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Abstract 
HAGEN project has developed theory, algorithms, and capabilities to assist cyber physical system 
modelers and operators to perform system and device-level vulnerability assessment, risk 
assessment, impact assessment, and mitigation planning. The project generates hybrid attack 
graphs for Cyber-Physical System (CPS) resilience experimentation at desired scale and speed. 
The project will produce composite attack datasets, algorithms, and demonstrable prototypical 
tools, and a library of high-impact attack sequences for a given CPS of interest. This report 
provided overall summary of research and development performed between FY22-24. 
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Summary 
Efficient Hybrid Attack Graph Generation for Cyber-Physical System Resilience Experimentation 
(HAGEN) LDRD performed research to identify credible test cases at the edge for CPS resilience 

experiments at desired scale and speed. To achieve project objectives, HAGEN focused on 
following S&T research questions: 

1. How to characterize hybrid CPS dynamics across scale with sparse data? 
2. How can the hybrid dynamics be leveraged to generate credible course-of-action HAGs? 
3. How to perform dimension reduction of HAGs for edge test case experimentation?   

HAGEN project produced capabilities in the research areas shown in the Figure 1. 
 

Figure 1 HAGEN Research and Development Areas 
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Acronyms and Abbreviations 
CPS: Cyber Physical System  
DER: Distributed Energy Resources 
CVE: Common Vulnerabilities and Exposures 
CWE: Common Weakness Enumeration 
CAPEC: Common Attack Pattern Enumeration and Classification 
TTP: Tactics, Techniques, and Procedures 
ICS: Industrial Control System 
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1.0 Introduction 
Cyber-Physical Systems (CPSs) feature a vast input space, encompassing both discrete and 
continuous elements across multiple layers. Critical infrastructures have become increasingly 
complex, interconnected, and susceptible to adverse conditions, including cyber and physical 
attacks as well as operational faults. The integration of distributed energy resources (DER), 
coupled with high-temporal-resolution control and hybrid ownership patterns, further complicates 
the identification of potential adversarial scenarios and their impacts on CPS. Over the years, 
cyber-attacks on these systems have grown in number, sophistication, and impact.  

Experimentation with "what-if" scenarios, particularly those involving low-probability but high-
impact cases, is essential for identifying resilient CPS operations. However, the explosion of CPS 
state-space demands substantial computational resources for the timely generation of critical 
decision-support inputs. Hybrid Attack Graphs (HAG) offer a flexible and efficient approach to 
generating attack sequences within a CPS. In HAGs, CPS states and dynamics are represented 
as nodes, while adversary tactics and physical actions are represented as edges, illustrating 
transitions from one state to another. 

 

1.1 Background and Research Gap 

CPS resilience assessment process has been a manual, collaborative, and iterative process by 
a team of experts with knowledge of CPS system design, cyber-security, and vulnerability 
assessment. This time-consuming and costly process leads to incomplete and erroneous 

assessment. Various model-based 
approaches [Xinming et al. 2005, 
Bruhadeshwar et al. 2019, Ghazo et al. 
2019] can automate the generation of 
small-scale attack graphs but requires 
complete observability of the architecture, 
connectivity, component states, 
vulnerabilities, and attack types supported 
by the model. Li et. al [Li Ming et al.] use 
NVIDIA’s CUDA-based GPU to generate 
small attack graphs (AG) in parallel. A2G2V 
[Ghazo et al. 2019] is a model-based 
approach to generate attack graphs for 
SCADA network. Ibrahim et. al [Ibrahim et 
al., 2019] extend the model-based 
approach to generate hybrid attack graphs 
applied only to the communication network. 
The model-based approaches are limited in 
required scalability and heterogeneity to 
produce large-scale attack graphs critical 
for resilience experimentation. Our 
proposed data-driven and physics-informed 
approach addresses gaps in state-of-the-
art by producing credible test cases to 

Figure 2 HAGEN For CPS Resilience 
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facilitate CPS experimentation and co-design efforts.  

