
Elephants Sharing the Highway: Studying TCP Fairness in Large
Transfers over High Throughput Links

Imtiaz Mahmud
Lawrence Berkeley National

Laboratory
California, USA

imahmud@lbl.gov

George Papadimitriou
Information Sciences Institute,

University of Southern California
California, USA
georgpap@isi.edu

Cong Wang
RENCI, University of North Carolina

at Chapel Hill
North Carolina, USA
cwang@renci.org

Mariam Kiran
Oak Ridge National Laboratory

Tennessee, USA
kiranm@ornl.gov

Anirban Mandal
RENCI, University of North Carolina

at Chapel Hill
North Carolina, USA
anirban@renci.org

Ewa Deelman
Information Sciences Institute,

University of Southern California
California, USA
deelman@isi.edu

ABSTRACT
Escalating bandwidth demand strains high-performance data net-
works, posing potential performance risks. TCP congestion control
algorithms enhance reliability and optimize bandwidth usage. Net-
work performance is influenced by factors such as AQM algorithms
and router buffer size. In the context of constrained network re-
sources, understanding how TCP flows share networks and the
resulting performance impact is essential.

This paper introduces insights into TCP fairness and perfor-
mance involving a comparison of TCP CUBIC, Reno, Hamilton,
and BBR versions 1 and 2 across real-world networks supporting
high bandwidths of up to 25 Gbps. The research explores TCP be-
haviors with AQM algorithms like FIFO, FQ_CODEL, and RED,
alongside diverse buffer sizes. Notably, findings reveal that manip-
ulating buffers and queuing methods yields contrasting outcomes
based on bandwidth. BBRv2 emerges as a superior fair algorithm,
pivotal for swift transfers, particularly in scientific data scenarios.
These results provide crucial guidance for future network design,
ensuring equitable performance optimization.

KEYWORDS
TCP Congestion Control, Fairness, Active Queue Management,
Buffer Size, FABRIC, High-Bandwidth, High-Speed Internet, Ele-
phant Flows

ACM Reference Format:
ImtiazMahmud, George Papadimitriou, CongWang, MariamKiran, Anirban
Mandal, and Ewa Deelman. 2023. Elephants Sharing the Highway: Studying
TCP Fairness in Large Transfers over High Throughput Links. InWorkshops
of The International Conference on High Performance Computing, Network,
Storage, and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3624062.3624594

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624594

1 INTRODUCTION
The rapid emergence of IoT devices, edge-to-cloud integration and
high-performance computational workflows, have brought an expo-
nential growth of demand for reliable data transfer across the wide
area networks [3, 14]. Transmission Control Protocol (TCP) is one
of the most commonly used transport protocols designed to ensure
minimum packet loss and maximum use of available bandwidth
(BW) in high volume data transfers [23, 36]. Network researchers
have developed innovative TCP variants that try to achieve high
throughput with minimal packet loss. However, as networks be-
come congested and resources are limited, links have to be shared
among many flows, which requires an understanding of the correct
choices for TCP congestion control algorithms (CCA).

The TCP CCA controls network resource utilization by regulat-
ing the amount of data being transmitted [2, 29]. Existing variants
of CCAs, such as Bottleneck BW and Round-trip propagation time
version 1 (BBRv1) [7], BBR version 2 (BBRv2) [8], Hamilton TCP
(HTCP) [27], CUBIC [20], and Reno [24], are being extensively used
and studied, but they still witness changing network conditions
having high retransmissions, significant delay, low throughput,
and wastage of network resources [29]. On the other hand, Ac-
tive Queue Management (AQM) algorithms manage the queue of
packets at routers and shape the traffic [1]. AQMs help prevent
network congestion by monitoring the queue length and make de-
cisions about which packets to drop. When packets are dropped,
CCAs interpret this as a congestion signal, leading to a reduction
in the rate at which data is transmitted. Some AQMs implement
explicit congestion notifications (ECNs) [16], which provide more
specific information to the CCAs about upcoming network conges-
tion. ECNs signal to the CCA that it should reduce the flow of data
without waiting for packets to be dropped, leading to more efficient
use of network resources. Thus, AQMs are an important tool for
ensuring network stability and efficient resource utilization.

Historically, the Research and Education (R&E) community has
deployed network devices with deep buffers to avoid packet loss
in large science transfers [40]. However, using a buffer size by
determining the Bandwidth Delay Product (BDP), proves to be a
non-scalable solution, especially as network bandwidth increases up
to 400G. Additionally as R&E networks become congested, we see

806

https://doi.org/10.1145/3624062.3624594
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624594
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624594&domain=pdf&date_stamp=2023-11-12


SC-W 2023, November 12–17, 2023, Denver, CO, USA Imtiaz Mahmud, et al.

that short-term dynamics of competing high-speed TCP flows can
have strong impacts on their long-term fairness leading to severe
challenges in co-existence and network deployments [30]. With
the growing availability of higher BW and the need to efficiently
handle big data, such as in scientific R&E networks, it is crucial
to assess the performance of different TCP CCAs in real-world
high-BW scenarios. Evaluating how these interact with various
AQMs is essential. Additionally, TCP variants are being developed
with different goals in mind, which results in different heuristics
and overall algorithm behavior. One example is BBR, which was
developed to avoid buffer bloat and to provide more stable perfor-
mance in streaming applications, and is not significantly impacted
by queue length like CUBIC. However, BBR can experience per-
formance degradation when multiple TCP flows attempt to share
the same network link. A detailed analysis of these relationships
and the impact on fairness is needed to improve performance in
high-BW scenarios. Based on the above need, we aim to investigate
TCP fairness and its effects by examining different AQM algorithms
and BW configurations. To achieve this, we conducted controlled
experiments using different TCP CCAs and AQM algorithms in
real-networks with a wide range of BWs. The FABRIC testbed [4],
an inter-continental real-network instrument connecting labora-
tories from Japan to Europe through USA, was used for this. This
paper makes the following contributions:

• We evaluate the TCP CCA fairness in network links through
real-world experimentation using a bottleneck topology. We
evaluate TCP CCAs (BBRv1, BBRv2, Reno, HTCP) against
CUBIC, in different BW scenarios, varying router queue
length, and using different AQM algorithms including FIFO,
FQ_CODEL, and RED.

• We assess the scaling capability of BBRv1, BBRv2, CUBIC,
Reno, and HTCP in TCP sharing experiments in different
BW scenarios.

• We identify limitations in the TCP performance particularly
with regards to FQ_CODEL and RED’s failure to fully utilize
the capacity in high-BW links.

• We share a reproducible dataset that contains experimental
codes and all end-to-end log files, which can be useful for fu-
ture research, especially for developing, training, and testing
TCP Machine Learning (ML) models. This repository of TCP
logs and network performance data contributes to design
of future TCP algorithms and efficient network design for
high-BW scenarios.

The remainder of the paper is structured as follows: Section 2 pro-
vides the motivation behind this work, while Section 3 summarizes
the fundamentals of TCP and TCP fairness challenges. Section 4
describes the experimental setup in detail. Section 5 presents the
findings and discusses the results. Finally, Section 6 provides con-
cluding remarks.

2 MOTIVATION
Modern large scale science workflows often include movements
of large volumes of data generated through scientific instruments,
ranging from small datasets to massive amounts of information.
The data transfer requirements vary from real-time, short-term
transmission for immediate processing, to long term data transfer

over inter-continental network links. The variety of data includes
experimental results, sensor readings, genomic data, imaging data,
and more. Efficient handling of volume, speed, and variety of data
is crucial for optimal data transfer performance.

In the R&E community, CUBIC and HTCP have been favourably
used for high-speed data transfers within the Science DMZ [9].
These handle very large transfers but need to guarantee loss-less
transmissions [40]. Monitoring transmission rates based on network
congestion, affecting throughput, latency, and fairness are high pri-
ority for these networks. The selection of optimal configurations
can impact how science networks are designed and maintained. For
instance, applications requiring low latency, real-time collabora-
tion, or fair BW sharing may benefit from algorithms prioritizing
responsiveness and fairness. Conversely, applications emphasiz-
ing high throughput and efficient bulk data transfer may prefer
algorithms that maximize network capacity. Science and research
networks are also constrained by resources and face substantial
data transfer requirements. While TCP CCAs control end-to-end
data transfers, the decision regarding which packets to retain or
discard during data transfer is made by the point-to-point AQM
algorithms at the routers. These packet drops significantly impact
the behavior of TCP CCAs, resulting in a strong interconnection
between them. On the other hand, elephant flows are very com-
mon in science networks, which is not as common in commercial
networks. This disparity makes it more challenging for science
networks to manage such elephant flows using traditional CCA and
AQM algorithms. Consequently, we are motivated to investigate the
interactions between CCA and AQM algorithms and determine the
optimal combination. By studying these combined conditions, we
can enhance network utilization through efficient design choices.

