples of each method are provided
in the Appendix |C] Briefly, the DNS solution-based initialization method and the random-based
initialization method represent the lower and upper bounds of convergence time, respectively, while
the Euclidean-based initialization is a reasonable approach, grounded in the domain knowledge that
invading fluid tends to occupy pores distant from solid walls [2].

Figure [2c|and Table [T|represent the simulation times for convergence for each initialization method.
In particular, employing the diffusion output as initialization necessitates a mean simulation time of
approximately 738.8 seconds for convergence. Considering the additional diffusion generation time
of 120 seconds, the diffusion-based approach’s aggregate computational time is approximately 858.8
seconds. Given these results, the diffusion-based approach exhibits a computational speed-up factor
ranging from 1.76 times to 8.24 times compared to Euclidean and random initialization methods,
respectively. This quantitative interpretation underscores the superior computational efficiency of
the diffusion-based approach among the assessed initialization methods. The pronounced reduction
in simulation times, particularly in comparison to the random initialization method, highlights the
potential and practicality of integrating diffusion models for fluid initialization in computational fluid
dynamics simulations.

5 Conclusion

We utilized a diffusion model to synthesize fluid configurations tailored to specific fracture geometries.
Our method effectively addresses the challenges posed by multiple solutions due to varying saturation
levels, as well as the high computational costs commonly associated with the pore-scale simulations.
To evaluate the model performance, we introduced a domain-specific metric: the number of iterations
required for convergence in DNS. Our results reveal that this metric significantly improves as
the training progresses, underscoring the model’s ability to learn the underlying physics of fluid
configurations, not just their visual attributes. In particular, we validated our model’s performance
using an unseen dataset, reinforcing its robustness and generalizability. Moreover, we quantified the
computational advantages of our hybrid approach that combines diffusion model-based initialization
with DNS. Our findings indicate that this method can accelerate simulations by factors ranging from
1.76 to 8.24 times compared to traditional methods, offering substantial computational cost savings.
This finding offers compelling initial support that the proposed diffusion model-based hybrid scheme
has the potential to significantly decrease the computational cost of numerical simulations without
compromising the physical robustness.
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A Synthetic fracture dataset

We employed pySimFrac to generate a diverse set of synthetic fractures using the spectral method,
adjusting the Hurst exponent (H), Anisotropy ratio (r,), and Roughness (¢). Here, we briefly
introduce the procedure for generating the fracture dataset. Readers interested in details can refer
to the literature [5]]. The process starts by calculating the wavenumber increments Ag; and defin-
ing wavenumbers g,, and g, for each grid point in Fourier space. The Fourier spectrum function
F(qz,qy) = A(q)[cos(¢) + isin(¢)] is defined, where the amplitude A(g) = ¢~ '~ %, and ¢ is
computed by taking into account the anisotropy ratio. The phase spectra ¢ are generated randomly
for the upper and lower surfaces of the fracture, respectively. Upon obtaining F'(g,, gy ), we use
the inverse Fourier transform to get f(z,y) and adjust the roughness to obtain frescatea(2,y). The
complete fracture geometry is formed by the difference between the top and bottom surfaces of the
fracture, formulated as f(x,y) = fiop(2,¥) — footom(,y). To introduce diversity, we define the
range of three variables as (1) H € [0.7,0.9], (2) 7, € [0.1,0.9], and (3) @ € [2, 6], resulting in 1000
diverse synthetic fractures.

To visualize the diversity within our dataset, we employed t-SNE (t-Distributed Stochastic Neigh-
bor Embedding), a technique for reducing dimensionality and visualizing high-dimensional data
structures in a lower-dimensional space [14]], as shown in Figure[AT] This technique visualizes the
representation of similar fracture geometries closely together and dissimilar ones further apart in a 2D
plane, thereby providing insights into the variability and complexity within the dataset. The resulting
t-SNE plot serves as a qualitative validation of the diversity of our fracture geometries, illustrating
the broad spectrum of variations encompassed in the dataset.
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Figure A.1: t-SNE visualization of the synthetic fracture dataset, showing its diversity with represen-
tative fracture examples



B Examples of multiphase fluid configurations from numerical simulations
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Figure B.1: Fluid configurations obtained from simulation. Solid regions are represented in grey,
and the two fluids in red and blue. The left and right boundaries are periodic. The fluids’ behavior
is complex, not solely determined by Euclidean distance or simple volumetric changes based on
saturations. Instead, the fluids navigate through the complex geometries and interact with the solid
surface in a manner that minimizes the system’s free energy.

C Two-phase fluid initialization methods

In multiphase simulations utilizing the Shan-Chen model, initializing fluid phases with defined
saturations and fluid paths is required. Various fluid initialization strategies are explored across
distinct geometries to assess the efficacy of the diffusion-based initialization method. In particular,
the density of the pre-existing fluid phase is defined to indicate wetting phase saturation and initial
locations of the two-phase fluids. The density values span continuously from -0.4 to 2.1, where
-0.4 corresponds to the wetting phase (pre-existing fluid), and 2.1 signifies the non-wetting phase
(invading fluid).

Figure [C.I]presents examples of fluid configurations initialized by the different methods within the
simulation domain. First, the Diffusion-Based Initialization method leverages generated images
to determine fluid configurations. Second, the Numerical Solution-Based Initialization employs
numerical solutions to initialize two-phase arrangements obtained from the simulation results of other
initialization methods. Third, the Euclidean Distance-Based Initialization identifies the non-wetting
region in the flow path using provided saturations and positions the non-wetting fluid away from the
solid boundary, based on the understanding that invading fluid tends to inhabit pores distant from
solid walls [2]]. Lastly, the Random Initialization method arbitrarily selects the positions of two-phase
fluids in accordance with their specified saturations and flow paths. A notable advantage of the
Diffusion-Based Initialization is that is able to initiate continuous density values, which is essential
for considering local capillary pressure differences like the physics-based solution fields. In contrast,
the Euclidean Distance-Based and Random Initialization methods can only produce discrete phases.



(a) Diffusion (b) DNS solution (c) Euclidean (d) Random

Figure C.1: Comparison of fluid configurations initialized by different methods within the simulation
domain for multiphase simulations utilizing the Shan-Chen model. The Diffusion-Based Initialization
synthesizes continuous values similar to the DNS solution. In contrast, the Euclidean Distance-Based
and Random Initialization methods produce discrete phase representations.
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