

National Energy Water Treatment and Speciation (NEWTS) Database & Dashboard

ASME Power Conference 2024
Technical Presentation#119098

NEWTS Team: **Nicholas Siefert**, Madison Wenzlick,
Rachel Yesenchak, Burt Thomas, Lucy Romeo, Devon
Justman, Justin Mackey, Zineb Belarbi, Isabelle
Pfander, Kathryn Smith

U.S. DEPARTMENT OF
ENERGY

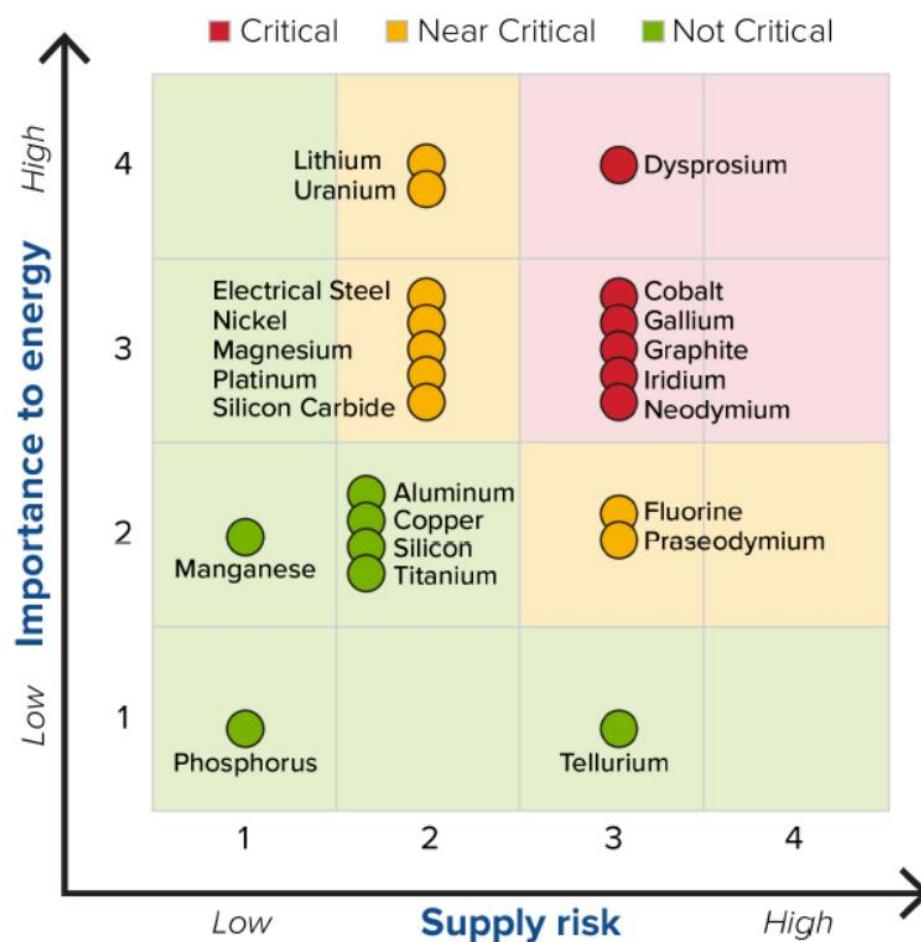
Acknowledgment:

We thank the Department of Energy's Office of Fossil Energy & Carbon Management (DOE/FECM) for their support of this research.

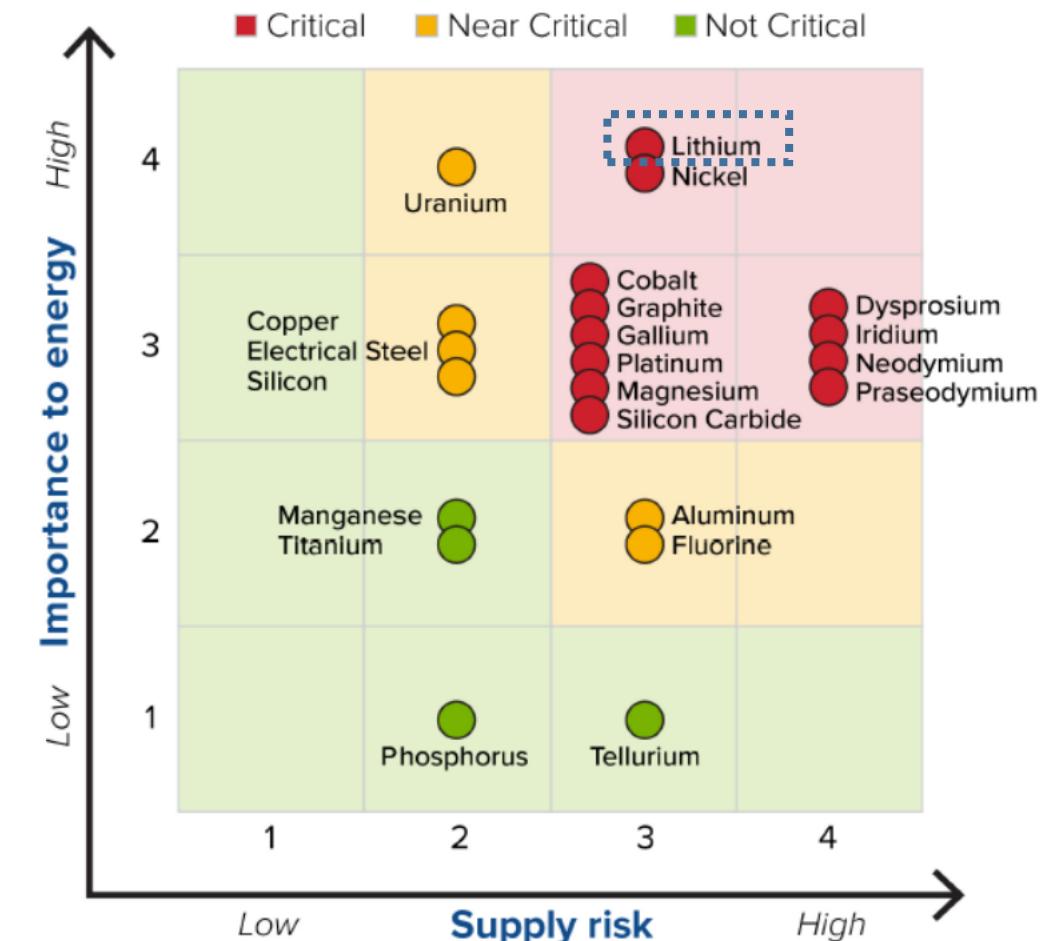
HQ Project Manager: Hichem Hadjeres

Advanced Remediation Technologies Division: Vanessa Nunez-Lopez

Technology Manager: John Rogers


Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is limited.