3 BACKGROUND AND RELATEDWORK
3.1 TCP Congestion Control Algorithms
TCP is employed for data transmission and plays a crucial role in
averting network congestion by managing the rate at which data
is sent. The research community has put forward numerous TCP
CCAs. For this experiment, we have opted to focus on the widely
utilized and already implemented CCAs found within the Linux
Kernel. These include Reno, CUBIC, BBRv1, BBRv2, and HTCP. A
brief overview of each is provided in this section.

3.1.1 BBRv1. BBRv1 was developed by Google in 2016. It esti-
mates the available bottleneck BW and round-trip propagation
time of a network path and uses this information to adjust the send-
ing rate to maximize network utilization and minimize congestion.
BBRv1 uses a hybrid approach that combines delay-based and loss-
based congestion control techniques [7]. One of the main criticisms
of BBRv1 is that it tends to overshoot the network capacity, which
can result in high packet losses and reduced performance [21][6].
BBRv1 aggressively ramps up the sending rate to the maximum
achievable BW at the start of a connection, which can lead to con-
gestion and decreased fairness for later started flows that have not
yet had a chance to ramp up their sending rate [21]. Additionally,
BBRv1 has been found to cause retransmission timeouts (RTOs)
in some cases, which can also result in reduced performance and

807



Elephants Sharing the Highway: Studying TCP Fairness in Large Transfers over High Throughput Links SC-W 2023, November 12–17, 2023, Denver, CO, USA

increased latency [6]. Furthermore, BBRv1 requires accurate round-
trip time (RTT) measurements to estimate the available BW, which
can be challenging in networks with high latency or fluctuating
RTTs, and may not be well supported by all network devices and
applications [7]. Finally, the utilization of continuous network mod-
eling necessitates a certain amount of time, potentially leading to
adverse effects on short-lived flows. This aspect could result in
BBRv1 being better suited as for elephant flows scientific networks.

3.1.2 BBRv2. BBRv2 is the newer version of Google’s BBR CCA
[8], building upon the delay-based and loss-based hybrid approach
of BBRv1. While BBRv1 already includes packet pacing, prioritiza-
tion, and probing, BBRv2 further refines these features to enhance
performance. Pacing in BBRv2 allows for more precise control over
the sending rate by regulating the transmission of packets, reducing
packet loss, and improving congestion control. Probing in BBRv2
provides a more accurate estimation of available BW by actively
probing the network with small bursts of packets. BBRv2 also sup-
ports ECN as a congestion signaling mechanism, allowing it to
react more quickly and accurately to network congestion. These
improvements in BBRv2 contribute to better throughput, reduced
retransmissions and latency, and improved fairness in sharing BW
among flows, further refining the congestion control capabilities of
BBRv1. Moreover, because it is based on BBRv1, it is also expected
to show better performance for elephant flows.

While BBRv2 offers many improvements over BBRv1, it also has
some potential downsides. For example, the use of packet pacing in
BBRv2 can result in increased latency, especially for short flows that
may not fully utilize the available BW [37]. Song et al. [37] reported
that BBRv2 enhances fairness and reduces aggressiveness in small
buffers of less than 1 BDP. Although BBRv2 shows improvement in
terms of fairness in sharing BW and lower rates of packet retrans-
missions, certain challenges such as RTT unfairness, coexistence
with loss-based algorithms, and synchronization between BBRv2
flows persist.

3.1.3 CUBIC. TCP CUBIC, the default CCA in Linux, estimates
the number of packets that can be sent without causing congestion
in the network using a cubic function based on the current RTT
and the number of packets sent since the last congestion event
[20]. It responds to packet loss by reducing the congestion win-
dow (CWND) size and entering a recovery phase where it uses a
binary search algorithm to find the appropriate window size. TCP
CUBIC is scalable to high-speed and high-BW networks. While
TCP CUBIC has been proven to exhibit fairness towards all flows
within a network, it can still display aggressive tendencies under
certain conditions. This aggressiveness may lead to issues such as
bufferbloat and unfairness in the overall network dynamics [42].
CUBIC generally demonstrates equitable behavior across all flows,
for elephant flows, a well-balanced output is still anticipated from
this algorithm.

3.1.4 Reno. TCP Reno is a loss-based CCA that reacts to packet
loss and manages network congestion using slow start, conges-
tion avoidance, fast retransmit, and fast recovery mechanisms [24].
When packet loss is detected, TCP Reno reduces its sending rate by
half and enters the fast recovery state. If it receives an acknowledge-
ment (ACK) for the lost packet, it exits the fast recovery state and

resumes congestion avoidance. However, if it does not receive the
ACK within a specified time, it assumes that the congestion persists
and enters the slow start state [18]. TCP Reno is effective in man-
aging congestion in various network environments but has some
drawbacks, such as poor performance in high-BW networks and
fairness issues with other protocols. This is due to its conservative
CWND increase strategy, which limits the sending rate to avoid
congestion.[7]. Consequently, TCP Reno might not be the optimal
choice for handling elephant flows within scientific networks.

3.1.5 HTCP. The Hamilton TCP (HTCP) is a CCA designed for
use in high-speed networks with large buffer sizes [27]. It is based
on a feedback control system that uses a combination of additive
increase and multiplicative decrease to adjust the sending rate of
the TCP flow. It is designed to increase the aggressiveness of TCP
in high-BW, high-latency networks while maintaining fairness and
compatibility with other TCP CCAs. HTCP dynamically adjusts
its aggressiveness by increasing the rate of additive increase as
the time since the previous loss increases, allowing it to quickly
respond to congestion events and improve throughput. HTCP pro-
vides a fast convergence to a stable sending rate and maintains low
queuing delay in high-speed networks [28]. Additionally, HTCP
uses a simple feedback control mechanism that requires minimal
computational overhead and is easy to implement. Furthermore,
HTCP is compatible with existing TCP flows, so it can coexist
with other CCAs without causing interference. Therefore, HTCP
can be considered as one of the best candidate to provide high
network utilization in scientific networks, especially for elephant
flows. However, it may not be suitable for networks with a large
number of flows or non-TCP traffic and is vulnerable to unfairness
issues when competing with other CCAs [5].

3.2 Challenges in TCP Fairness
Numerous researchers have extensively examined TCP perfor-
mance across different network scenarios [33][37][12][41][22][21].
However, the majority of these investigations have taken place
within simulated environments [33][37][12]. Real-world experi-
ments provide an authentic portrayal of network dynamics, includ-
ing real-time flow changes, complex physical networking reactions,
and unforeseen anomalies, which cannot be precisely replicated
in simulations. Consequently, conducting networking experiments
in actual networks holds significant importance and offers distinct
advantages over simulations. Interestingly, very few research were
conducted involving real-world experiments, often conducted on a
smaller scale [33][37][41]. Moreover, only a limited number of stud-
ies have delved into the performance of TCP CCAs within high-BW
scenarios surpassing Gbps [37][22] [21]. Notably, the exploration
of TCP behavior within the context of scientific networks, partic-
ularly regarding elephant flows, remains a relatively unexplored
area. While the dynamics of TCP fairness in conventional internet
settings have sparked considerable debate [11], it is imperative
to prevent a single TCP flow from monopolizing resources and
compromising the performance of other concurrent flows.

3.3 Active Queue Management Algorithms
AQMs are implemented in network routers to prevent buffer over-
flow and packet losses, contributing to the establishment of a more

808



SC-W 2023, November 12–17, 2023, Denver, CO, USA Imtiaz Mahmud, et al.