A prerequisite of generating such HAGs is to understand relationship between different cyber 
concepts such as vulnerability, weakness, adversary, techniques, software, mitigations, etc. 
There have been many rule-based and AI/ML-based approaches to align such concepts. Most of 
these capabilities focus on enterprise domains. Additionally, Large Language Models (LLMs) 
provides exciting opportunity to leverage summarization and explainability of LLMs to extend 
existing ground-truth alignment using few shots approach [Das S et al. 2021]. HAGEN project 
organized existing cyber knowledge siloed in different repositories and provided a common 
interface to connect cyber concepts. It also explored LLM-based alignment capabilities. HAGEN 
also addressed gaps in predicting adversary’s technique given a set of preconditions. HAGEN 
built-upon existing reinforcement and Q-learning based approaches to develop a simple reward 
policy to generate an adversarial scenario encoded as a MITRE technique graph walk. Resilience 
assessment is crucial for maintaining high availability, security, and quality of service in power 
grids. However, most current grid research lacks hardware testbed capabilities. Consequently, 
simulation testbeds have emerged to model real-world power grid topologies and evaluate the 
impact of various disruptions. HAGEN developed a co-simulation capability to measure the impact 
of cyber physical attack scenarios. Mitigation Recommendation is a key research topic and HAGE 
present a novel framework capable of addressing the aspect of allocating budget to different 
organizational sectors serving a common goal of reducing vulnerability of adversarial cyber-
attacks. Finally, HAGEN also developed novel capability to model and explore distribution power 
grid via a graph-based, cross platform application. All the research deliverables and capabilities 
are discussed in detail. 
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2.0 HAGEN Methodology 
HAGEN project used graph-based approaches, coupled with CPS system modeling and 
optimization techniques to understand different aspects of cyber-physical system resilience 
assessment and risk mitigation. HAGEN focused on different research sub-problems and 
produced impactful deliverables as described in the subsequent sections.  

2.1 Cyber Threat Modeling 

The MITRE Corporation is a non-profit organization that works to address issues in diverse fields 
such as cybersecurity, national defense, and healthcare. Among MITRE's key contributions to 
cybersecurity research are several comprehensive databases that catalog and organize 
information related to cyber threats. These resources include: 

• Common Vulnerabilities and Exposures (CVE): Publicly disclosed cybersecurity flaws. 
• Common Weakness Enumeration (CWE): Common types of software and hardware 

weaknesses. 
• Common Attack Pattern Enumeration and Classification (CAPEC): A classification of 

known cyber-attack patterns. 
• Techniques: Specific methodologies used by adversaries, categorized by operational 

environments. 
• Mitigations: Strategic actions designed to reduce or eliminate the impact of specific 

techniques. 
• Software and Groups: Collections of techniques implemented by specific tools, software, 

or groups. 

These resources are related to one another in the following manner: 

Common Vulnerabilities and Exposures (CVE) is a standardized cataloging system for publicly 
known information security vulnerabilities and exposures. Each entry includes a brief description 
of the vulnerability, metrics related to their potential impact severity, and references associated 
CWEs. 

Common Weakness Enumeration (CWE) is a community-driven list of common weakness types 
that affect software and hardware. It serves as a tool for identifying, addressing, and mitigating 
security flaws in the design and architecture of technology products. CWEs can be related to one 
another through child of, preceding, and member of relationships, along with being associated 
with CAPECs. 

Common Attack Pattern Enumeration and Classification (CAPEC) is resource that provides 
details of known attack patterns. It categorizes approaches, such as CAPEC-112 describing 
“Brute Force” attacks, that adversaries may use to exploit specific vulnerabilities and weaknesses. 

MITRE categorizes Techniques used by adversaries into different operational environments, 
including enterprise systems, mobile devices, and Industrial Control Systems (ICS). Each matrix 
is structured by tactics, detailing the high-level objectives such as gaining initial access to a 
system, along with the specific techniques used to achieve the objective tactic. This organization 
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aids in understanding the progression of a cyber-attack. Mitigations are strategic actions to 
reduce or eliminate the impact of specific techniques.  

MITRE provides documentation regarding Software 
instances and the associated techniques applied by them, 
along with threat actor Groups associated with specific 
tactics, techniques, and procedures (TTPs) or software 
instances. 

The MITRE Knowledge Graph (MITRE KG) is a tool 
designed to facilitate the generation of threat profiles using 
data gathered from the above MITRE sources. It is based on 
a Neo4j graph database with multiple endpoints, allowing for 
relational-based querying, enabling users to easily explore 
the data structure and extract specific information needed. 
Currently MITRE KG is provided in the form of multiple 
Docker containers, with the intent of future AWS 
deployment. MITRE KG is built by aggregating MITRE data 
and forming relationships based on the provided 
connections between data types. The resultant structure is 
visualized below. 