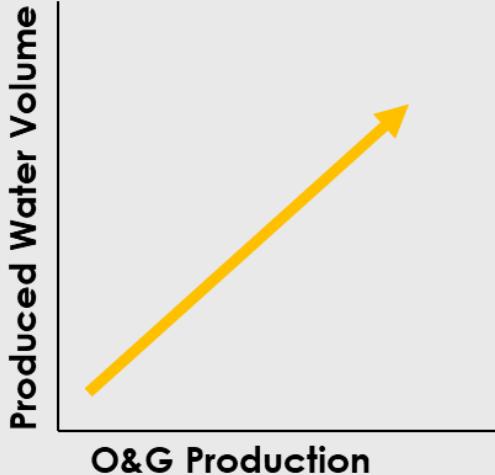
Motivation: DOE 2023 Critical Materials Assessment



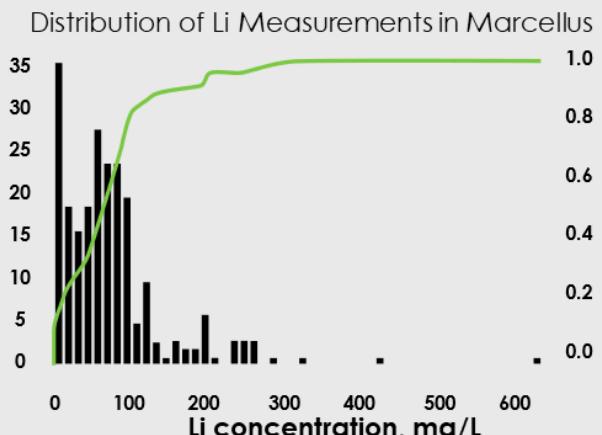
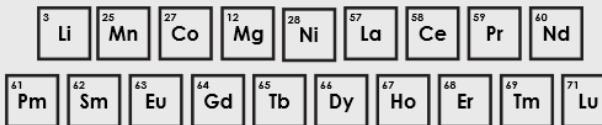
Short and Mid Term Demand & Risk for Critical Materials

SHORT TERM 2020-2025

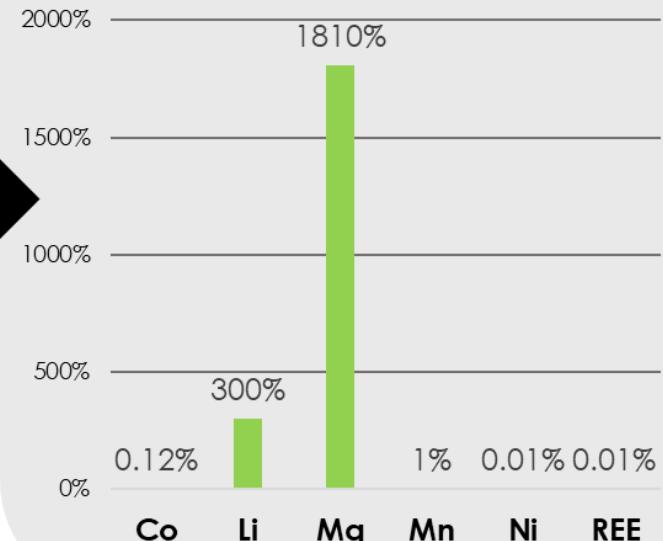
MEDIUM TERM 2025-2035



Critical mineral source potential from oil & gas produced waters in the United States

O&G Produced Water:


A Potential Source of Critical Minerals (CM)

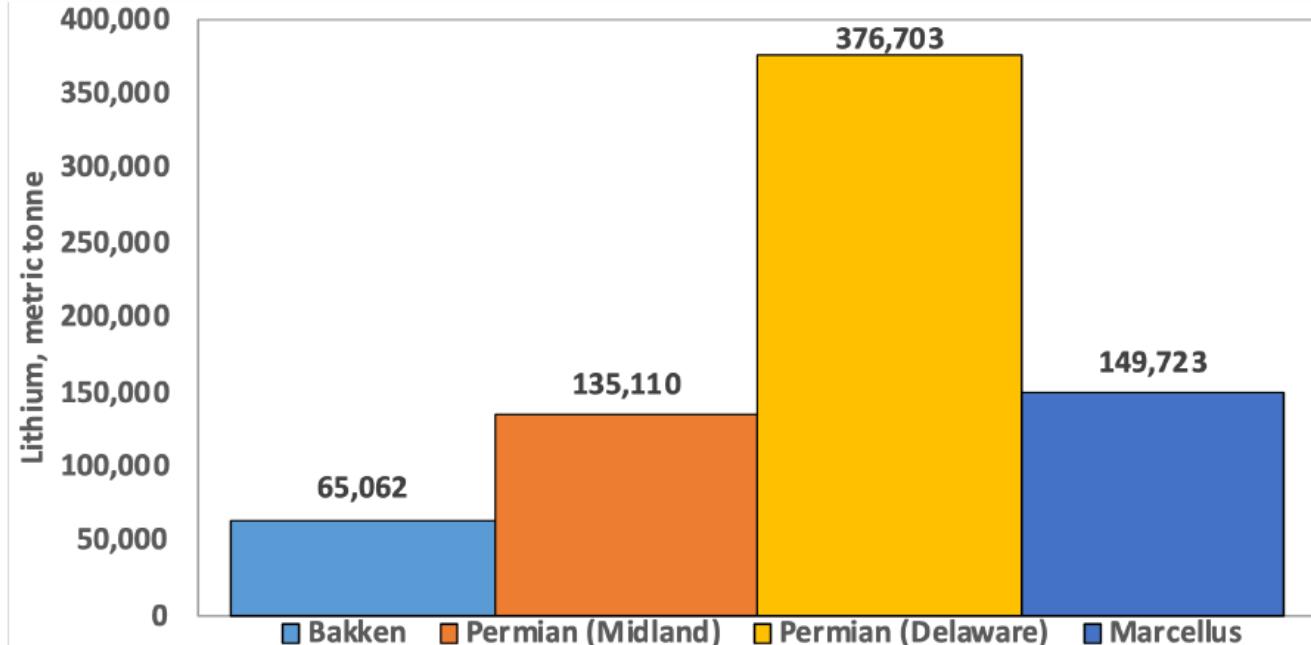
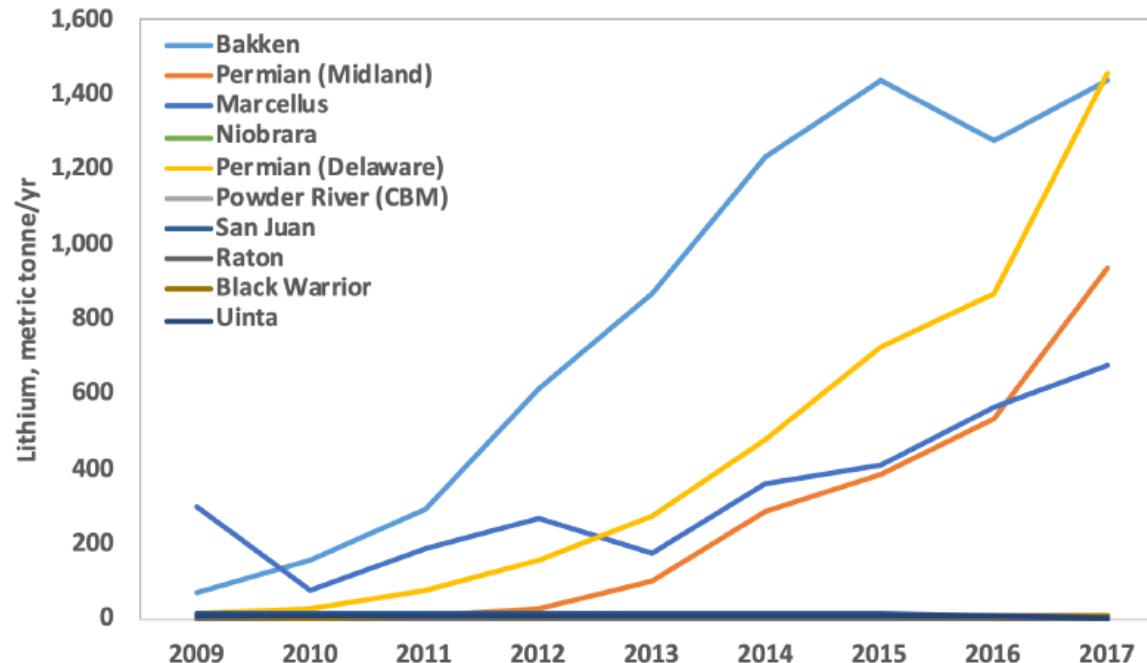
Collect Produced Water CM Data: Ni, Co, Mg, Mn, Li, REEs in Demand

