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Abstract

HAGEN project has developed theory, algorithms, and capabilities to assist cyber physical system
modelers and operators to perform system and device-level vulnerability assessment, risk
assessment, impact assessment, and mitigation planning. The project generates hybrid attack
graphs for Cyber-Physical System (CPS) resilience experimentation at desired scale and speed.
The project will produce composite attack datasets, algorithms, and demonstrable prototypical
tools, and a library of high-impact attack sequences for a given CPS of interest. This report
provided overall summary of research and development performed between FY22-24.

Abstract i
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Summary

Efficient Hybrid Attack Graph Generation for Cyber-Physical System Resilience Experimentation
(HAGEN) LDRD performed research to identify credible test cases at the edge for CPS resilience

Cyber T.hreat = Curate Existing Sources of Cybersecurity Knowledge
Modeling

CPS Attack Simulation » Co-simulate CPS models and generate benchmark attack scenario datasets
Optimal Mitigation
Planning
Graph-based CPS + Assist Researchers and System
Visualization Modelers

Figure 1 HAGEN Research and Development Areas
experiments at desired scale and speed. To achieve project objectives, HAGEN focused on
following S&T research questions:
1. How to characterize hybrid CPS dynamics across scale with sparse data?
2. How can the hybrid dynamics be leveraged to generate credible course-of-action HAGs?
3. How to perform dimension reduction of HAGs for edge test case experimentation?
HAGEN project produced capabilities in the research areas shown in the Figure 1.

- ldentify Possible Mitigation Strategies

Summary i
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Acronyms and Abbreviations

CPS: Cyber Physical System

DER: Distributed Energy Resources

CVE: Common Vulnerabilities and Exposures

CWE: Common Weakness Enumeration

CAPEC: Common Attack Pattern Enumeration and Classification
TTP: Tactics, Techniques, and Procedures

ICS: Industrial Control System
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1.0 Introduction

Cyber-Physical Systems (CPSs) feature a vast input space, encompassing both discrete and
continuous elements across multiple layers. Critical infrastructures have become increasingly
complex, interconnected, and susceptible to adverse conditions, including cyber and physical
attacks as well as operational faults. The integration of distributed energy resources (DER),
coupled with high-temporal-resolution control and hybrid ownership patterns, further complicates
the identification of potential adversarial scenarios and their impacts on CPS. Over the years,
cyber-attacks on these systems have grown in number, sophistication, and impact.

Experimentation with "what-if* scenarios, particularly those involving low-probability but high-
impact cases, is essential for identifying resilient CPS operations. However, the explosion of CPS
state-space demands substantial computational resources for the timely generation of critical
decision-support inputs. Hybrid Attack Graphs (HAG) offer a flexible and efficient approach to
generating attack sequences within a CPS. In HAGs, CPS states and dynamics are represented
as nodes, while adversary tactics and physical actions are represented as edges, illustrating
transitions from one state to another.

1.1 Background and Research Gap

CPS resilience assessment process has been a manual, collaborative, and iterative process by
a team of experts with knowledge of CPS system design, cyber-security, and vulnerability
assessment. This time-consuming and costly process leads to incomplete and erroneous
assessment. Various model-based
approaches [Xinming et al. 2005,
Bruhadeshwar et al. 2019, Ghazo et al.
2019] can automate the generation of
small-scale attack graphs but requires
complete observability of the architecture,
connectivity, component states,
vulnerabilities, and attack types supported
by the model. Li et. al [Li Ming et al.] use
NVIDIA’'s CUDA-based GPU to generate
small attack graphs (AG) in parallel. A2G2V
[Ghazo et al. 2019] is a model-based
approach to generate attack graphs for
SCADA network. Ibrahim et. al [Ibrahim et
al., 2019] extend the model-based
approach to generate hybrid attack graphs
applied only to the communication network.
The model-based approaches are limited in
required scalability and heterogeneity to
produce large-scale attack graphs critical
for resilience experimentation.  Our
proposed data-driven and physics-informed
T T approach addresses gaps in state-of-the-
art by producing credible test cases to

Figure 2 HAGEN For CPS Resilience
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facilitate CPS experimentation and co-design efforts.

