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Melt Processing Capabilities

 Air Induction Melting: up to 300 lbs

* VIM: 15, 50 and 500 lbs

* Vacuum Arc Remelt/Electro-Slag
Remelt 3-to-8-inch diameter ingots

Thermo-Mechanical Processing

Capabilities

* Heat-treatment furnaces:1650°C, inert
atmospheres and controlled cooling.

* Press Forge: 500 Ton

* Roll mills: 2 and 4 high configurations.
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« 8 kg ingots produced using VIM with
iIndustry grade feedstock.

« Chemistry slices cut for XRF and
combustion analysis.

« Homogenization following a
computationally optimized heat
treatment.

« Hot working using steps of forging
followed by steps of hot rolling to
form 10 mm thick plates.

« Heat treatment design.

« Mechanical testing following ASTM
standards.
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« ESR is a widely used process to produce

materials in which cleanliness is of upmost B
Fume Exhaust + AC

importance. e @ Ram ;3;;;;
« A consumable electrode is cast using VIM and

. . . Stinger
placed in a water-cooled crucible that contains a
Ia Kelkar, K.M., Patankar,
slag. | S. V., Mitchell, A.,
. Water Out - S{SENN ' 2005. LMPC 2005:
» Electrical current passes from the electrode Proceedings of the
through the slag to the bottom of the crucible. i ‘ 2005 International
= . Symposium or? Liquid
« Liguid metal droplets travel from the bottom of the it Metal Processing and
- . - Casting. pp. 1-8.
electrode to the crucible where the ESR ingot e daaa
forms.
] Molten Slag
« The droplets are superheated and reactions occur Molten Pool | °
leading to the removal of tramp elements. Solid Ingot |, Strike O Piate
_ ] : Starter Plate
* VIM and ESR are essential at controlling the : Wité Cooled
concentration of undesirable elements such as O Water in - : Rase Pate
and S. B - 5




Introduction W

Topic 1: Trace Element Control in Master Alloys

* Need for greater thermo-mechanical properties of alloys used in power
generation applications

o Control the concentrations of O, S, N to reduce the amount of
inclusions (TiN, oxides, ...)

* Prevent fatigue crack nucleation, interface embrittlement, oxide scale
adhesion.
* Use VIM/ESR

« Make master alloys: Ni-25Cr, Ni-30C0-30Cr

1st VIM 1st ESR 2nd V|V 2nd ESR
IN ouT IN ouT IN ouT IN ouT
Layers of ESR Electrode VIM ingot Sectioned ESR Electrode Final ingot
Ni, Co, Cr electrode + Al + slag ingot + electrode + Al + slag
+Ti+C electrode tip
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Elemental Additions

Topic 1: Trace Element Control in Master Alloys

Carbon to the VIM melt:
* Melt range of 4 °C in Ni-25Cr
* Increases 6 times to 24 °C with 300 ppm C

« Improves the solidification characteristics
* Increases the volume of the mushy zone

» Reduces the enthalpy of solidification

Al to enhance desulphurization during ESR

Slag used in the experiments:

Temperature [°C]
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A Mass percent C
Slag chemistry (wt.%):
CaF, CaO MgO AlLO, SiO, C S MnO, Fe TiO, P LOI
3894 3150 0.691 2881 0.16 0.001 0.013 0.006 0.054 0.102 <0.01 0.036 7




Elemental Additions

Topic 1: Trace Element Control in Master Alloys

Titanium additions to the VIM melt:
* Cr used contains 5200 ppm O
* Need low O levels following VIM

 Tiis a known deoxidizer:

[Ti] metar + (Oz)g = [TiO2 ] metal

» Gibbs energies for oxidation reactions of Ti -634
kJmol-! and Cr -455 kJmol?
« Crused contains 50 ppm N

» Potential for formation of TIN

N content [ppm]

100 ;
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Target Ti and N levels

..160 ' ' ..””101
Mass percent Ti
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Topic 1: Trace Element Control in Master Alloys

Effect of Ti addition to ESR process

_ _ _ _ _ Temperature (°C)
 Simulations using dimensions and melt 1627
data from experiments I 1527
1427
« Added thermophysical properties from 1327
JMatPro and ThermoCalc el
1027
e« C-300 ppm/N—lO ppm 927
827
« Steady state of remelting I 727
627
« Liquid fraction lines are more spread out gg
+ High liquid velocities in the slag, below the | S— ol
electrode 227
127
27
* Two flow cells
— 5cm/s
kl I I I I S I Y I Iy B
-0.1 0 0.1 0.2
| R(m)




MeltFlow-ESR Simulations

Topic 1: Trace Element Control in Master Alloys

Effect of Ti addition to ESR process

* Inclusion trajectories.

« Larger inclusions remain at the slag/ingot interface.

« Medium-sized particles travel around the outer flow cell.

