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EXECUTIVE SUMMARY

This report highlights significant strides made by Oak Ridge National Laboratory’s Oak Ridge Leadership
Computing Facility (OLCF) in advancing computational research and infrastructure. Through the Advanced
Computing Ecosystem (ACE) strategic initiative, OLCF has been successfully integrated with DOE’s
Integrated Research Infrastructure (IRI) program, establishing itself as a critical framework for enhancing
scientific computing capabilities across various domains. This report outlines the activities, accomplishments,
and future directions of ACE, emphasizing its role in developing cutting-edge technologies, supporting
science pilots, and fostering collaborations that drive scientific innovation.

One of the key achievements of ACE in FY24 has been the establishment of a robust testbed environment
that facilitates the development and validation of new computing technologies. This testbed, integrated
into the larger IRI ecosystem through Energy Sciences Network (ESnet), allows for seamless collaboration
among DOE’s Advanced Scientific Computing Research (ASCR) facilities, including the Argonne Leadership
Computing Facility (ALCF), the National Energy Research Scientific Computing Center (NERSC), and
Jefferson Lab (JLab). Today the ACE testbed includes Summit through the SummitPLUS allocation program
and also the Defiant system as a test and development platform, as well several other compute and storage
solutions and an Al appliance. The testbed has been instrumental in enabling science pilots to experiment
with innovative methodologies in a controlled environment, thereby accelerating the translation of research
into practical applications.

ACE has been instrumental in advancing a series of science pilots using computational resources from
OLCEF. These pilots span a wide range of scientific domains, from basic energy sciences to biological and
environmental research, demonstrating the versatility and impact of the ACE framework. By integrating
cutting-edge technologies, such as Al-driven analytics and real-time data processing, with HPC, these pilots
have enabled significant advancements in scientific workflows. For instance, projects like LCLStream
and DELERIA have showcased the potential of ACE in optimizing experimental designs, accelerating
data analysis, and driving innovations that are critical for addressing some of the most complex scientific
challenges of IRI pathfinder projects.

ACE has also made significant progress in foundational technology development, particularly in areas such
as data movement, interface design, and scheduling. These advancements have been key in addressing
the complex requirements of modern scientific workflows, ensuring that OLCF remains at the forefront of
high-performance computing (HPC). The report details several ongoing projects, including the development
of the OLCF Facility API, Data Streaming technologies, and the Zambeze distributed orchestration system,
which together provide a secure and flexible framework for managing computational resources across a
distributed infrastructure.

In addition to technical achievements, ACE has played a central role in outreach and engagement activi-
ties. Through participation in conferences, hackathons, and training sessions, the ACE team has actively
contributed to the broader scientific community. These efforts have not only facilitated the exchange of
knowledge but have also strengthened collaborations with other DOE facilities and research institutions,
further enhancing the impact of the ACE program.

Looking ahead, the report outlines strategic plans for FY25, which include continued support for science
pilots, further integration with ASCR facilities, and the exploration of new technologies. These initiatives are
designed to ensure that ACE remains a dynamic and adaptable platform, capable of meeting the evolving
needs of the scientific community. The ongoing collaboration with ORNL’s INTERSECT initiative and the
planned technology refreshes underscore ACE’s commitment to maintaining its leadership in HPC.
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1. INTRODUCTION

The landscape of computing systems and their underlying architectures is evolving rapidly to meet the
demands of emerging applications and interconnected workflows [1]]. This growing complexity necessitates a
comprehensive approach to understand these advancements, evaluate their strengths and weaknesses, assess
their operational impacts and capabilities, and develop solutions to address any gaps.

The Integrated Research Infrastructure (IRI) Program [2]], spearheaded by the Department of Energy
(DOE), aims to create a cohesive and interconnected research environment. IRI focuses on “integrating diverse
computational resources, data infrastructures, and scientific instruments to facilitate seamless collaboration
and data sharing across multiple research domains." By fostering an ecosystem where resources and data can
be easily accessed and utilized by scientists, the IRI program enhances the efficiency and effectiveness of
scientific research, enabling breakthroughs and accelerating innovation.

The IRI vision is to “empower researchers to meld DOE’s world-class research tools, infrastructure, and user
facilities seamlessly and securely in novel ways to radically accelerate discovery and innovation." This vision
emphasizes new modes of integrated science, rapid data analysis, Al-enabled insights, and the integration of
vast data sources to drive forward scientific progress. Core to this vision are principles such as flexibility,
performance, scalability, transparency, interoperability, resiliency, extensibility, and cybersecurity. These
principles ensure that the infrastructure supports innovative and secure scientific endeavors while being
adaptable to future needs.

A significant aspect of IRI is its mission to democratize access to high-performance computing (HPC) and
data resources. By linking distributed resources and creating a more open and collaborative environment, IRI
aims to accelerate discovery and innovation, drawing new talent into the scientific community and advancing
open science. The program also addresses the challenges of the exascale science era, including the data deluge
from advanced source/detector technologies and observational platforms, and the application of Artificial
Intelligence (Al) for science, energy, and security.

To support these ambitious goals, the Oak Ridge Leadership Computing Facility (OLCF) has consolidated
various related initiatives under the Advanced Computing Ecosystem (ACE) umbrella (Figure[I). ACE is
a strategic framework designed to support the OLCF in the development and deployment of the upcoming
OLCEF-6 project, as well as to contribute to DOE programs such as IRI and FASST. ACE leverages a close
partnership with Oak Ridge National Laboratory’s INTERSECT (Interconnected Science Ecosystem) LDRD
initiative and ASCR’s Energy Sciences Network (ESnet) user facility to ensure a synergistic approach to
advancing scientific computing. Driven by the imperative of scientific advancement, ACE aims to provide
robust science campaign support and infrastructure to enhance research capabilities.

In FY24, ACE encompassed four key areas of focus to advance the goals of IRI:

e Science Pilots and Workflows — Developing and implementing pilot projects and workflows that
leverage integrated research infrastructure, facilitating seamless collaboration and data sharing across
various scientific domains. These pilots aim to create new models of scientific research by integrating
multiple user facilities and employing advanced data management and analysis techniques.

o Testbeds — Providing experimental platforms for testing and validating new technologies in a con-
trolled environment, allowing for iterative development and refinement. These testbeds serve as a
proving ground for innovative ideas and technologies, enabling researchers to experiment with cutting-
edge solutions and evaluate their practicality and effectiveness before large-scale deployment before
productization.
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Figure 1. Advanced Computing Ecosystem (ACE) within the OLCF.

¢ Research and Development of Foundational Technologies — Advancing the core technologies that
underpin next-generation computing systems, driving innovation and enhancing performance and
efficiency. This includes developing new algorithms, software tools, and hardware solutions that can
handle the increasing demands of modern scientific research.

e Technology Evaluations — Conducting thorough assessments of new computing technologies to
understand their potential benefits and limitations, ensuring informed decision-making for future
deployments. These evaluations are crucial for identifying the most promising technologies and
integrating them into the research ecosystem effectively.

By addressing these areas, ACE aims to equip the OLCF with the tools and knowledge needed to navigate
the complexities of modern computing environments, ultimately enhancing the capabilities and impact of
scientific research and discovery. The integration with ORNL’s INTERSECT initiative further strengthens
ACE’s ability to support interconnected and integrated scientific workflows, fostering an environment where
collaborative science can thrive and laboratories of the future can be realized.

This report will discuss these four key areas in detail as well as the lessons learned and challenges encountered,
workforce development initiatives, and outreach activities undertaken as part of the ACE program. Through
these efforts, we aim to highlight the progress made and the future directions for advancing the capabilities of
scientific computing in support of groundbreaking research.

Engagement and Collaboration with the IRI Management Council. Since the IRI program interconnects
not only the ASCR facilities but the broader DOE SC complex, we are keeping our efforts deeply aligned
with the IRI program and its governance and management objectives. We are actively collaborating with the
IRI Management Council to ensure our efforts are closely coordinated with the overarching goals of the IRI
program where aligned and its pathfinder science projects requirements. Our active involvement includes
occupying key leadership positions, such as co-chairs of the recently launched technical subcommittees
(Table [I)). This strategic collaboration enables us to contribute effectively to the IRI’s mission, fostering



integrated research and facilitating the successful implementation of its innovative scientific applications and
workflows.

IRI Management Council ORNL Representatives

Executive Committee Mallikarjun Shankar

Leadership Group Sarp Oral, Rafael Ferreira da Silva

Technical Subcommittee: Outreach and Engagement Rafael Ferreira da Silva (co-chair), David M. Rogers
Technical Subcommittee: Interfaces Ryan Prout (co-chair), Addi Malviya Thakur
Technical Subcommittee: TRUSTID Ryan Adamson (co-chair), Carl Bai

Table 1. ORNL Representatives in IRI Management Council and Technical Subcommittees.



2. SCIENCE PILOTS AND WORKFLOWS

The Science Pilots and Workflows initiative aims to develop and implement pilot projects that leverage
ACE’s capabilities to facilitate seamless collaboration and data sharing across various scientific domains.
This initiative focuses on creating and testing new models of scientific research by integrating multiple user
facilities and employing advanced data management and analysis techniques. The goal is to demonstrate how
interconnected resources and innovative workflows can accelerate scientific discovery and enhance research
efficiency. In this section, we describe our efforts with applications spanning a range of science programs
from the DOE’s Office of Science, highlighting the practical impact and potential of these pilots in advancing
the frontiers of knowledge.

2.1 Basic Energy Sciences (BES)
2.1.1 LCLStream

External Collaborators: Frédéric Poitevin, Jana Thayer, Ryan Coffee, Cong Wang, Valerio Mariani, Wilko
Kroeger, LCLS, SLAC National Accelerator Laboratory

Pilot Description. The LCLStream pilot project carries out training of a generalist Al model able to interpret
experimental X-ray data from a stream of detector events (Figure2)). These streams are produced from either
archived or live experiments run at SLAC’s Linac Coherent Light Source (LCLS) and LCLS-II beamlines.
Because of its size and complexity, the model requires hundreds to thousands of Summit nodes (thousands of
GPUs) for hours at a time as O(terabyte) batches of training data becomes available. The resulting AI model
functions as a shared vision backbone to produce feature maps that enable multiple downstream prediction
tasks such as hit classification, Bragg peak segmentation and image reconstruction. It will be useful to inform
a variety of data analysis queries from experimentalists.

@
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Figure 2. Overview of the LCLStream pilot project, showcasing the end-to-end workflow for training a
generalist AI model to interpret experimental X-ray data from SLAC’s LCLS and LCLS-II beamlines.
The workflow includes data streaming, preprocessing, scaling, and on-site modeling, with integration
across facilities and compute resources at SLAC and OLCF. Courtesy of SLAC.



Challenges. In addition to its high-performance computing needs on ACE, this pilot depends on developing
new technologies that will be critical for expanding LCLS-II analysis capabilities in several directions:
(1) Optimizing the event building, data reduction and pre-streamed data processing; (2) Scaling up the
Al model training to petabytes of detector data; (3) Augmenting the data stream with compute-intensive,
on-site modeling and simulation; and (4) Experimental design for steering and optimizing the various
instrumentation.

Reliably implementing these technologies requires close collaboration between facilities, application scientists
and instrument scientists. Specifically, pre-processing of the data before being streamed requires speed-up of
the data reduction and calibration pipelines, up to real-time speeds. Scaling up image data-streams requires not
only increasing physically available site-to-site bandwidth, but also the mechanism for allocating bandwidth,
and cross-facility identity management. Running compute-intensive analysis requires on-demand compute
capability, which necessitates a method for scheduling high-priority reservations for compute resources at
leadership-level HPC scales. Instrument steering requires considering the problem of secure, authenticated,
and trustworthy two-way API interactions.

Leveraging ACE. An end-to-end streaming demo has been designed and prototyped using a series of
software and components for data source managemen data analysis (event-building and data reduction),
and flexible streamingE] across SLAC and OLCEF sites. On the computational front, a highly efficient Al
dataset storage mechanisrrﬂ has been implemented to optimize data storage for Al inference. Job control
and orchestration are managed through a dedicated API, enabling the execution of stream-processing jobs
on high-performance computing resources such as Summit and Defiant. The entire workflow is cohesively
integrate(ﬂ supporting documentation of the installation, initialization, and execution phases, ensuring a
streamlined and reproducible process.

A new software called Masked Autoencoder for X-ray Image Encoding (MAXIE) has been released, offering
support for models ranging from hundreds of millions to billions of parameters. MAXIE’s training is
computationally intensive, requiring a dataset comprising roughly 1 trillion visual tokens (16-by-16 image
patches). To facilitate this process, data segmentation, shared memory utilization, and parallelization strategies
are employed to enable high-compute-intensity jobs and enhance data loading efficiency. Significant project
milestones include the transfer of 286 TB of image data to Summit’s Alpine?2 filesystem, the successful
demonstration of the image loading pipeline in streaming mode from SLAC to ORNL at rates of 10 Mb/sec and
local benchmarking at 70 GByte/second with 60 MPI ranks, and the development of a comprehensive tutorial
for the MAXIE image autoencoder. Additionally, a cross-laboratory documentation effort on streaming from
LCLS is being developecﬂ

On the FY24 collaboration SLAC’s Jana Thayer has stated that “SummitPlus and IRI have enabled new
directions in our research. None of the large-scale training we are exploring would have been possible without
the use of our SummitPlus allocations. We’ve developed a new architecture in which we pre-process data on
the S3DF to convert to a compact and user-friendly format and stream to Oak Ridge for analysis or training.
This is also new and is a pattern that will work well across sites. We’ve also learned a lot about possibilities
for parallel streaming and live analysis that will be useful. All of our future efforts to develop digital twins
and do real-time analytics will benefit from the work we’ve done with ORNL this last year. We’ve gained a
lot of benefit for LCLS and ILLUMINE through these efforts and hopefully it has been beneficial for Oak
Ridge as well.”