A prerequisite of generating such HAGs is to understand relationship between different cyber
concepts such as vulnerability, weakness, adversary, techniques, software, mitigations, etc.
There have been many rule-based and Al/ML-based approaches to align such concepts. Most of
these capabilities focus on enterprise domains. Additionally, Large Language Models (LLMs)
provides exciting opportunity to leverage summarization and explainability of LLMs to extend
existing ground-truth alignment using few shots approach [Das S et al. 2021]. HAGEN project
organized existing cyber knowledge siloed in different repositories and provided a common
interface to connect cyber concepts. It also explored LLM-based alignment capabilities. HAGEN
also addressed gaps in predicting adversary’s technique given a set of preconditions. HAGEN
built-upon existing reinforcement and Q-learning based approaches to develop a simple reward
policy to generate an adversarial scenario encoded as a MITRE technique graph walk. Resilience
assessment is crucial for maintaining high availability, security, and quality of service in power
grids. However, most current grid research lacks hardware testbed capabilities. Consequently,
simulation testbeds have emerged to model real-world power grid topologies and evaluate the
impact of various disruptions. HAGEN developed a co-simulation capability to measure the impact
of cyber physical attack scenarios. Mitigation Recommendation is a key research topic and HAGE
present a novel framework capable of addressing the aspect of allocating budget to different
organizational sectors serving a common goal of reducing vulnerability of adversarial cyber-
attacks. Finally, HAGEN also developed novel capability to model and explore distribution power
grid via a graph-based, cross platform application. All the research deliverables and capabilities
are discussed in detail.
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2.0 HAGEN Methodology

HAGEN project used graph-based approaches, coupled with CPS system modeling and
optimization techniques to understand different aspects of cyber-physical system resilience
assessment and risk mitigation. HAGEN focused on different research sub-problems and
produced impactful deliverables as described in the subsequent sections.

2.1 Cyber Threat Modeling

The MITRE Corporation is a non-profit organization that works to address issues in diverse fields
such as cybersecurity, national defense, and healthcare. Among MITRE's key contributions to
cybersecurity research are several comprehensive databases that catalog and organize
information related to cyber threats. These resources include:
¢ Common Vulnerabilities and Exposures (CVE): Publicly disclosed cybersecurity flaws.
¢ Common Weakness Enumeration (CWE): Common types of software and hardware
weaknesses.
e Common Attack Pattern Enumeration and Classification (CAPEC): A classification of
known cyber-attack patterns.
o Techniques: Specific methodologies used by adversaries, categorized by operational
environments.
e Mitigations: Strategic actions designed to reduce or eliminate the impact of specific
techniques.
e Software and Groups: Collections of techniques implemented by specific tools, software,
or groups.

These resources are related to one another in the following manner:

Common Vulnerabilities and Exposures (CVE) is a standardized cataloging system for publicly
known information security vulnerabilities and exposures. Each entry includes a brief description
of the vulnerability, metrics related to their potential impact severity, and references associated
CWEs.

Common Weakness Enumeration (CWE) is a community-driven list of common weakness types
that affect software and hardware. It serves as a tool for identifying, addressing, and mitigating
security flaws in the design and architecture of technology products. CWEs can be related to one
another through child of, preceding, and member of relationships, along with being associated
with CAPECs.

Common Attack Pattern Enumeration and Classification (CAPEC) is resource that provides
details of known attack patterns. It categorizes approaches, such as CAPEC-112 describing
“Brute Force” attacks, that adversaries may use to exploit specific vulnerabilities and weaknesses.

MITRE categorizes Techniques used by adversaries into different operational environments,
including enterprise systems, mobile devices, and Industrial Control Systems (ICS). Each matrix
is structured by tactics, detailing the high-level objectives such as gaining initial access to a
system, along with the specific techniques used to achieve the objective tactic. This organization
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aids in understanding the progression of a cyber-attack. Mitigations are strategic actions to
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reduce or eliminate the impact of specific techniques.

MITRE provides documentation regarding Software
instances and the associated techniques applied by them,
along with threat actor Groups associated with specific
tactics, techniques, and procedures (TTPs) or software
instances.

The MITRE Knowledge Graph (MITRE KG) is a tool
designed to facilitate the generation of threat profiles using
data gathered from the above MITRE sources. It is based on
a Neo4j graph database with multiple endpoints, allowing for
relational-based querying, enabling users to easily explore
the data structure and extract specific information needed.
Currently MITRE KG is provided in the form of multiple
Docker containers, with the intent of future AWS
deployment. MITRE KG is built by aggregating MITRE data
and forming relationships based on the provided
connections between data types. The resultant structure is
visualized below.

To efficiently extract information from the graph, several endpoints are provided:

o “/find_node’ allows users to search for nodes based on their type and optionally their ID,
returning structured JSON information about the node of interest.