Critical Mineral Yields from Produced Water as % of Demand

Key finding: Lithium in US PW can meet 300% of current "USGS estimated" U.S. lithium demand

Critical mineral source potential from oil & gas produced waters in the United States

Kathryn H. Smith, Justin E. Mackey, Madison Wenzlick, Burt Thomas, Nicholas S. Siefert
Science of The Total Environment, Volume 929, 15 June 2024, 172573

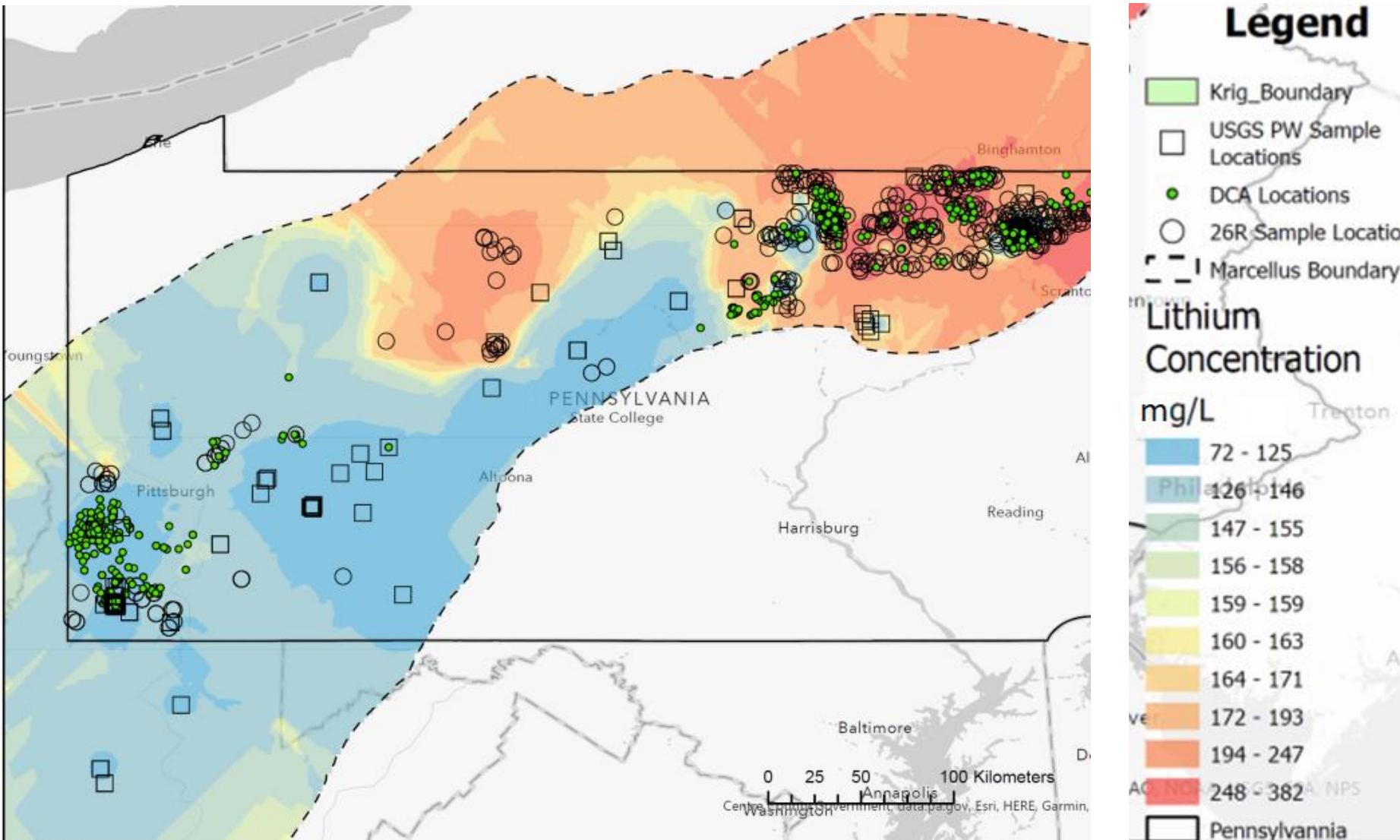



U.S. DEPARTMENT OF
ENERGY

NEWTS
DATABASE

Lithium Resource Assessment

Permian Basin and Marcellus Shale have largest resource potentials



Concentration of Li is ~10 times higher in Marcellus than Permian Basin

Fig.1 Time series of Lithium resource potential calculated from PW volumes presented by Scanlon et al. 2020 and average Li concentration from USGS PW database (Blondes et al. 2018)

Fig.2. Projected Lithium resource potential calculated from projected remaining PW volumes (Scanlon et al. 2020) and average Li concentration in each formation

Lithium Concentrations in Marcellus Shale

[Lithium geochemistry and regional production decline curves of Marcellus Shale produced water - Submissions - EDX \(doe.gov\)](#)

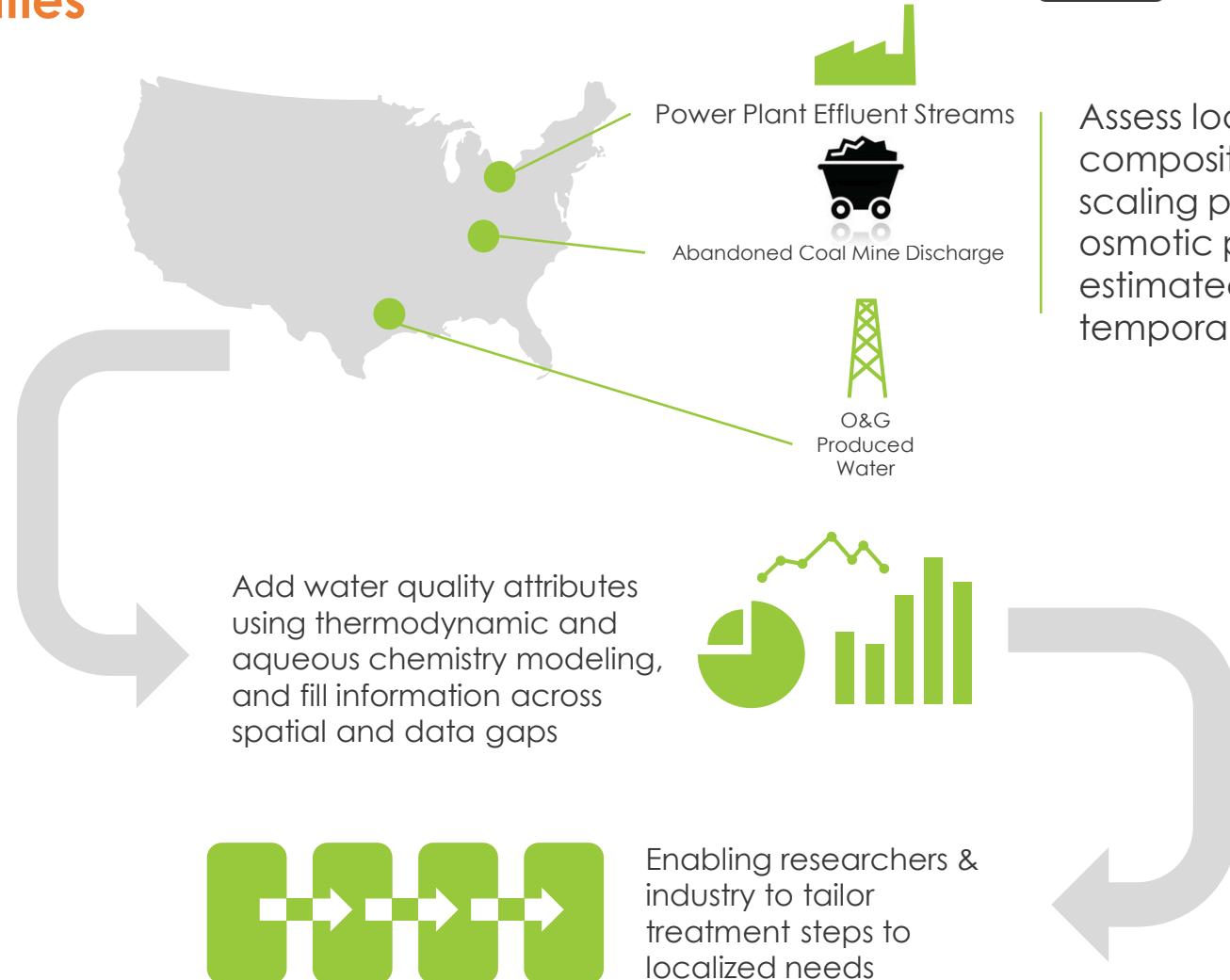
Figure 1. Map of study area showing the Marcellus shale extent, well locations using in decline curve analysis (DCA), PW samples used in this study, and previous USGS sample locations.

