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Abstract

Predicting properties from molecular structures is paramount to design tasks in
medicine, materials science, and environmental management. However, design
rules derived from the structure-property relationships using correlative data-driven
methods fail to elucidate underlying causal mechanisms controlling chemical
phenomena. This preliminary work proposes a workflow to actively learn robust
cause-effect relations between structural features and molecular property for a
broad chemical space utilizing smaller subsets, entailing partial information.

1 Introduction

Understanding structure-property relationships within broad chemical space is essential for chemical
discovery. The growth in public repositories (e.g., PubChem [1], ZINC [2], ChEMBL [3], QM9 [4}15]
ANI-1x,[6] and QM7-X [7]]) containing structural and physiochemical properties (computed with
quantum mechanical calculations or observed with experiments) on thousands to millions of molecules
along with applications of machine learning/deep learning (ML/DL) workflows have skyrocketed in
the recent years. Such developments have paved the path forward for modeling molecular interactions,
chemical bonding, reaction energy pathways, docking, inverse design of molecules for targets,
synthesis, gaining novel insights into mechanisms with numerous applications such as drug discovery,
[8, 19, 110, [11]] antibiotics [12], catalysts [13}[14]], photovoltaics [[L5], organic electronics [16]], and
redox-flow batteries [17]. The quantitative structure-activity/property relationships (QSAR/QSPR)-
type models [[11} (18} 8] and more recently the generative models have largely contributed to the in
silico molecular design efforts.

Modern molecular generative models have transformed standard string representations of molecules
towards embedded spaces [10] with information on the entire molecular scaffold. However, the latent
embeddings of most generative models are neither smooth nor carry ton of useful information, limiting
their utility in direct gradient-based optimization methods for targeted design. The standard Gaussian
processes (GPs) within Bayesian optimization (BO) methods, as combined with generative models for
finding optimized solutions, fail to incorporate any prior information of physical or chemical behavior
of the system in the process. Recent work lead by Ghosh at al. [19] has shown how a physics-
augmented GP within a hypothesis-driven active learning workflow can be employed to reconstruct
functional behavior over an unknown chemical space (for which prior data may not be available).
However, most of these efforts still rely on the in-built correlative relationships acting behind the
molecular representations and property, by drawing inferences purely from statistical dependencies.
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The fundamental cause-effect relations are practically missing in these purely data-driven approaches
except a few recent studies [20, 21} 22, 23|] in the domain of materials science.

In this study, we demonstrate how an active learning workflow, informed with causal discovery
models, can successfully learn structure-property relationship from subsets of data, sampled from
any part of the chemical space of interest, compare predictive accuracy, all combined together to
actively learn the relations for the entire dataset. The target property is dipole moment for the QM9
dataset. For simplicity, we utilize easily-computable molecular features to represent each molecule.
It is important to note that the choice of subsets is more or less arbitrary, meaning the information
we start with is partial, catering to the adaptive needs for real-time workflows for Al-guided design,
automated synthesis, automated characterization while deriving fundamental understandings behind
a molecular property.
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Figure 1: Overview of workflow

2 Results & Discussion

We first demonstrate that the prediction of dipole moment and associated causal relations exhibit
large variability across different regions of chemical space. The models trained to predict in one
region of chemical space do not generalize well to other regions as represented in Fig. Therefore,
causal relations derived from one region may not be robust enough to capture structure-functionality
relations for another subset or even the entire dataset. To address this challenge, we introduce an
innovative active learning approach designed to recover comprehensive causal relationships using a
minimal dataset, as represented in Fig. [T]

2.1 Generating molecular data subsets

We begin our analysis by characterizing each molecule within the QM9 dataset [4, 5] through a
vector consisting of twenty descriptors, computed using RDKit. The atomistic mechanisms behind
dipole moment leading to polarization may depend on several factors such as electronegativity,
bonding, presence or absence of specific functional groups etc. We have summarized some of these
mechanisms (as noted in the Introduction section) in our related works investigated by in-depth
first-principles computations. The features computed by RDKit as considered in this study accounts
for these type of factors at a rudimentary level, computed using the SMILE representations which is
the motivation behind choosing these specific features. Instead of employing fingerprint or latent
representations of molecules, we choose to work directly with these molecular features, enabling the
use of straightforward causal approaches. Furthermore, different regions of the molecular feature
space contribute to the creation of distinct causal maps and predictive models. We have used a
Gaussian Mixture Model to create three subsets, D1, Ds, D3 of the QMO dataset by clustering based
on three pivotal features: MolLogP (lipophilicity), TPSA (topological polar surface area), and Mo1MR
(molar refractivity) as shown in Fig. [2. After clustering, each data subset retained twenty chemical
descriptors.

2.2 Feature selection based on predicting polarizability

We use polarizability as an intermediate target to down-select features for subsequent causal analyses
and predictions of dipole moments, thereby capturing the control of an intrinsic property by extrinsic
influences. Using the LinGAM causal discovery framework [24]], we pick the top k£ < 20 features
within the structure equation model[25]]. This approach is valid when each feature has its own additive
non-Gaussian noise term ¢;, and constructs a model with linear relationships between each variable.
For each subset of the data D1, Dy, D3, we have used LinGAM to construct a weighted directed acyclic
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Figure 2: Causal discovery and property prediction in different regions of chemical space. (A) Feature
distributions for different subsets. (B) Test R? and parity plots for a random forest model trained on
D1, Do, D3 and the full dataset (left to right). Insets show the corresponding adjacency matrix of
the nine downselected features, where green colors signify positive causal relations and pink/purple
signify negative relations. Full causal graphs are given in the Appendix.

graph (DAG), denoted by G, G2, Gs. In each graph, the target variable (dipole moment) is a sink,
i.e. it does not have any downstream variables. All 20 features are ranked by the strength of their
relationships, and the top £ are selected. For the numerical experiments below, we set kK = 9. This
causal analysis is performed for the full dataset, and the same 9 features are used for each data subset.