¢ “/find_subgraph’ enables the creation of subgraphs by specifying a target node and
defining a range of connected node types and is visualized below. This functionality helps
users find relationships between different elements within the cybersecurity ecosystem,
such as linking a specific threat actor group to mitigations that would be effective at
countering their applied techniques. The “/find_related_nodes’ endpoint is similar in
function but returns the set of nodes within the associated subgraph that are of a specific
type as opposed to the entire subgraph.
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Figure 4: Find Subgraph endpoint visualization

e The ‘Isearch’ endpoint of the MITRE Knowledge Graph is notable for its ability to both
find CVEs based on keyword searches of their descriptions and add these CVEs to the
knowledge graph. Given the vast number of CVEs (240k as of September 2024) and the
frequency of updates, this endpoint is essential for maintaining an accurate and
manageable representation of CVE relationships. A cached option of the ‘/search’
endpoint is also available and is designed to be used with a precompiled subset of
approximately 25k CVEs, which can be loaded into the knowledge graph via the “/load’
endpoint.

2.2 Cyber Knowledge Completion

To fully assess the risks to which Cyber-Physical Systems (CPSs) are exposed and to better
model the behavior of potential adversaries, we wanted to ensure that all available information
from both the Common Attack Pattern Enumerations and Classifications (CAPEC) and the MITRE
Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework is fully
incorporated into our tools. While CAPEC serves as a publicly available catalog of cyber-attack
patterns, ATT&CK provides a catalog of adversarial motivations or goals (tactics) and a list of
actions to achieve the goals (techniques) in enterprise, mobile, and ICS networks. To this end,
we expand upon the Cyber Threat Modeling work by creating a method of mapping to-and-from
CAPEC attack patterns and ATT&CK ICS techniques.

This integration is a large task—as of August 2024, there were 559 CAPEC attack patterns and
83 ATT&CK ICS techniques, for a combination of over 46k possible mappings between the two
information repositories. Since these records are updated frequently and significant domain
expertise is often necessary to verify whether a given connection is valid, we developed an
automated method for generating these mappings.

Although traditional machine learning classifiers might seem useful for identifying similar
descriptions of attack patterns and techniques, most of these approaches require structured input
to learn representations. Almost all the information describing a CAPEC attack pattern or ATT&CK
ICS technique, however, is expressed in fields of unstructured text consisting of entry identifier,
name and description.

We therefore turn to methodologies of natural language processing, where recent advances in
large language models provide an opportunity to use artificial intelligence as a tool in automating
the mapping task. In particular, many embedding models can algorithmically encode text strings
as arrays of floating-point numbers in a high-dimensional normed vector space. We can interpret
these vectors, known as document embeddings or simply embeddings, as representing the
semantics of the input text. Embeddings of documents with similar meanings end up close
together, and unrelated documents generate embeddings that are farther apart. We use this
process to treat difficult-to-handle unstructured text as mathematical vectors, to which we can
then apply more standard machine learning tools. Specifically, we compare mapping approaches
that identify nearest neighbors in embedding space, and a retrieval-augmented generation (RAG)
approach. We evaluate our results on a hand-labeled data set.
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Figure 5: Cyber Knowledge Completion using LLMs

Our approach to learn the mapping function between the CAPEC and ATT&CK taxonomies
utilizes document embedding models. Specifically, we use transformer-based neural networks
that produce fixed-length, dense representations of variable length documents—allowing us to
compare the taxonomies quantitatively. We prepare a description string for each CAPEC attack
pattern and ATT&CK ICS technique by concatenating their name, ID, and description, as
displayed in Fig. 1. An embedding model then tokenizes each input description string to a list of
tokens and transforms those tokens to a vector, which is stored in a vector database.

For an embedding of any given CAPEC attack pattern, we can then retrieve the k closest
embeddings of ATT&CK ICS techniques. Associating these to the CAPEC attack pattern provides
us with a first mapping of CAPECs to ICS techniques, parameterized by k. We can likewise
generate this nearest-neighbor mappings in the reverse direction, associating kK CAPEC
embeddings to any ICS technique.

The nearest-neighbor embedding approach provides a baseline method of retrieving potential
candidates for CAPEC-ATT&CK mappings but suffers from filtering those candidates with
precision. It also requires every CAPEC attack pattern (or ATT&CK ICS technique) to be linked
to the same fixed number k of ATT&CK ICS techniques (or CAPEC attack patterns), when the
number of links might vary widely. We therefore implemented a RAG-based mapping to address
these problems.

The RAG-based approach begins with a nearest-neighbor mapping and then systematically
wraps each retrieved technique in a set of prompts and passes them to a large language model
(in our latest version, we utilized Meta’s 8-billion parameter, instruction fine-tuned variant of Llama
3). Since we want the language model’s output to be structured in a predictable, machine-
accessible format, we leverage a decoding technique to sample generated tokens according to
any context-free grammar of our choosing. This allows us to specify a JSON schema, which we
can then convert to a Backus-Naur form of a formal grammar to constrain the LLM’s output. As a
result, the language model filters down the set of retrieved techniques to only those which it deems
to be relevant to the queried attack pattern, providing a justification for each of its “decisions”.