To efficiently extract information from the graph, several endpoints are provided: 

• `/find_node` allows users to search for nodes based on their type and optionally their ID, 
returning structured JSON information about the node of interest. 

• `/find_subgraph` enables the creation of subgraphs by specifying a target node and 
defining a range of connected node types and is visualized below. This functionality helps 
users find relationships between different elements within the cybersecurity ecosystem, 
such as linking a specific threat actor group to mitigations that would be effective at 
countering their applied techniques. The `/find_related_nodes` endpoint is similar in 
function but returns the set of nodes within the associated subgraph that are of a specific 
type as opposed to the entire subgraph. 

 

Figure 3 MITRE KG node layers. 
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Figure 4: Find Subgraph endpoint visualization 

• The `/search` endpoint of the MITRE Knowledge Graph is notable for its ability to both 
find CVEs based on keyword searches of their descriptions and add these CVEs to the 
knowledge graph. Given the vast number of CVEs (240k as of September 2024) and the 
frequency of updates, this endpoint is essential for maintaining an accurate and 
manageable representation of CVE relationships. A cached option of the `/search` 
endpoint is also available and is designed to be used with a precompiled subset of 
approximately 25k CVEs, which can be loaded into the knowledge graph via the `/load` 
endpoint. 

2.2 Cyber Knowledge Completion 

To fully assess the risks to which Cyber-Physical Systems (CPSs) are exposed and to better 
model the behavior of potential adversaries, we wanted to ensure that all available information 
from both the Common Attack Pattern Enumerations and Classifications (CAPEC) and the MITRE 
Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework is fully 
incorporated into our tools. While CAPEC serves as a publicly available catalog of cyber-attack 
patterns, ATT&CK provides a catalog of adversarial motivations or goals (tactics) and a list of 
actions to achieve the goals (techniques) in enterprise, mobile, and ICS networks. To this end, 
we expand upon the Cyber Threat Modeling work by creating a method of mapping to-and-from 
CAPEC attack patterns and ATT&CK ICS techniques. 

This integration is a large task—as of August 2024, there were 559 CAPEC attack patterns and 
83 ATT&CK ICS techniques, for a combination of over 46k possible mappings between the two 
information repositories. Since these records are updated frequently and significant domain 
expertise is often necessary to verify whether a given connection is valid, we developed an 
automated method for generating these mappings. 

Although traditional machine learning classifiers might seem useful for identifying similar 
descriptions of attack patterns and techniques, most of these approaches require structured input 
to learn representations. Almost all the information describing a CAPEC attack pattern or ATT&CK 
ICS technique, however, is expressed in fields of unstructured text consisting of entry identifier, 
name and description.  

We therefore turn to methodologies of natural language processing, where recent advances in 
large language models provide an opportunity to use artificial intelligence as a tool in automating 
the mapping task. In particular, many embedding models can algorithmically encode text strings 
as arrays of floating-point numbers in a high-dimensional normed vector space. We can interpret 
these vectors, known as document embeddings or simply embeddings, as representing the 
semantics of the input text. Embeddings of documents with similar meanings end up close 
together, and unrelated documents generate embeddings that are farther apart. We use this 
process to treat difficult-to-handle unstructured text as mathematical vectors, to which we can 
then apply more standard machine learning tools. Specifically, we compare mapping approaches 
that identify nearest neighbors in embedding space, and a retrieval-augmented generation (RAG) 
approach. We evaluate our results on a hand-labeled data set. 
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Figure 5: Cyber Knowledge Completion using LLMs  

Our approach to learn the mapping function between the CAPEC and ATT&CK taxonomies 
utilizes document embedding models. Specifically, we use transformer-based neural networks 
that produce fixed-length, dense representations of variable length documents—allowing us to 
compare the taxonomies quantitatively. We prepare a description string for each CAPEC attack 
pattern and ATT&CK ICS technique by concatenating their name, ID, and description, as 
displayed in Fig. 1. An embedding model then tokenizes each input description string to a list of 
tokens and transforms those tokens to a vector, which is stored in a vector database. 

For an embedding of any given CAPEC attack pattern, we can then retrieve the k closest 
embeddings of ATT&CK ICS techniques. Associating these to the CAPEC attack pattern provides 
us with a first mapping of CAPECs to ICS techniques, parameterized by k. We can likewise 
generate this nearest-neighbor mappings in the reverse direction, associating k CAPEC 
embeddings to any ICS technique. 