Figure 1: The experimental topology on FABRIC, with nodes located across 4 different locations connected over a Layer 2
network. RTT ≈ 62ms between Clemson and TACC.

dependable network infrastructure. These AQMs also wield signifi-
cant influence over CCAs, as dropped packets serve as indicators of
congestion for CCAs. This symbiotic relationship aids in congestion
prevention and ensures the uninterrupted flow of data [15]. While
numerous AQM algorithms exist, we will focus on FIFO, RED, and
FQ_CODEL due to their prominence and representation of three
distinct and widely used categories. Specifically, FIFO serves as
a fundamental AQM algorithm, RED employs a probabilistic ap-
proach, and FQ_CODEL creates individual queues for each flow
while applying the CoDel mechanism to the queues. This section
provides a succinct overview of these algorithms.

3.3.1 FIFO. FIFO (First-In-First-Out) is the simplest and oldest
AQM algorithm [17], where packets are dropped from the front
of the queue as soon as the queue is full. This algorithm does not
require any complex processing, making it easy to implement in
hardware and software. However, it has several limitations, such
as the inability to differentiate between different types of traffic
and the lack of support for controlling queue length or delay [32].
Moreover, this algorithm can cause TCP to detect packet loss as a
signal of congestion, leading to reduced throughput and unfairness
[17]. Despite its limitations, FIFO is still used in many networks
due to its simplicity and low overhead.

3.3.2 FQ_CODEL. FQ_CODEL (Fair Queuing with Controlled
Delay) is a combination of the fair queuing (FQ) and CoDel (con-
trolled Delay) algorithms, designed to provide fair and low-delay
packet transmission in a multi-flow environment. In this algorithm,
each flow is assigned to a virtual queue and processed in round-
robin fashion to ensure fair BW allocation [39]. CoDel is used to
manage the buffer delay by monitoring the time spent by packets
in the queue and dropping packets before the buffer becomes full
[31]. This algorithm provides significant benefits over FIFO, such as
low latency, less packet loss, and better support for multiple flows.
However, it requires more processing power and is more complex
to implement than FIFO.

3.3.3 RED. RED (Random Early Detection) is an AQM algorithm
that drops packets from the queue randomly before it becomes
full, based on the total length of the queue and the available aver-
age queue length [17]. This algorithm aims to provide congestion
avoidance by controlling the queue length and preventing it from
becoming too large. REDmonitors the queue length and drops pack-
ets probabilistically, with a higher probability of dropping packets

when the queue is close to the maximum threshold [13]. This al-
gorithm provides benefits over FIFO by reducing the likelihood of
congestion and improving the fairness of BW allocation. However,
RED requires careful tuning of its parameters to ensure optimal
performance, and it may not work well in environments with bursty
traffic [35].

4 EXPERIMENTAL SETUP
4.1 Experimental Infrastructure
We used the FABRIC testbed to perform the experiments [4], which
is a nationwide instrument funded by the National Science Foun-
dation (NSF) of the USA to enable large scale experimentation
within an isolated, yet realistic environment. It provides compute
and storage resources on multiple sites that are interconnected by
high-speed, dedicated optical links. FABRIC also offers “everywhere
programmability”, as all of its resources can be adapted and cus-
tomized for each experiment’s needs. Finally, an experiment on
FABRIC can be designed using FABlib, a Python API that exposes
FABRIC’s resources as Python objects, allowing for an intuitive and
highly reproducible experimental setup.

We designed a dumbbell topology that contains 6 Linux virtual
machines across 4 FABRIC sites, depicted in Figure 1. We spawned
2 client nodes generating traffic at the Clemson University (CLEM),
1 router in Washington (WASH), 1 router at the National Center
for Supercomputing Applications (NCSA), and 2 server nodes re-
ceiving traffic at the Texas Advanced Computing Center (TACC).
All the client and server nodes were equipped with 26 vCPUs, 32
GB RAM and 1 dedicated Mellanox ConnectX-5 NIC with 25 Gbps
Ethernet. The nodes for routing traffic contained 24 vCPUs, 32 GB
RAM and 2 dedicated Mellanox ConnectX-6 NICs with 2 100 Gbps
Ethernet ports. The connectivity of our topology was established
over a Layer 2 network service and the RTT between Clemson and
TACC was measured to be about 62 milliseconds. We applied our
own Layer 3 network with 5 different subnets, and to establish suc-
cessful connections between client and servers, we enabled packet
forwarding on the routing nodes and introduced static routing rules
from and to all subnets. All of the nodes were based on Ubuntu
20.04 LTS, and iperf3 version 3.7 had been installed to all the client
and server nodes. Finally, all of the nodes were running a custom
version of the Linux kernel with BBRv2 support [19].

Table 1 presents the network settings set. We collected statistics
for 810 distinct configurations, and for each configuration, the

809



Elephants Sharing the Highway: Studying TCP Fairness in Large Transfers over High Throughput Links SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 1: network configuration settings

CCA 1 - CCA 2 AQM Queue Length Bottleneck BW

BBRv1 - CUBIC
BBRv2 - CUBIC FIFO 0.5 x BDP 100 Mbps
HTCP - CUBIC 1 x BDP 500 Mbps
Reno - CUBIC FQ CODEL 2 x BDP 1 Gbps
CUBIC - CUBIC 4 x BDP 10 Gbps
BBRv1 - BBRv1 RED 8 x BDP 25 Gbps
BBRv2 - BBRv2 16 x BDP
HTCP - HTCP
Reno - Reno

experiment was repeated and averaged over 5 times. The AQM
type, the queue length and the transmission rate on 𝑟𝑜𝑢𝑡𝑒𝑟1 was
configured on the interface to the link with 𝑟𝑜𝑢𝑡𝑒𝑟2. We used the
Linux Traffic Control tool [38] to measure the performance across
the bottleneck BW link.

Additionally, we calculated the queue length of 𝑟𝑜𝑢𝑡𝑒𝑟1 as a
function of BDP. We tested CUBIC flows against BBRv1, BBRv2,
Reno and HTCP flows (inter-CCA experiments), with equal homo-
geneous distributions, and we also performed experiments where
the flows in the network were of the same CCA (intra-CCA ex-
periments). The iperf3 server processes were spawned on nodes
residing in TACC and we were generating traffic from the nodes in
Clemson using iperf3 client processes. In each experiment the flows
were using jumbo packets of 8900 bytes and were running the test
for 200 seconds. For the different bottleneck BW configurations we
were also scaling the number of iperf3 processes and the number of
parallel flows per iperf3 process, to avoid hitting any single thread
performance limits, since iperf3 is single threaded. Table 2 presents
the number of total flows, as well as the number of processes and
parallel streams used to generate them, for each bottleneck BW
scenario.

Table 2: iperf3 configuration per bottleneck bandwidth set-
ting

Bottleneck BW Total #Flows iperf3 Configuration

100 Mbps 2 1 iperf3 process/node
1 stream

500 Mbps 10 5 iperf3 processes/node
1 stream each

1 Gbps 20 10 iperf3 processes/node
1 stream each

10 Gbps 200 10 iperf3 processes/node
10 parallel streams each

25 Gbps 500 25 iperf3 processes/node
10 parallel streams each

4.2 Calculating Bandwidth Delay Product
Setting the proper buffer size in a network queue is crucial for
optimizing performance and managing congestion. The BDP plays
a vital role in determining the appropriate network buffer sizes.
It determines the maximum amount of data that can be in transit
on a link at any given time [7]. By ensuring that the buffer size
is appropriately aligned with the BDP, it enables effective accom-
modation of the inflight data and helps prevent packet losses [10].
This aids in maintaining smooth data flow, reducing buffer bloat,
and minimizing latency. We calculated the BDP using the following
equation to ensure proper buffer size configuration in our exper-
iments, where 𝐵𝑊𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 is measured in bits per second (bps),
and 𝑅𝑇𝑇 in measured milliseconds.

𝐵𝐷𝑃 =
𝐵𝑊𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 ∗ 𝑅𝑇𝑇

8
𝑏𝑦𝑡𝑒𝑠 (1)

4.3 Reproducibility and Dataset
All of our experiments were fully automated using the FABlib API.
We used a Jupyter notebook to design and deploy our topology
on FABRIC, to control the changes of the network settings, and to
spawn the iperf3 processes for each experiment run. All the scripts
needed to reproduce our results and proof check our experimental
method are available on GitHub [34]. Additionally, we provide the
raw log files generated by iperf3 and the code to parse and plot the
statistics.

5 RESULTS AND DISCUSSION
Here we analyze the performance of the CCAs and AQM algorithms
in terms of fairness, per-sender throughput, overall link utilization,
and packet retransmissions. We will present the figures that high-
light the most significant observations, while the detailed results
can be found in the GitHub repository [34]. Additionally, we will
provide a concise explanation of the observed events, establish con-
nections between them, and delve into the reasons underlying their
behavior.

