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submission to International Nuclear
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This research contributes directly to the advancement of radiation detection
technology, which is crucial for enhancing nuclear security and
safeguarding. Silicon photomultipliers (SiPMs) are a promising technology
in radiation detection due to their compact size, low power consumption,
and high photon detection efficiency, making them ideal for applications in
environments like nuclear material monitoring and verification under
international safeguards. By improving the understanding of how SiPMs
perform in various temperature conditions, this work supports the IAEA's
ongoing efforts to improve safeguards technologies. This research is
aligned with the IAEA's research plan on enhancing verification methods to
ensure the non-proliferation of nuclear materials. Understanding the noise
mechanisms of SiPMs can help improve the accuracy and reliability of
detection systems, which are vital for the successful implementation of
global nuclear safeguards protocols.



https://www.formstack.com/admin/download/file/17027541941

Please explain why this work is being
performed, what the practical
applications are, what problems will be
solved, what objectives will be
achieved, etc.

This work addresses the performance challenges of SiPMs, particularly
their susceptibility to increased dark count rates (DCR) and optical
crosstalk (OCT), which degrade their performance in harsh environments.
These issues are critical because SiPMs are increasingly used in nuclear
safeguards where accurate and reliable radiation detection is essential.
The objective of this research is to compare different SiPM technologies
(Advansid, Broadcom, and Onsemi) across varying temperatures to assess
their noise characteristics, temperature sensitivity, and suitability for use in
nuclear safeguards systems.

The practical application of this research lies in improving the design and
deployment of radiation detectors for nuclear safeguards. By identifying the
SiPM technologies with optimal performance (low noise, high gain, minimal
temperature sensitivity), this study aims to enhance the detection
capabilities of safeguards equipment, thereby contributing to more effective
monitoring of nuclear materials. The results will inform the selection of
SiPMs for environments where temperature variations are a factor,
ultimately leading to more robust radiation detection systems that can
operate reliably under varying conditions.
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Table 1: Comparison of SiPM and PMT Figure 1: Illustration of noise mechanisms in SiPMs .
Temperature (°C)

characteristics.
Figure 11: Breakdown voltage as a function

of temperature for Advansid, Broadcom, and
Onsemi SiPMs. The error bars are smaller
than the data markers. The Advansid is most

itive to temperature.
Methods

. Measurement range: We measured the dark counts of the SiPMs at 19°C, 22°C, 30°C, Table 3: Comparison of performance parameters of three SiPM technologies at room temperature.
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removal. used to calculate pulse height. acquisition chain signal. Optical Crosstalk (OCT): Advansid had over 5 times the OCT probability of

Broadcom and 2.5 times that of Onsemi.

Gain Comparison: Onsemi’s gain was 55% higher than Broadcom and more
than double that of Advansid, though this must be weighed against its higher DCR.
Temperature Sensitivity: Advansid showed a 33% greater sensitivity to
temperature changes in breakdown voltage than Broadcom and Onsemi,
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Figure 12: DCR as a function of
temperature for Advansid, Broadcom, and
Onsemi SiPMs. The Onsemi has the highest
DCR.
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Equation 2: Constant Fraction Discrimination (CFD)
where S(i) is the value of the signal at index i, F is a constant between 0 and 1, and A is delay time
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