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Abstract—Voltage estimation plays a key role in ensuring
the effective control and reliability of distribution networks.
However, traditional machine learning methods often fail to
capture the details of the distribution network’s topology. To
overcome this challenge, graph convolutional networks (GCN)
have emerged as an alternative. Graph convolutional networks
inherently capture the topology of the grid, utilizing correlations
to achieve precise voltage estimation. Other machine learning
models and conventional GCNs fail to account for the distribu-
tion line characteristics found in the real world, limiting their
effectiveness. This paper proposes an advanced variant of GCN
called the Impedance-Aware Graph Convolutional Network (IA-
GCN). The TA-GCN layer incorporates the magnitude of the
impedance into the graph convolution mechanism, allowing it
to capture topological nuances and provide valuable insights
into node interrelationships by considering impedance as an
intrinsic dimension. The performance of the IA-GCN layer is then
compared with that of GCN and GraphSAGE layers through a
surrogate model for voltage estimation. The performance analysis
demonstrates that IA-GCN outperforms GCN by reducing the
MAE by 87.55% and improving the R-squared value by 98%.

Index Terms—distribution networks, graph convolution net-
works, impedance-aware graph convolution networks, voltage
prediction

I. INTRODUCTION

As the power landscape undergoes a significant transfor-
mation, the integration of distributed generation (DG) into
the grid presents a multifaceted set of challenges and oppor-
tunities. While DG offers the promise of enhanced sustain-
ability, resilience, and grid decentralization, it also introduces
complexities in grid management, voltage regulation, and
system protection. Herein lies the crucial role of big data.
Modern power grids generate enormous amounts of data,
including data from substations, smart meters, sensors, and
other monitoring devices [1]. This data offers unprecedented
insights into system operations, customer behaviors, asset
health, etc. Big data techniques can be applied to state es-
timation, forecasting, and control problems [2]. The machine
learning (ML) revolution has revolutionized the way utilities
harness this deluge of data, enabling them to gain actionable
insights, optimize grid operations, and increase system reli-
ability through the development of actionable insights. We
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can use ML techniques to predict load, detect anomalies,
and integrate renewable energy by transforming raw data into
predictive models [3]. In today’s increasingly complex and
interconnected power systems, leveraging ML’s data-driven
approaches is essential for making the grid more efficient,
resilient, and sustainable. Achieving system reliability and
optimal energy delivery requires accurate voltage estimation in
distribution networks. Machine learning offers transformative
potential in this domain, enabling the capture and analysis
of vast, complex datasets to derive real-time, precise voltage
profiles. In [4], multiple techniques are combined into one
regressor to improve voltage prediction accuracy. The author
also proposes a two-step regressor that further refines predic-
tions using local regressors. [5] proposes an artificial neural
network (ANN) model for online voltage estimation with-
out power flow calculations, thereby reducing computational
burden. [6] establishes a mapping relationship between input
features and node voltage using users’ active power as input to
accurately estimate voltage in distribution stations. In contrast
to other black-box methods, graph convolutional networks
(GCN) can capture the grid’s topology, ensuring accurate
voltage estimation by utilizing spatial correlations, reducing
data redundancy, and providing better generalizability. [7] uses
the GCN model for voltage estimation by utilizing topology
data and power flow data of the active distribution network
(ADN) as graph data. Despite their remarkable ability to
perform various tasks, traditional GCNs ignore the inherent
impedance properties of real-world distribution networks.

In this paper, we introduce a novel impedance-aware
GCN (IA-GCN) layer that incorporates the magnitude of
the impedance of the network into the graph convolution
process of the standard GCN layer. By considering impedance
as an additional dimension, our approach captures both the
topological characteristics of the graph and provides a more
nuanced understanding of node relationships. The ability of
the IA-GCN layer to integrate the impedance of the network
can be used in the accurate modeling of power grid models
for ML-based applications. This paper is organized as follows:
Section II presents the background and foundation of the GCN



and GraphSAGE models. Section III presents the integration
of impedance magnitude in the proposed IA-GCN layer and
model. Section IV presents the results from the simulation
experiments, which demonstrate the improved accuracy of
voltage estimation using the IA-GCN model.