We compare four embedding models for each mapping: E5-large-v2, instructor-large, all-MiniL M-
L6-v2, and text-embedding-ada-002. For each model, we evaluated the pipeline’s performance
using standard metrics like Recall, Precision, and F-Score, as well as some custom task-specific
metrics. We found that RAG-based mappings generally outperform nearest neighbor mappings
in terms of precision and F-score across most embedding models, and that instructor-large and
text-embedding-ada-002 exhibit the best performance.
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2.3 CPS Attack Scenario Generation

In cyber-physical energy systems (CPES), defenders face challenges due to the complexity and
evolving nature of cyber threats. Cybersecurity professionals typically rely heavily on databases
of prior documented attacks, like those described by the MITRE ATT&CK framework. However,
the limited number of documented attack sequences restricts defenders’ abilities to anticipate and
mitigate new and increasingly sophisticated attacks.

Hybrid Attack Graphs (HAGs) are a representation that can be used to model these possible
attack sequences within CPES. The nodes within a HAG represent specific MITRE ATT&CK
techniques, while edges denote their order within an attack sequence, effectively mapping
potential pathways an adversary might follow. A single attack is represented as a linear sequence
of techniques, while a collection of attacks forms a graph describing potential attack paths. HAGs
provide a structured way to understand the interplay between different attack methods and the
overall strategy an attacker might use to compromise a system.

Given the limited set of existing HAGs (less than 30 fully defined HAGs), there is a need to
generate realistic synthetic HAGs to feed data-hungry downstream models and provide cyber
analysts with robust inference tools. By training a deep-learning generator model on the limited
data available, it is possible to produce synthetic HAGs that expand the effective size of the
dataset, making it more diverse and comprehensive. Furthermore, through reinforcement
learning, we can direct generation towards HAGs with specific user-defined attributes, such as
difficulty in detection or energy expenditure.

. T1105

Figure 6: Dense (left) and sparse (right) training HAGs

The Graph Convolutional Deep-Q Learning (GCDQ) model accomplishes this goal of generating
HAGs with targeted properties. The model was trained on 620 documented software instances
from the MITRE KG database, along with the associated techniques they incorporate. An ordering
scheme collates techniques into their corresponding tactics and adds edges between techniques
in adjacent tactics, creating dense HAGs approximating the software's operation. These dense
graphs are then sampled into 4096 sparse HAGs using a random walk algorithm with
backtracking. A sample dense (left) and sparse (right) training HAG is displayed above.

Training is done under a GAN framework, with the Graph Convolutional Generator synthesizing
HAGs and a Graph Convolutional Discriminator simultaneously learning to distinguish them from
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the training dataset. The generator model is incrementally trained to favor outputs producing a
high reward through deep-Q learning, with the reward comprising a user-defined trait along with
its ability to fool the discriminator. This process results in realistic HAGs that align with the user-
defined traits. Attack detectability was used as an example during training, calculated by the
product of each individual HAG nodes likelihood of being detected. Following training, the GCDQ
model was able to produce HAGs with a high normalized detection reward component (0.81) and
a modest discriminator reward (0.44), while maintaining high similarities in graph structure as
determined by the Frobenius norm and Laplacian spectral distance. The convergence plot for
reward components during GCDQ training is provided below.

1.0

0.4 1

—— Total Reward
Detection Reward
— Discriminator Reward

0.2 4

- : - T - T . T T
0 250 500 750 1000 1250 1500 1750 2000
Epoch

Figure 7: Reward convergence during GCDQ training

Importantly, the GCDQ model can be applied to different areas of cybersecurity strategies,
beyond simply generating larger datasets. Utilizing the trained GCDQ model, we can predict the
distribution of likely next techniques based on an existing partially complete HAG or create a HAG
with specific techniques based on prior knowledge of a systems vulnerability. This versatility
provides cyber analysts with a broad tool to enhance their predictive capabilities and strengthen
overall system defenses.

2.4 CPS Attack Simulation:

The integration of GridLAB-D and NS3 allows

- users to simulate and analyze the interaction
;_l' between physical grid components and
— communication networks, providing a

NETWORK ATTACK TESTBED IN [POWERIGRID  comprehensive view of grid operations. This multi-

layer architecture permits the detailed study of

control strategies and their impact on grid stability and performance under various scenarios,

including cyberattacks. Additionally, users can experiment with different network topologies,

communication protocols, and security measures, making the platform a versatile tool for both
academic research and practical utility management.