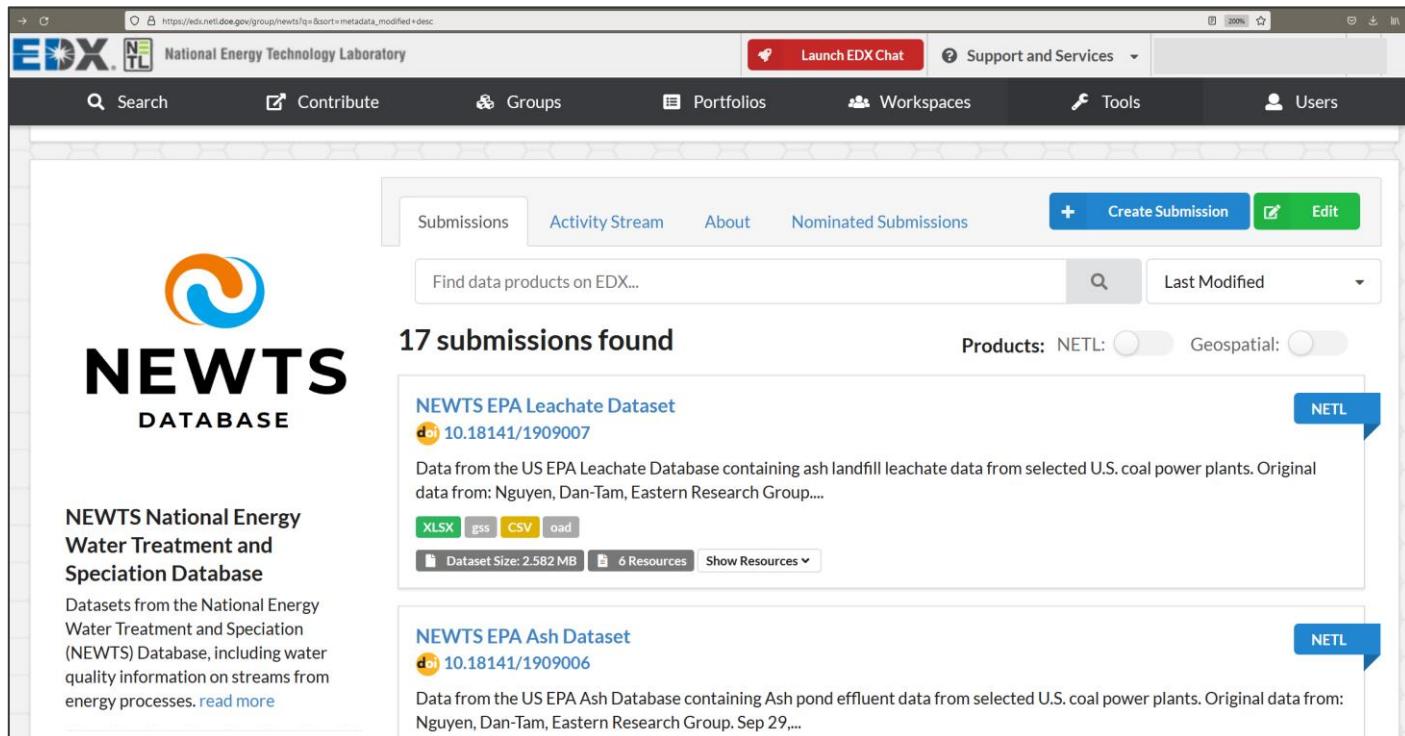
PA DEP 26r Reports contain full compositional analysis of produced water. To be uploaded to EDX.

NEWTS

DATABASE

NATIONAL ENERGY WATER TREATMENT & SPECIATION (NEWTS)


National Energy Water Treatment & Speciation Database


Leveraging NETL R&D Core Capabilities

Solution: Develop a Nationwide Energy Wastewater Data System

- Supplemented with thermodynamic & chemical modeling
- Includes **waste streams** such as:
 - Oil & gas produced water
 - Energy sector effluent (FGD, etc.)
 - Acid mine drainage (OSMRE)
 - Landfill leachate
 - Brackish ground water
 - And more
- Enables design of localized treatment
- Publicly Available Data hosted & displayed through NETL's EDX®, and a custom visualization dashboard

