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Background and Motivation

• The high costs of traditional Carbon Capture and Storage (CCS) technologies highlight 

the need for more cost effective solutions to reduce CO2 emissions. 

• CO2 Utilization potentially reducing costs by up to $45 per ton [1]

• The National Energy Technology Laboratory (NETL) is exploring efficient carbon utilization

methods, focusing on electrochemical conversion of CO2 into valuable chemicals.

• This work focuses on identifying the optimal design and operation of an integrated 

membrane-based CO2 capture unit with the electrochemical conversion process to 

produce formic acid. 

[1] Smith E, Morris J, Kheshgi H, Teletzke G, Herzog H, Paltsev S. The cost of CO2 transport and storage in global integrated 
assessment modeling. International Journal of Greenhouse Gas Control. 2021 Jul 1;109:103367. 2
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Reactive Capture Technology Process and Optimization 
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IDAES: Equation-Oriented Open-Source PSE Package[2] 

IDAES Core
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IDAES Enterprise 
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[2] Lee, Andrew, Jaffer H. Ghouse, John C. Eslick, Carl D. Laird, John D. Siirola, Miguel A. Zamarripa, Dan Gunter et al. "The 

IDAES process modeling framework and model library—Flexibility for process simulation and optimization." Journal of Advanced 

Manufacturing and Processing 3, no. 3 (2021): e10095. https://doi.org/10.1002/amp2.10095
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1-Dimensional High CO2 Selective Membrane Model
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1-D Electrolyzer Cell Model for Formic Acid Production
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Pressure Swing Adsorption (PSA) Shortcut Model

IDAES Flowsheet Models
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Extractive Distillation (ED) Model

IDAES Flowsheet Models
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• Aspen Simulation Assumptions [3] :

• Total tray numbers of distillation column

• Extractive Distillation Column: 23

• Entrainer Recovery Column: 8

• Feed positions in distillation column

• Extractive Distillation Column:  3 (SULFO), 11(FA)

• Entrainer Recovery Column : 3

• Solvent type: SULFO 100wt%

• Surrogate Modelling:

➢ Input variables: Formic acid solution feed composition (3.5 %~20 mol%)

➢Machine Learning method : ALAMO (Automatic Learning of Algebraic MOdels)[4]

➢Outputs:  Recovery fractions, reboiler, condenser and colling duties per kg of feed processed

Extractive Distillation Surrogate Model 

Surrogate model performance test results

Formic acid production Reboiler Duty

[3] Ge, Xiaolong, et al. "Optimization and control of extractive distillation for formic acid-water separation with maximum-boiling 

azeotrope." Computers & Chemical Engineering 169 (2023): 108075.

[4] https://minlp.com/alamo
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IDAES Flowsheet Model for NETL Reactive Capture Tech
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CO2 to Formic Acid Conversion - Case Study Summary

Items Literature Base Case[5] NETL Experimental Case

Reference Aspen Plus -

Membrane Materials Literature Reference NETL Lab-Scale Prototype 

Electrolyzer Fixed Conversion 1-D model

Membrane Fixed Separation 1-D model

Production Rate (85% 

purity)

6450 kg/hr

(43 mol/s)

6450 kg/hr

(43 mol/s)

CO2-rich Gas Inlet to 

Electrolyzer

High CO2 Purity 

(≥ 95%)

Medium/Low CO2 Purity 

(7% ~ 20 %)

[5] Shannon M. et al., Screening Techno-Economic Analysis of NETL Reactive Capture Technology, 09/30/2022 
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Verification Results
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Simulation results:

▪ Literature simulation in Blue

▪ IDAES results in Red

▪ Flowrate unit in mol/s

▪ Temperature unit in K

Flowrate 41 41

Temp n/a 300

CO2 0.95 0.95

N2 n/a 0.05

Flowrate 1812.5 1810

Temp n/a 353

FA 0.02 0.02

H2O 0.98 0.98

Flowrate 32.4 3.6

Temp n/a 340

CO2 0.015 0.01

N2 n/a 0.99

CO 0.758 n/a

H2 0.227 n/a

Flowrate 156 175

Temp n/a 340

CO2 0.98 0.98

N2 n/a 0.02

CO 0.01 n/a

H2 0.01 n/a

Flowrate 43 43

Temp n/a 353

FA 0.85 0.85

H2O 0.15 0.15

IDAES EO Model:
• Accurate predictive models that match Aspen simulation results.
• Contributed first-principles open-source models and property packages.
• Rigorous models can be used to simultaneously optimize design and operating conditions.
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Optimization Variables in NETL Reactive Capture Technology 
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Optimization Problem and Results 

• Objective Function:

• Model Statistics: 

•  Number of variables : 1465; Number of constraints : 1460

• Solver : IPOPT; all problems solved under 35 iterations.

min LCOP  =  
Total Annualized Cost

Total Annual Formic Acid Production

Variables Unit Lower 

Bound

Upper 

Bound

Initial 

Values

Optimal 

Values

Membrane Area m2 10000 30000 20000 14416

Membrane Pressure bar 0.5 2 1 0.51

Electrolyzer Voltage V 1 4 3 3.002

Water Flowrate mol/s 300 600 420 363

Lean Solution Flowrate mol/s 300 600 427 305
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Optimization Results of NETL Reactive Capture Technology
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Simulation results:

➢ IDAES simulation in green

➢ IDAES optimization in orange

➢ Flowrate unit in mol/s

➢ Temperature unit in K

Flowrate 3172 3172

Temp 300 300

CO2 0.05 0.05

N2 0.95 0.95

Flowrate 472 507

Temp 300 300

CO2 0.08 0.11

N2 0.92 0.89

Flowrate 464 417

Temp 326 348

FA 0.08 0.13

H2O 0.92 0.87

Flowrate 436 453

Temp 317 331

CO2 0.004 0.004

N2 0.996 0.996

Flowrate 618 600

Temp 317 331

CO2 0.3 0.25

N2 0.7 0.75

Flowrate 43 64

Temp 327 348

FA 0.85 0.85

H2O 0.15 0.15

o The membrane limiting factor is CO2 permeability.
o The electrolyzer's optimal performance is reached when the voltage is 3.002 V.
o The maximum production of formic acid is obtained given the electrolyzer’s size.
o The tradeoff between maximizing production and minimizing cost involves electrolyzer 

efficiency, membrane size, and extractive distillation duties.
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• Performance Index: Levelized Cost of Production (LCOP)

Economic Analysis Results

Assumptions Values

Electricity price $71.7 /MWh

Water price $1.9 / 1000 gals

Flue gas cost $0

Capacity 85 %

Plant lifetime 31 years

FCR 6.64 %

TASC factor 1.047

CCF 6.96 %

LCOP  =  
Total Annualized Cost

Total Annual Formic Acid Production

LCOP Comparisons

IDAES Simulation IDAES Optimization 

LCOP decreased ~ 14% after optimization 

(from 1.19 to 1.02 $/kg formic acid)
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• IDAES PSE modelling framework enabled process design and off-design 

performance optimization for NETL's reactive capture system.

• Sensitivity analysis showed trade-off between LCOP, design variables 

and limiting factors.

• This work identified optimal operating conditions and process design, 

results can be leveraged by NETL's experimental team to analyse 

different process configurations and/or operating scenarios.

Conclusions
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Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States 
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owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions 

of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
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