Network Attack Testbed in Power Grid (NATIG) evaluates cyber-physical attack impacts by
simulating attacks. It enables realistic simulations and helps maintain reliable operations by
integrating real and simulated environments. By enabling NATIG to work with both the IEEE 123
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feeder model and the IEEE 9500 bus model with minimal to no changes needed by the user in
the code, NATIG allows for a more extensive and scalable NS3 setup, showcasing the
framework's flexibility to handle larger, more complex networks compared to the IEEE 123 bus
model. Users benefit from the ability to tailor the network division to their specific needs, enabling
detailed and customizable simulations. This flexibility enhances the platform’s applicability for
diverse research and operational scenarios, providing a comprehensive tool for grid management
and analysis.

NATIG can simulate complex cybersecurity attacks, such as Man-in-the-Middle (MIM) and
Distributed Denial-of-Service (DDoS) attacks, within a DNP3 application on NS3 with needing
much setup from the user. Users can simulate sophisticated cyberattacks on grid networks
without needing extensive cybersecurity or network programming knowledge, thus lowering the
barrier to entry. NATIG enables users to evaluate the resilience and security measures of their
network under various attack scenarios, providing valuable insights into potential vulnerabilities.

Here is a list of the available examples in NATIG. Overall, we have 2 IEEE models and 2 different
attack types now functional and useful as part of NATIG. The 3G examples represent any
communication network type that is not cellular. We called it 3G for consistency in the code. 3G
topologies, that have been tested, include ring, mesh and star. The connection types used in 3G
include point to point, csma and wifi. We also added for 3G the ability for the user to setup their
own topology using topology.json configuration file.

Table 8: NATIG status of Out-of-box scenario execution

Example Description Development Stage
3G 123 IEEE bus connects the microgrids of the IEEE 123 bus model using directly connected network Works

3G 9500 IEEE bus  connects the microgrids of the IEEE 9500 bus model using directly connected network =~ Works

4G 123 IEEE bus connects the microgrids of the IEEE 123 bus model using 4G network Works
4G 9500 IEEE bus ~ connects the microgrids of the IEEE 9500 bus model using 4G network Works
5G 123 IEEE bus connects the microgrids of the IEEE 123 bus model using 5G network Works
5G 9500 IEEE bus = connects the microgrids of the IEEE 9500 bus model using 5G network Works

Here is a list of the runtime of each example. This table showcases the impact of the size of the
topology and the type of communication topology on the performance of the simulation in a docker
container.



Table 9: NATIG runtime on SLURM-based system

topology tested
5G

5G

5G

5G

5G

5G

4G LTE
4G LTE
4G LTE
4G LTE
4G LTE
4G LTE
(3G) Mesh
(3G) Mesh
(3G) Mesh
(3G) Mesh
(3G) Mesh
(3G) Mesh
(3G) Star
(3G) Star
(3G) Star
(3G) Star
(3G) Star

(3G) Star

IEEE model
9500
9500
9500
123
123
123
9500
9500
9500
123
123
123
9500
9500
9500
123
123
123
9500
9500
9500
123
123

123

Number of Nodes
45
45
45
17
17
17
45
45
45
17
17
17
23
23
23

23
23

23

Number of Paths
121
121
121
16
16
16
121
121
121
16
16
16
121
121
121
16
16
16
1
1

"

Attack?
no attack
DDoS with 2 attackers
MIM with 2 attackers
no attack
DDoS with 1 attacker
MIM with 3 attackers
no attack
DDoS with 2 attackers
MIM with 2 attackers
no attack
DDoS with 1 attacker
MIM with 3 attackers
no attack
DDoS with 1 attackers
MIM with 2 attackers
no attack
DDoS with 1 attacker
MIM with 3 attackers
no attack
DDoS with 2 attackers
MIM with 2 attacker
no attack
DDoS with 1 attacker

MIM with 3 attacker

Time (s)
45732.18
7419272
31666.34
5795.19
10591.63
7997.78
2624469
36607.44
24107.69
4098.09
835413
2683.45
17391.63
19135.84
15076.19
2385.79
4152.84
1986.06
6435.05
7879.37
6879.18
1844.98
386115

1560.43
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Finally, we also have a version of NATIG that can be run on a slurm system. That version has a
drastic impact on the performance of the simulation. It manages to cut down the run time overhead
of worst performing simulation by 90%.

NATIG capability is also used for a red-teaming scenario. We worked with SCOREDEC project
to define a set of objective function and adversarial scenarios to identify optimal design

configuration.
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2.5 Optimal Mitigation Planning

A system planner needs to identify optimal set of mitigation measures to thwart probable
adversary actions and at the same time improve the existing mitigation efficacy given an available
planning budget. Our optimal mitigation framework (depicted in Figure 2) achieves two main
objectives: (i) it minimizes adversarial risk by creating hybrid attack graphs to identify and mitigate
critical threats, and (ii) it prioritizes organizational goals by categorizing mitigation measures into
budget sectors and allocating funds in alignment with the organization’s priorities.

