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« The high costs of fraditional Carbon Capture and Storage (CCS) technologies highlight

the need for more cost effective solutions fo reduce CO, emissions.
« CO, Utilization potentially reducing costs by up to $45 per ton [l

« The National Energy Technology Laboratory (NETL) is exploring efficient carbbon utilization

methods, focusing on electrochemical conversion of CO, into valuable chemicals.

« This work focuses on identifying the optimal design and operation of an integrated

membrane-based CO, capture unit with the electrochemical conversion process to

produce formic acid.
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Recycled CO, (CO,2 96%)
Feed Water
Flue Gas CO CO, Rich Gas
. Membrzone Y Electrolyzer > PSA >
(5% CO,) (CO,27%) Gas Byproduct
(CO, < 1%)
b N,
: : o
Optimization Formulation Formic Acia/Water 2
min Extractive Formic Acid Product (Formic Acid = 85%,
Design and Operation Vars FAcost | o Distillation > Water < 15% )
subject to:
h(x) = 0 (mass/energy balance, performance eq.) Recycled Water
g(x) = 0 (operation conditions)
FA cost — Annualized CAPEX + Fixed O0&M + Variable 0&M C02 n HQO 9 HCOOH " ]/2 02

Formic Acid production
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Conceptual Design via
Superstructure Optimization
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Trajectory optimization, optimal
control, state/parameter estimation
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IDAES Flowsheet Models

IDAES 1D Membrane Unit Model

Inlet port I Outlet port
(Flue gas stream) Feed Side : Discretized | (N, rich stream)
I unit '
I
Outlet — Inlet
Inlet 4— @ Outlet
Sweep Side
Outlet port Optional sweep stream

(CO, rich stream) \ Mass balances, Energy balance, Momentum balance, Mass Transfer, Enthalpy Transfer

.
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IDAES Electrolyzer Unit Model

Interconnect

02 €«<— H,O/O, Channel <— H,0O
.\ l/ Oxygen side Catalyst Layer
H Triple Phase Boundary
0.5H,0 & 0.250, + H" + e~
@ H,O —> Formic Acid Product Channel —> Formic Acid, H,O
Flue Gas Side Catalyst Layer

COQT { Triple Phase Boundary
------------- 0.5C0, + H" + e~ © 0.5CH,0,
’ N .
@ CO, Np—> Enriched Flue Gas Channel —> CO,lean exhaust @

Interconnect
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Pressure Swing Adsorption (PSA) Shortcut Model N
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IDAES Pressure Swing Adsorption (PSA) Model

/Shortcut Performance Estimations

Separation Performance Estimations
Inlet port (Reacted gas)

Energy Consumption Estimations:
| o CO, working capacity estimation
o lIsosteric heat estimation

o Approximate regeneration energy
\ requirement estimation

~N
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Outlet port (N, rich stream)

)

Outlet port (CO, rich stream)

Mass balances, Energy balance, Momentum balance, Mass Transfer, Enthalpy Transfer
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Extractive Distillation (ED) Model
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Inlet port
(Formic Acid
Rich Solution)

Inlet port
(Makeup solvent)
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IDAES Extractive Distillation (ED) Model

ED Surrogate Model

Inlet

Solvent Mixer
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Outlet port
(Formic Acid Product)

.
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Mass balances, Energy balance, Momentum balance, Mass Transfer, Enthalpy Transfer/

v

Outlet port
(Lean Water Solution)




Extractive Distillation Surrogate Model

« Aspen Simulafion Assumptions B

« Total fray numbers of distillation column

» Extractive Distillation Column: 23
* Enfrainer Recovery Column: 8

« Feed positions in distillation column

» Extractive Distillation Column: 3 (SULFO), 11(FA)
* Enfrainer Recovery Column : 3

« Solvent type: SULFO 100,,,%

« Surrogate Modelling:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

N: NATIONAL

- [ENERGY

TL TECHNOLOGY
LABORATORY

Surrogofe model performonce fest resulfs
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Formlc oc:d produchon

> Input variables: Formic acid solufion feed composition (3.5 %~20 mol%)
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Reboiler Duty

> Machine Learning method : ALAMO (Automatic Learning of Algebraic MOdels)!“

» Outputs: Recovery fractions, reboiler, condenser and colling duties per kg of feed processed
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IDAES Flowsheet Model for NETL Reactive Capfure Tech [N=]nanonal

= |[ENERGY

TL [EsHnoroey
ety ettt LABORATORY
esigne nregrare eqacrtor MOkeUp WO.I.er

: I
: l
I ; 1
: : ]} CO.RichGas ! Feed Solution (
| [ CO, Feed Mixer L Solution Mixer ]—
| N, ) I |
A I
! ‘ ;
: I
: Flue Gas CcO 1 ( CO : f ] Gas Byproduct
—_ 2 > 2 .
| i Membrane - Compressor ] EleCTrO|yzer T > PSA >
| (CO2I N2) L y l J | l J
R I — I R
Formic :f Flash ‘I >0,

[ Feedwater | Acid | Separator }
Feed Wat 'l Mixer J Solution l
ee ater N

}——— Formic Acid Product
Extractive
4{ Solvent Mixer Distillati
Solvent . Isnflanon

Lean Formic Acid Solution

Recycled Solvent

Recycled Water

U.S. Department o

ENERGY




CO, to Formic Acid Conversion - Case Study Summary [N=|NAToNAL
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Reference Aspen Plus -
Membrane Materials Literature Reference NETL Lab-Scale Prototype
Electrolyzer Fixed Conversion 1-D model
Membrane Fixed Separation 1-D model
Production Rate (85% 6450 kg/hr 6450 kg/hr
purity) (43 mol/s) (43 mol/s)
CO,rich Gas Inlet to High CO, Purity Medium/Low CO, Purity