Thttps://github.com/frobnitzem/Iclstream
Zhttps://gitlab.com/frobnitzem/nng_stream
3https://(:ode.ornl. gov/99R/local_sampler
“https://code.ornl.gov/99R/streamrun
Shttps://github/Icls-users



New Capability. This project has successfully established an integrated workflow for end-to-end data
streaming across SLAC and OLCEF facilities. This capability includes the development of a new architecture
for pre-streaming data processing and a new image autoencoder software that can support models containing
billions of parameters.

Next Steps. Recent discussions have underscored the critical need for ongoing, close collaboration between
LCLS, S3DF, and leadership computing facilities to enhance these components. While the microservices
developed so far work effectively together to achieve streaming, further integration with facility-deployed
infrastructure will be essential for improving their reusability across different sites and ensuring reliability in
production environments. Key improvements needed include eliminating manual steps during installation,
startup, and execution (such as starting servers and creating SSH tunnels), reducing site-specific adjustments
required for interoperability across various experiment and computing facility APIs, standardizing security
technologies like mutual TLS authentication, addressing the “co-scheduling” challenge for coordinating
beam time, network bandwidth, and compute resources simultaneously, and providing seamless access to
fast, open-source data movement services (e.g., XRootD or FT'S3) for managing site-to-site file transfers.

These microservice prototypes hold significant value as they offer a foundation for future application projects
and integration with facility-managed infrastructure. The development pathway for the IRI ecosystem
is clear: facilities must provide interfaces—such as service deployment, authentication, networking, and
resource reservations—that simplify component complexity and enhance usability for facility users. Science
applications, in turn, need to adapt their workflows and infrastructures to leverage these advancements
while effectively communicating challenges with facilities and developers. The successful execution of the
LCLStream pilot project’s SLAC-to-OLCF data pipeline for generalist Al on X-ray detector events marks an
important first step in this ongoing exploration and development process.

2.1.2 IMAGINE-X

Pilot Description. The OLCEF is collaborating with the Spallation Neutron Source (SNS) on DOE BRaVE-
funded research to deliver a dynamic nuclear polarization enabled neutron crystallography instrument,
IMAGINE-X, at the High Flux Isotope Reactor (HFIR). One of the strengths of neutron crystallography lies
in its sensitivity to hydrogen atoms, which are important in biology but mostly invisible to X-rays. However,
neutron fluxes are orders of magnitude lower than photon fluxes at synchrotron sources, which makes it
necessary to grow very large protein crystals, on the order of millimeters. Dynamic nuclear polarization
(DNP) addresses this limitation by using a magnetic field and embedded paramagnetic centers to polarize
the hydrogen atoms in a cryogenic sample and boost the hydrogen scattering cross section. IMAGINE-X
will accelerate structure solution and drug discovery for biopreparedness by improving of the signal-to-noise
(S/N) ratio of neutron data by an order of magnitude, enabling the study of crystals that are radically smaller
than has previously been possible, while making use of new Al driven analysis and simulation methods. This
breakthrough will produce over 100-fold gains in performance for neutron diffraction analysis of biological
systems, accelerating the development of new therapeutics for disease, and understanding the control of
enzymes with designed catalytic and ligand binding behaviors.

Challenges. One of the primary challenges involves processing the experimental data directly from the 50
new Anger cameras that will be installed at the experiment. Every neutron will result in a timestamped event
with spatial coordinates and detector indices. To integrate IMAGINE-X with the data acquisition (DAQ)
capabilities used at other experiments such as DEMAND at HFIR or TOPAZ at SNS, we will collect live data
from the instrument, stream it using an upgraded version of the ADARA protocol to Data Processing Units
(Bluefield DPUs), and integrate both with EPICS instrument control.

Leveraging ACE. We are combining cutting-edge Al technology, Frontier and ACE computing resources
at OLCEF to develop a virtual instrument to help optimize the design of the new IMAGINE-X instrument,



accelerate real-time data collection, reduce data redundancy, and enable autonomous online experiment
steering. This co-design approach will simultaneously develop the new IMAGINE-X instrument, the virtual
instrument, and the computing infrastructure needed to connect HFIR, OLCF and edge computing at the
experiment, improving experiment steering with a computational workflow (Figure [3).
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Figure 3. Integrated workflow from instrument to edge to exascale that enables in-situ data processing
and automated instrument control for enhanced neutron scattering from biological systems. IMAGINE-
X will feature Al-enabled diffraction data analysis software and use GPUs at the edge for structure
refinement and phasing. Courtesy of SNS.

New Capability. This project will deliver Al-driven software capabilities that integrate HPC, edge compute
and data analysis resources to aid the spin-controlled neutron diffraction experiments.

Next Steps. IMAGINE-X is in the second year of its three-year funding period, and we plan to commission
the full instrument in December 2025, deliver the software and integrate the data processing at the HFIR
beamline CG4D.

2.1.3 Center for Nanophase Materials Sciences (CNMS)

External Collaborators: Narasinga Rao Miniskar, Aaron Young, Rama K. Vasudevan, Oak Ridge National
Laboratory

Pilot Description. The Center for Nanophase Materials Sciences (CNMS) is an instrumentation facility
providing access to tools such as atomic force microscopes (AFMs). AFMs are used to analyze the surface
and understand the underlying atomic properties of materials by scanning the surface with signal tips (probes)
and creating a 3D topographic image based on changes in probe height. The current methodology requires
trial and error to identify interesting locations for probing the material. Unfortunately, due to the expensive
data analysis, identifying uninteresting locations can take hours to reconcile.

Challenges. The primary challenge encountered during this project was interfacing between the microscope,
DAQ hardware, and the IRIS runtime framework. This interface had to be developed to achieve the necessary
communication between the microscope and remote server. The insights gained from the development
of IRIS-AFM could be leveraged for other projects requiring integration of scientific instruments with
computational resources.
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Figure 4. IRIS-AFM Software Architecture: The IRIS framework [3] makes it easier to write code to
automatically use a GPU if one is installed.

Leveraging ACE. An ongoing collaboration between OLCF and CNMS is focused on developing a time-
sensitive workflow that significantly speeds up the identification of suboptimal placements for AFM users.
The first output of this collaboration is a software package called IRIS-AFM (Figure ). IRIS-AFM collects
raw data from the microscope and moves that data into a GPU-enabled server to process the data through
filtration methods and extract polarization states. The processed data can then be saved for later analysis as
well as sent to a custom real-time visualization program. The visualization program generates butterfly plots
indicating the strength of the polarization which can be displayed on the microscope’s main workstation and
provide the user with immediate feedback about the experiment setup and progress (Figure [5).
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Figure S. IRIS-AFM performs the bulk of its calculations on a remote server.

The IRIS-AFM project was fully developed and successfully demonstrated to the CNMS team in July 2024,
receiving positive feedback. Principal scientist Rama Vasudevan remarked,

“The IRIS-AFM project enables us to conduct complex experiments on the microscope that, until
now, lacked any real-time visualization. The development of a real-time analysis and visualization



framework within IRIS-AFM allows users to quickly visualize results from so-called ‘g-mode’
spectroscopy experiments, enabling us to immediately change relevant experimental parameters
and yield insights on tens of thousands of individual ferroelectric switching spectra in a matter
of minutes."

New Capability. The ongoing project has produced the IRIS-AFM software package for enabling real-time
analysis and visualization of results and mitigates the expensive, time-intensive nature of traditional AFM
processing methods.

Next Steps. The current efforts utilize GPU-enabled servers but require relatively low component utilization
to generate the necessary feedback information. Our next steps with the CNMS collaboration will involve
investigating and developing a machine-learning model that will enable quick scans of the material and
identify areas of potential interest for more detailed examination with the goal of reducing the amount of
time users spend examining relatively uninteresting ares of the material.

2.1.4 Neutron Scattering Facilities

External Collaborators: Steven E. Hahn, Philip W. Fackler, William F. Godoy, Zachary Morgan, Andrei T.
Savici, Christina M. Hoffmann, Pedro Valero-Lara, Jeffrey S. Vetter, Oak Ridge National Laboratory

Pilot Description. The goal of this work is to establish a bridge between advanced computing resources
and state-of-the-art neutron science facilities, enabling the efficient processing and analysis of large-scale
experimental data. By developing a performance-portable ecosystem that leverages both CPU and GPU
architectures, we seek to optimize workflows for complex neutron scattering experiments [4]. This allows for
the extraction of detailed material properties with high accuracy and efficiency. The proposed framework not
only enhances the computational capacity to handle vast data volumes but also enables near-real-time data
processing.

Challenges. The integration of computational and experimental platforms presents significant challenges,
particularly in maintaining performance, interoperability, and extensibility as data complexity grows. The
evolving nature of next-generation instruments requires a re-engineering of existing algorithms and data
workflows to manage the increasing scale and complexity of data. Ensuring seamless communication between
disparate systems, managing large data transfers, and optimizing computational efficiency are critical to
achieving a truly integrated research infrastructure. These challenges must be addressed to maintain the pace
of scientific advancements and to fully exploit the capabilities of modern experimental facilities.

Leveraging ACE. ACE plays an essential role in enabling this application by providing a dynamic and
flexible environment that supports the deployment, testing, and optimization of heterogeneous computing
resources. ACE’s diverse computing platforms, which include cutting-edge CPU and GPU architectures,
allow for rigorous performance evaluation and tuning of the proposed workflows. This capability ensures that
our workfklow can fully utilize the computational power available, leading to significant improvements in
processing efficiency and speed.

The workflow begins with the collection of raw data from neutron scattering experiments conducted at SNS
(Figure [6). This data is captured using advanced instruments, which produce large volumes of complex
information. The workflow then involves a data reduction process where the raw experimental data is
transformed into a more interpretable format through specialized algorithms. These algorithms, implemented
in a performance-portable ecosystem, leverage both CPU and GPU resources to efficiently process and analyze
the data. The workflow also includes steps for normalizing and binning the data, which are essential for
calculating neutron scattering cross-sections. This computationally intensive process is streamlined through
the use of proxy applications that simulate the workload on different computing architectures, ensuring



Instrument Data Acquisition Neutron Computing Resources OLCF Resources

/ \ file system reductior\ @stbeds 7 \
- manTip AMD,

= NVIDIA,
- Arm

analysis.sns.gov AMD GPU
= = = MI250x
W ). *
7 Ty

E

NVIDIA

J GPU V100

REMOTE USER

Figure 6. Representation of current (blue) and potential (red) integrated facility workflows for
performance-portable codes [4]. Courtesy of SNS.

scalability and performance. The workflow culminates in the generation of high-quality, scientifically
meaningful outputs that can be used to study material properties.

New Capability. The project has developed a streamlined workflow that integrates heterogeneous com-
putational architectures with SNS experiments delivering detailed material properties for a broad range of
scientific domains.

Next Steps. Moving forward, we will focus on refining its performance-portable ecosystem to further enhance
computational models and integrate advanced Al-driven methodologies. Expanding support to additional
computing architectures and optimizing the management of data movement and storage will be critical to
scaling the framework capabilities. Additionally, efforts will be made to improve the adaptability of the
system to accommodate the ever-growing demands of future scientific experiments.

2.1.5 NW-BRaVE

Pilot Description. The NW-BRaVE project, a collaboration between OLCF and the Pacific Northwest
National Laboratory (PNNL), aims to enhance biopreparedness by understanding the molecular mechanisms
driving pathogenesis and disease transmission. This initiative focuses on creating a robust platform to
study pathogen-host interactions, particularly within the context of cyanobacteria and their viral pathogens,
cyanophages.

Challenges. The project’s complexity involves integrating diverse datasets (structural, genomics, proteomics,
and more) across multiple facilities, addressing the challenges of data federation, accessibility, and interop-
erability. The need to manage and harmonize metadata, ensure data provenance, and comply with varying
institutional data management policies further complicates the workflow.

Leveraging ACE. ACE plays a pivotal role by providing the infrastructure to test and refine DataFed, a
federated scientific data management tool, across multiple institutions. It supports the development of
Al-driven applications and complex workflows. ACE’s environment allows for secure, scalable testing of data
management and computational workflows, ensuring that the tools meet security and operational requirements
before deployment on larger HPC systems.



In FY24, the project successfully set up and began integrating DataFed with ACE’s infrastructure, including
configuring Data Transfer Nodes and Globus endpoints. The team has begun testing the platform’s capabilities,
allowing IT administrators to try and refine DataFed in a controlled environment, ensuring readiness for
broader deployment.

New Capability. The scientific data management tool, DataFed, has been deployed within the ACE testbed.
This capability will facilitate integrating scientific data management tools between OLCF and PNNL to foster
improved collaboration.

Next Steps. The project focus will shift to fully operationalizing DataFed with 500 TB of storage, enabling
real-world testing by IT administrators and scientific users at PNNL. Additionally, the project will continue
to refine Al algorithms and workflows on ACE’s NVIDIA hardware.

2.2 Biological and Environmental Research (BER)
2.2.1 Earth System Grid Federation (ESGF)

Pilot Description. The Earth System Grid Federation is a distributed collection of earth and climate science
data. The goal of ESGEF is to facilitate the advancement of earth system science (such as climate change)
through deploying software infrastructure for management, dissemination, and analysis of model output
and observational data. Our team is creating a powerful suite of workflow tooling that enables the seamless
management of these data.

