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Quantum Sensing for Energy Applications Hybrid Quantum-Classical Sensing: Advantages and Scopes Color Centers in Nanodiamond
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improvement over traditional optical sensors!

* This shows a superiority of stress sensitivity behavior that could
be achieved by manipulating the ground state spin levels in NV
center nanodiamond over the traditional optical sensor based

Probing Liquid Samples Using NV Center and Nuclear
Sy I Welhead Magnetic Resonance
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