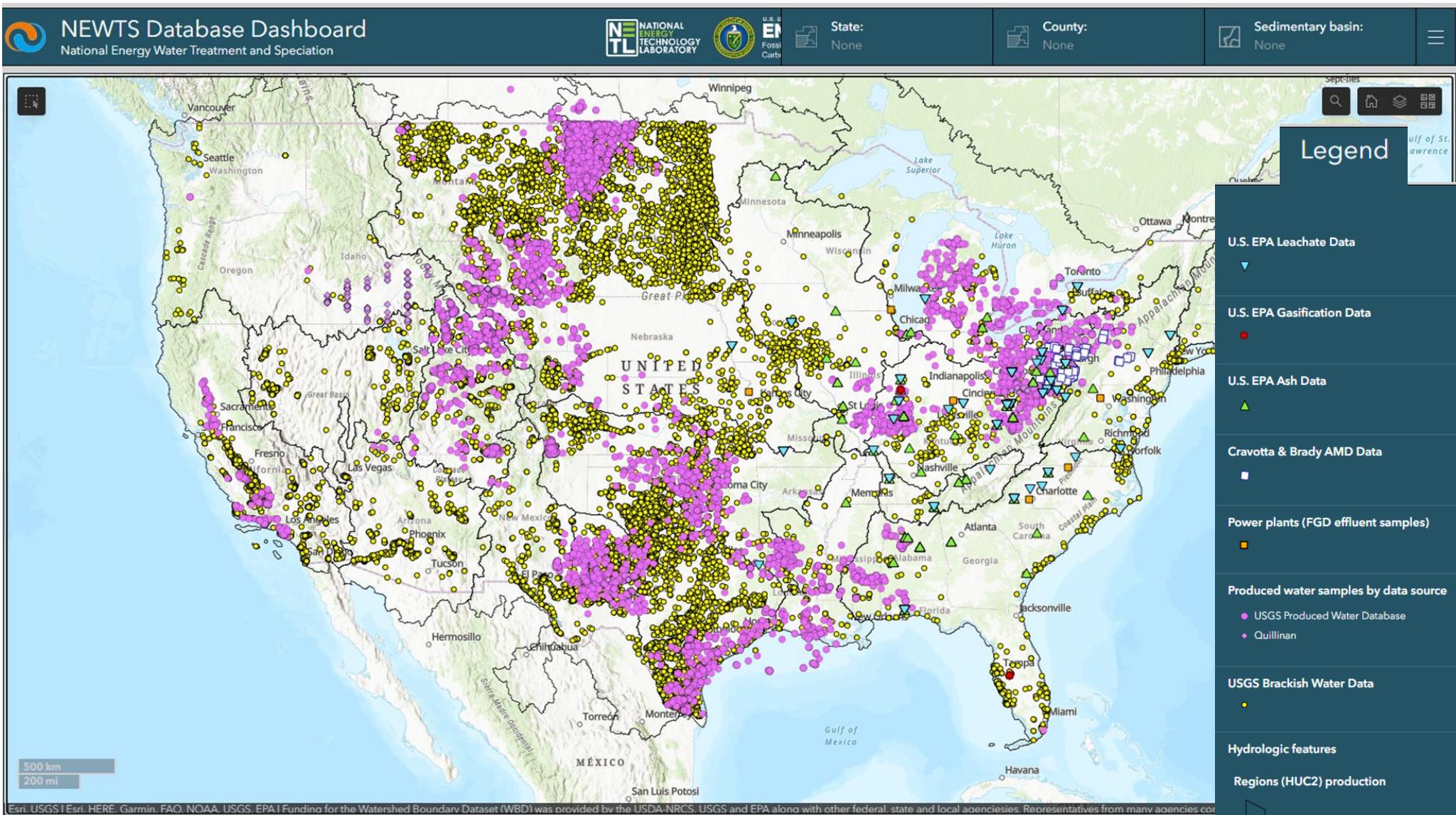
NEWTS Public Group on EDX

A screenshot of the NEWTS Public Group on the EDX platform. The interface includes a header with the EDX logo, the NETL logo, and navigation links for 'Search', 'Contribute', 'Groups', 'Portfolios', 'Workspaces', 'Tools', and 'Users'. Below the header, there are tabs for 'Submissions', 'Activity Stream', 'About', and 'Nominated Submissions', with 'Submissions' being the active tab. A search bar and a filter for 'Last Modified' are also present. The main content area displays a list of '17 submissions found'. The first submission is 'NEWTS EPA Leachate Dataset' (DOI: 10.18141/1909007), which contains data from the US EPA Leachate Database. The second submission is 'NEWTS EPA Ash Dataset' (DOI: 10.18141/1909006), which contains Ash pond effluent data. Both entries include download links for 'XLSX', 'gss', 'CSV', and 'oad' formats, and a note about the dataset size (2.582 MB) and the number of resources (6).

NEWTS
DATABASE

NEWTS National Energy Water Treatment and Speciation Database

Datasets from the National Energy Water Treatment and Speciation (NEWTS) Database, including water quality information on streams from energy processes. [read more](#)


- NEWTS Data Catalog
- [Overview Video](#)
- Training Videos

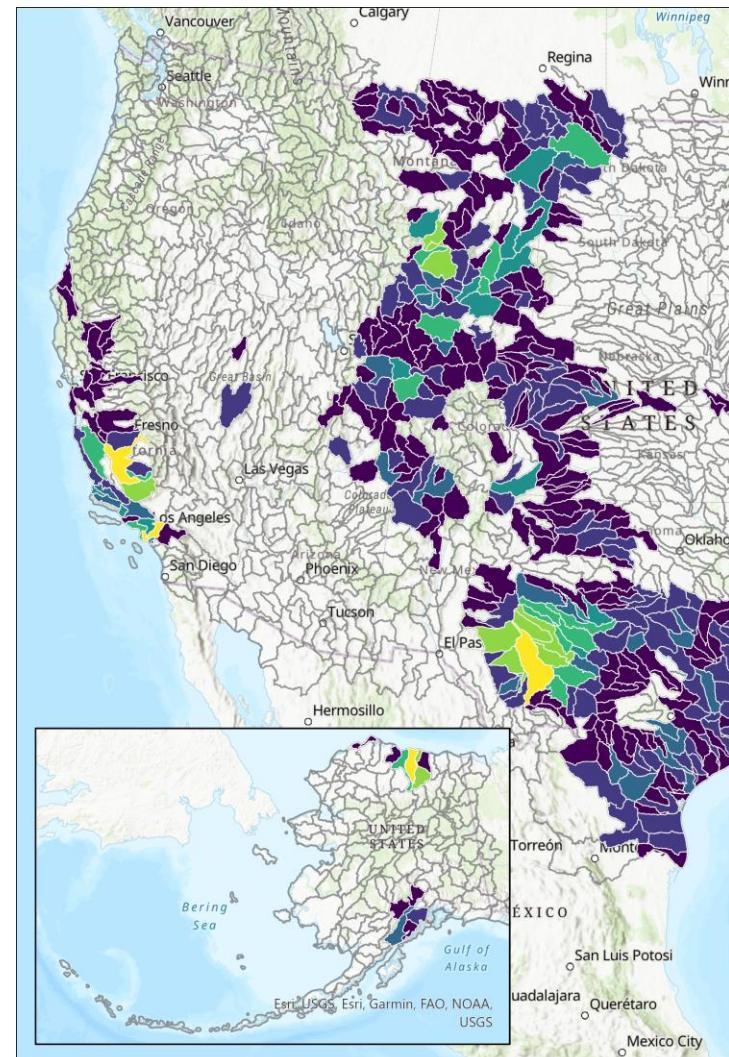
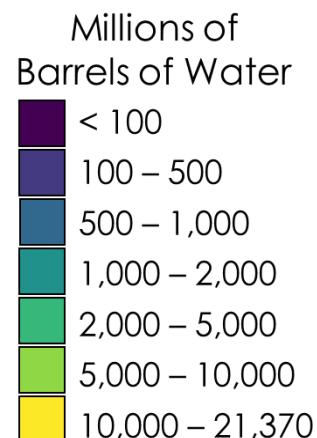
<https://edx.netl.doe.gov/group/newts>

The logo for the NEWTS Database is displayed. It features a large, stylized orange and blue swirl icon at the top. Below the icon, the word 'NEWTS' is written in a large, bold, black sans-serif font. Underneath 'NEWTS', the words 'DATABASE' and 'NATIONAL ENERGY WATER TREATMENT & SPECIATION' are written in a smaller, bold, black sans-serif font. The background of the logo is a blurred image of a large industrial facility with many rows of solar panels or similar equipment under a cloudy sky.