Challenges. ESGF’s IRI challenges include accelerating discovery and democratizing access, and we envision
addressing these challenges by leveraging nearly every component of ACE. Foremost, new ESGF applications
can benefit from the diverse compute infrastructure that support potential machine learning workflows on
these data, and the available ‘scale up’ capacity made possible by the testbed being adjacent to Frontier.
Given that ESGF is a 7 PB data set, the large storage space made available by the Polis storage solution in
ACE and the ease of data transfer capabilities provided by Globus enable seamless data management for
application users. Finally, the Facility API, which is currently present on Defiant, seamlessly provides secure
remote access for users (e.g., via Jupyter notebook) and applications, thus allowing computational scientists
to more efficiently gain value from ESGF’s data assets.

Leveraging ACE. In FY24, we conducted several demonstrations showcasing the capabilities of our work-
flows with the CMIP-6 dataset. In the first demonstration, we successfully executed a search, download, and
visualization task focused on a near-surface air temperature dataset, utilizing a Jupyter notebook remotely
run on Defiant. This workflow, orchestrated by Globus Flows—a system for managing data transfer and
compute tasks—was conducted in collaboration with Ryan Chard and Benoit Cote from ALCF (Figure 7).
The second demonstration expanded on this by enabling interactive visualization, allowing users to create
exploratory graphics that illustrate temporal changes in CMIP-6 data. The third demonstration involved a
series of resource-intensive feature engineering workflows that utilized the Facility API to generate features,
with Globus facilitating data transfer for validation within the OLCF Jupyter notebook environment. These
demonstrations collectively highlight the robust integration of advanced tools and collaborative efforts to
enhance data analysis and visualization capabilities.

New Capability. The demonstrations performed in this pilot have showcased advanced workflow tools that
support collaborative efforts through improved data management, analysis and visualization capabilities.

Next Steps. In FY25, we will begin our pivot from standalone demonstrations to end-to-end science
workflows. Specifically, we will focus on improving support for common workflow tools (e.g., Parsl, Globus,
and Dask), the machine learning lifecycle, and common workflow patterns. In particular we plan to focus
on patterns present across IRI use cases, including those requiring the use of multiple computers, dynamic
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Figure 7. First ESGF demo including search, download, and visualization on Defiant. Courtesy of
ESGF.

resource requirements, and human feedback loops [3]]. To this end, we plan to align the development efforts
of the Zambeze distributed workflow orchestration system [6]] with this broad set of goals. Additionally, we
would like to provide tighter integration to external tools such as Globus Flows [7]] and NERSC’s Superfacility
API [8].
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2.2.2 Joint Genome Institute (JGI)
External Collaborators: Kjiersten Fagnan, Daniela Cassol, Lawrence Berkeley National Laboratory

Pilot Description. The Joint Genome Institute (JGI) is a DOE Office of Science User Facility at Lawrence
Berkeley National Laboratory and is part of Berkeley lab’s Biosciences area. JGI has developed JAWS (JGI
Analysis Workflow Service) as a framework to run users’ computational workflows. Its purpose is to improve
the re-usability and robustness of workflows in High Performance Computing (HPC), cluster, and cloud
environments. JAWS serves as an environment facilitating bridging the gap between user workflows and a
target compute infrastructure. Shown in Figure[8]is an architectural view of the various components forming
the overall JAWS framework and their interconnections.

I:y {wdl}\ @QDT[I. REST Elasticsearch Filebeat Compute

Backend Site

v A
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Client
SLURM

REST
USRS ———————> JAWSSite —————»> Cromwell —— HTCondor
Central RabbitMQ REST

inputs ;\’ /
outputs Globus

Figure 8. Architecture of the JGI JAWS Framework. Courtesy of JGI.

Challenges. As can be seen in Figure[§] the overall architecture involves a significant complexity due to the
presence of diverse and heterogeneous tools running in a distributed compute and storage environment. This
heterogeneity of components and the distributed nature of the overall framework poses a significant porting
challenge for enabling IRI goals for this application. In particular, the installation of various components
(e.g., Globus), network configuration, access management for external users from JGI and usage modes with
service user setup proved to be significantly challenging.

Leveraging ACE. In April 2024, a collaborative hackathon was hosted by ORNL, bringing together the
JGI-JAWS and ORNL-IRI teams with the objective of tackling the identified challenges. The event fea-
tured knowledge exchange and hands-on sessions, resulting in significant progress in addressing these
issues. A functional JAWS platform was successfully deployed on the ACE testbed’s Defiant cluster, with a
demonstration conducted during a joint remote session the following week.

New Capability. The JGI JAWS framework has been established on the ACE testbed resulting in several
new capabilities including the deployment of complex software for diverse workflows, direct wide area data
transfer, accommodation of long running jobs and ability to onboard external users.

Next Steps. Further development of the correct configuration of Globus for seamless remote data transfer,
access, and permissions within the workflow remains an ongoing effort of this project. Once completed, this
setup will enable JGI users to operate the JAWS platform remotely with full functionality.

2.2.3 Earth Observation

External Collaborators: Takuya Kurihana, Oak Ridge National Laboratory
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Pilot Description. Earth observation (EO) satellites, ground-based observation networks, and earth system
models are sources of vast, multi-modal datasets that are invaluable for advancing climate and environmental
research. These datasets support the development of improved predictive models to better understand complex
processes, functions, and feedback across the earth system landscape. The goal of this work is to develop a
workflow to automate and enable data management and analysis of these datasets to help drive innovation in
earth system sciences.

Challenges. The scale and complexity of the earth system datasets pose significant challenges for processing
and analysis, which are distributed across different geographical locations and organizational boundaries.
The manual processes currently required for data preprocessing and analysis are time-consuming and
computationally intensive, underscoring the need for automated and reliable orchestration capabilities across
these advanced research facilities.

Leveraging ACE. ACE enables this application by providing a powerful and flexible testbed that integrates
the various computational resources required for the workflow. ACE supports the seamless orchestration of
tasks across multiple facilities, ensuring high scalability, efficiency, and reduced processing times for the
Al-driven analysis of climate data. The use of Globus software tools within ACE further automates data
transfer, computation, and workflow management, making the process more efficient and less prone to human
error.

OLCEF - Defiant

Preprocess

Logm node Compute node

Globus compute Parsl

Globus

Inference
flow

Auth

Shipment

Globus
transfer

Figure 9. The earth observation ML workflow automates four data processing stages using the Globus
software ecosystem. (1) Download: MODIS products are downloaded from NASA DAAC to OLCF’s
ACE Defiant. (2) Preprocess: MODIS swath images are decomposed into ocean cloud tiles. (3) Monitor
& Trigger: A script monitors preprocessing and triggers inference. (4) Inference: Predicts one of 42
AICCA cloud classes. (5) Shipment: Labeled data is transferred to Frontier for further analysis [9].

New Capability. We have developed a multi-faciltiy workflow to automate the collection, preprocessing, Al
inference, and data movement tasks for large-scale climate datasets, enabling rapid analysis of petascale data
to extract new insights into climate patterns (Figure [9) [9].

Next Steps. The next steps involve extending the current workflow to support more dynamic Al applications,
including continual learning, model retraining, and real-time inference on both batch and streaming data. The
workflow will evolve to incorporate foundation models that can be adapted for new tasks, improving the
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accuracy and efficiency of climate predictions. Additionally, there is a focus on integrating advanced prove-
nance tracking and telemetry tools to enhance reproducibility and reliability across different computational
environments, as well as developing a federated pipeline-as-a-service platform to streamline the creation and
sharing of ML workflows within the scientific community.

2.3 Nuclear Physics (NP)
2.3.1 DELERIA

External Collaborators: Eric Pouyoul, Mario Cromaz, Kiran Vasu, Ezra Kissel, Eli Dart, Lawrence Berkeley
National Laboratory

Pilot Description. Deleria (Distributed Event-Level Experiment Readout and Integrated Analysis) is a
versatile software toolkit designed to stream and analyze results from physics experiments in real-time, using
wide-area networks. It separates data transport and analysis, making it adaptable to various experimental
needs. Built on open-source software and standard internet protocols, Deleria operates on off-the-shelf
hardware with container technologies. The toolkit comprises components like a forward buffer, storage
service, analysis client, event builder, and a schematic orchestrator to configure and coordinate these elements
via HTTP-based APIs.

Originally developed to generalize the data pipeline for the Gamma Ray Energy Tracking Array (GRETA)
at Lawrence Berkeley National Laboratory, Deleria demonstrates the scalability and applicability of these
design patterns. GRETA, a state-of-the-art gamma-ray spectrometer, processes up to 500k events per second,
requiring significant computational power for real-time analysis. While initially deployed on a local cluster,
Deleria aims to extend this capability over wide-area networks, utilizing remote HPC facilities for more
complex analyses.
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Figure 10. The GRETA/Deleria computing pipeline. Courtesy of DELERIA.

Challenges. Deleria supports a time-sensitive streaming model for detectors, positioning it within the
time-sensitive pattern in the IRI context[T0] While GRETA operates at a single facility, Deleria envisions
a multi-facility setup to enhance data rates and analysis complexity, feeding real-time decisions back to
experimenters. This requires: (1) Seamless connection of components over wide-area networks; (2) Resource
provisioning across multiple facilities within a single workflow; (3) Guaranteed resource availability during
experiments. These challenges necessitate both technical advancements and policy decisions.
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Leveraging ACE. Deleria has been deployed across the ESnet and ACE testbeds to demonstrate a distributed
experimental computing pipeline. Deleria containers are launched on Defiant through the Slurm API,
streaming data between ESnet hosts and Defiant for online analysis. The network setup involves Layer 2 VPN
services to ensure secure, efficient data transfer across the testbeds. Deleria’s capabilities were demonstrated
in three phases. In Phase 1, we emulated a single detector and data stream with analysis running on Defiant,
successfully provisioning resources and transferring events between the ESnet and ACE testbeds. Phase
2 involved simulating GRETA’s quad detector with four detectors, achieving a data rate of 4 Gb/s, and
experimenting with different event sizes and analysis delays to understand performance trade-offs. Finally,
in Phase 3, we scaled the setup to 36 simulated detectors, achieving a sustained bi-directional data rate of
approximately 35 Gb/s. With further tuning, we expect to hit an aggregate data rate of 40 Gb/s, the current
network limit.

New Capability. The project has established a pipeline for real-time streaming of simulated data from
GRETA detectors across the ESnet and ACE testbeds to Defiant for analysis.

Next Steps. Deleria will transition from simulation to live data streaming around February 2025, when
the GRETA detector modules are completed. This will validate real-time data streaming and analysis over
long distances. Additional support for OLCF services like APIs, data streaming, and container automation
is planned. The toolkit will also be further generalized to support a broader range of experiments, with
enhancements to the forward buffer, analysis client, and orchestration capabilities.

2.3.2 ESnet JLab FPGA Accelerated Transport Load Balancer (EJFAT)

Pilot Description. The EJFAT project started as a collaboration between ESnet and JLAB to improve
processing for event data from various DOE accelerator facilities. The idea was to create a load balancer that
can take input from Data Acquisition (DAQ) channels and distribute it to multiple compute resources for
processing. The implementation has taken the form of multiple custom FPGAs that handle the reception and
distribution of UDP packets in real-time. Multiple FPGAs can be used to increase the overall data capacity
and the number of FPGAs, DAQ channels and compute nodes can all be adjusted independently. (See [10]
for more details about EJFAT’s design and implementation.) At the OLCF, we are using the Defiant cluster in
the ACE testbed as a compute resource that can accept data from the EJFAT load balancer. This provides the
EJFAT developers with a third laboratory environment to experiment with and one whose network architecture
and policies are different from the initial two labs.

Challenges. One of the main challenges regarding EJFAT is the fact that compute resources require publicly
routable IP addresses. For testing purposes, we added public IPv4 addresses to four of Defiant’s compute
nodes, however, this is a new paradigm for OLCF. Typically, only the login nodes for our clusters have public
IP addresses and the compute nodes use private RFC-1918 IP addresses. Indeed, OLCF does not even have
enough [Pv4 addresses to assign one to every compute node.

Additionally, since EJFAT streams packets over UDP, there is no error correction or ability to resend a packet.
If a packet is lost or damaged in transit, the data is simply lost. This means the all the network links between
the accelerator facility, the EJFAT load balancer and the compute facilities must be designed to minimize
packet loss.

Leveraging ACE. Initial tests streamed about 700Mbit/sec into Defiant. The next phase of testing will try to
increase the transfer rate to 80Gbit/sec - which is the limit of the current network connections - or to whatever
maximum speed the four nodes on Defiant can manage. Interestingly, the design of EJFAT does not require
the compute resources to all be in the same facility or data center: one of the initial tests used four nodes
on Defiant, two nodes on Perlmutter and one node on a system at JLAB to analyze event data from a single
stream.
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New Capability. The EJFAT project highlights the necessity for a general-purpose data streaming architecture.
Despite significant efforts by multiple engineers to configure network settings, the results were less than
optimal: only four nodes on Defiant were usable by EJFAT, the network changes were specific to this
project and had no broader applicability, and the adjustments were not feasible for implementation on large
production systems. For a more detailed discussion, refer to Section [6]

Next Steps. The EJFAT developers have a plan to add the concept of a “data forwarder" or “gateway" to the
EJFAT protocol. That would remove the need for compute nodes to have publicly routable IP addresses and
would mesh nicely with the data streaming node concept we have been developing at OLCF. Our plan for the
coming year is to work with the EJFAT developers to integrate these new features into our data streaming
architecture and test them using ACE testbed resources (See section [f.1.1).
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3. ACE COMPUTING ENVIRONMENTS

ACE encompasses a diverse array of cutting-edge computing environments designed to propel scientific
discovery and innovation. At the heart of ACE is the integration of three key components: the SummitPLUS
program, the Frontier exascale system, and the ACE testbed. The SummitPLUS program extends the capabil-
ities of the already powerful Summit supercomputer, offering new allocation opportunities for 2024. Frontier,
the world’s first exascale supercomputer, offers unparalleled computational power, allowing researchers to
tackle the most complex and data-intensive challenges. Complementing these systems, the ACE testbed
provides a flexible and open-access platform for testing and validating emerging technologies and innovative
solutions in a controlled environment.