« High probability of going into the ingot.

« The smaller inclusions preferentially travel in the flow cell

beneath the electrode.

« Lower Ti additions should
be considered in the ternary
master alloy.

Probability of inclusions reporting to ingot

100

—e— No addition
—O0— 05wt.% Ti
80| —* 1Twt%Ti 17"
—&— 1 wt.% Ti - Ternary I

0.001 0.01

Inclusion diameter (mm)
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Melt Ni Cr Co Ti Al C
(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (ppm)
Ni-25Cr
1stVIM IN Bal. 24.7 - 1.00 - 323 Melt N O S
ouT Bal. 24.4 <0.001 0.76 0.01 3507 (ppm) (ppm) (ppm)
IStESR IN - - - - 0.07 - Ni-25Cr
ouT Bal. 24.4 <0.001 0.52 0.07 357+ 10 1stVIM IN 13 1318 42
2"dVIM IN - - - - - - ouT 8+3 103+86 44+3
ouT Bal. 24.4 <0.001 0.53 0.13 349 + 30 IstESR  OUT 10+£3 66+56 19+1
2dESR IN - - - - 0.08 - 2nd VM ouT 5t4 46 + 22 15+1
ouT Bal. 24.5 <0.001 0.44 0.12 377 +48 2dESR  OUT 5 31 6+2
Ni-30C0-30Cr Ni-30C0-30Cr
1stVIM IN Bal. 29.8 29.8 0.50 - 262 1stVIM IN 16 1596 63
ouT Bal. 29.7 30.4 0.24 0.02 289 + 4 ouT 2+1 7632 502
1stESR IN - - - - 0.07 - IStESR  OUT 4+2 6726 204
ouT Bal. 29.7 30.4 0.12 0.04 322+ 75 2dVIM  OUT 9+1 60+ 1 19+3
2"dVIM IN - - - - - - 2MdESR  OUT 10+1 65 + 23 8+1
ouT Bal. 29.4 30.1 0.17 0.05 303 + 30
2" ESR IN - - - - 0.07 -
ouT Bal. 29.4 30.2 0.10 0.05 290 + 2
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(a) @) 1.2 - : - ' 0.16 (b) 1.2 - - ' ' 0.16
. —e—Ti
) - 0.14 Qe Al x - 0.14
NI-25CI‘ 10 O 1091 % Total Al additions
O ° L 0.12 L 0.12
(b) £ 084 010;\; £ 08 o1o§
= T E = T E
: T 06 - L 0.08 € T 06 - L 0.08 €
- - 0] [ <] [0
Ni-30C0-30Cr & i3 , -
3 L 0.06 3 3 F0.06 8
= 049 < e T N e Z
Loo4 N o L 0.04
—e—Ti
0.2 1 0.2 -
O Al L 0.02 L 0.02
e} % Total Al additions
0.0 : : : : 0.00 0.0 : : : : 0.00
Start 1stVIM  1#ESR  2dVIM  2mdESR Start 1stVIM  1tESR  2MdVIM  2MESR
1 1 1 1 1 1 1 1 1 1 r 14
100 1 100 —a—0l|f
—— S [} 12
] ] 0 N |F
= 80 1 = 80 - i
g ] —_ £ ] A % - 100
2 £ s ] ~——— : E
= ] o = ] ~—— i A i o
3 60 Z S 60 - R S L £
E £ E ] . S
8 2 8 : ! 2
R 5 0 4] 6§
5 401 8 P 401 : 8
o = c - L =
© © L4
O ] o ] i
20 4 20 - r
1 1 % r 2
0 : : : . L 0 0 : : : : L 0
Start 1stVIM  1tESR  2ndyIM  2md ESR Start 1stVIM  1tESR  2eVIM  2MESR 12
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Fig.1 (a)CrS, (b) TiO,, (c,d) CrS/TIiO, core, (e,f) Al-oxide

Fig. 3 Al-oxides in the (a) binary and (b) ternary alloy
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(a) 1st VIM

Topic 1: Trace Element Control in Master Alloys

(b) 1StESR

(c) 2nd VIM

(d) 2nd ESR
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Inclusions Partitioning Diameter (um)

1st VIM 1St ESR 2" VIM 2"d ESR
TiO, / CrS Cr/Ti 1.6 + 05 3.7+ 13 1.5+ 04 1.7
Al oxide (serrated/void) Cr 6.8 &£ 2.7 12.8 + 2.3 53%+1.8 8.8 4.6
Al oxide (facetted) Cr - 40 £ 1.7 - 28+ 14
Slag Zr, Mg, Al, Cr, O - 23+ 1.0 2.8 1.8 = 0.6
TiN Cr /Slag, O core - - - 1.4

14
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Topic 1: Trace Element Control in Master Alloys

 Alumina crucible + Al in the ESR feeder

* Reaction between Cr and the crucible during VIM:

2[Cr]metal + (AlZOB)crucible - (Cr203)crucible + [Al]metal

il

« Ti may reduce the alumina in the slag and transfer Al into the metal:

(a)

Ti content (wt.%)

1.2
®

1.0
0.8 4
0.6 -
04 4

—o—Ti
0-21 -0 Al

o ¥ Total Al additions
00 T T T T
Start 1stVIM 1t ESR 2nd \/|M 2nd ESR

0.16

- 0.14

o
Y
N

(=]
Y
(=]

- 0.08

o
&
Al content (wt.%)

- 0.04

- 0.02

0.00

(b)

Ti content (wt.%)

1.2

1.0

0.8 1

0.6 A

0.4 1

0.2 -

0.0

Start
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3 [Ti] metal T 2 (Alz OS)slag

- 3(Tioz)slag +

—o— Ti
0 Al
x  Total Al additions

0.16
X L 0.14

- 0.12

o
—_
o

- 0.08

o
o
[e)]

Al content (wt.%)

- 0.04

- 0.02

1stVIM

1stESR

2ndVIM

. 0.00
2 ESR

4 [Al] metal

15




Inclusion Travel W AASC N=|NATONAL

Signature Center

Topic 1: Trace Element Control in Master Alloys

« Small inclusions can travel in the slag, be dissolved

TECHNOLOGY
Slag/ingot T L LABORATORY

interface

Inclusion size:

0.50 mm
. . . 0.15 mm
In it or be transferred to the ingot.
« Medium inclusions can float, remain in the slag cap
but most are predicted to transfer to the ingot.
b) O 0.04 o0s (M)
« Large inclusions remain at the slag/metal interface.
5 100 otomm
> —e— No addition oo mm
S —0— 05wt.% Ti ;
-'5) 80 9| —v— 1wt.%Ti /
£ —2a— 1wt.% Ti - Ternary
= /
g
L 60
b 008 R(m)
i
(2] 1
3 40
c Inclusion size:
Y= c —_— 0.02 mm
o LT 0.01 mm
s @ o
2
2
o o0+
0.001

Inclusion diameter (mm) 0 0.04 00s R(m)
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Topic 2: Impact of Feedstock Purity on a Ta-containing Steel during EIectrosIag Remelting

* Novel advanced martensitic steel CPJ7 (contains 15 different elements)
« Highly reactive elements: Si, Nb and Ta

* Talis used for:
« Formation of carbides and carbonitrides (MX)
 Intragranular corrosion resistance
» Resistance to creep deformation
« Tais expensive

 Use of aresearch-scale ESR furnace to make 150 |Ib CPJ7 ingots of higher purity.

Table I. Composition Range of the CPJ7 Martensitic Steel Investigated with Fe Balanced (Wt Pct)!'?!

Cr Mo C Mn Si Ni V Nb N A% Co Ta Cu B

Min. 9.75 0 0.13 025 0.08 0.15 0.I5 0.05 0.015  0.25 1.35  0.20  0.003  0.0070
Max. 10.25 5 0.17 050 0.15 030 025 0.08 0.035  0.75 1.65 0.30  0.30 0.0110

l.
l.

17
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Topic 2: Impact of Feedstock Purity on a Ta-containing Steel during EIectrosIag Remelting

» 5 electrodes were cast using VIM. The C, N, O and S concentrations in the electrodes (following
casting) are shown on the left.

« All electrodes were remelted using ESR which resulted in new C, N, O and S concentration in
the ingot.

 Significant decrease in O and S
from the electrode to the ingot:

. . ST T T g o T (@)
e ~49% decreasein O £ 1600{73 ks | & 60 | | |
—_ e CPJ7 - -
« ~56% decreasein S § 1550+ crac : > !
o Lo CPJTAD = 40 .
_ _ _ _ S 1500 1 S Lol ;;
* Final concentrations in the ingot: © ol e | o 5
20 —
o ~ 400 H S o -
28 ppm O = ool — (b) g 20 (d) ]
. — = | 220} |
10 ppm S 5 300} ’ —1 £ 15|
8 i — Z 10}
: = i e ———
« However, 25% loss in Ta o 20 & | f s|
200 b 0 — — —
Electrode Ingot Electrode Ingot

18
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« Observation of the microstructure on the SEM/EPMA revealed two types of phases that contain
Ta.

* The first is the interdendritic phase from solidification.
« Microprobe analysis shows concentrations of Ta and Nb.

* No significant variations between electrode and ingots since it is related to solidification.