II. BACKGROUND AND FOUNDATIONS

A. Basics of GCN

The GCN learns a robust representation of the graph by
using the topology from the adjacency matrix to leverage the
local neighborhood information of every node in the graph.
The principle behind GCNs is that data from neighboring
nodes is transformed and aggregated to capture the relationship
between the input and output data from the neighborhood. [8].
Equation.(1) presents the primary operation in a GCN layer.

HY = (D 2 AD 2 HOW®) (1)

where H® is the matrix of node features at layer [, A is
the adjacency matrix with added self-loops, D is the diagonal
node degree matrix, W is the weight matrix at layer [ and
o is the activation function.

B. Basics of GraphSAGE

GraphSAGE extends the principles of GCNs by introducing
a scalable inductive framework. GraphSAGE enhances GCNs
by selectively sampling and aggregating local neighborhood
information to represent nodes. With this sampling mecha-
nism, GraphSAGE can handle large graphs efficiently and
adapt to dynamic graph structures. In contrast to traditional
GCN models, GraphSAGE generates embeddings for nodes it
hasn’t seen during training inductively. Due to its inductive
nature, it is particularly suitable for graphs that evolve over
time, where new nodes and edges might appear.

III. IMPEDANCE-AWARE GRAPH CONVOLUTIONAL
NETWORK

A. Motivation

Power distribution networks are characterized by their tree-
like radial architecture. The distribution network voltages and
power flows are inherently interrelated with the impedance
of the distribution lines. A standard GCN does not consider
the impedance of the network. In this paper, an advanced
variant of GCN called the IA-GCN was created to integrate
the impedance magnitude data of the distribution network into
a standard GCN’s message-passing framework. The difference
between message-passing in a standard GCN and [A-GCN is
explained in the following subsection.

B. Integrating Impedance in GCN’s Message-Passing Frame-
work

This paper models the IA-GCN to incorporate impedance
into the standard GCN layer. The operation of a standard
GCN layer for estimating voltage using active and reactive
power injection at a node can be shown using the Fig. 1.
From the perspective of node 1, the process begins with
a linear transformation of the input features P; and Q).
In subsequent steps, the transformed features are propagated

Fig. 1. Message Passing within a Standard GCN Layer

Pi" Ql" Zm1

@ Outgoing message
@ Incoming message

. Nodes

Fig. 2. Message Passing within an Impedance-Aware GCN Layer

across the graph to neighboring nodes 0, 2, 3, and 4 using the
adjacency matrix. During this phase, node 1 collects trans-
formed input features from its neighbors, thereby capturing
the local graph structure. The data from all the neighboring
nodes is aggregated by the node. The aggregated data from
the neighboring nodes combined with transformed data from
node 1 is passed through a non-linear activation function
such as ReLU to capture complex relationships. Using another
transformation, the activated features are used to predict the
voltage at node 1. For integrating the impedance values in
the standard GCN layer, the novel IA-GCN layer employs the
magnitude-only impedance matrix of the distribution network.
The magnitude of the impedance matrix was employed to
create impedance-based modulation. As depicted in Fig.2,
the IA-GCN integrates an impedance modulation Z,,, during
message passing. While node 1 sends the transformed features
and the modulation to the neighboring nodes 0, 2, 3, and 4,
the modulation specific to node 1, Z,,1, is influenced by the
impedance values from the impedance matrix corresponding
to node 1’s connections.The neighboring nodes also send their
transformed features with their respective impedance modula-
tions to node 1, enhancing the exchange of information with
physical network characteristics. The aggregated incoming
messages, which include both these transformed features and



the respective impedance modulations, are combined to form
the pre-activation data. Similar to the standard GCN, the IA-
GCN goes through activation and then a transformation before
being used for voltage estimation. This integration of node-
specific impedance modulation is critical in differentiating the
IA-GCN layer from the standard GCN layer, adding a level
of complexity and adaptability.