3.1 SummitPLUS

In FY24, OLCF has launched the SummitPLUS program, a new allocation initiative aimed at providing
continued access to the IBM AC922 Summit supercomputer from January to October 2024. SummitPLUS
opens its doors to researchers from academia, government laboratories, federal agencies, and industry,
encouraging proposals for computationally ready projects. The program is designed to extend the life and
scientific impact of Summit, which debuted in 2018 as the world’s most powerful supercomputer and has
since been instrumental in advancing research in climate, energy, public health, and national security. With a
peak performance of 200 petaflops, Summit remains a vital resource for the scientific community, enabling
large-scale simulations, data-intensive computing, and Al-driven research. By offering substantial allocations
to diverse projects, SummitPLUS ensures that researchers can continue to leverage Summit’s unparalleled
capabilities for groundbreaking scientific discoveries.

SummitPLUS plays a pivotal role in advancing the IRI program by providing a robust platform for executing
and evaluating complex scientific workflows. SummitPLUS contributes to IRI’s vision by facilitating projects
that encompass traditional simulations, data science, and Al applications, thereby fostering the convergence
of simulation, data, and learning. This initiative supports the IRI program’s goals of seamless collaboration
and data sharing, enabling researchers to tackle data-intensive challenges with enhanced efficiency and
effectiveness.

During the SummitPLUS call, we received 166 proposals and awarded 107 allocations. Among these,
9 projects were specifically aligned with IRI themes. These 9 projects encompass all three IRI patterns:
time-sensitive, data integration-intensive, and long-term campaigns. The SummitPLUS program has thus
facilitated substantial scientific advancements within the IRI program. Notably, one project involves steering
experiments at the SLAC LCLS X-ray laser facility, guided by foundational models trained on Summit,
highlighting the program’s impact on cutting-edge research.

3.2 Frontier

OLCF’s Frontier exascale system represents a monumental leap forward in computational capabilities,
providing unprecedented power and speed to tackle the most challenging scientific problems. As the
world’s first exascale supercomputer, Frontier is designed to perform over a quintillion calculations per
second, leveraging advanced architectures that include AMD Epyc CPUs and AMD Instinct GPUs. This
powerhouse system facilitates high-fidelity simulations, complex data analyses, and large-scale machine
learning applications, making it an indispensable resource for researchers across various scientific disciplines.
Frontier’s immense computational capacity not only accelerates discovery but also enables the exploration of
new scientific frontiers that were previously out of reach.
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Frontier’s capabilities are integral to the advancement of the IRI program, which aims to create a cohesive
and interconnected research environment. By providing a robust platform for executing IRI workflows and
patterns, Frontier enhances the ability to process and analyze massive datasets in near real-time, supports the
integration of diverse computational resources, and enables seamless collaboration across multiple research
domains. The system’s advanced architecture allows for the efficient execution of time-sensitive and data-
intensive applications, as well as long-term campaigns, driving innovations in areas such as climate modeling,
genomic research, and materials science. Moreover, Frontier’s role in the IRI program extends to fostering
new collaborations and partnerships, democratizing access to cutting-edge computational resources, and
setting a new standard for performance and scalability in scientific computing. Through these contributions,
Frontier not only advances the goals of the IRI program but also propels the broader scientific community
toward groundbreaking discoveries and innovations.

3.3 Testbed

The ACE testbed is a distinctive feature of the OLCEF, offering a centralized, sandboxed environment designed
to deploy and evaluate heterogeneous computing and data resources. This testbed plays a crucial role in
advancing the productization of new HPC technologies in alignment with the OLCF and DOE missions. By
providing an open-access environment equipped with HPC production-capable resources, the ACE testbed
enables researchers and HPC system architects to assess existing and emerging technologies without the
constraints typically associated with a production environment.
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Figure 11. The ACE testbed provides diverse cutting-edge computing resources for HPC workloads,
including Defiant with AMD EPYC™ CPUs and MI100 GPUs, Wombat with heterogeneous AArch64
CPUs and NVIDIA™ GPUs, GraphCore’s Al acceleration with BOWPod ¢, Holly with NVIDIA
H100 GPUs, Quokka’s general-purpose Intel™ Xeon™ nodes, and Olivine’s OpenShift™ cluster for
long-running services.

The ACE testbed is structured around several key areas of interest, which are pivotal to the evolution and
enhancement of HPC systems:

o IRI Workflows and Patterns — Developing and testing workflows that are both time-sensitive and
data-intensive, ensuring they meet the rigorous demands of scientific research.
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e Emerging Compute Architectures — Exploring advanced computational techniques and architectures,
including evolving processor architectures and compilers, Al appliances, and reconfigurable computing
systems.

e Emerging Storage Architectures — Investigating novel storage solutions, including object storage, to
manage the growing data needs of HPC applications.

e Emerging Network Architectures — Evaluating innovative network technologies, such as Data Process-
ing Units (DPUs), to enhance data throughput and reduce latency.

o Cloudification of Traditional HPC Architectures — Implementing cloud-based solutions for HPC,
including multi-tenancy and preemptible queues, to increase flexibility and resource utilization.

The ACE testbed is poised to continue its pivotal role in advancing HPC technologies and methodologies.
Upcoming efforts will focus on further enhancing the testbed’s capabilities, expanding its range of applica-
tions, and fostering collaboration with a broader scientific community. By addressing key challenges and
exploring innovative solutions, the ACE testbed aims to drive the next generation of scientific discovery and
computational excellence.

The ACE testbed offers a variety of cutting-edge computing resources designed to support diverse HPC
workloads and facilitate comprehensive evaluations. It includes Defiant, a 36-node cluster with AMD
EPYC™ CPUs and AMD MI100 GPUs (previously part of the Frontier early access system). Wombat,
a heterogeneous AArch64 cluster, featuring CPUs like Fujitsu A64FX, Ampere™ Computing Altra™,
NVIDIA™ Grace™, and NVIDIA GPUs with InfiniBand networking. In addition, two stand-alone nodes
provide dedicated Al acceleration with a BOWPod¢ cluster (GraphCore) and a Supermicro server containing
8 NVIDIA H100 GPUs connected via HDR InfiniBand (Holly). Another cluster, Quokka, comprises 16
general-purpose nodes with Intel™ Xeon™ CPUs connected via NDR200 InfiniBand. Olivine serves as an
OpenShift™ Kubernetes platform cluster for long-running or internet-facing services.

The ACE testbed is poised to continue its pivotal role in advancing HPC technologies and methodologies.
Upcoming efforts will focus on further enhancing the testbed’s capabilities, expanding its range of applications,
and fostering collaboration with a broader scientific community. Future hardware additions include the
InspireSemiconductor Thunderbird “supercomputer on a chip” packaging 1,536 64-bit custom RISC-V CPU
cores per chip. The Wombat cluster, established in 2018, continues to evolve, supporting specialized research
fields and utilizing NVIDIA BlueField™ DPUs. Table presents detailed descriptions of the ACE resources.

The ACE testbed, in collaboration with industry vendors, incorporates advanced storage solutions to support
high-performance data operations. The Polis storage system, based on Lustre, offers approximately 1.6 PB of
capacity, primarily using spinning disks with some flash storage, and is connected to Defiant for high-speed
data access. VastData, an NFS-over-RDMA storage appliance, provides around 600 TB of flash storage
integrated with the InfiniBand (IB) fabric. Additionally, the DAOS object storage system includes eight
servers, each with about 30 TB of flash storage, connected via dual NDR200 IB connections, providing a
total aggregate bandwidth of 3.2 Tbps.

The ACE testbed has been successfully integrated into the expansive IRI testbed ecosystem through the
Energy Sciences Network (ESnet). This integration marks a significant enhancement of the IRI testbed, which
will now encompass advanced computing testbeds from the Argonne Leadership Computing Facility (ALCF),
the National Energy Research Scientific Computing Center (NERSC), and Jefferson Lab (JLab). Each of these
testbeds, interconnected via the high-speed ESnet, forms a robust and collaborative research infrastructure
designed to push the boundaries of computational science and data-driven research. The network architecture,
illustrated in Figure[I2] showcases the intricate connections and the strategic deployment of resources across
the ASCR facilities.
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Resource

Description

Defiant

‘Wombat

GraphCore

Holly

Quokka

Olivine

Future Hardware

e 36 nodes with AMD Epyc CPUs and 4 AMD MI100 GPUs per node.

Slingshot 10 networking.
Previously served as the Frontier early access system.

Heterogeneous AArch64 cluster

Different CPUs: Fujitsu A64fx, Amere Compting Altra, Nvidia Grace
Nvidia Ampere and Hopper GPUs in the Ampere and Grace nodes
InfiniBand networking - HDR & NDR

Dedicated Al acceleration appliance
BOWPod¢ configuration: https://www.graphcore.ai/products/bow-podl6

o Single Supermicro server equipped with 8 NVIDIA H100 GPUs
e 8 HDR IB network connections (1.6tbps aggregate bandwidth)

16 general-purpose nodes with Intel Xeon CPUs
NDR200 networking

Openshift (Kubernetes) cluster

OVN-Kubernetes advanced networking

1808 CPU cores, 3.1 TB memory

1 NVIDIA A100 GPU

Useful for long-running jobs or intenet-facing services

Some nodes have high-speed network connections to Defiant and some nodes have high speed
IB connections to the Polis filesystem

InspireSemiconductor Thunderbird - HPC accelerator based on the RISC-V architecture -
expected Q3 2024
Defiant compute technology refresh - expected Q3 2024

Table 2. Summary of ACE resources description.
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Figure 12. Network diagram of the early ESnet testbed showcasing interconnectivity between ACE and
testbeds at partner ASCR facilities [11].
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4. RESEARCH AND DEVELOPMENT OF FOUNDATIONAL TECHNOLOGIES
4.1 Data Movement
4.1.1 Data Streaming

Cutting-edge science is increasingly data-driven due to the emergence of scientific machine learning models
that can guide scientists toward fruitful areas of exploration. Experimental science facilities such as light
and neutron sources, particle colliders, and radio astronomy telescopes are also producing raw measurement
data at rates that exceed available data storage and computing capacity at those facilities. As a result,
scientific workflows are being developed that concurrently couple experimental science facilities with HPC
facilities to enable analysis of observational data while the experiment is ongoing, and where analysis results
are potentially fed back to the experiment in a time-sensitive manner for use in control decisions such as
instrument tuning or to steer the experiment. These scientific workflows require foundational technologies that
enable bidirectional streaming of data between the experimental science facilities and HPC systems located
within computational facilities. To meet the time-sensitive demands, such technologies should emphasize
memory-to-memory data movement (i.e., moving data directly from the memory of producer applications to
the memory of consumer applications) and avoid requiring data transfers between file systems as the basis for
moving data. Although file-based data movement is already well-supported by the DOE ASCR user facilities,
it has been shown to be a bottleneck for certain use cases [[12} [13]. We refer to technologies enabling such a
bidirectional data streaming capability as Data Streaming to HPC, or DS2HPC for short.

The ASCR IRI Task Force’s Architecture Blueprint Activity (IRI ABA) produced a final report [[14] that
identifies three integrated science patterns important to the success of DOE integrated scientific research.
Of these patterns, two encompass potential use cases for DS2HPC. In the "Time-sensitive" pattern, an
experimental feedback loop may require low or near real-time latency for data streaming into and out from
the HPC system. In the "Data Integration-intensive" pattern, analysis performed on HPC systems is focused
on integration of large quantities of data from disparate sources. Use cases matching this pattern may
involve multiple independent data stream sources, such as widely distributed sensors or a set of unique
instruments/detectors. A recent report [[15]] from ESNet analyzes the prevalence of IRI blueprint patterns
across the breadth of DOE-SC programs, including Biological and Environmental Research (BER), Basic
Energy Sciences (BES), Fusion Energy Sciences (FES) High Energy Physics (HEP), and Nuclear Physics
(NP). The report’s findings indicate that for all the use cases studied by ESNet, a mere 1% do not include a
time-sensitive or data integration-intensive component in their scientific workflows, and 39% exclusively
use one or both of these patterns. Since data streaming is identified as a key gap for both patterns in the IRI
ABA report, our expectation is that a DS2HPC capability will have a broad user base across DOE’s science
portfolio.