The nearest-neighbor embedding approach provides a baseline method of retrieving potential 
candidates for CAPEC-ATT&CK mappings but suffers from filtering those candidates with 
precision. It also requires every CAPEC attack pattern (or ATT&CK ICS technique) to be linked 
to the same fixed number k of ATT&CK ICS techniques (or CAPEC attack patterns), when the 
number of links might vary widely. We therefore implemented a RAG-based mapping to address 
these problems. 

The RAG-based approach begins with a nearest-neighbor mapping and then systematically 
wraps each retrieved technique in a set of prompts and passes them to a large language model 
(in our latest version, we utilized Meta’s 8-billion parameter, instruction fine-tuned variant of Llama 
3). Since we want the language model’s output to be structured in a predictable, machine-
accessible format, we leverage a decoding technique to sample generated tokens according to 
any context-free grammar of our choosing. This allows us to specify a JSON schema, which we 
can then convert to a Backus-Naur form of a formal grammar to constrain the LLM’s output. As a 
result, the language model filters down the set of retrieved techniques to only those which it deems 
to be relevant to the queried attack pattern, providing a justification for each of its “decisions”. 

We compare four embedding models for each mapping: E5-large-v2, instructor-large, all-MiniLM-
L6-v2, and text-embedding-ada-002. For each model, we evaluated the pipeline’s performance 
using standard metrics like Recall, Precision, and F-Score, as well as some custom task-specific 
metrics. We found that RAG-based mappings generally outperform nearest neighbor mappings 
in terms of precision and F-score across most embedding models, and that instructor-large and 
text-embedding-ada-002 exhibit the best performance. 
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2.3 CPS Attack Scenario Generation 

In cyber-physical energy systems (CPES), defenders face challenges due to the complexity and 
evolving nature of cyber threats. Cybersecurity professionals typically rely heavily on databases 
of prior documented attacks, like those described by the MITRE ATT&CK framework. However, 
the limited number of documented attack sequences restricts defenders’ abilities to anticipate and 
mitigate new and increasingly sophisticated attacks. 

Hybrid Attack Graphs (HAGs) are a representation that can be used to model these possible 
attack sequences within CPES. The nodes within a HAG represent specific MITRE ATT&CK 
techniques, while edges denote their order within an attack sequence, effectively mapping 
potential pathways an adversary might follow. A single attack is represented as a linear sequence 
of techniques, while a collection of attacks forms a graph describing potential attack paths. HAGs 
provide a structured way to understand the interplay between different attack methods and the 
overall strategy an attacker might use to compromise a system. 
 
 
Given the limited set of existing HAGs (less than 30 fully defined HAGs), there is a need to 
generate realistic synthetic HAGs to feed data-hungry downstream models and provide cyber 
analysts with robust inference tools. By training a deep-learning generator model on the limited 
data available, it is possible to produce synthetic HAGs that expand the effective size of the 
dataset, making it more diverse and comprehensive. Furthermore, through reinforcement 
learning, we can direct generation towards HAGs with specific user-defined attributes, such as 
difficulty in detection or energy expenditure. 

 
 

Figure 6: Dense (left) and sparse (right) training HAGs 

The Graph Convolutional Deep-Q Learning (GCDQ) model accomplishes this goal of generating 
HAGs with targeted properties. The model was trained on 620 documented software instances 
from the MITRE KG database, along with the associated techniques they incorporate. An ordering 
scheme collates techniques into their corresponding tactics and adds edges between techniques 
in adjacent tactics, creating dense HAGs approximating the software's operation. These dense 
graphs are then sampled into 4096 sparse HAGs using a random walk algorithm with 
backtracking. A sample dense (left) and sparse (right) training HAG is displayed above. 

Training is done under a GAN framework, with the Graph Convolutional Generator synthesizing 
HAGs and a Graph Convolutional Discriminator simultaneously learning to distinguish them from 
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the training dataset. The generator model is incrementally trained to favor outputs producing a 
high reward through deep-Q learning, with the reward comprising a user-defined trait along with 
its ability to fool the discriminator. This process results in realistic HAGs that align with the user-
defined traits. Attack detectability was used as an example during training, calculated by the 
product of each individual HAG nodes likelihood of being detected. Following training, the GCDQ 
model was able to produce HAGs with a high normalized detection reward component (0.81) and 
a modest discriminator reward (0.44), while maintaining high similarities in graph structure as 
determined by the Frobenius norm and Laplacian spectral distance. The convergence plot for 
reward components during GCDQ training is provided below. 