C. Mathematical Representation of the IA-GCN Layer
The IA-GCN layer can be represented by the equation (2).

H(l+1> = O'(A(propagate(L7 M7 Z))) (2)

where H(®) is the matrix of node features at layer [, and
A is the adjacency matrix without self-loops. The function
propagate represents the process of propagating the linearly
transformed and the impedance magnitude-modulated features
through the graph structure. The linear transformation and
impedance magnitude modulation are represented by equations
(3) and (4), respectively:

L=HYW 3)

M= HYW, )

In these equations, L represents the linear transformation of
the node features at layer | with the weight matrix W1, and
M represents the modulation of the node features by the
magnitude of impedance at layer [ with the weight matrix W .
The element-wise modulation, determined by the magnitude
of impedance Z, is implicitly incorporated in the propagation
process. o denotes a non-linear activation function.

D. IA-GCN based Voltage Estimation Model

The IA-GCN layer is defined to incorporate impedance into
the process of graph convolution. The data flow within the
IA-GCN model is presented in algorithm 1. The structure
of the model consists of three convolution layers and one
fully connected layer. Leaky ReLU activation functions are
applied to the input data. The model is trained using the
Adam optimizer, mean squared error loss, and a learning
rate decay strategy. The input features considered are nodal
active power injection P, reactive power injection (), and
DER status Dgtqtys. These features, along with the label
data representing the nodal data V, were normalized using
zero-mean normalization. The nature and dimension of the
feature matrix X, and adjacency matrix A are presented in
[7]. The magnitude-only impedance matrix, denoted as Z, was
constructed by extracting the magnitudes from the complex
impedance values in the full impedance matrix [9]. For each
time-period in the dataset, nodal features are stacked and the
corresponding impedance data is added. The adjacency matrix
is used to generate the edge index for each node. Each graph
instance consists of the input and output feature data and
the edge index of the graph. This data is used to train the
IA-GCN model by iteratively processing batches of data. In
each epoch, the model performs a forward pass, computes loss
against the observed voltage values, and updates its parameters
through backpropagation. The model tracks validation losses

Algorithm 1 ImpedanceAwareGCN Model Data Flow
Input: Graph data (node features x, edge indices edge_index,
edge impedance impedance)
Output: Final model output
1: Initialise GCN layers (convl, conv2, conv3) and fully
connected layer fc
2: Forward Pass:
3: ¢ <« conwl(x,edge_index,impedance) {Apply first
GCN layer}
4: x + Fleaky_relu(z, negative_slope) {Apply non-linear
activation }
5: ¢ < comv2(x,edge_index,impedance) {Apply second
GCN layer}
6: « < Fleaky_relu(x, negative_slope) {Apply non-linear
activation}
7. <+ com3(z,edge_index,impedance) {Apply third
GCN layer}
8: final_output < fc(x) {Pass through fully connected
layer for output}
9: return final_output

during the training process to avoid overfitting. The training
process is halted when the validation loss has been reduced
to a significantly low value. Hyperparameters were tuned to
optimize the performance of the model.

IV. RESULTS

The proposed local voltage estimation model for the ADN is
tested using the modified IEEE 33-node distribution system in
this section. The proposed method was implemented in Visual
Studio Code using PyTorch. The numerical experiments were
conducted on a computer with an Apple M2 Pro processor
and 32 GB of RAM.