Our recent report [16] examines several science use cases that could benefit from a DS2HPC capability
provided by OLCF. We identified eight data streaming workload characteristics that help demonstrate the
diversity of streaming needs, as reproduced below in Table 3]

Our analysis of these characteristics for the science use cases suggests that a single technological solution
for data streaming cannot be a one-size-fits-all solution that meets the needs of all use cases. Instead, we
proposed an architectural approach that is flexible and supports the deployment of many technological
solutions, thereby providing the best opportunity for utility to many current and future use cases. We also
introduced the eight core requirements of this architectural approach for DS2HPC, building upon prior work
by SciStream [17]]. These core requirements are briefly summarized as:

e R1: Data streaming from the memory of data producers to the memory of data consumers.
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Use Case
Characteristic

Description

Values or Metric

Experiment
Concurrency
with HPC

When the data analysis or processing on HPC
occurs in relation to the scientific experiment
that produces the data.

Concurrent - Analysis or processing occurs during the runtime of the
experiment.
Sequential - Analysis or processing occurs after the experiment has
completed.

Workflow
Pattern

How the results of the data analysis or processing
on HPC are used in the scientific workflow.

Monitoring - Results are used to monitor the progress of an ongoing
experiment.

Steering - Results are used to modify the configuration or actions of
an ongoing experiment.

Design - Results are used for design or configuration of subsequent
experiments.

Data
Production
Periodicity

Whether experiment data is streamed to the HPC
system continuously or in periodic bursts.

Continuous - Data is produced at a relatively constant rate across the
lifetime of the experiment.

Bursty - Data is produced by the experiment in bursts separated by
periods of no data production.

Data
Consumption
Semantics

How data consumers on the HPC system receive
the data.

Push-to-HPC - Data is streamed to the HPC consumer(s) immediately
upon production. When there are multiple consumers, this method
requires a pre-determined data distribution among consumers (e.g.,
round-robin).

Pull-from-HPC - The HPC analysis is notified when data is available
on the stream and consumers choose when and how to pull the data.

Data Stream
Elements

The type of data element that is produced and
consumed via the data stream.

Events - Each element is a unique event. The data contained within an
event must provide the required information for establishing unique-
ness from all other events.

Files - Each element corresponds to a file.

Messages - Each element is a message containing arbitrary data.

Data Stream
Persistence

Whether data from the stream should be per-
sisted, and for how long.

None - Stream data is available until consumed.

Space-limited - Stream data is buffered within a durable storage area
of a specified size where it remains available until being overwritten
by more recent data.

Time-limited - Stream data is buffered in a durable storage area where
it remains available for a specified duration after it is first consumed.
Persistent - Stream data is persisted to a durable storage area where
it remains available until it is explicitly deleted.

Data Stream
Bandwidth

The desired data throughput for a data stream.
The stream will deliver at least the desired
throughput when data is produced at an equiva-
lent or higher rate.

megabytes/second (MB/s)
gigabytes/second (GB/s)

Data Stream
Latency

The desired maximum latency for end-to-end
delivery of a data element from a producer to
a consumer. The individual data elements are
expected to be small (e.g., less than a kilobyte).

seconds (s)

Table 3. Data Streaming Characteristic Definitions

R2: Secure data streams that span multiple domains, each with a possibly distinct security context.
R3: Separation of data streaming control and data planes.

R4: Adaptability to both advanced reservation and on-demand allocation of data streaming resources.
R5: Data stream endpoints may be both a data producer and a data consumer.

R6: Data streams may be utilized by multiple concurrent endpoints.

R7: Flexibility to deploy alternative technologies for the streaming data plane solution.

R8: Streaming data plane paths may traverse multiple networks within a single security domain.

The proposed architectural approach to support Data Streaming to HPC for the OLCF is shown below in
Figure [13] This architecture focuses on providing the necessary capabilities for streaming workflows to
establish secure, bidirectional, memory-to-memory data streams between application processes at external
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science facilities and application processes running within an OLCF HPC system. Data Streaming Nodes
(DSN) that serve as gateway hosts bridging the public WAN and internal OLCF networks using high-speed
network adapters are a key physical infrastructure component of the architecture. DSNs are user-allocatable
resources managed by a container orchestration system. Multiple DSNs may be allocated to a single workflow
to meet specific network bandwidth, message processing rate, or resilience needs of a deployed streaming
service. DSNs are independent from OLCF Data Transfer Nodes (DTNs) to avoid interference from file-based
data transfers.

Science workflows interact with the OLCF Facility API (see Section[4.2.) to authenticate and deploy a Data
Streaming Service (DSS) on DSNs in concert with a corresponding compute job on an OLCF HPC system. A
DSS is a set of one or more coordinating processes that provide the data plane for streaming data between
external and internal Application Stream Endpoints. The data streaming functionalities, abstractions, and
semantics provided by a DSS may vary across technological solutions.
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Figure 13. OLCF Architecture for Data Streaming to HPC.

We are currently working to demonstrate a full end-to-end realization of the DS2HPC capability on the
ACE Testbed using a commodity streaming framework (i.e., RabbitMQ). Four data streaming nodes with
100 Gbps network adapters have been installed and configured within the Olivine OpenShift cluster. A
prototype implementation of the Data Streaming Orchestration service within the OLCF Facility API has been
completed that enables users to request a RabbitMQ deployment across one or more DSNs. A benchmark
application simulating external science data producers and consumers and internal HPC application stream
endpoints is under development to evaluate both latency-sensitive and throughput-oriented streaming.

4.1.2 SciStream Deployment

One of the goals of enabling DS2HPC capability on OLCF’s ACE testbed is to deploy existing architectures
and toolkits that address the challenges of memory-to-memory data streaming from scientific instruments
to remote HPC environments. Deploying and exploring these existing toolkits would enable us to tackle
data streaming challenges from scientific workflows to testbed compute resources, particularly from the
perspective of external connectivity. Additionally, it would enable us to evaluate complementary technologies
like Globus, which can be integrated with these streaming frameworks for enhanced functionality.
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SciStream [17] is one such tool that tackles the infrastructural challenges necessary to enable these memory-
to-memory data transfers between instruments and HPC. SciStream addresses three primary challenges:
handling data transfers across security domains between data producers (e.g., scientific instruments) and
consumers (e.g., HPC systems); supporting delegated authentication and authorization within broader
scientific workflows; and decoupling sophisticated identity and access management from applications,
minimizing changes and reusing existing security architectures.

An initial discussion with the SciStream team welcomed a collaborative effort to deploy it on the ACE
testbed. SciStream’s architecture utilizes gateway nodes that act as intermediaries, connecting the internal
instrument/HPC network with the external wide area network (WAN). The Olivine cluster in the ACE
testbed includes four high-bandwidth Data Streaming Nodes (DSNs) with both internal and external 100Gbps
connectivity. These DSNs are ideally suited to serve as gateway nodes for SciStream. The tool supports
various setups, allowing for one or more DSNs depending on specific use cases and throughput or data load
balancing requirements.

SciStream is composed of three software components: SciStream User Client (S2UC), SciStream Data Server
(S2DS), and SciStream Control Server (S2CS). S2UC orchestrates end-to-end data streaming on behalf of an
end user, S2DS operates on gateway nodes to act as a proxy between the internal network (LAN or HPC
interconnect) and the external WAN, and S2CS manages resources on a gateway node, including initiating
and terminating S2DS processes. All of SciStream’s components - S2UC, S2DS, and S2CS - can be deployed
as Docker containers within the Olivine OpenShift Kubernetes platform cluster. Additionally, SciStream
integrates with existing authentication and authorization systems, such as Globus Auth, ensuring secure
communication between participating facilities.

4.2 Interfaces
4.2.1 Secure Scientific Service Mesh - S3M

The Integrated Research Infrastructure (IRI) initiative depends on supplemental interfaces to extend access
to operational facility-provided HPC resources. This dependency stems from the requirement to enable
different modes of access to systems than what has been enabled historically. It is less about enabling access
to HPC systems for individuals and more about enabling HPC system access on the backend of externally
managed software systems. These externally managed software systems may be domain-specific science
portals, experimental workflow systems hosted at instrument facilities that need to offload compute, or a
data analysis workflow system that is integrated with another data-oriented DOE user facility. In all of these
scenarios the desire is to integrate and utilize the HPC facilities as a backend computational resource. One
way to think about it is with the HPC facility as an accelerator, analogous to a GPU in an HPC system, within
a larger scientific workflow.

The challenge is an operational one. To enable these new modes of integration, HPC facilities must provide
supplemental and operationally trusted interfaces. Developing these new supplemental interfaces will require
significant software engineering efforts on behalf of the operational staff. Additionally, HPC facilities must
develop clear security policies for how these supplemental interfaces can be integrated into externally manage
software systems. In summary, the operational challenge of IRI is extending facility-provided HPC resources
to external systems in a trusted and secure way. Traditionally, HPC facilties have provided their resources to
users who are vetted during the application process. These users then access the facility environment directly
with their user credentials. In the IRI case it is not about vetting users for individual access but integrating
software systems that users drive scientific workflows through.

The OLCF’s approach to these challenges is to develop a Secure Scientific Service Mesh (S3M). S3M will
enable a flexible and secure framework for workflow integration. Within the S3M framework the OLCF
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Figure 14. S3M integration with backend HPC systems and external workflow systems

will develop and integrate services that expose supplemental interfaces for the IRI. These services will
enable flexible and secure interfaces to OLCF-provided resources, through a Facility API and other potential
mechanisms, for new modes modes of application trust and access in support of IRI. At the core, S3M
will provide a firewall for scientific web-based workflow integration. This includes the ability to define
policy-as-code, implement rate limiting, handle centralized auth, and perform log analysis.

From a user experience and integration perspective, S3M extends compute and data system access in new
ways. This doesn’t replace traditional modes of access (e.g. SSH) but provides a controlled bridge to other
systems. By embracing this, it empowers OLCF staff to develop and provide new frontend capabilities but it
also allows for clear integration patterns between OLCF and systems outside of OLCF. We can start to see
OLCEF as an ecosystem that can be utilized similar to a cloud environment.

4.3 Scheduling
4.3.1 Preemptive Scheduling

Defiant has the ability to support an on-demand queue for high priority workflows through the use of
preemption as part of the Slurm workload manager configuration. Through this configuration, lower priority
jobs are subject to an early, yet graceful, termination to free up system resources required for more urgent,
high priority jobs. Some projects, depending on the time sensitivity of recurring workflows, can make great
use of this capability.
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Slurm provides a Quality of Service (QoS) feature that allows for certain effects to be applied to an associated
job which will have an impact on the scheduling process. At present time, multiple QoS’s have been created
on Defiant, each providing varying degrees of priority and preemptive capabilities. A higher priority QoS
will grant a submitted job a higher priority in the queue and will have the ability to preempt jobs associated
with a lower priority QoS if sufficient resources are not available for the highest priority workload. QoS
assignments are granted to Slurm accounts, which reflect the organization project membership. Users then
inherit QoS permissions through the accounts that they are members of. Using this strategy, we can grant
higher priority on the system on a per project allocation basis.

QoS priorities are not applied to job submissions by default on Defiant. Rather, the user must specify which
QoS they wish to use with their submission. The QoS’s available to a given user will be the ones that are
granted to their project allocations. In the event that the system ever experiences a full load, i.e. there is a
wait for submitted jobs to run, and multiple jobs are submitted with the same QoS, normal behavior returns
with a fight for priority. To prevent this from happening and negating the preemption capabilities, recurring
reservations can be put in place which guarantee resources are available for specific projects that require them
at certain times. This customized node availability must be requested and coordinated between users and
system administrators, but it provides the benefit of configuring the system in such a way that can guarantee
high priority workloads are able to run at specific times.

In order to validate and verify the scheme of Slurm workload manager, we set up and carried out a simulation
of its behavior. We created 8 dummy users and automated a stochastic job submission scenario from these
user’s accounts where the users submitted a random number of jobs at random intervals. Each job was in
turn generated with randomly generated parameters such as walltimes, QoS requirements and node counts.
The jobs were setup to run an mpi based program across the allocated nodes with nominal IO requirements.
We observed the scheduler behavior in the next 24 hours and collected the jobs data. We plotted the data to
observe how the jobs ended up for each of these 8 dummy users. The plot shown in Figure [16] shows how
each user’s jobs fared. In addition to giving insights on scheduler performance, and more importantly, this
exercise helped us create instrumentation that could be used to evaluate a given Slurm policy configuration.
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Figure 16. A Depiction of Scheduler Performance for Stochastically Submitted jobs on behalf of 8
Dummy users on the ACE / IRI testbed.

4.4 Software Deployment and Portability
4.4.1 Containers

The increasing complexity of scientific applications and the diversity of computing environments pose
significant challenges for software deployment and portability. Ensuring that applications can run efficiently
across different systems without extensive modifications is crucial for maximizing resource utilization
and accelerating scientific discovery. Containers offer a solution by encapsulating applications and their
dependencies, allowing them to be executed consistently across various platforms.

In the context of the IRI, the primary challenge is ensuring portability across diverse computing environments
while maintaining compatibility with specialized hardware like GPUs and high-performance interconnects.
Achieving this without sacrificing the seamless user experience is crucial. Additionally, managing the
complexity of containerized environments, along with ensuring security and compliance with institutional
policies, further complicates the deployment process. Performance parity with native executions remains
important but is secondary to the overarching issue of portability.

The ACE testbed addresses these challenges through the use of Apptainer (formerly Singularity) as
the container runtime. Apptainer was chosen because it allows users to build and run container images
without requiring additional privileges, enhancing security. Its use of single-file container images, known
as SIF (Singularity Image Format) files, simplifies the management of storage, distribution, and execution
of scientific applications. Unlike Docker’s multilayered images, SIF files are easier to handle on parallel
filesystems and can still be pushed to OCI-compatible registries like DockerHub for broader distribution.