 
Figure 7: Reward convergence during GCDQ training 

Importantly, the GCDQ model can be applied to different areas of cybersecurity strategies, 
beyond simply generating larger datasets. Utilizing the trained GCDQ model, we can predict the 
distribution of likely next techniques based on an existing partially complete HAG or create a HAG 
with specific techniques based on prior knowledge of a systems vulnerability. This versatility 
provides cyber analysts with a broad tool to enhance their predictive capabilities and strengthen 
overall system defenses. 

2.4 CPS Attack Simulation: 

The integration of GridLAB-D and NS3 allows 
users to simulate and analyze the interaction 
between physical grid components and 
communication networks, providing a 
comprehensive view of grid operations. This multi-
layer architecture permits the detailed study of 

control strategies and their impact on grid stability and performance under various scenarios, 
including cyberattacks. Additionally, users can experiment with different network topologies, 
communication protocols, and security measures, making the platform a versatile tool for both 
academic research and practical utility management. 

Network Attack Testbed in Power Grid (NATIG) evaluates cyber-physical attack impacts by 
simulating attacks. It enables realistic simulations and helps maintain reliable operations by 
integrating real and simulated environments. By enabling NATIG to work with both the IEEE 123 
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feeder model and the IEEE 9500 bus model with minimal to no changes needed by the user in 
the code, NATIG allows for a more extensive and scalable NS3 setup, showcasing the 
framework's flexibility to handle larger, more complex networks compared to the IEEE 123 bus 
model. Users benefit from the ability to tailor the network division to their specific needs, enabling 
detailed and customizable simulations. This flexibility enhances the platform’s applicability for 
diverse research and operational scenarios, providing a comprehensive tool for grid management 
and analysis. 

NATIG can simulate complex cybersecurity attacks, such as Man-in-the-Middle (MIM) and 
Distributed Denial-of-Service (DDoS) attacks, within a DNP3 application on NS3 with needing 
much setup from the user. Users can simulate sophisticated cyberattacks on grid networks 
without needing extensive cybersecurity or network programming knowledge, thus lowering the 
barrier to entry. NATIG enables users to evaluate the resilience and security measures of their 
network under various attack scenarios, providing valuable insights into potential vulnerabilities. 

Here is a list of the available examples in NATIG. Overall, we have 2 IEEE models and 2 different 
attack types now functional and useful as part of NATIG. The 3G examples represent any 
communication network type that is not cellular. We called it 3G for consistency in the code. 3G 
topologies, that have been tested, include ring, mesh and star. The connection types used in 3G 
include point to point, csma and wifi. We also added for 3G the ability for the user to setup their 
own topology using topology.json configuration file.  

 
Table 8: NATIG status of Out-of-box scenario execution  

 

Here is a list of the runtime of each example. This table showcases the impact of the size of the 
topology and the type of communication topology on the performance of the simulation in a docker 
container. 
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Table 9: NATIG runtime on SLURM-based system 

 

Finally, we also have a version of NATIG that can be run on a slurm system. That version has a 
drastic impact on the performance of the simulation. It manages to cut down the run time overhead 
of worst performing simulation by 90%. 

NATIG capability is also used for a red-teaming scenario. We worked with SCOREDEC project 
to define a set of objective function and adversarial scenarios to identify optimal design 
configuration.  
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2.5 Optimal Mitigation Planning 

A system planner needs to identify optimal set of mitigation measures to thwart probable 
adversary actions and at the same time improve the existing mitigation efficacy given an available 
planning budget. Our optimal mitigation framework (depicted in Figure 2) achieves two main 
objectives: (i) it minimizes adversarial risk by creating hybrid attack graphs to identify and mitigate 
critical threats, and (ii) it prioritizes organizational goals by categorizing mitigation measures into 
budget sectors and allocating funds in alignment with the organization’s priorities. 

We harness the MITRE ATT&CK framework to plan mitigation measures for a component. To this 
end, we need to define a component’s vulnerability in the context of the MITRE ATT&CK 
framework and the HAG generated for the component. The generated HAG provides us with 
possible sequences of techniques that adversaries could utilize to perform a successful cyber-
attack. A planner might seek to choose an optimal set of mitigation measures to minimize the 
probability of compromising the component through any of the attack sequences identified 
through the HAG. This goal objective requires us to minimize the success probability of each and 
every attack sequence in the HAG. However, for all practical purposes, reducing these success 
probabilities to a sufficiently small value is acceptable. We term this objective as minimizing the 
number of “highly likely” attack sequences. 

