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What is a MOF?

Combination of metal centers connected by organic linker(s)

Ordered structure, often highly porous

Nearly a limitless number of variables to tune properties: metal centers, linkers, reaction conditions, etc.

Applications in gas storage/separation, sensing, catalysis, drug delivery, emission displays, and many others

DOI: 10.1038/ncomms1618




Synthetic Methods for Tuning MOF Structure #L TAL

Host-Guest Interactions
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Luminescence Redox Behavior
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Optical Transmission Structural Flexibility
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All Examples of Thin Film Sensors!
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Benefits of Thin Films in Sensing Applications N=|NArional
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CTL

* Improved sensitivity and/or response time . 3 CTL+NF CTL+NF+TFL CTL+NF+TFL+DCN

* Direct integration with sensor components (quartz crystal
microbalances, optical fibers, etc.)

* Enhanced portability
» Ability to recycle/regenerate sensing material

‘ Soaked Area

» Scalability/mass production potential

1x103M Cu?*

A,B: 10.1039/CI9RA04152D
C:10.1039/C9RA08940C
D-F: 10.1016/j.snb.2015.05.129
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) Gheck for updates. Metal—-organic framework thin films as versatile
chemical sensing materials

Cite this: Mater, Adwv., 2021,
2 0169 James E. Ellis,+* Scott E. Crawford (24 and Ki-Joong Kim {0 *3"
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- Magnetic
Fields

Ellis, J.;* Crawford, S;* Kim, K-J.; Materials Advances 2021, 2, 6169

U.S. DEPARTMENT OF




[ ] (] [
Approaches for MOF Film Fabrication =|nanona.
== |[ENERGY
TL TECHNOLOGY
B. In-situ (Direct growth) LABORATORY
+ Drop-coat Bare
A. Ex-situ * Spin-coaf
+ Spray-coat
Langmunr- Blodgeﬂ
'/ -
o ﬂ, )
Pr'essure /
MOF NP Bare MOF NP M 1' |
dispersion substrate thin film era MOF thin film
Sur‘face Or‘gamc
functionalized precursors
C. In-situ (Layer'-by-layer)
Bar'e P :
o cyde D. In-situ (Template-assisted)
or
. Spm-coa‘r
+ Spray-coat  Metal Organic MOF 'rhm film Templa‘red Organic Temp Itn‘ed
precursors precursors metal source precursor  MOF Thm film
Sur'face
functionalized §§ }
E. Seeding E |
(Secondary growth) + | ? * ?
/PHYS ic;ai | See.d MOF Grow_‘rh Templc_ltec_l
remplate solution seed layer solution MOF thinfilm  p15iq 1% Crawford, Sy* Kim, K-J.; Materials Advances 2021, 2, 6169

U.S. DEPARTMENT OF




Many Approaches are Expensive/Tedious
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Laver-by-Laver

Spin Coating

DOI: 10.1021/ja4078705

Solvothermal

Rottion

DOI: 10.1021/acsami.6b04701

DOTI: 10.1021/j20701208 DOI: 10.1021/cm900069f
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Lithography/Patterning

e

DOI: 10.1002/adma.200903867
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Alternative: Metal Oxide Templates
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Initial Target MOF: Cu-BTC N=|ranonas

T L TECHNOLOGY

LABORATORY

® MOF consisting of Cu®" and benzene-1,3,5-tricarboxylate
(BTC)
®  Well-studied and well-understood synthesis and structural
properties (both experimentally and computationally)
® Exhibits high CO, storage capacity (10.2 mol/kg at 15 1.109/C8RA02439A 10.1016/j.micromeso.2008.06.040

bat, 25 °C)

® Exhibits high CO, selectivity (~20 CO,:N, simulated
under flue gas conditions)

Chaffee, A.L., et al.; Energy Fuels 2009, 23 (5), 2785
Yaghi, O.M., et al.; J. Aw. Chem. Soc. 2005, 127 (51), 17998
Chen, J-F, et al.; AICKE J. 2007, 53 (11), 2832

BQrdiga, S., et al.;.P/_y)/s. Chem. Chem. Phys. 2007, 9, 2676 > "'.'; i " E ®Cu ®C @0 H
Bien, T., et al.; Microporous Mesoporons Mater. 2009, 777 (1), 111 ..