- Original data as well as each step along NEWTS standard formatting for input into OLI & GWB
- Templates for direct input into OLI Studio & Geochemist's WorkBench
- Case studies

NEWTS Federal Level Dashboard

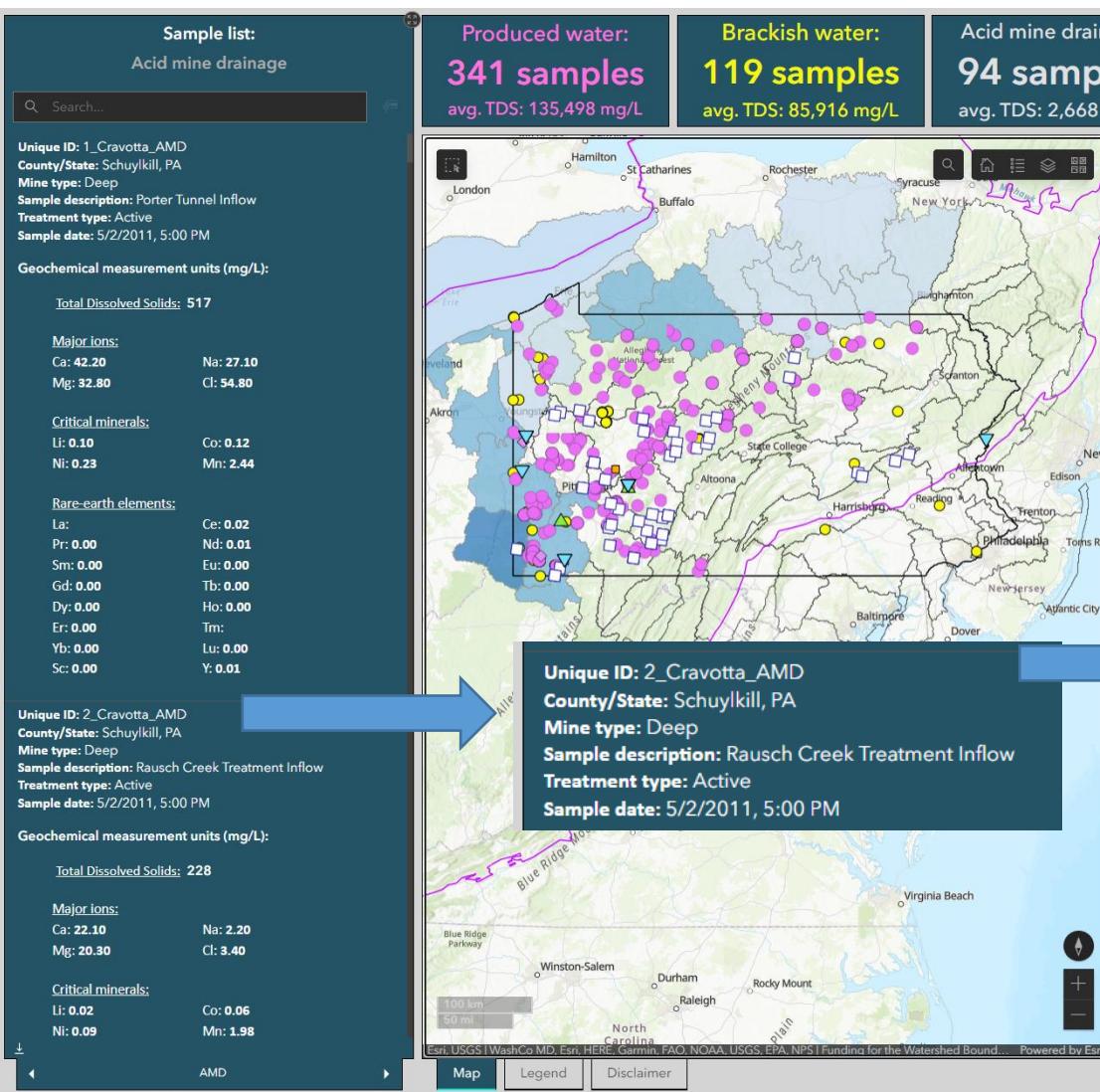
[NEWTS Dashboard](#)

Enables data visualization, exploration, and download

Integrating Water Volume Data

- Acquired **5,096,329 well records** (Enverus)
- Spatially aggregated **5,044,327 records** to **Hydrologic Unit Code 8 (HUC 8) subbasins** (grey outlines on map)
- Reducing to **HUC 2** values for CM level estimates
- Production data spatially compiled by **well status** (i.e., active, injecting, abandoned)
 - Well count
 - **Cumulative production**
 - Water, Oil, Gas
 - **Vertical depth statistics**
 - Supports at-depth composition
 - **Temporal trends**
 - Producing months statistics


Total Water Production of Producing Wells

Data Source: Enverus

Connecting NEWTS Dashboard to the Database

<https://edx.netl.doe.gov/group/newts>

Submissions Activity Stream About Nominated Submissions + Create Submission Edit

Find data products on EDX... Relevance

17 submissions found

Products: NETL: Geospatial:

NEWTS DATABASE

NEWTS National Energy Water Treatment and Speciation Database
Datasets from the National Energy Water Treatment and Speciation

Case studies from the USGS Brackish Water Database. Includes OLI Studio and Geochemist's Workbench files. Original data from: Qi, S.L., and Harris, A.C., 2017, Geochemical...

NEWTS USGS Brackish Water Case Studies
DOI: 10.18141/1890176

Case studies from the USGS Brackish Water Database. Includes OLI Studio and Geochemist's Workbench files. Original data from: Qi, S.L., and Harris, A.C., 2017, Geochemical...

NEWTS Coal Mine Drainage Dataset from Cravotta Brady (2015)
DOI: 10.18141/1964003

Data from Cravotta, Brady, "Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA"....

NEWTS Database Dashboard
DOI: 10.18141/1963919

The NEWTS (National Energy Water Treatment and Speciation) database dashboard displays sites across the nation where energy-related wastewater stream samples and composition...

Connecting NEWTS Dashboard to the Database

<https://edx.netl.doe.gov/group/newts>

NEWTS Coal Mine Drainage Dataset from Cravotta Brady (2015)

doi 10.18141/1964003

License(s):

License Not Specified

Data from Cravotta, Brady, "Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA". Applied Geochemistry, 2015. <https://doi.org/10.1016/j.apgeochem.2015.03.001>

Dataset includes information on water quality composition including inorganic compounds from untreated and treated streams of coal-mine discharge from coal mining and coal processing locations. Data is provided in the original version as well as in a summarized version for easy input into aqueous chemistry modeling software.