16| [ S I e SR S e o
[ 3 cprPi7z |1
e 772 CPJIAC|]
=
o 0.15F :
&
wiod
o
5,
= 0.1} , |
8 |
e :
= : |
= |
£ 005 |
Q Y.Uor 77777, 7
S - L
£ // ok
0- 1 dl 1 Z |

VIM ESR
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 The second phase is present in the form of inclusions.
* Quantitative EPMA mapping revealed the inclusions to be Ta,Os..
 Significant decrease in number density of Ta-oxides during ESR.
* 95% reduction in number density of Ta-oxide
b))~ 00— ' '
C1 cpri7z

CPJ7AC

S}
W
(=

C N Taz0s
" inclusion

200 |

150 -

100 -

\\\

i
(=)
T T

Number density of inclusions (/mm

(=)
T
N

VIM ESR
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Topic 2: Impact of Feedstock Purity on a Ta-containing Steel during EIectrosIag Remelting

 Sources of O:

* VIM was performed in a 136 kg furnace that was pumped down to 30 uHg pressure prior to starting
the melt. Leak rate was 6.5 pHg/min (performed for one minute).

« The Cr used contained 5000 ppm O. With 10wt.% Cr in the alloy => 500 ppm O in the melt charge.

* VIM was effective at removing most of the O with levels in the electrode between 40 and 70
ppm.

« Some of the O reacted with Ta to form Ta,Os.

Table VI. Oxygen Content and Inclusion Density Following VIM of CPJ7 Ingots Under Various Conditions

Charge Weight O Content in Cr  Pressure at Start Leak Rate O Content Number Density of Inclu-
Furnace (kg) (Ppm) (uHg) (uHg/min) (Ppm) sions (mm°)
136 kg* 77 ~ 5000 29.6 + 8.7 6.5+ 1.9 56 £ 8 196 + 67
9 kg 7 ~ 5000 0.042 0.73 74 £ 13 111 £+ 41
7 ~ 400 0.028 0.34 105 £ 5 136 & 41

*Average between the ingots Z, AA, AB, AC, and AD with standard deviations.

21
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« Two small VIM melts (7 kg ingots) were performed to investigate the influence of pressure/leak
rate.

» The furnace employed possesses a leak rate of 0.3 to 0.7 pHg/min for a 0.03-0.04 yHg starting
pressure.

« Using 5000 O grade Cr:

« 74 ppm O in ingot (close to large castings)

« Lower number density of Ta-oxides. 111 mm=2 compared to 196 mm-2.

Table VI. Oxygen Content and Inclusion Density Following VIM of CPJ7 Ingots Under Various Conditions

Charge Weight O Content in Cr  Pressure at Start Leak Rate O Content Number Density of Inclu-
Furnace (kg) (Ppm) (uHg) (uHg/min) (Ppm) sions (mm°)
136 kg* 77 ~ 5000 29.6 + 8.7 6.5+ 1.9 56 £ 8 196 + 67
9 kg 7 ~ 5000 0.042 0.73 74 £ 13 111 + 41
7 ~ 400 0.028 0.34 105 £ 5 136 & 41

*Average between the ingots Z, AA, AB, AC, and AD with standard deviations.

22
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Topic 2: Impact of Feedstock Purity on a Ta-containing Steel during EIectrosIag Remelting

« Two small VIM melts (7 kg ingots) were performed to investigate the influence of pressure/leak
rate.

* The furnace employed possesses a leak rate of 0.3 to 0.7 yHg/min for a 0.03-0.04 yHg starting
pressure.

« Using 400 O grade Cr:
« 105 ppm O in ingot (higher than in the large castings, some location dependency)
« Lower number density of Ta-oxides. 136 mm-2 compared to 196 mm-,
« Slightly higher than in the first small VIM melt.

Table VI. Oxygen Content and Inclusion Density Following VIM of CPJ7 Ingots Under Various Conditions

Charge Weight O Content in Cr  Pressure at Start Leak Rate O Content Number Density of Inclu-
Furnace (kg) (Ppm) (uHg) (uHg/min) (Ppm) sions (mm°)
136 kg* 77 ~ 5000 29.6 + 8.7 6.5+ 1.9 56 £ 8 196 + 67
9 kg 7 ~ 5000 0.042 0.73 74 £ 13 111 £+ 41
7 ~ 400 0.028 0.34 105 £ 5 136 + 41

*Average between the ingots Z, AA, AB, AC, and AD with standard deviations.
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Topic 1

Melting characteristics were improved for master alloys using C and Ti additions.

Ti additions reduced the oxygen content during VIM through the formation of Ti-oxides. The
inclusions were then removed during ESR.

Aluminum was used to deoxidize the slag; however, Al pickup was observed in the solidified ingots
with large Al-oxides.

Topic 2

Ta content in CPJ7 decreased by 25% during ESR.

This was attributed to the formation of Ta-oxide inclusions and subsequent 95% reduction in their
number density during ESR.

Ta is highly reactive and prone to the formation of Ta,Ox.

Ta-oxides formation was influenced by the leak rate and pressure at start.

24
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