

LA-UR-24-32300

Approved for public release; distribution is unlimited.

Title: A Regional Phase Amplitude Model of 2-D Attenuation for North America

Author(s): Alfaro-Diaz, Richard Alexander
Phillips, William Scott

Intended for: Report

Issued: 2024-11-18

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

A Regional Phase Amplitude Model of 2-D Attenuation for North America

Richard Alfaro-Diaz

W. Scott Phillips

November 14, 2024

A Regional Phase Amplitude Model of 2-D Attenuation for North America

We analyzed seismic attenuation patterns across the North America using over 70,000,000 Lg wave amplitudes recorded by the various networks at frequencies of 0.1-32 Hz. Our inversion solved for laterally varying attenuation, site terms, moments, and apparent stress following Phillips et al., (2016). The inversion was anchored by independently constrained: corner frequencies (via coda spectral ratios) to control the attenuation-stress tradeoff and moment measurements of teleseismic (GCMT, USGS) and regional (St. Louis University and UC Berkeley) earthquakes to provided absolute scaling. The quality factor (Q) shows clear regional patterns: low values in coastal, volcanic, and tectonically active regions, and high values in stable areas like the Great Plains and major plateaus throughout North America. These 2-D Q models enable improved regional source characterization, magnitude estimation, and yield determination.

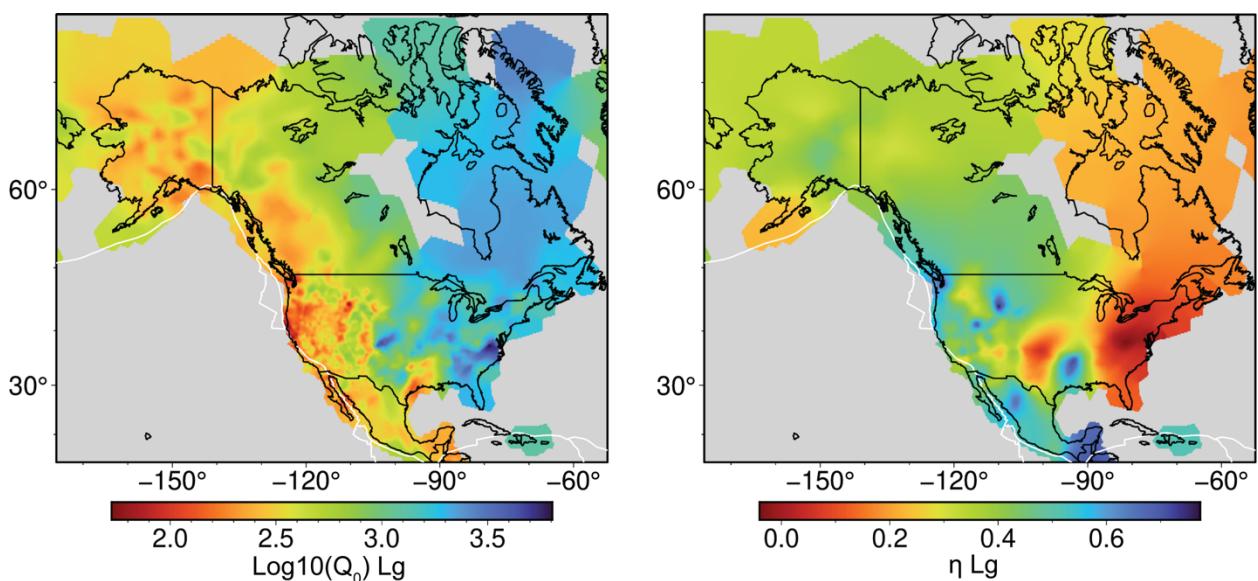


Figure 1. Frequency-dependent attenuation across the study region. Left panel shows the 1-Hz quality factor (Q_0), while right panel shows the frequency dependence parameter (η). Results are derived from a 2-D inversion that solved simultaneously for Q_0 , η , and source parameters (moment and apparent stress) for each event, incorporating source constraints from Phillips et al. (2016).

References

Phillips, W.S., Mayeda, K.M. & Malagnini, L. How to Invert Multi-Band, Regional Phase Amplitudes for 2-D Attenuation and Source Parameters: Tests Using the USArray. *Pure Appl. Geophys.* 171, 469–484 (2014). <https://doi.org/10.1007/s00024-013-0646-1>

Acknowledgements

This work would not have been possible without the foundational contributions and mentorship of the late W. Scott Phillips, whose vision and dedication to regional seismic propagation continues to guide this research. We acknowledge the Earthscope USArray project for providing essential waveform and supporting data. This study incorporated seismic data from multiple networks: ANZA Regional, Berkeley Digital Seismograph, Caltech Regional Seismic, Global Seismograph, Western Great Basin, USArray Transportable, US National Seismic, University of Utah Regional networks, ANSS operated by the National Earthquake Information Center (NEIC). We thank the Array Operations Facility (New Mexico Tech), the Array Network Facility (UC San Diego), and the EarthScope Consortium for their dedication to collecting and maintaining these valuable datasets for the scientific community. Special thanks to the USGS, GCMT, Robert Herrmann (St. Louis University), and Douglas Dreger (UC Berkeley) for making their moment tensor solutions publicly available.