We harness the MITRE ATT&CK framework to plan mitigation measures for a component. To this
end, we need to define a component’s vulnerability in the context of the MITRE ATT&CK
framework and the HAG generated for the component. The generated HAG provides us with
possible sequences of techniques that adversaries could utilize to perform a successful cyber-
attack. A planner might seek to choose an optimal set of mitigation measures to minimize the
probability of compromising the component through any of the attack sequences identified
through the HAG. This goal objective requires us to minimize the success probability of each and
every attack sequence in the HAG. However, for all practical purposes, reducing these success
probabilities to a sufficiently small value is acceptable. We term this objective as minimizing the
number of “highly likely” attack sequences.

Following (Georgiadou, Mouzakitis, & Askounis, 2021), we categorize the mitigation measures
into the following overlapping sectors (or categories): asset management, business continuity,
access and trust, operations, defense, security governance and employee training. The
underlying assumption is that allocating budget improves mitigation measure efficacy, i.e., the
probability that a mitigation measure successfully prevents a technique. We compute analytic
expression for the mitigation efficacy and its dependence on the budget partitions and present an
optimization framework which helps us identify the optimal set of mitigation measures along with
the optimal allocation of budget in the various sectors.

Remote system Escape to External
discovery host system remote access

@1 L ] @- ﬁ Prioritize organization goals
Access data from = \ /
local/cloud storage %4 ) E
:;"E | '— g |—g 1o Construct attack graphs s Categorize mitigations
l = = with adversarial actions to budget sectors
L)
4N

1o |dentify mitigation to prevent Select budget sectors' g :r?tllnneusltsy\

Minimize adversarial risk

critical adversarial actions to allocate resources

Endpoint denial
of service

“\Discovery

Process Encrypted
Discovery Data from 4
Local System

Process

Injection System Dynamic L 4
Discovery Resolution Data
Destruction

Figure 10 Overview of the optimal mitigation framework to identify mitigation measures and
allocate budget to minimize cyber vulnerability
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We compare three approaches to solve the proposed mixed integer optimization problem: (a) an
off-the-shelf SCIP solver, (b) a strong branching agent-based solver (Khalil, Le Bodic, Song,
Nemhauser, & Dilkina, 2016), and (c) a GNN-based solver (Prouvost, et al., 2020). In all
instances, the off-the-shelf solver consistently outperforms the alternative methods, exhibiting the
shortest solution times and exploring the fewest nodes. This superior performance can be
attributed to the relatively small size of the problem instances, where traditional solvers are well-
optimized to handle such cases efficiently. While existing literature acknowledges the potential
advantages of strong branching agent-based and graph neural network-based solvers for larger,
more complex problems, the scale of our problem remains within a range where the off-the-shelf
solver is particularly effective. This observation underscores the importance of considering
problem size when selecting an appropriate solver.

2.6 Graph-based CPS Visualization

GridLAB-D is a simulation tool that enables
researchers in the power systems domain to
, simulate and analyze power distribution systems.
GRID LAY[]UT INTERFACE FORMoDEL ~ Power distribution systems are networks that
PREVIEW AND SYSTEM EXPLORATION  down-convert high-voltage power from the
transmission system and provide it to industrial,
commercial, and residential users. GridLAB-D uses gim (GridLAB-d Model) files that are used to

synthesize populations of objects and encode power distribution object behavior. These gim
files can be large and complex making them hard to understand, update, and maintain.

Visualizing g/m files can be difficult as well and often require the use of a programming languages
like python and some specialized libraries. There is also a lack of light-weight visualization tools
that offer a dynamic and intuitive user experience. Most visualization tools display static
representations of these distribution models with little to no functionality to update and maintain
such models.

We present GLIMPSE (Grid Layout Interface for Model Preview and System Exploration) tool
designed to provide an intuitive Ul experience and offer a dynamic visualization of distribution
systems as an attributed LPG (Label Property Graph). GLIMPSE provides users many models
update, model exploration, and model analysis features that can aid in the understanding of
complex gim files. The tool is developed using React.js, Node.js, Vis.js Electron.js, and Python.
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Figure 11: GLIMPSE Interface