5.1 Fairness/Per-sender Throughput
Figure 2 presents the throughput achieved by BBRv1, BBRv2, Reno
and HTCP against CUBIC while using FIFO as the AQM. Here we
observe that BBRv1 throughput varies based on buffer sizes when
competing with CUBIC. Similar to Hock et al. [21], the performance
reveals equilibrium is achieved based on buffer sizes and BW. BBRv1
utilizes most of the available BW before the equilibrium point, while
CUBIC gradually takes over. Notably, the equilibrium point shifts
to the right with increasing BW, indicating a higher equilibrium
point for higher BW capacity. For example, Figure 2(a)-(e) shows
that the equilibrium point lies at a buffer size of 2 BDP for 100 Mbps
BW, whereas it shifts to 3.5 BDP for 25 Gbps.

Additionally, we calculated the Jain’s fairness index (𝐽𝑖𝑛𝑑𝑒𝑥 ) to
observe how effectively the senders share the underlying links
[26][25]. 𝐽𝑖𝑛𝑑𝑒𝑥 was computed using the following equation:

𝐽𝑖𝑛𝑑𝑒𝑥 =
(∑𝑛

𝑖=1 𝑆𝑖 )2

𝑛 ∗∑𝑛
𝑖=1 𝑆

2
𝑖

𝑛=2
=⇒ 𝐽𝑖𝑛𝑑𝑒𝑥 =

(𝑆1 + 𝑆2)2

2 ∗ (𝑆21 + 𝑆22)
(2)

810



SC-W 2023, November 12–17, 2023, Denver, CO, USA Imtiaz Mahmud, et al.

Figure 2: Per-sender throughput of TCP variants with Cubic, AQM=FIFO, (a) – (e) vs BBRv1, (f) – (j) vs BBRv2, (k) – (o) vs HTCP,
and (p) – (t) vs Reno.

Figure 3: Observed Jain’s fairness index for the considered
CCAs when the AQM = FIFO: (a) – (b) inter-CCA, buffer size
= 2 and 16 BDP, respectively, and (c) – (d) intra-CCA, buffer
size = 2 and 16 BDP, respectively.

Here, 𝑆𝑖 represents the throughput obtained by sender 𝑖 , and 𝑛

is the total number of flows going through the bottleneck. It is
important to note that our focus revolves around assessing the
equitable distribution of the bottleneck among different senders. In
this pursuit, we have computed the per-sender 𝐽𝑖𝑛𝑑𝑒𝑥 , where 𝑛 = 2.
The cumulative throughput achieved by each individual sender is
represented as 𝑆1 and 𝑆2.

Figure 3(a) – (b) illustrates the 𝐽𝑖𝑛𝑑𝑒𝑥 of BBRv1 competing with
CUBIC under 2 BDP and 16 BDP. The fairness index of BBRv1
changes with BW and buffer sizes. This behavior is likely influenced
by BBRv1’s aggressive startup behavior and inflight cap [21][37].
Moreover, in the case of the 16 BDP buffer, it can be observed that
fairness decreases significantly for BWs of 1 Gbps and 10 Gbps.
With high BWs and such a large 16 BDP buffer size, CUBIC has a
profound chance to overtake BBRv1 by occupying the buffer. Due
to the 2 BDP inflight cap, BBRv1 struggles to compete effectively in
filling the buffer in these scenarios. This additional buffer occupancy
ultimately gives CUBIC the upper hand over BBRv1, as can be seen
in Fig. 2(c) to (d). However, in the case of a 25 Gbps link, this gap
is significantly smaller (Fig. 2(e)), resulting in better fairness. This
could be related to the right shift in equilibrium points and CUBIC’s
inability to properly utilize the 25 Gbps link and fill the large 16
BDP buffer.

BBRv1’s takeover. In contrast to CUBIC’s slow start phase,
BBRv1 rapidly increases its sending rate to fill the available buffer
space and estimate available BW [21][37]. This causes CUBIC to
experience early packet drops, leading to its exit from the startup
phase and entering the recovery phase. Consequently, CUBIC ex-
hibits significantly lower throughput at small buffer sizes. On the
other hand, at large buffer sizes, BBRv1 does not utilize the entire
buffer to maintain a 2 BDP inflight cap, while CUBIC gradually fills
the available buffer space without such a cap. When using FIFO as
the AQM, packet drops occur whenever the queue becomes full,
without any separate queue or flow-specific logic. As a result, the

811



Elephants Sharing the Highway: Studying TCP Fairness in Large Transfers over High Throughput Links SC-W 2023, November 12–17, 2023, Denver, CO, USA

ratio of queued packets for CUBIC becomes much higher compared
to BBRv1 as the buffer size increases. Although BBRv1 does not
directly consider packet loss as a congestion signal and does not
reduce the sending rate, it also cannot increase the sending rate
due to 2 BDP inflight cap. This ultimately gives CUBIC an advan-
tage over BBRv1 in scenarios with large buffers. Additionally, both
BBRv1 and CUBIC require a minimum buffer size to function opti-
mally, and this minimum size increases significantly with higher
BW capacities. It is worth noting that BBRv1 and CUBIC achieve
almost equal throughput when BBRv1 is the only CCA operating,
demonstrating fair BW sharing during intra-CCA experiments. A
comparable results can be observed in Figure 3(c) – (d) in terms of
𝐽𝑖𝑛𝑑𝑒𝑥 .

To further explore the results, the figures of per-sender through-
put for intra-CCA experiments with FIFO, RED, and FQ_CODEL
for all the considered CCAs, as well as the figures for inter-CCA
experiments with FQ_CODEL, are available in the GitHub reposi-
tory [34]. We encourage the readers to refer to the repository for a
comprehensive view of the results.

BBRv2’s takeover. Similar to BBRv1, BBRv2 exhibits a similar
pattern when using FIFO as the AQM. Figure 2(f) – (j) shows that
at 1, 10, and 25 Gbps BWs, CUBIC gains an advantage over BBRv2
after reaching buffer sizes of 1.5, 5, and 6 BDP, respectively. Prior to
these buffer sizes, BBRv2 outperforms CUBIC, establishing similar
equilibrium points. These findings align with Song et al.’s research
[37]. However, their observed equilibrium points were around 0.25
and 0.4 BDP for 50 Mbps and 1 Gbps BWs, respectively. Based on
their observations, we speculate that the equilibrium for 100 and
500 Mbps BWs lie below 0.5 BDP buffer sizes. Similar to BBRv1,
this behavior can be attributed to BBRv2’s aggressive startup phase.
BBRv2 exhibits the same aggressive startup behavior as BBRv1, but
with different criteria for exiting the startup phase. As CUBIC starts
less aggressively than BBRv2, we observe similar behavior as with
BBRv1. Figure 3(a) – (b) illustrates the changes in fairness index,
further supporting these results.

In scenarios with large buffer sizes, BBRv2, like BBRv1, is limited
by the 2 BDP inflight cap, which prevents it from fully utilizing
the available queue at the bottleneck. In contrast, CUBIC can fill
the buffer without such a cap, resulting in a higher ratio of queued
packets for CUBIC compared to BBRv2. Since FIFO drops packets
when the queue is full, packets from BBRv2 are also dropped, caus-
ing the drop rate to exceed BBRv2’s 2% threshold. Unlike BBRv1,
BBRv2 reacts by reducing its inflight_hi, which is the highest al-
lowable inflight data or inflight cap. This reduction forces BBRv2
to decrease its sending rate in order to minimize packet losses. As
a result, BBRv2 performs even worse than BBRv1 when competing
with CUBIC at high BDP buffer sizes with FIFO. Similarly to BBRv1,
no significant patterns were observed when BBRv2 operated alone,
and both senders achieved almost equal throughput. We can obtain
a supporting result for this by observing the 𝐽𝑖𝑛𝑑𝑒𝑥 from (Figure 3(c)
– (d)). For the same reasons mentioned earlier regarding the 𝐽index
of BBRv1, a similar behavior in 𝐽index is observed for bandwidths
(BWs) of 1 Gbps, 10 Gbps, and 25 Gbps.