Apptainer is deployed on Defiant with detailed documentation available for users. This documentation
provides instructions on building and running single-node containers as well as multi-node containers
requiring MPI. Ensuring MPI compatibility is critical for HPC applications. The solution involves building
containers with an MPI implementation compatible with the host’s MPI libraries and mounting the host’s
optimized MPI libraries into the container at runtime. This method ensures that containerized applications
can communicate effectively over MPI and leverage the host’s high-performance interconnects.
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To facilitate GPU utilization within containers, Apptainer supports Nvidia and AMD GPUs through the --nv
and --rocm flags, respectively. These flags enable containerized applications to access GPUs as they would
in a native environment, ensuring no performance degradation. For MPI integration, Defiant uses HPE Cray’s
optimized MPI libraries. The containerized application is built with an MPI implementation compatible
with Cray MPICH, and the required libraries are mounted from the host into the container. This allows the
container image itself to be built elsewhere and then be run on whichever system hosting a compatible MPI
implementation to the one in the container image. This approach ensures high performance and portability
across different HPC systems.

4 ™
‘ Application dependencies
i Application
Container | Paratiet
Filesystem
X i i /
][Launl:h Mourit Mount
- )
os ‘“F’p‘:_“”"’ ‘ GPU Drivers H MPI Libraries ‘
runtime
\ Interface Interface J
'd ™
MNMode Hardware ‘ GPU Devices H Network ‘
A -~

Figure 17. A container encapsulates an application and its dependencies. A container is launched by
Apptainer, and it mounts GPU and MPI libraries from the host system, as well as mounting the parallel
filesystem.

To ensure the robustness of containerized applications, a comprehensive test suite is being developed. This
suite includes tests for MPI, ROCm, miniapps, and sample applications from AMD’s Infinity Hub container
registry. The test suite helps identify regressions after system or software upgrades and refines the procedures
for running containers on the ACE testbed, maintaining optimal performance and reliability.

Looking forward, the full potential of containers in the ACE testbed will be realized as pilot projects progress.
The focus will be on further refining containerization practices, enhancing documentation, and expanding
the test suite to cover more applications and scenarios. These efforts will help reduce the complexity of
maintaining repeatable builds and deploying software on new systems. By encapsulating applications and
their dependencies within containers, researchers can achieve greater portability and faster setup times,
ultimately enhancing productivity and collaboration in HPC environments.

4.4.2 Multi-Tenancy

IRI use cases will present a significantly more diverse collection of workloads than has been traditionally
deployed on OLCEF systems, and will likely exhibit different resource requirements and runtime behaviors
from our current application set. OLCF system architectures have historically consisted of node designs that
incorporate a large number of replicated processing elements (such as multiple GPUs and dozens of CPU
cores). These designs were driven by a capability use case that includes workloads capable of saturating
the hardware resources of a large number of compute nodes in a system. In contrast, a large portion of IRI
workloads are expected to require substantially less than the entirety of a compute node’s hardware resources
(i.e., a single GPU and a handful of CPU cores). In order to support these workloads efficiently, we are
exploring and developing multi-tenancy capabilities for OLCF systems in order to more efficiently leverage
available computational resources.
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Our intended multi-tenant model is based on a space sharing approach that allocates subsets of a compute
node’s hardware resources to independent workloads belonging to separate applications, jobs, and users.
These resource partitions are then independently managed using hardware virtualization features to make
each partition appear as a virtual compute node that is managed, allocated, and accessed identically to other
physical nodes in the system. This model differs from other forms of virtualization based multi-tenancy
that oversubscribe hardware resources in order to maximize utilization. Our approach does not support
over-subscription, and instead explicitly determines resource partition boundaries based on the ability to
provide both performance and security isolation between any two partitions.

Security isolation is a primary design goal of our approach, since IRI use cases will necessitate external users
and organizations co-existing with the current OLCF user community. These external users will require secure
partition boundaries that prevent interaction and resource contention between different IRI users as well as
between IRI and OLCF users. Virtualization not only provides isolation due to lowering the abstraction level
to near physical hardware, but also by supporting the integration of advanced confidential/trusted computing
features that combine hardware based confidential computing with the virtualization architectural features
such as AMD SEV and Intel TDX. By leveraging hardware based virtualization extensions to enforce partition
boundaries between tenants, we can effectively co-locate multiple independent software environments on a
single compute node while ensuring that each tenant is effectively isolated from other users as well as other
OLCEF infrastructure integrated with other parts of the system. This in turn enables much greater flexibility in
the software environments available to users, and providing the means for users to have a greater ability to
specifically configure the software environment to suit their workloads requirements.

Our current efforts in this area are concentrating on integrating virtual machine (VM) management capabilities
into current testbed system environments. Specifically, we are deploying the capability to create virtual
nodes on the Defiant testbed system and integrate those virtual nodes into the existing system management
infrastructure. By doing so, we are able to support much more dynamic system configurations by provisioning
VM instances as needed using the existing system management tooling. These VM instances are initialized
and then managed as any other node in the system, and support multiple different software personas that map
to different workload classes that we expect to be useful for IRI use cases. One such system configuration
integrates with the existing Slurm service to allow job dispatch to a virtual node via a special job queue that
maps to virtual nodes that are comparatively smaller in scale to the full compute nodes. This in turn allows
multiple jobs to be co-scheduled on the same node by allocating two virtual nodes that happen to reside on
the same physical node.

Virtualization based multi-tenancy opens up several avenues for increasing resource utilization and maximiz-
ing the available resources to support IRI use cases that are not yet able to fully saturate the local hardware
resources on OLCF production system nodes. As we move forward, we are investigating the capability of
fully supporting the available hardware on a compute node such as GPUs and high performance network
interfaces. We are also expanding our evaluation of the approach to different hardware architectures such as
ARMO64 based systems available in NVidia Grace Hopper equipped testbed systems.

4.5 TRUSTID

The Trusted IRI Designs (TRUSTID) technical activity is one of the three technical subcommittees convened
by the IRI leadership council in FY24. The main focus of the subcommittee is on the identification and
assessment of emergent IRI design patterns in order to recommend security best practices and sow trust
amongst participating facilities. TRUSTID has identified Federated Identity as a key capability required for
successful support of IRI activities and has launched a pilot activity to deploy and prototype scientific Single
Sign On (SSO) across at least two ASCR facilities.
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4.5.1 Federated Identity Pilot

The TRUSTID federated identity pilot assessed the readiness of ASCR facilities to support some level of
identity federation. We refer to federated identity management as “a process that allows for the conveyance
of identity and authentication information across a set of networked systems" as defined by NIST Special
Publication 800-63C [19]. At the beginning of the FY24, NERSC was the only ASCR facility that fully
supported federation with several national laboratory identity providers. During this FY, OLCF has deployed
infrastructure to allow us to federate with outside identity providers and has selected OnelD and ORNL’s
UCAMS identity databases as the first ones to integrate with. OLCF’s moderate security enclave still requires
two-factor authentication, so OnelD will be the only identity provider supported for that environment. In
contrast, OLCF’s open enclave already supports authentication with UCAMS usernames and passwords,
so there are no security significant blockers to enabling federated single sign on with UCAMS and OnelD
identity providers.

In addition to user-based identity federation, an additional federation design pattern has emerged related
to system-to-system trusts that are established on the behalf of a user. ALCF is adopting this model more
strongly than NERSC and OLCF through the use of Globus compute and data transfer services. In a system-
to-system federation, users receive security tokens from services that they stand up on computational and data
resources and copy those tokens to a centralized orchestration point. This type of workflow is not endorsed
explicitly at OLCF or NERSC, although OLCF implicitly allows it.

Because each HPC facility supports JupyterHub and Globus data transfer services, we are working on a
prototype demonstration that will feature Jupyter Python notebooks and Globus data transfers performed
from within a user’s web browser. Authentication to two JupyterHub instances as well as Globus with
a single Identity Provider will be the goal of this initial Federated Identity demonstration. Because the
demonstration will use Jupyter notebooks, the notebooks will be published to a Git repository that is widely
accessible, enabling users to fork the project and develop their own customized workflows. Where possible,
the notebooks will utilize new IRI related interfaces such as Facility APIs, streaming data capabilities, and
Globus compute endpoints.

4.5.2 Lingering “Iceberg' Problems

The TRUSTID subcommittee has also been identifying security and operational roadblocks that will persist
even after deployment of a fully-federated identity management infrastructure at participating facilities.
Scientific SSO will not solve access control issues, eliminate account creation paperwork, or provide a single
point of contact for proposals and allocation grants across DOE. We have begun to call these issues the
‘Iceberg Problems’ because users’ desire for a cross-facility scientific single sign on capability is just the ‘tip
of the iceberg.” We envision a future where the following processes are federated for ease of use by scientists:

1. Federated ‘Authorization’ — A PI can add a new research scientist to their project(s) without having
to contact each facility for approval.

2. Federated ‘Allocation’ — DOE allocates time and resources to a PI for a given Science Project in a
single programmatic way that each facility trusts.

3. Federated ‘Vetting’ — PIs and Scientific Users submit their credentials to one place for vetting and
Identity Proofing instead to each identity provider required.

4. Federated ‘Project Control Screening’ — Export control, IRB, and other reviews of scopes of work
are reviewed by a single body instead of at each facility the project is active.

Many policies will need to be changed in order to achieve this future, however. DOE policies, lab-wide
policies, facility policies, and the prime contracts between DOE and M&O contractors that run the national
laboratories all contain directives that must be satisfied as current processes are changed at DOE User
Facilities.
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5. OTHER IRI DEVELOPMENT AND EVALUATION TECHNOLOGIES
5.1 Integrating Quantum Computing and HPC

Quantum computing represents a transformative technology poised to revolutionize computational capabilities,
particularly for applications requiring immense processing power. The integration of Quantum Processing
Units (QPUs) with traditional HPC systems is crucial for realizing the potential of quantum computing within
the IRI as a future hybrid use case, possibly crosscutting all there IRI workflow patterns. The OLCF at ORNL
is spearheading efforts to integrate quantum computing into its HPC ecosystems, thus addressing DOE’s
mission needs in energy, materials, and computational sciences.

One of the primary challenges in integrating quantum computing into HPC systems is the nascent state of
quantum hardware. Current quantum devices, including superconducting circuits, trapped ions, nuclear
and electron spin qubits, and optical qubits, are still evolving and face significant hurdles such as qubit
decoherence, error correction, and scalability. These challenges are compounded by the need for high-fidelity
qubit control and low-latency communication interfaces between quantum and classical processors. Moreover,
managing the physical infrastructure, such as cryogenic temperatures and ultra-high vacuum conditions, adds
another layer of complexity.

OLCEF is developing a comprehensive framework for integrating quantum devices into its HPC systems
(Figure [I8) [20]. This involves a detailed evaluation and benchmarking of various quantum hardware
technologies to identify the most suitable candidates for integration. The goal is to create a hybrid computing
environment where QPUs serve as accelerators for specific computational tasks, analogous to the role of
GPUs in current HPC systems. This hybrid model allows for the offloading of certain computationally
intensive tasks to the QPUs while leveraging classical HPC resources for other parts of the computation.

The integration strategy includes a multi-phase approach:

1. Mission Need and Alternatives Analysis — Identifying science driver applications that can benefit from
quantum computing. These applications span energy, earth sciences, materials, and national security
domains.

2. Benchmarks and Requirements Gathering — Developing benchmarks to evaluate the performance of
quantum devices and gathering detailed requirements for integration.

3. Procurement and Installation — Based on the analysis, procuring suitable quantum hardware and
integrating it into the existing HPC infrastructure.

4. Optimization and Operations — Continuously optimizing the hybrid computing environment to ensure
efficient performance and transitioning to full-scale operations once the hardware matures.

Quantum computing holds the promise of substantial advancements in various scientific fields by providing
computational capabilities that far exceed those of classical systems. For the IRI program, quantum computing
could offer breakthroughs in modeling complex systems, optimizing large-scale operations, and solving
intractable problems in materials science and quantum chemistry. The successful integration of quantum
and classical computing resources is expected to enhance the overall efficiency and effectiveness of the IRI,
driving innovation and enabling new scientific discoveries.

The next steps involve rigorous testing and validation of the integrated quantum-HPC framework. This
includes deploying prototype systems, conducting extensive user feedback sessions, and refining the software
ecosystem to support a wide range of applications. Additionally, OLCF plans to expand its collaboration
with quantum hardware vendors and the broader scientific community to ensure the seamless integration and
scalability of quantum computing technologies within the IRI framework. This ongoing effort will be critical
in positioning quantum computing as a cornerstone of future scientific research infrastructure.
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Figure 18. The QC/HPC Integration Framework uses a layered approach, with a quantum-aware re-
source management system reserving resources. Applications run on these resources and communicate
quantum operations via MPI through the Quantum Task Manager, which can modify tasks, such as by
circuit cutting. The Quantum Platform Manager then executes the prepared tasks on the quantum
platform. Blue boxes represent classical resources, while orange boxes denote quantum resources [20].

5.2 Multi-Facility Workflow Orchestration

In modern scientific research, the complexity and scale of experiments necessitate the integration of diverse
computational and storage resources spread across multiple facilities. This demand has led to the development
of multi-facility workflow orchestration, which enables seamless management of end-to-end workflows
across geographically distributed resources. To address this challenge, we have developed Zambeze [21]], an
automated and distributed orchestrated framework. By leveraging principles of swarm intelligence, Zambeze
orchestrates complex scientific workflows through the management of distributed autonomous agents, which
provide essential services such as computing, storage, and data management.