Followers: 0

Follow

cravottabradypa-amd_data_all-tabs.xlsx
 License Not Specified

cb-pa-amd_lion-minning-grove-inflow_id_num-18.oad
 License Not Specified

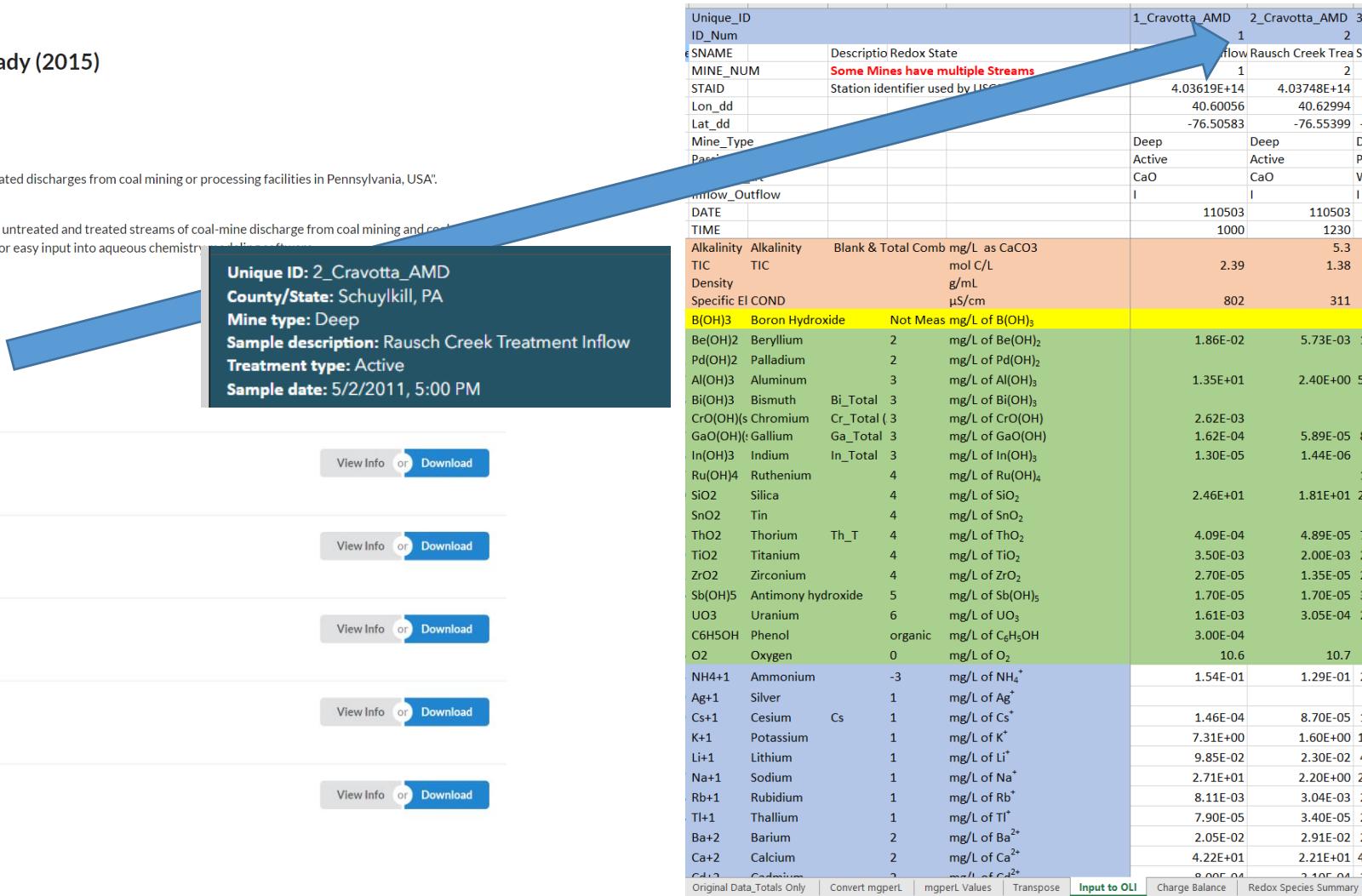
cb-pa-amd_pbs-job-8-inflow_id-num-25.oad
 License Not Specified

cravotta_oli_input_data_only.csv
 License Not Specified

cb-pa-amd_consol-renton-mine-inflow_id_num-39.oad
 License Not Specified

oli-template-for-cravotta-brady-2015.oad
 License Not Specified

Unique ID: 2_Cravotta_AMD
County/State: Schuylkill, PA
Mine type: Deep
Sample description: Rausch Creek Treatment Inflow
Treatment type: Active
Sample date: 5/2/2011, 5:00 PM