DOI: 10.3390/0nan08090650

U.S. DEPARTMENT OF




Our Approach: AZO Template

Cu Nitrate

1 Minute

Crawford, S; Kim, K; Yu, Y; Ohodnicki, P. Cryst. Growth Des. 2018, 18, 2924

e

1?.“"% U.S. DEPARTMENT OF
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BTC in DMF:H,0:EtOH

15 Minutes
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SEM Confirms Growth Mechanism 'E*‘rf‘éé%':!“
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XRD and Optical Characterization N=|NATIoNAL
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Crawford, S; Kim, K; Yu, Y; Ohodnicki, P. Cryst. Growth Des. 2018, 18, 2924
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Optimization Strategies = [Ny
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Copper Salt Anion I | Polar Aprotic Solvent
AZO-CuCl,-BTC § AZO-Cu(NO,),-BTC B DMSO)| ACN
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U.S. DEPARTMENT OF




_CopperSalifnon =~ =~ = @ [KeeEw

TECHNOLOGY
LABORATORY

TG
ﬁ?ﬂ;é% U.S. DEPARTMENT OF :
- )3
@/ ENERGY
o ————————————————————————— S ———————_—————————



TECHNOLOGY
LABORATORY

Anion Tunes MOF Morphology E?ﬁé&%ﬁ“

B AZ0-CuBr, IE AZO-Cu(NO,),

*No HDS formation with sulfate, acetate

AZO-Cu(CH;C00), AZO-Cu(S0,),

AZO-CuCl,-BTC




Optical and XRD Characterization N=|HanoNAL

TL TECHNOLOGY

LABORATORY
B 007 —— CuCl, C —— AZO-CuCl,
~——— CuBr, —— AZO-CuCl-BTC
—— Cu(CH,CO00), S " —— AZO-CuBr,-BTC
~ 0.05 - —— Cu(sO,), O = = S —— AZO-Cu(NO,),
3 z |8 B A Hg _ . —— AZO-Cu(NO,),BTC
& ® kB %2 g 7 § —— Cu-BTC powd
80.04- g B £- uA powder
2 £
£ 003 - T '
O N
a8 T
< 0.02 ~ £
O
2z
0.01 4
0.00 1 1 1 | 1 |} '
550 600 650 700 750 800 850 10 15 20 25 30
Wavelength (nm) 2 Theta (deg.)

*- indicates Cu,OH(BTC)(H,0),-2#H,O phase

U.S. DEPARTMENT OF




Influence of Polar Aprotic Solvent N=[RATIoNAL
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Extension to Gas Sensing Applicatoins N=]hanioNaL
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MOF Thin Films for Metal lon Detection
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* Increased global adoption of renewable
energy sources will spur increased
demand for mineral resources
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* Mining practices can be tedious,
expensive, and environmentally damaging
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* Alternative resources include coal-based S g
products and electronic waste

International Energy Agency, '"The role of critical minerals in clean energy
transitions,” 2021.
U.S. DEPARTMENT OF
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35 Critical Metals (USGS, 2018)
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DOI: 10.1038/541467-021-27829-w
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Coal

~70 to 140 ppm REE
DOI: 10.1016/j.c0al.2016.04.005

Acid Mine Drainage Coal Rock Refuse Coal Fly Ash

7 The Atlanti
(0.07-( ppm) (~450 ppm RF,F,) e Atlantic

 (Circuit Boards
* Phosphors

* Magnets
* Batteries
* Etc...
) - Y- 3
DOI: 10.1016/.c0al.2006.01.009 DOT: 10.1016/.c0al.2011.05.006 DOI: 10.1007/511356-015-4111-9
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Characterization Needs for Processing

e

Thickener Solvent Extraction -

Filter fF=p

FBC Combustor Feed [ = |
Tank

Waste Water A
Treatment 4= )e

REO

Solid Waste

DOI: 10.1021/acs.energyfuels.9b00295
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Technique Instrument | Detection Limit Portable?
Cost
Inductively-Coupled ~$180k Part-per-trillion
Plasma Mass-Spectrometry
X-Ray Fluorescence ~$13-17k 10s of part-per-million Yes