HTCP’s takeover. In the case of HTCP competing with CUBIC
using FIFO, shown in Figure 2(k) – (o), shows that as the bottleneck
buffer size increase, HTCP’s throughput gradually decreases, with
CUBIC’s throughput increases. The fairness index in Figure 3(a) –

(b) also shows this. With FIFO and larger queues, the buffer can
become filled with a large number of packets, resulting in excessive
queuing delays. Since FIFO treats packets from both CUBIC and
HTCP flows equally, they experience similar queuing delays. CUBIC
reacts to congestion signals mainly by reducing the CWND in
response to packet drops. On the other hand, HTCP employs a
different approach by estimating the available BW and adjusting
the sending rate accordingly. When faced with increased queuing
delays caused by bufferbloat, HTCP interprets these delays as an
indication of limited available BW. Consequently, it reduces its
sending rate, leading to a gradual decrease in throughput. As a
result, HTCP gradually frees up a portion of the buffer that CUBIC
occupies, as CUBIC does not rely on any estimation-based methods.
Consequently, CUBIC gradually achieves better results. However,
as observed in Figure 3(c) – (d), when HTCP operates alone, it can
achieve equal throughputs for both senders.

Reno’s takeover. Reno also exhibits a pattern when competing
with CUBIC and using FIFO as the AQM algorithm. As shown in
Figure 2(p) – (t), Reno initially achieves slightly lower throughput
than CUBIC at small buffer sizes. However, it gradually loses its fair
share, resulting in considerably worse throughput as the buffer sizes
increase. This difference in performance can be attributed to their
responses to packet losses. When Reno experiences a packet loss, it
halves its CWND and then gradually increases it. On the other hand,
CUBIC does not employ a fixed halving mechanism. Instead, CUBIC
utilizes an adaptive multiplicative decrease approach, followed by
a CUBIC function to increase the CWND. This allows CUBIC to
occupy more space in the buffer compared to Reno. As the buffer
size increases, CUBIC’s occupancy in the buffer also increases,
enabling it to achieve higher throughput with larger buffer sizes.
We can also observe the consequential effects on the fairness index
in Figure 3(a) – (b). In contrast, in scenarios where Reno operates
alone (Figure 3(c) – (d)), it can ensure fair throughput for both
senders.

5.2 Impact of different queuing algorithm
Figure 4 presents the throughput achieved by BBRv1, BBRv2, Reno
and HTCP against CUBIC while using RED as the AQM. The
throughput obtained when BBRv1 competes with CUBIC using
RED, does not exhibit specific patterns. However, it does show a
significant imbalance in the obtained throughput. A similar trend
was observed for 𝐽𝑖𝑛𝑑𝑒𝑥 (Figure 5(a) – (b)). In fact, RED was worse
in fairness for BBRv1, with a 𝐽𝑖𝑛𝑑𝑒𝑥 of just around 0.5. As seen
in Figure 4(a) – (e), BBRv1 consumes almost all of the available
BW, while CUBIC struggles to maintain a throughput of roughly
below 10 Mbps in all the BW scenarios. The interaction between
BBRv1 and RED’s packet drop probability is the reason behind
BBRv1 dominating the BW when RED is the AQM algorithm. RED
drops packets randomly based on the queue length and waiting
time at the queue, not just when congestion is detected [17]. The
drop probability increases as the queue length increases. While
this helps prevent bufferbloat and maintain low latency, it nega-
tively impacts the performance of CUBIC. Since BBRv1 continues
to send at the rate determined by its network model despite packet
losses, it keeps filling up the available queue. RED observes the
same arrival rate and waiting time at the queue, which prompts

812



SC-W 2023, November 12–17, 2023, Denver, CO, USA Imtiaz Mahmud, et al.

Figure 4: Per-sender throughput of TCP variants with Cubic, AQM=RED, (a) – (e) vs BBRv1, (f) – (j) vs BBRv2, (k) – (o) vs HTCP,
and (p) – (t) vs Reno.

it to continue dropping packets at the same or even higher rate.
Furthermore, RED does not maintain a separate queue or drop rate
for each incoming flow. As a result, CUBIC is severely affected by
the packet drops, forcing it to drastically reduce its sending rate.
This leads to the pronounced imbalance in throughput. Even when
BBRv1 operates alone, it also experiences unpredictable and drastic
changes in throughput between the two senders, and we can ob-
serve its impact on 𝐽𝑖𝑛𝑑𝑒𝑥 in Figure 5(c) – (d). In scenarios where
BBRv1 operates alone, its rigid response to packet losses leads to
RTOs, which force BBRv1 to significantly reduce its sending rate.
This impact can be arbitrary, affecting either of the flows, resulting
in intermittent changes in throughput.

Similar to BBRv1 with RED, BBRv2 consistently takes the major-
ity of the BW when operating with RED, as shown in Figure 4(f) –
(j). As explained in the previous section, RED does not solely rely on
the available queue size but also maintains a drop rate based on the
queue length. Using this rate, it randomly drops packets to reduce
overall delay. We believe that this drop rate rarely exceeds the 2%
threshold set by BBRv2 for reducing the inflight cap. Consequently,
BBRv2 mostly discards small losses without reducing the sending
rate. This ultimately worsens the situation for CUBIC, resulting in
significantly lower throughput, as explained earlier in the previ-
ous section. Interestingly, in contrast to BBRv1, we observe that
both senders achieve almost equal throughput with BBRv2 in the
intra-CCA experiments, as we can observe the 𝐽𝑖𝑛𝑑𝑒𝑥 in Figure 5(c)
– (d). BBRv2 is more adaptable compared to BBRv1 and responds
to packet losses by reducing its sending rate when the packet loss

Figure 5: Observed Jain’s fairness index for the considered
CCAs when the AQM = RED: (a) – (b) inter-CCA, buffer size
= 2 and 16 BDP, respectively, and (c) – (d) intra-CCA, buffer
size = 2 and 16 BDP, respectively.

rate surpasses the 2% threshold. This approach helps BBRv2 avoid
drastic changes in the sending rate and prevents RTOs, allowing it
to ensure fair share of the BW for both senders.

Unlike FIFO, when HTCP operates with RED, and while compet-
ing with CUBIC, it achieves better throughput compared to CUBIC
regardless of buffer sizes, as shown in Figure 4(k) – (o). FIFO lacks so-
phisticated logic and simply drops packets when the queue becomes
full, while RED employs random packet drops based on the arrival

813



Elephants Sharing the Highway: Studying TCP Fairness in Large Transfers over High Throughput Links SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 6: Observed Jain’s fairness index for the considered
CCAswhen the AQM= FQ_CODEL: (a) – (b) inter-CCA, buffer
size = 2 and 16 BDP, respectively, and (c) – (d) intra-CCA,
buffer size = 2 and 16 BDP, respectively.

rate and waiting time at the queue, aiming to minimize queuing
delay. This enables HTCP to better interpret the available BW and
adapt its sending rate accordingly. As a result, HTCP consistently
outperforms CUBIC, regardless of the impact of increased buffer
sizes. However, we observe that the difference in obtained through-
put between HTCP and CUBIC decreases as the BW increases. This
can be attributed to the interplay between HTCP and RED. With
higher BW, more packets are generally queued at the router, re-
sulting in a higher arrival rate. This triggers RED to drop more
packets in order to maintain low queuing delay. These increased
packet losses have a negative impact on the performance of HTCP,
leading to comparatively lower throughput as the BW increases.
Additionally, as HTCP falls behind in occupying the queue, CUBIC
takes advantage and achieves better throughput compared to sce-
narios with lower BW. However, in intra-CCA experiments, HTCP
successfully ensures almost similar throughput for both senders,
following 𝐽𝑖𝑛𝑑𝑒𝑥 in Figure 5(c) – (d).

In the case of Reno with RED, it achieves a balanced throughput
for both inter and intra-CCA experiments as shown in Figure 5. As
can be observed from Figure 4(p) – (t), the issue of gradual decrease
in throughput when competing with CUBIC, observed with FIFO as
the AQM algorithm, is not present with RED. This is due to RED’s
reliance on the arrival rate and queue length, rather than waiting
for the queue to become full. RED randomly drops packets based on
these factors, providing Reno a better opportunity to achieve equal
throughput with CUBIC and ensuring nearly equal performance.