Following (Georgiadou, Mouzakitis, & Askounis, 2021), we categorize the mitigation measures 
into the following overlapping sectors (or categories): asset management, business continuity, 
access and trust, operations, defense, security governance and employee training. The 
underlying assumption is that allocating budget improves mitigation measure efficacy, i.e., the 
probability that a mitigation measure successfully prevents a technique. We compute analytic 
expression for the mitigation efficacy and its dependence on the budget partitions and present an 
optimization framework which helps us identify the optimal set of mitigation measures along with 
the optimal allocation of budget in the various sectors. 

 
Figure 10 Overview of the optimal mitigation framework to identify mitigation measures and 
allocate budget to minimize cyber vulnerability 



PNNL- 36847 

 

We compare three approaches to solve the proposed mixed integer optimization problem: (a) an 
off-the-shelf SCIP solver, (b) a strong branching agent-based solver (Khalil, Le Bodic, Song, 
Nemhauser, & Dilkina, 2016), and (c) a GNN-based solver (Prouvost, et al., 2020). In all 
instances, the off-the-shelf solver consistently outperforms the alternative methods, exhibiting the 
shortest solution times and exploring the fewest nodes. This superior performance can be 
attributed to the relatively small size of the problem instances, where traditional solvers are well-
optimized to handle such cases efficiently. While existing literature acknowledges the potential 
advantages of strong branching agent-based and graph neural network-based solvers for larger, 
more complex problems, the scale of our problem remains within a range where the off-the-shelf 
solver is particularly effective. This observation underscores the importance of considering 
problem size when selecting an appropriate solver. 

2.6 Graph-based CPS Visualization 

GridLAB-D is a simulation tool that enables 
researchers in the power systems domain to 
simulate and analyze power distribution systems. 
Power distribution systems are networks that 
down-convert high-voltage power from the 
transmission system and provide it to industrial, 

commercial, and residential users. GridLAB-D uses glm (GridLAB-d Model) files that are used to 
synthesize populations of objects and encode power distribution object behavior. These glm 
files can be large and complex making them hard to understand, update, and maintain. 

Visualizing glm files can be difficult as well and often require the use of a programming languages 
like python and some specialized libraries. There is also a lack of light-weight visualization tools 
that offer a dynamic and intuitive user experience. Most visualization tools display static 
representations of these distribution models with little to no functionality to update and maintain 
such models. 

We present GLIMPSE (Grid Layout Interface for Model Preview and System Exploration) tool 
designed to provide an intuitive UI experience and offer a dynamic visualization of distribution 
systems as an attributed LPG (Label Property Graph). GLIMPSE provides users many models 
update, model exploration, and model analysis features that can aid in the understanding of 
complex glm files. The tool is developed using React.js, Node.js, Vis.js Electron.js, and Python. 
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Figure 11: GLIMPSE Interface 

The GLIMPSE User Interface offers the NEXT and PREV (previous) buttons along with Legend’s 
highlighting features for model exploration. Double Clicking on any node or edge in the legend 
will highlight those object types in the network visualization on the left. Double clicking on more 
than one object type, either edge or node, will be highlighted, and if any highlighted type is double 
clicked again that type will not be highlighted anymore. If there are nodes that are highlighted 
users may click on the next and previous buttons to zoom in on each highlighted node and cycle 
between highlighted node types. Clicking the RESET button will revert all highlighting back to the 
visualization’s original styles. 

 
Figure 12: Node/Edge Highlight 

When gaining further insight other than a clear view of the distribution system’s topology users 
may select the menu item Graph Metrics to get some network summary statistics. These figures 
are quired by creating and maintaining a Networkx graph object in GLIMPSE’s accompanied local 
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WebSocket server. This server is packaged and initialized when the application is started allowing 
for users with programming experience to send data to GLIMPSE’s WebSocket server API for 
real time visual updates to an active visualization. Details for the WebSocket server API can be 
found in the tool’s public GitHub recent releases. 