A. Case Description

A modified IEEE 33-node network was used to generate
the training, testing, and validation data for the models [7].
Four solar DGs of 1 MW each were considered at nodes
18, 22, 25, and 33. The load data for this feeder was varied
randomly between 0.8 and 1.2 p.u. of the peak load value of
the standard IEEE test case. Then an AC optimal power flow
(ACOPF) model used in [10] was employed to generate the
voltage and DG status of the network. The voltage was allowed
to fluctuate between 0.9 p.u. and 1.1 p.u. The training data
generated was assumed to be at a 5-minute frequency for a
period of 6 months. The generated nodal voltages are mostly
in the range of 1.06 p.u. to 0.98 p.u. except for a couple
of nodes with voltages around the lower threshold of the
voltage. The temporal characteristics of the load were ignored
for data generation.The generated data was split into testing,
training, and validation in the percentages of 60, 20, and 20,
respectively. The same data was used to train the models GCN,
Graph-SAGE, and the novel IA-GCN model. Parameters and
hyperparameters of the GCN model were selected from [7].
The same parameters and hyperparameters were used for the



TABLE I
COMPARISON OF PERFORMANCE METRICS

Performance Metrics | IA-GCN GCN Graph-SAGE
MAE 5.80E-04 | 4.66E-03 3.01E-03
MSE 8.21E-07 | 4.30E-05 2.66E-05
RMSE 9.06E-04 | 6.55E-03 5.15E-03
R-squared 0.9995 0.9708 0.9809
Explained Variance 0.9995 0.9823 0.9867
MAPE 0.06% 0.46% 0.30%

GraphSAGE model. The IA-GCN used an input layer size of
3, three hidden layers of size 33, and an output layer size of
1. The IA-GCN-based model was trained with a learning rate
of 0.01 for 100 epochs. A learning rate decay coefficient of
0.99 was used for the model. Beta, the negative slope for
leaky-RelU activation, was set at 0.1.

In the development of the IA-GCN model, we prioritized
reproducibility and openness. The complete source code, in-
cluding the custom IA-GCN layer, has been made publicly
available for academic use and further development. The code
repository can be accessed at [11].

B. Comparison of Performance metrics of IA-GCN, GCN, and
Graph-SAGE Models

To identify the most efficient graph-based model for voltage
estimation in distribution networks, three models were as-
sessed: GraphSAGE, GCN, and IA-GCN. MAE, MSE, RMSE,
R-squared, Explained Variance, and MAPE were used as
performance metrics for this evaluation. The superior perfor-
mance of IA-GCN is clear from the table I. The integration
of the physical properties of the network into the standard
GCN’s convolution process enhances the ability to capture
the relationship between the nodal power injection and the
resulting nodal voltage. Its near-perfect R-squared value and
explained variance show the ability to account for variance
in the voltage data completely. Furthermore, the model’s low
MAPE combined with the other indicators indicate that the
surrogate model based on IA-GCN is far superior to the
other methods that were used for comparing the novel layer.
The graph created by comparing the actual and predicted
voltage values was used to visualize the accuracy of the IA-
GCN model. The scatter plot in Fig.3 showed that the model
predictions closely matched the values, which is understood
from the nearly 45-degree line slope. The absence of voltage
values between 0.98 pu and 0.96 pu is dependent on the test
case and the ACOPF model used for data generation.

V. CONCLUSION

The standard GCN ignores critical physical properties in-
herent to real-world distribution systems. To address this
deficiency, we introduced IA-GCN, a novel approach that
incorporates impedance modulation into the graph convolution
mechanism. Our performance analysis demonstrates that IA-
GCN is superior to conventional GCN and GraphSAGE mod-
els in terms of precision and generalizability. When compared
to the standard GCN, IA-GCN reduced the MAE by 87.55%,
MSE by 98% and the MAPE by 87.5%. Moreover, the
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Fig. 3. Actual vs Predicted Voltage

results from IA-GCN indicate that it improved the explained
variance by 96.61%, which means that the IA-GCN model’s
performance is 96.61% closer to the perfect score of 1.0 when
compared to the GCN model. By incorporating impedance
as an inherent dimension, IA-GCN not only captures the
topological nuances of the graph but also provides a refined
perspective on node interconnections. As demonstrated, this
holistic approach has the potential to significantly improve
voltage estimation duties in ADNs, paving the way for more
resilient and efficient power distribution systems in the future.
This TA-GCN layer can be applied to build surrogate models
for both DC and AC power flow for several applications like
loss estimation, fault location detection, etc.
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