FQ_CODEL demonstrates a different behavior compared to FIFO
and RED [39]. By utilizing separate queues for each data flow, it
ensures fair and equal treatment of all flows, preventing any single
flow from dominating the network BW at the expense of others.
This AQM algorithm effectively alters the behavior of the consid-
ered CCAs, leading to a more balanced performance where each
CCA achieves nearly equal shares of the available BW, both in inter
and intra-CCA experiments. The 𝐽𝑖𝑛𝑑𝑒𝑥 index shown in Figure 6
supports this observation.

In the case of CUBIC, when examining its performance under
intra-CCA experiments in terms of throughput, it consistently

achieves almost equal throughput for both senders across all the
AQM algorithms. Considering both intra and inter-CCA results,
CUBIC is robust and can adapt well to different AQM algorithms.

5.3 Overall Link Utilization
In this section, we aim to observe the total utilization of available
BW by the combination of CCAs and AQM algorithms. We define
link utilization (𝜑) as the normalized total throughput, calculated
as follows:

𝜑 =

∑𝑛
𝑖=1𝑇𝑖

𝛽𝜏
(3)

Here, 𝛽𝜏 represents the total available BW at the bottleneck for a
given scenario, and 𝑇𝑖 represents the obtained throughput of flow i.
The variable n denotes the total number of flows passing through
the bottleneck. A value of 𝜑 equal to 1 indicates full link utilization,
while lower values indicate poorer link utilization. Figure 7 illus-
trates the observed 𝜑 for FIFO, RED, and FQ_CODEL, considering
buffer sizes of 2 and 16 BDP.

Interestingly, we found that link utilization primarily depends
on the choice of the AQM algorithm. All the considered CCAs were
able to achieve nearly full link utilization when FIFO was used as
the AQM. Similarly, for FQ_CODEL, the considered CCAs achieved
almost full link utilization except for the 25 Gbps BW scenario.
However, with RED, the considered CCAs exhibited significant lags
in link utilization, especially in scenarios with a BW greater than
or equal to 1 Gbps.

FIFO does not consider packet arrival rates or waiting times to
manage the congestion. Instead, it simply starts dropping packets
when the queue becomes full. This allows CCAs to take full control
and fill up the queue according to their needs, enabling them to
fully utilize the available capacity.

In contrast, FQ_CODEL and RED employ a technique to control
the queue length by dropping packets before the queue becomes
full. This preemptive packet dropping gives significant control to
AQM algorithms over CCAs, enabling AQMs to actively reduce
bufferbloat and improve overall network performance by avoid-
ing congestion. The decision on when to drop packets is highly
influenced by the packet arrival rate. As the BW increases, the data
arrival rate at the router also rises. It seems that the high rate of
data arrival overloads the FQ_CODEL and RED AQM algorithms,
causing them to drop packets earlier than in optimal buffer use
cases. This contributes to their lower link utilization in high-BW
scenarios.

Moreover, RED is too aggressive in maintaining small queuing
delays and exhibits high dependency on the arrival rate. RED deter-
mines whether to drop packets based on the average queue length
and configurable minimum and maximum thresholds. The arrival
rate directly influences the average queue length, as it determines
the speed at which packets arrive at the router. If the arrival rate
is high, the queue length can rapidly increase, potentially causing
RED to drop packets more frequently as a response to interpreted
congestion. This forms the primary reason for the significantly
poor link utilization when RED is used as the AQM algorithm.

Supporting our assumption, we can observe that only BBRv1
was able to achieve a throughput above 20 Gbps for the 25 Gbps BW

814



SC-W 2023, November 12–17, 2023, Denver, CO, USA Imtiaz Mahmud, et al.

Figure 7: During intra-CCA experiments, observed overall link utilization for: (a) – (b) FIFO, (c) – (d) RED, and (e) – (f) FQ_CODEL.

scenario with RED. This is because BBRv1 does not directly respond
to packet losses; it continues to send at the same rate despite losses.
However, when there are RTOs, BBRv1 backs off and starts sending
at a much lower rate. The RTOs are the main hindrance preventing
BBRv1 from reaching full capacity throughput, even with RED and
FQ_CODEL AQM algorithms. As for the other considered CCAs
that respond to packet losses, they were unable to achieve the same
throughput as BBRv1.

Finally, the failure of the RED and FQ_CODEL AQM algorithms
does not necessarily reflect their inability to utilize high-BW net-
works. Rather, this failure is mainly attributed to their internal
parameters. For high-BW scenarios, these internal parameters need
to be properly optimized to handle such situations effectively. This
opens up significant opportunities for future research on optimiz-
ing these algorithms to operate in a wide range of BW scenarios,
especially considering future Internet.

5.4 Retransmissions
We observe a strong correlation between the number of retrans-
missions and the algorithm configurations. The performance of the
CCAs in terms of number of retransmissions under 2 BDP and 16
BDP buffer sizes for FIFO, RED, and FQ_CODEL are shown in Fig-
ure 8. For both RED and FQ_CODEL, the number of retransmissions
increases with an increase in BW. However, an increase in BDP does
not show any significant impact on the retransmissions. Both RED
and FQ_CODEL employ their own methods to keep the queuing de-
lay low by dropping packets before the buffer becomes full, which
helps eliminate buffer size dependencies. Moreover, RED exhibits
comparatively fewer retransmissions than FQ_CODEL, due to its
significant failure to utilize the available BW, as observed earlier.
Additionally, with an increase in BW, we observe a scalable increase
in retransmissions for each CCAs in both FQ_CODEL and RED.
With an increase in BW, the rate of packet arrival also increases. As

both RED and FQ_CODEL rely on arrival rate for dropping packets,
their retransmissions increase with the BW increase.

Unlike RED and FQ_CODEL, FIFO waits until the buffer becomes
full to drop a packet. And as the buffer size increases, the probability
to drop packets decreases. Here we observe a direct impact of buffer
sizes on packet retransmissions; the retransmissions for all CCAs
decrease with increase in buffer sizes. Apart from that, although we
observe a similar trend of increased packet retransmissions with
the BW increase for FIFO, intermittent low retransmissions are also
observed. Even with updated BDP as BW increases, the ratio of
available buffer remains the same regardless of BW. On the other
hand, with increased BW, the arrival rate also increases, meaning
the queue needs to handle more packets simultaneously, leading
to quicker buffer filling. As a result, with the increase in BW, we
observe an increase in retransmissions, especially for low BDP
buffer sizes. We also observed intermittent low retransmissions,
due to the large available buffer sizes and FIFO’s dependency on
queue length. For example, for FIFO in 16 BDP buffer sizes, we
can observe that the retransmissions for HTCP, CUBIC, and Reno
remains almost in the same range. We also observe significantly
low intermittent retransmissions for BBRv1 and BBRv2, which
mainly correspond to their 2 BDP inflight cap, restricting them from
occupying the entire buffer and resulting in low retransmissions.

Finally, we observe a significantly higher number of packet re-
transmissions with BBRv1 in all cases, which is attributed to its
rigid response to packet losses. BBRv2 generates significantly lower
retransmissions than BBRv1 because it responds to packet losses
only when the loss rate exceeds a 2% threshold. However, it still
produces the second-highest number of packet retransmissions
among the considered CCAs. The third highest is HTCP, due to its
more aggressive behavior compared to Reno or CUBIC. Reno and
CUBIC exhibit almost equal packet retransmissions due to their
loss-based nature.

815



Elephants Sharing the Highway: Studying TCP Fairness in Large Transfers over High Throughput Links SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 8: During intra-CCA experiments, observed number of retransmissions for: (a) – (b) FIFO, (c) – (d) RED, and (e) – (f)
FQ_CODEL.