  
Figure 13: GLIMPSE-based system update 

Updating a distribution model’s objects can be done by double clicking on a node object and a 
form will show allowing the user to edit that object’s many attributes. These changes are saved 
to the GLIMPSE object datatype in the background. When a user is satisfied with their changes, 
they can export a copy of their upload glm files with the appropriate changes reflected in the new 
files. These new files can then be re-uploaded to GLIMPSE for further visualization.   

Since GLIMPSE is developed using Electron.js there is installer of the tool made for Windows 
allowing users to easily install and begin visualizing. In the case of Mac and Linux OS users would 
need to build the tool to use which can be done by following the tools clear instructions in the 
public GitHub repository. Currently the tool offers many more features including:  

• Right clicking on an empty space in the visualization will prompt the user to add a new 
node or save the current visualization as an image to their computer. 

• Right clicking on a node will allow you to delete that node while right clicking on an edge 
will allow you to hide that edge or hide all edges of that type. 

• Right clicking on the node or edge types in the legend will show a context menu and by 
selecting the edit theme button a movable form will show. This form contains options to 
change the nodes color, shape, size, and image if selecting the circularImage shape. 
Users are also able to change an edge type's color and width. 

• Any style changes done can be saved and exported to a custom.theme.json file by 
selecting export theme in the themes file menu at the top-left of the tool. This file can then 
be re-uploaded with any GLIMPSE compatible file that those themes apply to. 

• The tool will automatically visualize larger models with 2800 nodes or more in clusters with 
the use of community detection.  

• Clustered nodes can be opened and re-clustered when right clicking any of the nodes that 
belong to an open cluster. 

• Edges can also be animated to show the flow of a connection between nodes. 
• Support for Networkx node-link data JSON dump file, CIM (Common Information Model) 

XML files, and GLIMPSE JSON data structure based on the glm2json parser’s JSON 
output. 

https://github.com/pnnl/GLIMPSE
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GLIMPSE offers a dynamic visualization experience that is often not found in other lightweight 
tools used to visualize power distribution models. Although this tool was developed for the use in 
the power systems domain, we have implemented many features that allow researchers of 
different domains to visualize many different networks and systems. GLIMPSE’s WebSocket API 
can encourage researchers to visualize in real time their simulations whether that be a cyber-
attack or the flow of traffic in an internet network all in GLIMPSE. 
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3.0 Research Impact 
3.1 Publications 

HAGEN project has consistently published peer-reviewed papers in top conferences. 

Co-Simulation Framework For Network Attack Generation and Monitoring  PNNL-SA-
190158 https://informationrelease.pnnl.gov/release/343152 Bel O., J. Kim, W.J. Hofer, M. 
Maharjan, B. Hyder, S. Purohit, and S. Niddodi. 2023. "Co-Simulation Framework for Network 
Attack Generation and Monitoring." IEEE Access. PNNL-SA-190158. 
Doi:10.1109/ACCESS.2024.3468272 

GLIMPSE of Future Power Grid Models PNNL-SA-191994 
https://informationrelease.pnnl.gov/release/345873 Mendoza Sanchez A., and S. Purohit. 2024. 
"GLIMPSE of Future Power Grid Models." In IEEE 18th International Conference on Semantic 
Computing (ICSC 2024), February 5-7, 2024, Laguna Hills, CA, 224-225. Piscataway, New 
Jersey: IEEE. PNNL-SA-191994.  doi:10.1109/ICSC59802.2024.00042 03/22/2024 

Enhancing Data Modeling, Exploration, and Monitoring through Knowledge Graph Visualization 
 PNNL-SA-199164 https://informationrelease.pnnl.gov/release/355355 Purohit S., and A. 
Mendoza Sanchez. 2024. "Enhancing Data Modeling, Exploration, and Monitoring through 
Knowledge Graph Visualization." In 33rd ACM International Conference on Information and 
Knowledge Management (CIKM). PNNL-SA-199164. 

Cyber Knowledge Completion using Large Language Models PNNL-SA-203400 
https://informationrelease.pnnl.gov/release/360785  Webb B.K., R. Meyur, and S. Purohit. 2024. 
"Cyber Knowledge Completion using Large Language Models." In 2024 IEEE International 
Conference on Big Data. PNNL-SA-203400. 