Spectroscopy

Laser-Induced Breakdown ~$30-50k 10s of part-per-million Yes
Spectroscopy

Luminescence ~$18-35k 10s of part-per-billion  Yes
Spectroscopy

Luminescent sensors can provide significantly higher sensitivity than portable
XRF or LIBs techniques at a comparable cost, while providing significant cost
and time savings over ICP-MS

N



https://www.geology.pitt.edu/facility/elemental-analysis-instrumentation

Imporiance of Aluminum
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. Transport — 26,6 %

. Construction — 253 %
. Package —7,7%
M oFoil  —-8%

. Electrical engineering — 14,2 %
Consumer Goods

—9%

. Machinery

|| Others —49%

Source: CRU Group

.S. DEPARTMENT OF

—45%

e

New Heights
Aluminum hits a decade high as energy curbs throttle supply

M LME aluminum
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Detection of Aluminum

e Aluminum is one of 35 critical

metals /minerals (USGS 2018)

e Aluminum is abundant in coal and
its utilization byproducts

e Aluminum 1is also a common
interferant for extracting REEs and
other high value metals

Crawford, S.E., Kim, K.J., Diemler, N, Baltrus, J.B,_ACS Appl. Opt. Mater. 2023, 1(2), 587

P
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“Mn(l) Co(ll)

o A

Fe(ll)

Ni(ll)

AI(IN)

—er(in) ~Nd(I)

T Cu(ll)

~ Fe(lll) Er(lV)
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SEM Indicates Cu-rich Structures N |NATIONAL

T L TECHNOLOGY
LABORATORY

35
—_ | ——AZO
5 Zn/Cu-HDS O1s
304 ——cu-2ATA
\CG/ i
> 2.5 cuzp Nis Cis |
(T) SiZSSIZ%USp
c A | 029
o
I=
— Cis Cu3
8 l ZnSan37uZ p3d
N e 4
C_U O1s znLmmM
E s
o) a
prd ]
0.0

| | I | '
800 600 400 200 0

Binding Energy (eV)

e

—
1000




Luminescent Sensing of Aluminum N=|Manona
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Part-Per-Billion Limits of Detection N =|Nanona
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Crawford, S.E., Kim, K.J., Diemler, N, Baltrus, J.P, ACS Appl. Opt. Mater. 2023, 1(2), 587
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Deployment in Fly Ash Leachate Samples = [MRay "
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Ambient

UV Light
+Water

+AI(IIN)
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Stability Across Multiple Sensing Cycles N=|NATIONAL
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Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6

Aluminum

U.S. DEPARTMENT OF
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Solvent-Selective Luminescence wam
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“Water Methanol Ethanol Isopropanol Oleylamine

JL _.

_—
Acetone Toluene Octadecene DMF &ctane

Crawford, S.E., Kim, K.J., Diemler, N, Baltrus, ].P, _LACS Appl. Opt. Mater. 2023, 1(2), 587
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Solvent-Selective Luminescence N=|NaronaL
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4. Sensitized REE-Centered Emission
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Crawford, S., Burgess, W., Kim, K.-J., Baltrus, J., Diemler, N.; RSC Appl. Int. 2024, 1, 689
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For more information, see “Portable fiber optic sensor for rare earth
elements and other critical metals using photoluminescence methods”
at the Rare Earths and Critical Materials session




Concluding Thoughts
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* Metal oxide templates offer a potentially scalable
fabrication method for MOF thin films

* No expensive equipment or heating required

Growth limited to AZO template---limits reagent
waste

e Solvent conditions and anion can be used to tune
MOF size, coverage density, and structure

Exploited in luminescent, mass, and optical sensing
applications for gasses and metal ions
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Monitoring the effectiveness of aluminum removal processes during
rare earth element (REE) production from liquid streams reduces cost,
saves time, and helps ensure a high-purity REE product.

Aluminum con interfere with quick and effective extraction of valuable
REEs from coal waste byproducts

* The new NETL-developed sensing film emits blue light in the presence
of water thot becomes more intense in the presence of aluminum ions.
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Contact:
Scott.Crawford@netl.doe.gov
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