5.5 Overall Performance Comparison
In this section, our objective is to analyze the overall performance
of the considered CCAs and AQM algorithms for the designated
scenarios. To evaluate the overall performance in terms of retrans-
missions, we begin by analyzing the retransmission data for each
scenario, comparing CUBIC vs CUBIC as a standard reference
(𝑅𝑐𝑢𝑏𝑖𝑐_𝑣𝑠_𝑐𝑢𝑏𝑖𝑐 ). Subsequently, we normalize the observed retrans-
mission data for each CCA with respect to 𝑅𝑐𝑢𝑏𝑖𝑐_𝑣𝑠_𝑐𝑢𝑏𝑖𝑐 , yielding
the relative retransmission value (𝑅𝑅) using the formula:

𝑅𝑅 =
𝑅𝑐𝑐𝑎1_𝑣𝑠_𝑐𝑐𝑎2
𝑅𝑐𝑢𝑏𝑖𝑐_𝑣𝑠_𝑐𝑢𝑏𝑖𝑐

(4)

For each run, we compute the 𝑅𝑅 value, calculate the average
for each condition under the same CCA and AQM algorithms, and
then derive an overall average value - 𝐴𝑣𝑔(𝑅𝑅), encompassing all
conditions within each combination of CCA and AQM. Similarly,
we calculate the average 𝜑 and 𝐽𝑖𝑛𝑑𝑒𝑥 across all five runs for each
observation scenario, and then determine an overall average among
all the BDPs for each combination of CCA and AQM algorithms.
We refer to these as the average overall link utilization - 𝐴𝑣𝑔(𝜑),
and the average fairness - 𝐴𝑣𝑔(𝐽𝑖𝑛𝑑𝑒𝑥 ), respectively. The resulting
average outcomes are presented in Table 3.

Table 3 provides a comprehensive overview of the overall perfor-
mances of the considered CCA and AQM algorithms in our experi-
ments. BBRv1 results in a significant number of packet retransmis-
sions without providing benefits over other CCAs. Consequently,
BBRv1 consumes a considerable portion of network resources. Reno
exhibits poor performance both while operating alone and com-
peting with CUBIC. While CUBIC performs well independently,
it struggles to maintain performance when in competition with
other CCAs, as observed in previous sections. Both HTCP and

BBRv2 deliver competitive results. However, BBRv2 slightly outper-
forms HTCP in terms of average overall link utilization at the cost
of increased packet retransmissions. In summary, if a reasonable
overall performance is acceptable with minimal network resource
consumption, HTCP can be a viable choice. On the other hand,
when seeking the highest overall performance and the network
can tolerate slightly more retransmissions, BBRv2 emerges as a
promising solution, particularly when paired with FQ_CODEL.

Finally, as previously mentioned, we have maintained a fixed
RTT for these experiments to simplify results presentation. We
believe that our qualitative observations can be replicated using
different RTTs. Furthermore, we plan to undertake further investi-
gations involving varying RTTs in our future work.

6 CONCLUSION
In this study, we evaluated the performance of different TCP CCAs
and AQM algorithms in real-world networks using the FABRIC
testbed. We conducted tests across a wide range of scenarios, includ-
ing various BWs ranging from 100 Mbps to 25 Gbps and buffer sizes
ranging from 0.5 times the BDP to 16 times the BDP. Our evaluation
encompassed several CCAs such as BBRv1, BBRv2, HTCP, Reno,
and CUBIC, as well as AQM algorithms including FIFO, FQ_CODEL,
and RED. We aimed to analyze the interactions between different
combinations of TCP CCAs and AQM algorithms, and all our find-
ings are reproducible and publicly accessible.

Our results revealed that both TCP CCAs and AQM algorithms
significantly impact overall network performance, particularly in
terms of throughput, link utilization, and fairness. The selection of
an appropriate combination of TCP CCAs and AQM algorithms can
have a substantial influence on performance outcomes. FQ_CODEL
consistently demonstrated superior fairness among flows, but it fell
short in fully utilizing the capacity of the 25 Gbps link. RED showed

816



SC-W 2023, November 12–17, 2023, Denver, CO, USA Imtiaz Mahmud, et al.

Table 3: Overall performance comparison of the considered
𝐶𝐶𝐴 and 𝐴𝑄𝑀 algorithms in terms of 𝐴𝑣𝑔(𝜑), 𝐴𝑣𝑔(𝑅𝑅), and
𝐴𝑣𝑔(𝐽𝑖𝑛𝑑𝑒𝑥 ).

𝐶𝐶𝐴1 vs 𝐶𝐶𝐴2 𝐴𝑄𝑀 𝐴𝑣𝑔(𝜑) 𝐴𝑣𝑔(𝑅𝑅) 𝐴𝑣𝑔(𝐽𝑖𝑛𝑑𝑒𝑥 )
BBRv1 vs BBRv1

FIFO

0.986 23.164 0.995
BBRv1 vs CUBIC 0.997 14.916 0.803
BBRv2 vs BBRv2 0.995 1.141 0.98
BBRv2 vs CUBIC 0.998 1.823 0.934
HTCP vs HTCP 0.999 2.493 1.0
HTCP vs CUBIC 0.997 1.624 0.971
Reno vs Reno 0.997 1.235 0.994
Reno vs CUBIC 0.998 1.01 0.847
CUBIC vs CUBIC 0.995 1.0 0.997

BBRv1 vs BBRv1

RED

0.938 47.687 0.938
BBRv1 vs CUBIC 0.94 41.056 0.522
BBRv2 vs BBRv2 0.903 4.872 0.999
BBRv2 vs CUBIC 0.901 3.675 0.722
HTCP vs HTCP 0.794 1.497 0.999
HTCP vs CUBIC 0.796 1.272 0.979
Reno vs Reno 0.738 1.281 1.0
Reno vs CUBIC 0.766 1.136 1.0
CUBIC vs CUBIC 0.788 1.0 1.0

BBRv1 vs BBRv1

FQ_CODEL

0.971 24.468 1.0
BBRv1 vs CUBIC 0.97 13.986 0.994
BBRv2 vs BBRv2 0.977 4.386 1.0
BBRv2 vs CUBIC 0.975 2.312 0.998
HTCP vs HTCP 0.969 1.135 1.0
HTCP vs CUBIC 0.972 1.057 1.0
Reno vs Reno 0.94 0.852 1.0
Reno vs CUBIC 0.96 0.891 0.998
CUBIC vs CUBIC 0.974 1.0 1.0

the worst overall fairness performance, and it exhibited significant
limitations in efficiently utilizing high-BW paths, especially from
1 Gbps and beyond. FIFO exhibited interesting patterns of results
for different CCAs regarding fairness, and notably, it was the only
successful AQM algorithm that enabled all CCAs to utilize the
full capacity of high-BW links. Considering the results, BBRv2
with FQ_CODEL emerged as a promising combination in terms of
throughput, fairness, and retransmission. However, further research
is necessary to improve FQ_CODEL’s capacity utilization in high-
BW links. Furthermore, the data we have shared can serve as a
valuable starting point for the development of ML-based CCAs to
optimize network usage.

In future work, we intend to expand our experiments to in-
clude more high-BW scenarios, observe performance under net-
work anomalies (e.g. variable rates of packet loss), and RTTs. Addi-
tionally, we plan to capture detailed router logs to gain a clearer
understanding of internal parameters and their impact on perfor-
mance.

ACKNOWLEDGMENTS
This work is funded by the Department of Energy under the Inte-
grated Computational and Data Infrastructure (ICDI) for Scientific

Discovery, grant #DE-SC0022328. Experimental data was collected
on the FABRIC testbed supported by National Science Foundation.

REFERENCES
[1] Richelle Adams. 2012. Active queue management: A survey. IEEE communications

surveys & tutorials 15, 3 (2012), 1425–1476.
[2] Mark Allman, Vern Paxson, and Ethan Blanton. 2009. RFC 5681: TCP congestion

control.
[3] Subramanian Balaji, Karan Nathani, and Rathnasamy Santhakumar. 2019. IoT

technology, applications and challenges: a contemporary survey.Wireless personal
communications 108 (2019), 363–388.

[4] Ilya Baldin, Anita Nikolich, James Griffioen, Indermohan Inder S. Monga, Kuang-
Ching Wang, Tom Lehman, Paul Ruth, and Ewa Deelman. 2019. FABRIC: A
National-Scale Programmable Experimental Network Infrastructure. IEEE Internet
Computing 23, 6 (nov 2019), 38–47. https://doi.org/10.1109/MIC.2019.2958545

[5] Sumitha Bhandarkar, Saurabh Jain, and AL Narasimha Reddy. 2006. LTCP:
improving the performance of TCP in highspeed networks. ACM SIGCOMM
Computer Communication Review 36, 1 (2006), 41–50.

[6] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul Gandhi.
2019. When to use and when not to use BBR: An empirical analysis and evaluation
study. In Proceedings of the Internet Measurement Conference. 130–136.

[7] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR: congestion-based congestion control. Commun. ACM
60, 2 (2017), 58–66.