Impact-Driven Sampling Strategies for Hybrid Attack Graphs PNNL-SA-178629 
https://informationrelease.pnnl.gov/release/328195 Subasi O., S. Purohit, A. Bhattacharya, and 
S. Chatterjee. 2023. "Impact-Driven Sampling Strategies for Hybrid Attack Graphs." In IEEE 
International Symposium on Technologies for Homeland Security (HST 2022) November 14-15, 
2022, Virtual, Online, 1-7. Piscataway, New Jersey: IEEE. PNNL-SA-178629.  
doi:10.1109/HST56032.2022.10025439 01/30/2023 

Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning PNNL-SA-
191137 https://informationrelease.pnnl.gov/release/344801 Donald S., R. Meyur, and S. Purohit. 
2023. "Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning." In IEEE 
International Con ference on Big Data (BigData 2023), December 15-18, 2023, Sorrento, 
Italy, 3127-3133. Piscataway, New Jersey: IEEE. PNNL-SA-191137.  
doi:10.1109/BigData59044.2023.10386675 12/31/2023 

Fortify Your Defenses: Strategic Budget Allocation to Enhance Power Grid Cybersecurity 
 PNNL-SA-192817 https://informationrelease.pnnl.gov/release/347009 Meyur R., S. Purohit, 
and B.K. Webb. 2023. "Fortify Your Defenses: Strategic Budget Allocation to Enhance Power Grid 
Cybersecurity." In Annual AAAI Conference on Artificial Intelligence. PNNL-SA-192817. 

Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning  PNNL-
SA-185588 https://informationrelease.pnnl.gov/release/337420 Purohit S., S. Donald, and R. 

https://informationrelease.pnnl.gov/release/343152
https://informationrelease.pnnl.gov/release/345873
https://informationrelease.pnnl.gov/release/355355
https://informationrelease.pnnl.gov/release/360785
https://informationrelease.pnnl.gov/release/328195
https://informationrelease.pnnl.gov/release/344801
https://informationrelease.pnnl.gov/release/347009
https://informationrelease.pnnl.gov/release/337420
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Meyur. 2023. "Hybrid Attack Graph Generation with Graph Convolutional Deep-Q Learning." In 
The 3rd Workshop on Artificial Intelligence-Enabled Cybersecurity Analytics. PNNL-SA-185588. 

Cyber attack sequences generation for electric power grid. Dutta, A., Purohit, S., Bhattacharya, 
A., & Bel, O. (2022, May). In 2022 10th Workshop on Modelling and Simulation of Cyber-Physical 
Energy Systems (MSCPES) (pp. 1-6). IEEE. 

 

3.2 Open-Source Software Release 

https://github.com/pnnl/GLIMPSE A graph-based desktop application to visualize and update 
GridLAB-D power grid models.  

https://github.com/pnnl/NATIG Network Attack Testbed In [Power] Grid (NATI[P]G), a co-
simulation environment for distribution power grid network using state-of-the-art simulators. 

3.3 Professional Development and Contributions 

The HAGEN project frequently engaged in DOE-supported internship and workforce development 
programs such as SULI (Science Undergraduate Laboratory Internships), CCI (Community 
College Internships), and OMNI (Office of Minority and National Inclusion). The HAGEN team 
mentored summer students and provided them with hands-on research and development 
experience, working on challenging problems. Additionally, many early career researchers 
contributed to project deliverables over the course of the project's funding. The following current 
and past staff and interns also contributed to HAGEN: Arnab Bhattacharya, Omer Subasi, 
Ashutosh Dutta, Cimone L. Wright-Hamor, David Gaviria, Mohamed Abdelkader, and Lucy M. 
Tyrteos. 

3.4 IP Generation and External Collaboration 

HAGEN project generated multiple IP [32581-E, 32723-E, 33034-E, 33039-E, 33041-E, 33079-E] 
and exploring future technology transfer opportunities. HAGEN team has collaborated with 
Georgia Tech, Boise State University, North Carolina Agricultural and Technical State University, 
and Michigan State University.  

 

https://github.com/pnnl/GLIMPSE
https://github.com/pnnl/NATIG
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4.0 Conclusion 
Efficient Hybrid Attack Graph Generation for Cyber-Physical System Resilience Experimentation 
(HAGEN) project (FY22-24) performed research and development (R&D) to get insight into cyber-
physical system modeling and its resilience assessment. It developed new algorithms and 
capabilities to assist system designer, modeling, and cybersecurity practitioners to perform 
vulnerability and risk assessment. It also provides mitigation recommendations constrained to 
given resource allocations. The project developed multiple capabilities and open-source software 
tools to further the research.  
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