The GLIMPSE User Interface offers the NEXT and PREV (previous) buttons along with Legend’s
highlighting features for model exploration. Double Clicking on any node or edge in the legend
will highlight those object types in the network visualization on the left. Double clicking on more
than one object type, either edge or node, will be highlighted, and if any highlighted type is double
clicked again that type will not be highlighted anymore. If there are nodes that are highlighted
users may click on the next and previous buttons to zoom in on each highlighted node and cycle
between highlighted node types. Clicking the RESET button will revert all highlighting back to the
visualization’s original styles.
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Figure 12: Node/Edge Highlight

When gaining further insight other than a clear view of the distribution system’s topology users
may select the menu item Graph Metrics to get some network summary statistics. These figures
are quired by creating and maintaining a Networkx graph object in GLIMPSE’s accompanied local
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WebSocket server. This server is packaged and initialized when the application is started allowing
for users with programming experience to send data to GLIMPSE’s WebSocket server API for
real time visual updates to an active visualization. Details for the WebSocket server API can be
found in the tool’s public GitHub recent releases.

Edit Node
Graph Metric

#ConnectedComponets 1

DELTAMODE
#Edges 1562

2401.7771

#Nodes 151

avgBetweennessCentrality 0.06943238145370005

modularity 0.6289387119113573

SAVE  CLOSE

Figure 13: GLIMPSE-based system update

Updating a distribution model’s objects can be done by double clicking on a node object and a
form will show allowing the user to edit that object’s many attributes. These changes are saved
to the GLIMPSE object datatype in the background. When a user is satisfied with their changes,
they can export a copy of their upload gim files with the appropriate changes reflected in the new
files. These new files can then be re-uploaded to GLIMPSE for further visualization.

Since GLIMPSE is developed using Electron.js there is installer of the tool made for Windows
allowing users to easily install and begin visualizing. In the case of Mac and Linux OS users would
need to build the tool to use which can be done by following the tools clear instructions in the
public GitHub repository. Currently the tool offers many more features including:

e Right clicking on an empty space in the visualization will prompt the user to add a new
node or save the current visualization as an image to their computer.

¢ Right clicking on a node will allow you to delete that node while right clicking on an edge
will allow you to hide that edge or hide all edges of that type.

e Right clicking on the node or edge types in the legend will show a context menu and by
selecting the edit theme button a movable form will show. This form contains options to
change the nodes color, shape, size, and image if selecting the circularimage shape.
Users are also able to change an edge type's color and width.

e Any style changes done can be saved and exported to a custom.theme.json file by
selecting export theme in the themes file menu at the top-left of the tool. This file can then
be re-uploaded with any GLIMPSE compatible file that those themes apply to.

e The tool will automatically visualize larger models with 2800 nodes or more in clusters with
the use of community detection.

¢ Clustered nodes can be opened and re-clustered when right clicking any of the nodes that
belong to an open cluster.

Edges can also be animated to show the flow of a connection between nodes.

e Support for Networkx node-link data JSON dump file, CIM (Common Information Model)
XML files, and GLIMPSE JSON data structure based on the gim2json parser's JSON
output.


https://github.com/pnnl/GLIMPSE

PNNL- 36847

GLIMPSE offers a dynamic visualization experience that is often not found in other lightweight
tools used to visualize power distribution models. Although this tool was developed for the use in
the power systems domain, we have implemented many features that allow researchers of
different domains to visualize many different networks and systems. GLIMPSE’s WebSocket API
can encourage researchers to visualize in real time their simulations whether that be a cyber-
attack or the flow of traffic in an internet network all in GLIMPSE.
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3.0 Research Impact

3.1 Publications
HAGEN project has consistently published peer-reviewed papers in top conferences.

Co-Simulation Framework For Network Attack Generation and Monitoring PNNL-SA-
190158 https://informationrelease.pnnl.gov/release/343152 Bel O., J. Kim, W.J. Hofer, M.
Maharjan, B. Hyder, S. Purohit, and S. Niddodi. 2023. "Co-Simulation Framework for Network
Attack Generation and Monitoring." IEEE Access. PNNL-SA-190158.
Doi:10.1109/ACCESS.2024.3468272

GLIMPSE of Future Power Grid Models PNNL-SA-191994
https://informationrelease.pnnl.gov/release/345873 Mendoza Sanchez A., and S. Purohit. 2024.
"GLIMPSE of Future Power Grid Models." In IEEE 18th International Conference on Semantic
Computing (ICSC 2024), February 5-7, 2024, Laguna Hills, CA, 224-225. Piscataway, New
Jersey: IEEE. PNNL-SA-191994. doi:10.1109/ICSC59802.2024.00042 03/22/2024

Enhancing Data Modeling, Exploration, and Monitoring through Knowledge Graph Visualization

PNNL-SA-199164 https://informationrelease.pnnl.gov/release/355355 Purohit S., and A.
Mendoza Sanchez. 2024. "Enhancing Data Modeling, Exploration, and Monitoring through
Knowledge Graph Visualization." In 33rd ACM International Conference on Information and
Knowledge Management (CIKM). PNNL-SA-199164.