[8] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Priyaranjan Jha, Yousuk
Seung, Kevin Yang, Ian Swett, Victor Vasiliev, Bin Wu, Luke Hsiao, et al. 2019.
BBRv2: A model-based congestion control performance optimization. In Proc.
IETF 106th Meeting. 1–32.

[9] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. 2013.
The Science DMZ: A network design pattern for data-intensive science. In SC
’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 1–10. https://doi.org/10.1145/2503210.2503245

[10] Amogh Dhamdhere and Constantine Dovrolis. 2006. Open issues in router buffer
sizing. ACM SIGCOMM Computer Communication Review 36, 1 (2006), 87–92.

[11] Nandita Dukkipati and Nick McKeown. 2006. Why Flow-Completion Time is
the Right Metric for Congestion Control. SIGCOMM Comput. Commun. Rev. 36, 1
(jan 2006), 59–62. https://doi.org/10.1145/1111322.1111336

[12] Mulalo Dzivhani and Khmaies Ouahada. 2019. Performance evaluation of TCP
congestion control algorithms for wired networks using NS-3 simulator. In 2019
IEEE AFRICON. IEEE, 1–7.

[13] W-C Feng, Dilip D Kandlur, Debanjan Saha, and Kang G Shin. 1999. A self-
configuring RED gateway. In IEEE INFOCOM’99. Conference on Computer Com-
munications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. The Future is Now (Cat. No. 99CH36320), Vol. 3.
IEEE, 1320–1328.

[14] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. 2013. Mobile cloud
computing: A survey. Future generation computer systems 29, 1 (2013), 84–106.

[15] Victor Firoiu and Marty Borden. 2000. A study of active queue management for
congestion control. In Proceedings IEEE INFOCOM 2000. Conference on Computer
Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No. 00CH37064), Vol. 3. IEEE, 1435–1444.

[16] Sally Floyd. 1994. TCP and explicit congestion notification. ACM SIGCOMM
Computer Communication Review 24, 5 (1994), 8–23.

[17] Sally Floyd and Van Jacobson. 1993. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on networking 1, 4 (1993), 397–
413.

[18] Sally Floyd and Van Jacobson. 1995. Link-sharing and resource management
models for packet networks. IEEE/ACM transactions on Networking 3, 4 (1995),
365–386.

[19] Google. 2022. Linux kernel with BBRv2 support. https://github.com/google/bbr/
tree/v2alpha.

[20] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[21] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental evaluation
of BBR congestion control. In 2017 IEEE 25th international conference on network
protocols (ICNP). IEEE, 1–10.

[22] Mario Hock, Maxime Veit, Felix Neumeister, Roland Bless, and Martina Zitterbart.
2019. Tcp at 100 gbit/s–tuning, limitations, congestion control. In 2019 IEEE 44th
Conference on Local Computer Networks (LCN). IEEE, 1–9.

[23] Sami Iren, Paul D Amer, and Phillip T Conrad. 1999. The transport layer: tutorial
and survey. ACM Computing Surveys (CSUR) 31, 4 (1999), 360–404.

[24] Van Jacobson. 1988. Congestion avoidance and control. ACM SIGCOMM computer
communication review 18, 4 (1988), 314–329.

[25] Raj Jain, Arjan Durresi, and Gojko Babic. 1999. Throughput fairness index: An
explanation. In ATM Forum contribution, Vol. 99.

817

https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.1145/2503210.2503245
https://doi.org/10.1145/1111322.1111336
https://github.com/google/bbr/tree/v2alpha
https://github.com/google/bbr/tree/v2alpha


Elephants Sharing the Highway: Studying TCP Fairness in Large Transfers over High Throughput Links SC-W 2023, November 12–17, 2023, Denver, CO, USA

[26] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. 1984. A quantitative
measure of fairness and discrimination. Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA 21 (1984).

[27] Douglas Leith and Robert Shorten. 2004. H-TCP: TCP for high-speed and long-
distance networks. In Proceedings of PFLDnet, Vol. 2004. Citeseer.

[28] Douglas Leith, R Shorten, and Y Lee. 2005. H-TCP: A framework for congestion
control in high-speed and long-distance networks. In PFLDnet Workshop.

[29] Josip Lorincz, Zvonimir Klarin, and Julije Ožegović. 2021. A comprehensive
overview of TCP congestion control in 5G networks: Research challenges and
future perspectives. Sensors 21, 13 (2021), 4510.

[30] SÃ¡ndor MolnÃ¡r, BalÃ¡zs Sonkoly, and Tuan Anh Trinh. 2009. A comprehensive
TCP fairness analysis in high speed networks. Computer Communications 32, 13
(2009), 1460–1484. https://doi.org/10.1016/j.comcom.2009.05.003

[31] Kathleen Nichols and Van Jacobson. 2012. Controlling queue delay. Commun.
ACM 55, 7 (2012), 42–50.

[32] Rong Pan and Balaji Prabhakar. 2001. CHOKe, a Simple Approach for Providing
Quality of Service Through Stateless Approximation of Fair Queueing. Stanford
University.

[33] Adithya Abraham Philip, Ranysha Ware, Rukshani Athapathu, Justine Sherry,
and Vyas Sekar. 2021. Revisiting TCP Congestion Control Throughput Models &
Fairness Properties at Scale. In Proceedings of the 21st ACM Internet Measurement
Conference. New York, NY, USA, 96–103. https://doi.org/10.1145/3487552.3487834

[34] PoSeiDon Workflows. 2023. GitHub Repository. https://github.com/PoSeiDon-
Workflows/tcp-conflict-study. Accessed Aug 18, 2023.

[35] K Ramakrishnan and Sally Floyd. 1999. RFC2481: A Proposal to add Explicit
Congestion Notification (ECN) to IP.

[36] Kun Tan Jingmin Song, Qian Zhang, and Murari Sridharan. 2006. Compound
TCP: A scalable and TCP-friendly congestion control for high-speed networks.
Proceedings of PFLDnet 2006 (2006).

[37] Yeong-Jun Song, Geon-Hwan Kim, Imtiaz Mahmud, Won-Kyeong Seo, and You-
Ze Cho. 2021. Understanding of bbrv2: Evaluation and comparison with bbrv1
congestion control algorithm. IEEE Access 9 (2021), 37131–37145.

[38] Milan P Stanic. 2001. Tc–traffic control. Linux QOS Control Tool (2001).
[39] Dave Taht, Jim Gettys, T Hoeiland-Joergensen, Toke Hoeiland-Joergensen, Eric

Dumazet, J Gettys, P McKenney, E Dumazet, and P McKenney. 2018. The flow
queue codel packet scheduler and active queue management algorithm.

[40] Brian Tierney, Eli Dart, Ezra Kissel, and Eashan Adhikarla. 2021. Exploring
the BBRv2 Congestion Control Algorithm for use on Data Transfer Nodes. In
2021 IEEE Workshop on Innovating the Network for Data-Intensive Science (INDIS).
23–33. https://doi.org/10.1109/INDIS54524.2021.00008

[41] Belma Turkovic, Fernando A Kuipers, and Steve Uhlig. 2019. Interactions between
congestion control algorithms. In 2019 Network Traffic Measurement and Analysis
Conference (TMA). IEEE, 161–168.

[42] Jingyuan Wang, Jiangtao Wen, Jun Zhang, Zhang Xiong, and Yuxing Han. 2016.
TCP-FIT: An improved TCP algorithm for heterogeneous networks. Journal of
Network and Computer Applications 71 (2016), 167–180.

818

https://doi.org/10.1016/j.comcom.2009.05.003
https://doi.org/10.1145/3487552.3487834
https://github.com/PoSeiDon-Workflows/tcp-conflict-study
https://github.com/PoSeiDon-Workflows/tcp-conflict-study
https://doi.org/10.1109/INDIS54524.2021.00008

	Abstract
	1 Introduction
	2 Motivation
	3 Background and Related Work
	3.1 TCP Congestion Control Algorithms
	3.2 Challenges in TCP Fairness
	3.3 Active Queue Management Algorithms

	4 Experimental Setup
	4.1 Experimental Infrastructure
	4.2 Calculating Bandwidth Delay Product
	4.3 Reproducibility and Dataset

	5 Results and Discussion
	5.1 Fairness/Per-sender Throughput
	5.2 Impact of different queuing algorithm
	5.3 Overall Link Utilization
	5.4 Retransmissions
	5.5 Overall Performance Comparison

	6 Conclusion
	Acknowledgments
	References