Zambeze addresses the challenges of cross-facility workflow orchestration by providing a comprehensive
solution that includes a user-friendly interface, a robust compute fabric, and an efficient data fabric. The user
interface allows scientists to define and manage their workflows at an abstract level using standard Python,
making it accessible and intuitive. The compute fabric consists of autonomous agents equipped with plugins
that enable them to execute tasks on various resources, while the data fabric uses a lazy-transfer model to
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efficiently manage data transfers between facilities. This approach ensures that workflows can be executed
seamlessly across different environments, optimizing resource utilization and reducing manual intervention.

A key component of Zambeze’s architecture is its ability to handle scheduling and execution of tasks across
heterogeneous resources (see Figure[T9). Each agent in the system operates using an asynchronous pull
worker model, ensuring that tasks are executed only when the necessary data and computational resources
are available. This model enhances the flexibility and scalability of the system, allowing it to accommodate
varying workloads and optimize performance. Additionally, the system’s modular design allows users to
register custom plugins, further extending its capabilities and adaptability to specific research needs.
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Figure 19. Architecture of a distributed workflow orchestration system on two facilities using Zambeze.
Each instrument and computational resource has an agent. Agents can autonomously initiate direct
data movement between storage resources [21]].

The use of a distributed computing model complicates the comparison of workflow efficiency and accuracy.
To address this challenge, we plan to enhance Zambeze by integrating the powerful and flexible FlowCept
provenance collection and analysis framework [22]. FlowCept offers plug-ins that capture data at various
levels of detail, from GPU temperature to hyperparameter configurations that optimize model performance.
This data can be fed back into Zambeze, enabling it to schedule tasks on agents that are not only available but
also capable of executing tasks more quickly, with greater energy efficiency, and other considerations.

Zambeze’s practical application is showcased through its deployment in an electron microscopy use case,
where it effectively orchestrates a complex, multi-facility workflow. This workflow begins with the capture of
raw imagery data, often in gigabyte scales, using an edge device connected to an electron microscope. The
data is then transferred to a leadership-class HPC system (OLCF’s Frontier) where deep learning models
are trained using Dask, AtomAl, and PyTorch. These models, developed for tasks like atomic species
identification and defect tracking, are further refined and validated on the ACE’s Defiant cluster before being
deployed back to the microscope for near real-time analysis. Zambeze automates the coordination of these
distributed tasks, managing data transfers, resource allocation, and workflow execution across the involved
facilities.

5.3 Interconnected Science Ecosystem (INTERSECT)

Advanced research instruments in laboratories and at user facilities produce data at ever-increasing rates to
deliver high-impact science. Improvements to individual instruments provide greater quantity and quality of
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data enabling more sophisticated studies. Automation and robotics allow measuring large systematic datasets
without constant human attention and intervention. Combining diverse research tools makes ambitious
multimode measurements possible that result in complex datasets. High performance computing facilitates
the simulation and modeling of large systems with a fidelity previously thought impossible. Combining
these advances to automate entire workflows—instrument setup and tuning, sample synthesis and processing,
measurements, data analysis and model-driven data interpretation— and controlling them and making
them “smart” with AI/ML will bring about revolutionary efficiencies and research outcomes. This kind of
autonomous control of processes, experiments and laboratories will fundamentally change the way scientists
work, allowing us to explore high-dimensional problems previously considered impossible and discover
subtle correlations invisible until now.

The INTERSECT initiative at ORNL is building interconnected “Smart Labs of the Future" to enable (i)
self-driving autonomous experiments that leverage advanced compute systems, scientific instruments and
facilities; (ii) multi-domain and/or multi-modal experiments that alter the approach to science; (iii) real-time
data analysis and feedback optimizations using AI/ML and edge computing. “Smart Labs of the Future"
as envisioned here consist of a human-Al-machine interface (HAMI), experiment management software,
autonomous science applications and “Big Data" analysis and management as well as data-driven feedback.
INTERSECT will provide the currently missing common, seamless and secure infrastructure required to
scale across facilities and science domains. Figure[20|depicts the programmatic structure of INTERSECT,
which comprises multiple complementary projects which explore this space.

Domain Science Projects
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Figure 20. Programmatic structure of the INTERSECT initiative.

The INTERSECT initiative delivers a common computational infrastructure enabling autonomous workflows
across multiple disciplines at ORNL. Computer scientists, data scientists, and domain scientists collaborate
closely in the spirit of co-design to develop the experimental and computational tools to achieve breakthroughs
in diverse science areas. The INTERSECT “system-of-systems" includes data management software, tools
enabling data analysis workflows, experiment management software, as well as the integration of Al/ML
capabilities. The infrastructure components being developed through these projects are designed to be
transferable and form the building blocks of INTERSECT. This approach allows the expansion of automation
and autonomy beyond the initial science projects through INTERSECT, minimizes duplication of effort and
through the collaboration of computer and domain scientists leads to higher performance and more powerful
tools.

Several of the science pilot applications hosted by ACE will be greatly enhanced by being remotely con-
trollable, participating in distributed data movement and management, and adapting to a range of endpoint
instruments and sensors. ACE and INTERSECT are complementary efforts directed at these common goals.
INTERSECT applications will be able to dynamically and flexibly compose microservices to control a variety
of instruments. Interfaces with IRI will provide the ability to remotely discover, enumerate, and control these

36



dynamic INTERSECT systems-of-systems. The systems and resources of ACE are well-positioned to support
the design and development of such IRI-facing interfaces.

5.4 Data Lifecycle Management

ACE provides an excellent environment for exploring the data management issues that will accompany IRI
applications. ORNL has invested in tools designed to reduce the burden of data management on scientists
and application developers.
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Figure 21. The lifecycle of scientific data managed by ORNL tools.

DataFlow. Data captured at instruments will be used as input by many workflows and applications running on
ACE. DataFlow is designed to assist end-users in capturing and transferring this data. Typically, an instrument
is connected to a commodity computer system where vendor-specific control software is installed, along
with a nominal amount of local storage. These computers are frequently air-gapped from networks which
have external routes. This is done to preserve a known-good software state on these computers, avoiding
complications or delays for experimental campaigns which may result from automatic software or system
upgrades to the controlling computer.

DataFlow provides an interface for users to move experiment results from the locally-attached storage at the
instrument to much larger, high-performance storage accessible by simulation and analysis codes elsewhere
in OLCF. Having DataFlow available on the ACE testbed systems allows users to refine their workflows; this
also allows the developers of DataFlow to explore how data movement from instruments will be formalized
by IRI.

DataFed. The primary goal of DataFed is to improve scientific data quality by enabling precise early-lifecycle
control over data artifacts, with the ability to uniformly share and access data across geographically distributed
facilities. DataFed can be thought of as a “tier 2+ distributed data storage system - meaning it is intended for
creating and working with data that is of medium- to long-term significance to the owner and/or collaborators.
Unlike a tier 1 storage system (i.e. a local file system), DataFed compromises raw data access performance in
favor of FAIR data principles.

While DataFed shares many features with tier 3 storage systems (i.e. data archival systems), DataFed allows
data and metadata to be modified after it is ingested and specifically includes features for disseminating
subsequent changes to downstream data consumers via automatic provenance-based alerts as well as opt-in
data subscriptions. DataFed also provides powerful and easy to use collaboration features to encourage
“in-band” data-related communication instead of ad hoc and error-prone methods, such as email.
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Traditional scientific data management systems (SDMS) are restricted to individual organizations or a small
number of organizations connected via a “virtual organization” (VO) configuration. These systems typically
support domain-specific and predetermined data workflows that cannot be readily applied to other domains or
applications. On the other hand, data cataloging systems are typically single-site and provide access to static
datasets. Also catalogs usually only support HTTP data transfers, thus limiting the size of datasets that can
be served. Neither SDMSs nor cataloging systems can easily scale-out to accommodate large numbers of
users across multiple organizations.

DataFed provides a combination of the features and benefits of both SDMSs and data cataloging services while
also supporting big data. For example, DataFed provides storage and access to structured and unstructured
heterogeneous raw data with access controls, metadata and provenance capture, and metadata indexing and
search; however, DataFed diverges significantly from these systems in a number of ways to better serve the
needs of open and collaborative scientific research.

Briefly, DataFed provides the following unique blend of capabilities and benefits:

Presents a uniform and concise logical view of widely distributed data.

Supports both general- and domain-specific use cases.

Manages “living data” throughout critical pre-publication data lifecycle stages.

Encourages FAIR-principled data practices via user- and community-defined schemas.
Enhances data awareness with automatic notification of “data events”.

Scales out and up to enable efficient big data research across organizations/facilities.

Provides high-quality data management foundation for use by other applications and services.

DataFed provides interfaces that can be used to capture metadata, provenance, and raw data from the creation
stage; whereas during analysis, new records may be created and linked to input records or dedicated context
records. Pre-publication is supported by providing powerful data organization and data handling capabilities
to help ensure that the right data is being published and that it contains proper metadata and provenance
information. Note that data publishing systems may have additional metadata requirements that are not
available from the data records themselves (i.e. contract numbers, sponsoring organizations, etc.)

Constellation. Constellation is the leadership-class public data repository operated by OLCEF. Its purpose is
to provide long-term data archive storage for OLCF users and the public at large. Constellation also manages
the assignment of Digital Object Identifiers (DOIs) for data artifacts; DOIs are long-lived standards-compliant
identifiers for data which may be disseminated by users without fear of staleness. Constellation functions at
OLCEF as a part of the overall set of data lifecycle tools, but is not involved directly by applications running in
the ACE environment.
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6. LESSONS LEARNED AND OPEN CHALLENGES
6.1 Policies

Most projects with real-time scheduling needs expect to be able to simultaneously utilize large HPC jobs and
high-bandwidth network paths with short notice. Greta/Deleria expect to run using bursty on-demand pattern.
While the experiment is on, they will require full bandwidth (= 40 Gbit/sec presently) and a running HPC job
(= 10 nodes presently). On-times happen during a two-week window, scheduled months in advance, and last
for a few days. LCLStream expects to run at ~100 Gbit/sec or higher and thousands of GPUs during running
experiments, and at a lower, as-available rate for offline data processing at other times.

Supporting these workloads is difficult from a policy perspective, because it requires providing guarantees on
available capacity. By creating one partition with nodes that are scheduled either on-demand or pre-emptible,
and another, non-preemptible partition, we are able to guarantee that all nodes in the on-demand partition
will be available. At the same time, we are also

Working with HPC facility users is an important part of this strategy. Users need to be aware of the scheduling
environment’s constraints and batch queue policies in order to effectively use the resource. Many users have
workloads that either are presently or can be converted to utilize checkpoint/restart methodology. This allows
more jobs to be run in the pre-emptible queue, providing overall higher utilization of the center.

6.1.1 Security

The OLCEF provides multiple security enclaves to enable projects with distinct security-level needs. As part of
a strict Export Control review, the project’s scope, data, and software are assessed to determine which controls,
if any, are required, and to identify the appropriate EC classification. The OLCF’s flagship supercomputer,
Frontier, is housed in the “moderate” production enclave and allows Category 1 (Unrestricted) and Category 2
(Export controlled/Proprietary) software and/or data. This enclave supporting the facility’s leadership-class
computing mission requires multi-factor authentication (MFA) and thorough screenings to ensure that users
allowed to access the facility meet DOE guidelines.

In the IRI context, these policies can potentially block several use cases including: automation of workflows,
prevent use of shared accounts and robot accounts, and exposing data outside specific projects and even
outside the facility.

For example, the facility needs to report utilization and specific characteristics of users using facility resources
including but not limited to identity, citizenship, and other demographic data. With non-human accounts that
are shared, that is not an option.

6.1.2 Operations

In order to support the full range of patterns explored here, the facility would need to better understand
which patterns can co-exist in the flagship system and which ones would be better served utilizing peripheral
resources in the ecosystem. The characteristics across patterns have competing and conflicting needs which
require different levels and types of support to enable successful scientific campaigns across all of them.
Defining how and where each of the patterns can thrive is a requirement in order to understand if additional
expertise, support models, or resources are needed. This is an area that we are continuing to explore as part
of this effort.
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6.1.3 User Experience
6.1.4 Flexibility

Many of the workflows explored in this effort require dynamic changes to the configuration of the system.
For example, time-sensitive patterns would require preemption of workloads running on the system, and
potentially may require longer walltimes that regularly allowed. Having the flexibility to accommodate
batch job requests of competing sizes, runtimes, and priorities is one of the challenges that need to better
understood.

6.2 Data Movement Challenges: Networking, Firewalls, and Hardware Configuration

Moving data between storage devices within a network security domain, between network security domains,
and between internal and external organizations is a central requirement for computation, occurs nonstop,
and requires careful planning and control to carry out securely at high rates. Our data streaming design effort
identified data movement needs for each application considered within ACE. Attempting to utilize emerging
best practices, we designed a data streaming workflow involving Kubernetes-allocated nodes specialized for
high bandwidth and API-initiated streaming workflows. This approach provided all the physical infrastructure
to satisfy our planned capacity needs, and was setup within a few months as hardware arrived.