Electrolyzer (= 925%) (7% ~ 20 %)




Verification Results

NATIONAL

ENERGY
TL TECHNOLOGY
Recycled CO, LABORATORY
1
Flowrate 156 175
Feed WO-I-er Termp n/a 340 Flowrate 324 3.6
Temp n/a 340
co, 098  0.98
v v N2 n/a 0.02 CO, 0.015 0.01
I(:gce) GOS) \ D o oo n'/a ( N2 n/a  0.99
, N CO, Rich Gas ' co
z . CO, 2 ¥ | Electrolyzer |H 001 n/a PSA 0758  n/a
le\embrone - S H, 0227 n/a
owrate 41 41 ) \ >
Temp n/a 300
1 N, co, 0.95  0.95 Gas Byproduct
N2 n/a 005 | — O,
! } Formic Acid/Water
: ) ) Flowrate 43 43
. . ! Extractive Formic Acid Product (>85‘%) Temp o 353
Simulation results: Flowrate 18125 1810 <€ - Distillation " FA 085 0.5
. . . Temp Dz G H,0 015 015
= Literature simulation in Blue EA 0.02 0.02 2 ) :
, Recycled Water
= |DAES results in Red He 098 0.8 Y

IDAES EO Model:

=  Flowrate unit in mol/s

= Temperature unitin K
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« Accurate predictive models that match Aspen simulation results.
« Conftributed first-principles open-source models and property packages.
« Rigorous models can be used to simultaneously optimize design and operating conditions.




Opftimization Variables in NETL Reactive Capture Technology

Recycled CO,! CO, Purity = 99%
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Makeup Water

l

] Gas Byproduct

)

r Water Flowrate J
Feed Water k
: Lean Solution Flowrate
v v 1
Flue Gas \ r L !
(CO,, Ny) ( CO, Rich Gas ]( '''' (
SIREL CO, 2 ¥ ., Electrolyzer > PSA
L Membrane [ J L
) i CO, Capture Level | \_ <=mmmmoo I
A AN ! !
1 1 N 1 1
| 21 . I
- | | Formic Acid/Water > 0 |
i Membrane Area I B 2
L 4 I , l i Voltage
I I [N -
|
Membrane Pressure | Extractive Formic Acid Product

__________________________________________________________________

__________________________________________________________________

Distillation J

-

—

Recycled Water

Optimization Variables in red, Free Variables in green, Constraints in blue
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Total Annualized Cost

» Objective Function:  minLcoP =
oo Total Annual Formic Acid Production
* Model Statistics:

« Number of variables : 1465; Number of constraints : 1460

« Solver : IPOPT; all problems solved under 35 iterations.

Variables Lower Upper Initial Optimal
Bound Bound Values Values

Membrane Area m?2 10000 30000 20000 14416
Membrane Pressure bar 0.5 2 ] 0.51
Electrolyzer Voltage Vv | 4 3 3.002

Water Flowrate mol/s 300 600 420 363

Lean Solution Flowrate mol/s 300 600 427 305
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Recycled CO, TL LABORATORY
N 1
Flowrate 418 600
Feed Water Tome 317391
l { €O 03 025 Flowrate 436 453
Flue Gas N N2 o7 e Temp 317 331
CO,, N ( CO, Rich Gas ( co, 0.004 0.004
(€O M) > CO, 2 Yy o Electrolyzer PSA " o han
L Membrane Flowrate 472 507 > - -
Flowrate 3172 3172 owrate y \ ) >
Temp 300 300 Temp 300 300
co, 0.05  0.05 1 N2 CO, 0.08 0.11 Gas Byproduc’r
N2 095  0.95 N2 092 08 | > — ,02
. } Formic Acid/Water
: h _ . Flowrate 43 64
Flowrate 464 47 : Extractive Formic Acid Product (>85%) 7emp 327 348
Simulation results: Temp 326 348 T Distillation N 0.85 085
. . FA 0.08 0.13 y H,O 015  0.15
> |IDAES simulation in green H,O 0.9% Do Recycled Water

IDAES optimization in orange o The membrane limiting factor is CO, permeability.

o The electrolyzer's optimal performance is reached when the voltage is 3.002 V.

o The maximum production of formic acid is obtained given the electrolyzer’s size.
Temperature unit in K o The tradeoff between maximizing production and minimizing cost involves electrolyzer
efficiency, membrane size, and extractive distillation duties.

>
» Flowrate unit in mol/s
>
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« Performance Index: Levelized Cost of Production (LCOP)

Total Annualized Cost LCOP Comparisons

LCOP = L4
Total Annual Formic Acid Production L  Capital LCOP [$/kg formic acid]
Electricity price $71.7 /IMWh 0.8 e oo e
Water price $1.9 /1000 gals o
Flue gas cost $0
Capacity 85 % o4
Plant lifetime 31 years 0.2
FCR 6.64 % 0
TASC factor 1.047 IDAES Simulation IDAES Optimization
CCE 6.96 % LCOP decreased ~ 14% after optimization

(from 1.19 to 1.02 S/kg formic acid)
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« |IDAES PSE modelling framework enabled process design and off-design

performance optimization for NETL's reactive capture system.

« Sensitivity analysis showed trade-off between LCOP, design variables

and limiting factors.

« This work identified optimal operating conditions and process design,
results can be leveraged by NETL's experimental team fto analyse

different process configurations and/or operating scenarios.
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