Cyber Knowledge Completion wusing Large Language Models PNNL-SA-203400
https://informationrelease.pnnl.gov/release/360785 Webb B.K., R. Meyur, and S. Purohit. 2024.
"Cyber Knowledge Completion using Large Language Models." In 2024 |IEEE International
Conference on Big Data. PNNL-SA-203400.

Impact-Driven  Sampling Strategies for Hybrid Attack Graphs PNNL-SA-178629
https://informationrelease.pnnl.gov/release/328195 Subasi O., S. Purohit, A. Bhattacharya, and
S. Chatterjee. 2023. "Impact-Driven Sampling Strategies for Hybrid Attack Graphs." In IEEE
International Symposium on Technologies for Homeland Security (HST 2022) November 14-15,
2022, Virtual, Online, 1-7. Piscataway, New Jersey: IEEE. PNNL-SA-178629.
doi:10.1109/HST56032.2022.10025439 01/30/2023

Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning PNNL-SA-
191137 https://informationrelease.pnnl.gov/release/344801 Donald S., R. Meyur, and S. Purohit.
2023. "Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning." In IEEE
International Con ference on Big Data (BigData 2023), December 15-18, 2023, Sorrento,
Italy, 3127-3133. Piscataway, New Jersey: IEEE. PNNL-SA-191137.
doi:10.1109/BigData59044.2023.10386675 12/31/2023

Fortify Your Defenses: Strategic Budget Allocation to Enhance Power Grid Cybersecurity
PNNL-SA-192817 https://informationrelease.pnnl.gov/release/347009 Meyur R., S. Purohit,

and B.K. Webb. 2023. "Fortify Your Defenses: Strategic Budget Allocation to Enhance Power Grid

Cybersecurity." In Annual AAAI Conference on Artificial Intelligence. PNNL-SA-192817.

Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning PNNL-
SA-185588 https://informationrelease.pnnl.gov/release/337420 Purohit S., S. Donald, and R.
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https://informationrelease.pnnl.gov/release/328195
https://informationrelease.pnnl.gov/release/344801
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Meyur. 2023. "Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning." In
The 3rd Workshop on Artificial Intelligence-Enabled Cybersecurity Analytics. PNNL-SA-185588.

Cyber attack sequences generation for electric power grid. Dutta, A., Purohit, S., Bhattacharya,

A., & Bel, O. (2022, May). In 2022 10th Workshop on Modelling and Simulation of Cyber-Physical
Energy Systems (MSCPES) (pp. 1-6). IEEE.

3.2 Open-Source Software Release

https://github.com/pnnl/GLIMPSE A graph-based desktop application to visualize and update
GridLAB-D power grid models.

https://github.com/pnnl/NATIG Network Attack Testbed In [Power] Grid (NATI[P]G), a co-
simulation environment for distribution power grid network using state-of-the-art simulators.

3.3 Professional Development and Contributions

The HAGEN project frequently engaged in DOE-supported internship and workforce development
programs such as SULI (Science Undergraduate Laboratory Internships), CCl (Community
College Internships), and OMNI (Office of Minority and National Inclusion). The HAGEN team
mentored summer students and provided them with hands-on research and development
experience, working on challenging problems. Additionally, many early career researchers
contributed to project deliverables over the course of the project's funding. The following current
and past staff and interns also contributed to HAGEN: Arnab Bhattacharya, Omer Subasi,
Ashutosh Dutta, Cimone L. Wright-Hamor, David Gaviria, Mohamed Abdelkader, and Lucy M.
Tyrteos.

3.4 IP Generation and External Collaboration

HAGEN project generated multiple IP [32581-E, 32723-E, 33034-E, 33039-E, 33041-E, 33079-E]
and exploring future technology transfer opportunities. HAGEN team has collaborated with
Georgia Tech, Boise State University, North Carolina Agricultural and Technical State University,
and Michigan State University.


https://github.com/pnnl/GLIMPSE
https://github.com/pnnl/NATIG
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4.0 Conclusion

Efficient Hybrid Attack Graph Generation for Cyber-Physical System Resilience Experimentation
(HAGEN) project (FY22-24) performed research and development (R&D) to get insight into cyber-
physical system modeling and its resilience assessment. It developed new algorithms and
capabilities to assist system designer, modeling, and cybersecurity practitioners to perform
vulnerability and risk assessment. It also provides mitigation recommendations constrained to
given resource allocations. The project developed multiple capabilities and open-source software
tools to further the research.
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