Unfortunately, Kubernetes applies its own paradigms to resource allocation / authorization, network path
management, and hardware configuration. Kubernetes APIs were excellent for running and monitoring a
variety of data forwarding services that could scale to multiple copies across nodes. However, they were
unable to handle high-speed networking. This was due both to network routing assumptions in Kubernetes,
and to the fact that Kubernetes as a container framework complicates configuring the network interfaces
themselves. We used a pair of high-speed NICs, one internal and one external. Moving all data through
a single gateway, however, made it difficult for Kubernetes to distinguish between internal-to-ACE and
external-to-internet connections. To account for this, ORNL'’s traffic routing policies required including their
own firewall on the internet-to-Kubernetes path. This wasn’t a bottleneck, since the firewall used for this can
handle 120 Gbps in each direction, but it illustrates the practical consequence of the mismatch within hybrid
cloud/HPC.

6.3 Authentication Patterns

The ACE pilot applications have demonstrated many different authentication patterns — based on their user and
data management needs. Greta/Deleria makes use of HPC-provided user-1Ds via the Facility or SLURM batch
job API, and secures network paths to nodes using custom firewall rules on source and destination addresses.
LCLStream uses a combination of mutual TLS certificate-based authentication for its REST-HTTPS APIs,
as well as OpenShift tokens for starting and stopping services at OLCF. JGI uses group-level accounts for
running services on OLCF that can be utilized by users who are authenticated separately by JGI. Other
applications utilize individual user accounts within traditional batch jobs.

A group-level UNIX userid fits most current patterns because the science application teams are tightly
integrated and generally employ open-source software and open data. However, larger collaborations like
JGI have implemented separate authorization mechanisms to prevent users from data corruption or misuse.
These actions can happen accidentally, for example when onboarding new users. Experimental data sources
work with multiple different user groups as well, and need to protect raw experimental data from theft or
other misuse by competing groups. In addition, the computing facility needs to track resource utilization
and system errors at a user-level in order to effectively communicate with user and system teams. Thus, it
is important for applications to make use of authentication patterns that forward individual user and group
membership to HPC resources.
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6.4 Challenges Supporting Microservices

Many of the IRI applications involve running user-requested microservices, for example web-interfaces based
coupled to databases that tracking project status. Our OpenShift(TM) Kubernetes platform can run these
user-provided API servers. However, there need to be security limitations on what HPC resources can be
accessed by applications running on Kubernetes. For example, if a user-managed application serves incoming
requests from outside ORNL, there is a heightened security risk in allowing that application to also interact
with HPC login nodes or running jobs.

We have used two different approaches to controlling these security risks: facility-based access approval and
facility-provided APIs. The primary difficulties encountered for both approaches were centered around user
communication. Since only the NCCS network and security teams can see the current access controls applied
to a project’s microservices, they must work closely with users and NCCS’s OpenShift engineering team to
setup Kubernetes resources correctly. However, errors in this process can come from the user’s application,
Kubernetes configuration, or NCCS security and networking settings. Coordinating all four groups is a slow
and cumbersome process.

In contrast, facility-provided APIs are developed centrally by NCCS’s platforms services group. Hence,
it is relatively simple to setup and run these applications. However, strong software engineering practices
need to be followed to guarantee security and availability of each service, which takes time. It is also not
possible to support custom microservice installation requests from dozens of user groups. In order to provide
API-based services generally useful across HPC user projects, user outreach and planning is being done to
gather requirements from multiple groups and carry out use studies.

Effectively securing user-managed microservices has several aspects:

Authenticating and authorizing service configuration and startup/shutdown
Authenticating and authorizing incoming traffic

Creating and managing resource access policies

Authenticating and authorizing requests from the microservice for facility resources

Our current service startup/shutdown authorization is done via OpenShift API, secured by a token provided
through a facility-managed web interface. Incoming traffic is allowed for some projects, and only via HTTPS.
When allowed, traffic is passed through a facility-managed TLS termination, and sent to the service via either
HTTP or a new HTTPS channel. Although the facility provides the originating user to the API via a header, it
does not yet allow the service to pass user credentials through to OLCF’s internal services. Providing access
from services to facility resources is currently allowed only for some projects. When allowed, the facility
provides a group-level account with the ability to run commands on a data transfer node and/or access files on
some of the high-performance filesystems. The microservice is also able to make network requests directly to
OLCF’s networked resources, such as API requests to cluster SLURM schedulers.

Granting user-managed microservices the ability to open firewall ports for data channels, or to access
files or run commands as individuals (not group service account) is not currently possible. The barrier
is technological, since the facility needs to be able to identify the individual connecting to the open port,
accessing files, or running commands. Potential solutions are under investigation, involving tokens whose
scopes can be narrowed (macaroons[23]]), and mutual TLS for authenticating incoming high-speed TCP
traffic.
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7. OUTREACH AND ENGAGEMENT ACTIVITIES
7.1 Hackathons and Training
7.1.1 OLCF/JGI Hackathon

A 2-day joint hackathon with the JGI team was organized and hosted on-site by ORNL in April 2024. The
objective of the hackathon was to port and deploy JGI's JAWS workflows platform to the ACE IRI testbed.
Several individuals from the various groups across the board at OLCF participated in the hackathon. A
multitude of technical challenges were anticipated in the process. A non-exhaustive list of those challenges
are discussed below.

e Association of the external users with appropriate ACE IRI testbed managed Projects and Accounts was
an initial challenge due to the external user’s unfamiliarity with the onboarding portal and requirements.

e Accounts, access settings and directory configurations such as collections settings with Globus platform
were a prerequisite to ensure smooth data transfer between the JGI and testbed sites. In particular, a
service-account was required that would do certain operations on behalf of real-user accounts.

e Integration with Marble/Olivine, an Openshift/Kubernetes cluster and Gitlab runner setup hosted at
OLCEF in order to automate the orchestration over a remotely operated portal and command line.

¢ Installation and testing of several software tools such as Globus, Cromwell Workflow Manager, and
HTCondor.

e Enabling containers runtime via the Apptainer platform on the testbed.

o Tweaking the jobs scheduling policies and queuing properties in order to best accommodate the JAWS
requirements. For instance, updating the maximum walltimes for jobs to 12 hours from the initial 8
hours.

e End-to-end integration with the system scheduler such that the Cromwell workflow management
system that is deeply embedded into JAWS is able to create jobscripts and submit them to the testbed’s
SLURM job scheduler.

Most of the aforementioned challenges and related technical issues were discussed and resolved during
the hackathon. The hackathon also served the purpose of bringing the JGI and ORNL teams together
fostering fruitful discussions and networking opportunities for a lasting collaboration. As a follow up to
the hackathon, weekly virtual meetings continued to refine and fine tune the deployment—in particular the
Globus configuration.

7.1.2 Quantum Workshop

ORNL has been collaborating with an Australian company called Quantum Brilliance on topics related to
quantum computing for HPC applications. In August of 2024, we hosted a two and a half day workshop
involving several of their employees and ORNL staff and discussed a variety of topics including both hardware
capabilities and applications/software.

Topics discussed at the workshop included fundamental questions about parallelizing quantum computing
algorithms and how typical HPC computational problems such as quantum chemistry could be mapped onto
a quantum computer or onto a hybrid classical / quantum computer. Also discussed were practical topics
about the use of Quantum Brilliance’s emulation software that had recently been installed on the Wombat and
Holly computers in the ACE testbed. There were further discussions about the continued collaboration and
plans for the future.
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7.2 Conferences
7.2.1 Smoky Mountains Conference

The Smoky Mountains Computational Sciences & Engineering Conference organized annually by ORNL has
been a long-standing venue for discussing forward-looking technologies and wrestling with their potential
impact on the scientific ecosystem. For the past few years, this has included a strong focus on integrating
laboratory experiments “into the computational loop” within the scope of ORNL’s INTERSECT initiative.
Although that work involves edge compute, data transfer and workflow methodologies, integration with
high-performance computing had not been a focus.

This year will host a demo session featuring the combination of both ACE and INTERSECT-developed
enabling technologies (Sec.[d) and collaboration-driven science pilot applications (Sec.[2). On the technology
side, we tackle core missing components in the HPC ecosystem with talks on i) enabling user-relevant,
API-driven workflow systems within OLCF’s secure scientific service mesh concept, ii) the INTERSECT
instrument control pattern (and software development kit) for allowing Al-through API driving of laboratory
instruments, iii) flexible setup and teardown of API-driven data streaming hardware, and iv) a survey of
experimental user facility barriers to utilizing HPC.

On the application side, talks include the high data-rate Greta/Deleria experiment station, the Al-intensive
LCLS streaming data analysis and feedback project, HPC-enabled access to quantum computing simulation,
and experiment/HPC co-design of the IMAGINE-X dynamic nuclear polarization experiment at HFIR. We
will also hear from NSLS-II on their online data analysis and feedback portals. By including video-demos
within each talk, the sessions will build a shared picture of what’s possible when these technologies and
applications are able to freely intermix. These will fuel design discussions during the meeting’s break-outs.
Although the process can be messy at first, common patterns of interaction between people, facilities, data
and compute will guide our assumptions as we continue to build and integrate open-source, facility and
application software stacks.

7.2.2 Monterey Data Conference

In August 2024, members of the ACE team actively participated in the Monterey Data Conference (MDC),
fostering valuable in-person discussions and collaborations. MDC provided an opportunity for ACE team
members to engage directly with researchers from ASCR facilities and those involved in IRI science pilots.

Additionally, we presented a poster entitled “Enabling Distributed Research Orchestration Capabilities at
ORNL", which showcased key capabilities of the ACE ecosystem. Specifically, the poster highlights the
advanced capabilities of the ACE IRI testbed, demonstrated through the integration of the OLCF Facility
API and the Zambeze distributed orchestration system. The ACE testbed showcases how these tools can
modernize and automate HPC facilities, allowing for seamless orchestration of complex science workflows
across a distributed cyberinfrastructure. This enables researchers to focus on scientific innovation while
benefiting from streamlined access to compute, storage, and instrument resources.

7.2.3 IRI/HPDF Meeting

ACE team members participated in the DOE Office of Science (SC) IRI/HPDF coordination kickoff meeting
held in July 2024. This invitation-only meeting gathered key stakeholders, including Federal Program leaders
and community experts, to advance the understanding of community priorities and develop a multi-year
roadmap for the IRI program and HPDF project.
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8. SUMMARY AND STRATEGIC OUTLOOK

NCCS considers the Advanced Computing Ecosystem (ACE) effort as a strategic investment. ACE provides
a flexible vehicle for advancing NCCS’ technical and scientific expertise and capabilities for multiple
crosscutting projects, and efforts, such as OLCF-6, OLCF-7, INTERSECT, FASST, and IRI.

ACE allows NCCS to evaluate technologies that can have material impact for current and upcoming OLCF
projects and SPPs. Current examples include Al appliances, storage technologies and network DPUs. These
evaluation efforts enable NCCS staff to keep up-to-date with new technologies.

For IRI, ACE is an invaluable strategic platform for NCCS and OLCF for multiple reasons:

e Science pilots and collaborations: ACE allows a flexible and secure environment for science pilots to
test out new technologies, perform demonstrations of new methods and capabilities within a permissive
semi-production environment. Allowing pilots on the production environment to test and develop
is problematic and ACE alleviates this and opens up a path for these pilots to safely develop before
applying for production allocations.

o Foundational technology development: For integrating experimental and observational user facilities
and workflows with leadership computing environments a new set of tools are needed. ACE allows
OLCEF to develop these tools (e.g., FacilityAPI, streaming services) in a safe production-like environ-
ment in close collaboration with the real-world science pilots. This is a strategic capability benefiting
for all stake holders.

e Policy considerations: Time-sensitive computing requires tools to schedule resources for execution at a
more-or-less specific point in time, i.e. the results—to be deemed useful-need to be obtained before a
well-determined end time, regardless of potential contention on the resource used. ACE allows the
OLCEF to measure both the typical lead times required to estimate that critical end time and the amount
of resources required to fulfill that requirement. These data will be essential as potential IRI projects
move from the testbed environment to the leadership ecosystem. Without this guidance, a finite amount
of an exceedingly valuable resource (the leadership platform) will have to be idled for significant
amounts of time to ensure utilization is consistent with the time-sensitive demand. Even with the data,
significant modifications to the current set of metric for leadership computing will require modification
if these use cases are to be properly supported.

The current generation of the ACE infrastructure is mostly left overs from the Frontier project (e.g., Defiant)
with some additions we’ve made within the last year (e.g., GraphCore, H100 and GraceHopper nodes). To
keep the ACE testbed viable for evaluation and development, a constant effort is needed. In order to reduce the
system administration burden, maintain security and also to increase the value to researchers and developers,
we have made plans to do technology refreshes in FY25. These include deploying a new Defiant system
with more up-to-date technologies and also a network refresh. NCCS plans to grow ACE with technology
refreshes.

Currently the biggest challenge we can see is establishing a healthy “graduation” path for science pilots and
developed technologies from ACE to the proper production environment. While all the details are not clear
how to enable this effectively and securely, OLCF is working on this problem. This approach is well in line
with OLCF-6 project goals, so this exploration is timely. Perhaps one path towards solving this problem is
establishing a Leadership ecosystem, resembling the ACE environment for production where the flagship
supercomputer is closely associated with a production on-demand computing cluster as depicted in Figure [14]
to accommodate bulk of the incoming IRI requests for compute and data capabilities, and surging into the
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supercomputer exactly and only when those capabilities are exceed. Again, this is an open question for now
and a production-grade solution has not been decided upon, yet.

For FY25, OLCF plans to strategically engage with more science pilots where we can demonstrate clear
mutual benefit for all stake holders. OLCF also plans to increase its collaboration with other ASCR facilities
for tighter integration with their respective testbeds and also integration of their applicable technologies to
the OLCF/ACE environment.
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