In each data regime, the prediction accuracy of dipole moment using a random forest model over
the k = 9 features is significantly different, shown in Fig.[2(B). Furthermore, we find that each data
subset results in distinct causal relationships (Fig.[2B and [A3]A6) between the features. Based on
these results, we next investigate how one can construct a minimal dataset that accurately builds
causal maps representative of the full dataset.

2.3 Causally-informed active learning to build minimal molecular datasets

Active learning aims to optimize the training process by selecting the most informative data points
for labeling, rather than relying on random or pre-defined data sampling. In this context, the goal
is to reduce the annotation cost and resource requirements while improving model performance.
Traditional active learning approaches choose sampling data by evaluating the uncertainty in a
predicted value [26] or through constructing a dataset which samples the entire input space [27, 28]
Here, we build an active learning algorithm, detailed in Algorithm[2.3] to reconstruct a global causal
map from a minimal dataset. A global causal model may be constructed from existing knowledge
about how different molecular features contribute to a target property, such as dipole moment. The
aim of this active learning algorithm is to reconstruct the global causal map, denoted by G, from
a minimal set of data. We note that the goal of this algorithm is distinct from traditional active
learning; rather than building a minimal dataset to predict a property of interest, we aim to build a
minimal dataset which recapitulates causal structure/property relationships. The algorithm uses a
graph distance metric, £(G1, G2) to compare the global DAG, G » to the DAG Gap, describing the
actively learned dataset, Day,. Gar, is found using the LinGAM causal discovery framework [24].
During each iteration of the active learning scheme, we sample M points, uniformly, from each of the
k data subsets described above, denoting the candidate dataset DI’ZL. For each candidate dataset, we

construct a causal graph, denoted Gy, and compare it to the global graph G, using the graph metric
L(G1,G2). The graph loss function used is the adjacency spectral distance [29]:
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Figure 3: Active learning to recover causal relations. (A) Average and one standard deviation of the
graph distance (upper) between the global graph, G, and the graph of the candidate data set Gay,
at each iteration of the active learning algorithm (red) and for randomly selected data (black). (B)
Visualization of the adjacency matrices corresponding to Gay, at different iterations and the global
DAG G,,. (C) The number of times each data subset was selected during the active learning procedure.
(D) R? on test data throughout the active learning experiment. The dashed line corresponds to the
value when all data is used. (E) Densities of the ECFPs for the entire dataset projected onto its first
two principle components and samples from each data subset (scatter plots).

which computes the ¢5 norm of the top N eigenvalues of adjacency matrix A for each graph.

Algorithm 1: Causally-informed active learning algorithm

G,, global causal graph ;
DaL=0;
Ng, number of data subsets ;
Niter, number of iterations ;
while n < Njie, do
for k € (1, N,) do
@QL = DU sample(Dy,,M);
G = LinGAM(DaL) ;
sk = L(Gk, Gp)
k* = argmin(sg) ;
| DaL =Dk,

The dataset with the minimal graph distance to G, denoted by D7} , is selected, and the algorithm
continues. We compare the graph distance of the selected datasets with those chosen from random
subsets in Fig.[3]A. The actively generated dataset not only converges to the global graph more quickly
than the random data (see Fig. EIA-B), but also does so with less noise, as demonstrated by the shaded
regions in Fig.[3A. The shaded regions correspond to the mean =+ one standard deviation over ten
realizations of the algorithm. Interestingly, the test R? of the random forest model performs equally
well on either the active or random dataset (Fig. [3{D)), indicating that optimizing for causal structure
neither helps nor harms the regression accuracy. The extended connectivity fingerprints (ECFPs)
[30] over the entire dataset are projected onto their first two principal components, denoted ¢; and
@2, to demonstrate that the space explored does not exactly fit into the typical diversity-uncertainty
sampling paradigms (Figure BIC, E).

3  Summary

In summary, we have developed a causal active learning workflow for iterative identification of causal
relations with corresponding prediction of dipole moment for a broad chemical space, from subsets
of chemically diverse molecules. The actively-learnt causal relations also pertain to our chemical



understandings. For e.g., molecules containing NH, OH bonds are highly polar in nature (i.e., a bond
dipole) whereas presence of more valence electrons will screen the long-range order, resulting in
reduction of dipole moment. Tuneable features accounting for molecular weight, atomic charges,
number of electrons, electronegativity, presence of NH, OH bonds, have the highest coefficients of
cause-effect relations towards dipole moment which can be intervened to optimize the target.

This approach allows for two significant advances in enabling Al-guided design, synthesis and
characterization of molecules. One lies in its potential to guide autonomous experiments where partial
information from past measurements may be available based on which the model can adaptively learn
causal relations for targeted molecular design and synthesis. More importantly, it is even effective to
identify intrinsic and extrinsic features in real-time, providing scientists to derive understandings of
the underlying mechansims controlling physical/chemical phenomena.
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