or

or

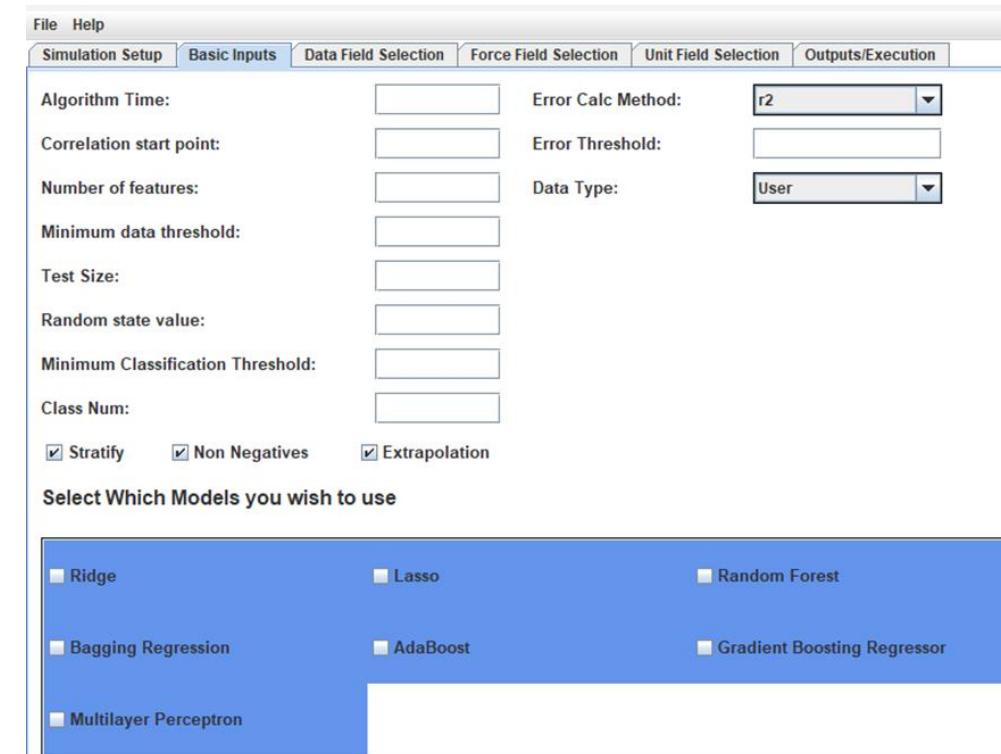
or

or

or

Unique_ID	ID_Num	1_Cravotta_AMD	2_Cravotta_AMD	3
2NAME	Descriptio Redox State			
MINE_NUM	Some Mines have multiple Streams			
STAID	Station identifier used by USGS			
Lon_dd				
Lat_dd				
Mine_Type				
Pass				
Minflow_Outflow				
DATE				
TIME				
Alkalinity	Alkalinity	Blank & Total Comb mg/L as CaCO ₃		5.3
TIC	TIC	mol C/L	2.39	1.38
Density		g/mL		
Specific EI COND		µS/cm	802	311
B(OH) ₃	Boron Hydroxide	Not Meas mg/L of B(OH) ₃		
Be(OH) ₂	Beryllium	2 mg/L of Be(OH) ₂	1.86E-02	5.73E-03
Pd(OH) ₂	Palladium	2 mg/L of Pd(OH) ₂		
Al(OH) ₃	Aluminum	3 mg/L of Al(OH) ₃	1.35E+01	2.40E+00
Bi(OH) ₃	Bismuth	Bi_Total 3 mg/L of Bi(OH) ₃		
Cr(OH)(s)	Chromium	Cr_Total (3 mg/L of Cr(OH)	2.62E-03	
Ga(OH)(s)	Gallium	Ga_Total 3 mg/L of Ga(OH)	1.62E-04	5.89E-05
In(OH) ₃	Indium	In_Total 3 mg/L of In(OH) ₃	1.30E-05	1.44E-06
Ru(OH) ₄	Ruthenium	4 mg/L of Ru(OH) ₄		
SiO ₂	Silica	4 mg/L of SiO ₂	2.46E+01	1.81E+01
SnO ₂	Tin	4 mg/L of SnO ₂		
ThO ₂	Thorium	Th_T 4 mg/L of ThO ₂	4.09E-04	4.89E-05
TiO ₂	Titanium	4 mg/L of TiO ₂	3.50E-03	2.00E-03
ZrO ₂	Zirconium	4 mg/L of ZrO ₂	2.70E-05	1.35E-05
Sb(OH) ₅	Antimony hydroxide	5 mg/L of Sb(OH) ₅	1.70E-05	1.70E-05
UO ₃	Uranium	6 mg/L of UO ₃	1.61E-03	3.05E-04
C ₆ H ₅ OH	Phenol	organic mg/L of C ₆ H ₅ OH	3.00E-04	
O ₂	Oxygen	0 mg/L of O ₂	10.6	10.7
NH ₄ ⁺	Ammonium	-3 mg/L of NH ₄ ⁺	1.54E-01	1.29E-01
Ag ⁺	Silver	1 mg/L of Ag ⁺		
Cs ⁺	Cesium	1 mg/L of Cs ⁺	1.46E-04	8.70E-05
K ⁺	Potassium	1 mg/L of K ⁺	7.31E+00	1.60E+00
Li ⁺	Lithium	1 mg/L of Li ⁺	9.85E-02	2.30E-02
Na ⁺	Sodium	1 mg/L of Na ⁺	2.71E+01	2.20E+00
Rb ⁺	Rubidium	1 mg/L of Rb ⁺	8.11E-03	3.04E-03
Tl ⁺	Thallium	1 mg/L of Tl ⁺	7.90E-05	3.40E-05
Ba ²⁺	Barium	2 mg/L of Ba ²⁺	2.05E-02	2.91E-02
Ca ²⁺	Calcium	2 mg/L of Ca ²⁺	4.22E+01	2.21E+01
Cd ²⁺	Cadmium	2 mg/L of Cd ²⁺	8.00E-04	2.10E-04
Original Data_Totals Only Convert mgperL mgperL Values Transpose Input to OLI Charge Balance Redox Species Summary				

Machine Learning Approaches for Energy Wastewater Characterization



- To accurately model treatment and byproduct recovery costs for energy wastewaters, we need complete composition data.
- **CoDaRT (Composition Data Replacement Tool)** was developed in python to predict missing constituents in a user's water data set using machine learning techniques.

CO-DART

CONSTITUENT DATA REPLACEMENT TOOL

- The tool applies machine learning algorithms to replace missing data based on user preferences for options including algorithm type, number of features, and classification variables.
- The tool can use the user's data alone or combine user data with the NEWTS datasets

The screenshot shows the CO-DART software interface. At the top, there is a menu bar with 'File', 'Help', and several tabs: 'Simulation Setup', 'Basic Inputs', 'Data Field Selection', 'Force Field Selection', 'Unit Field Selection', and 'Outputs/Execution'. Below the tabs are several input fields and dropdown menus:

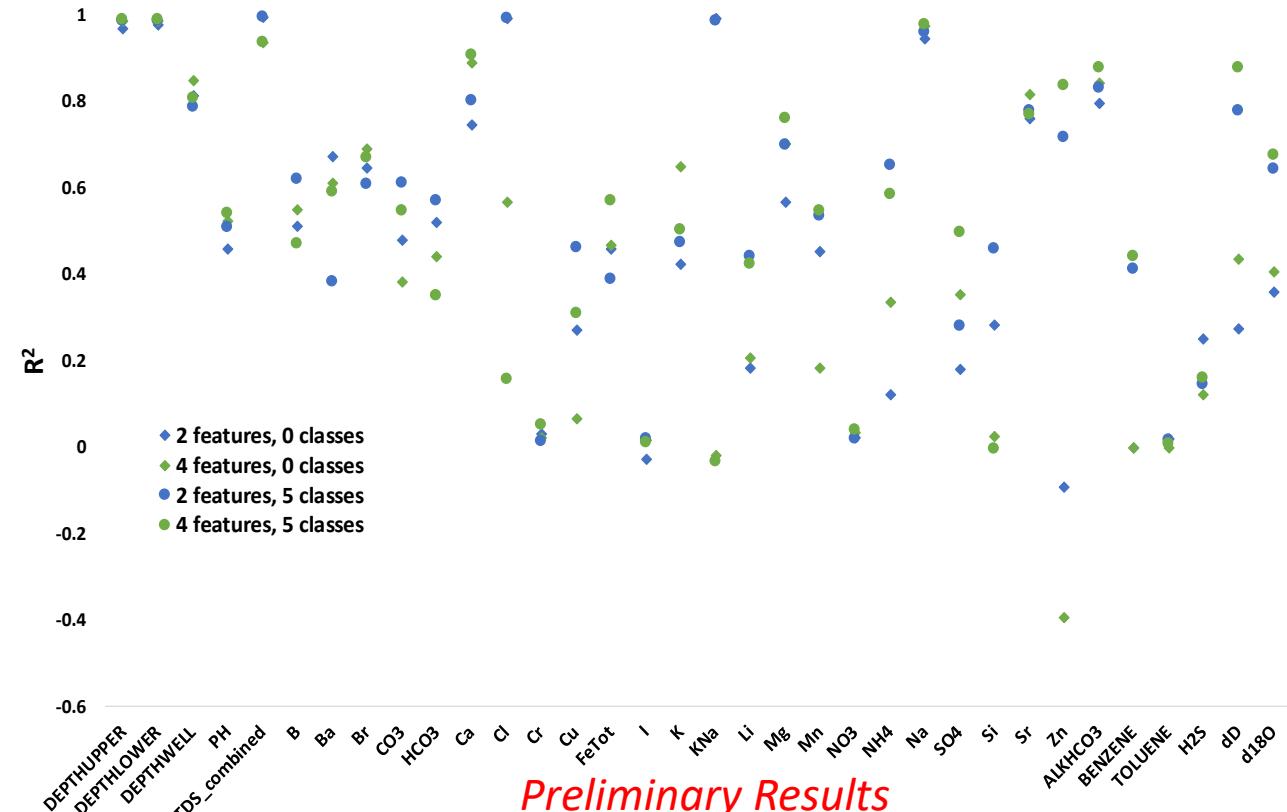
- 'Algorithm Time:' with a dropdown menu showing 'r2'.
- 'Correlation start point:' with a dropdown menu.
- 'Number of features:' with a dropdown menu.
- 'Minimum data threshold:' with a dropdown menu.
- 'Test Size:' with a dropdown menu.
- 'Random state value:' with a dropdown menu.
- 'Minimum Classification Threshold:' with a dropdown menu.
- 'Class Num:' with a dropdown menu.
- Checkboxes for 'Stratify', 'Non Negatives', and 'Extrapolation'.
- A section titled 'Select Which Models you wish to use' with a blue background containing checkboxes for various machine learning models:
 - Ridge
 - Lasso
 - Random Forest
 - Bagging Regression
 - AdaBoost
 - Gradient Boosting Regressor
 - Multilayer Perceptron

Machine Learning Approaches for Energy Wastewater Characterization

Techno-Economic Modeling of Treating Energy Influent and Effluent Wastewater Streams

A graphical user interface model was built to allow users who are unfamiliar with python to use the tool.

File Help


Simulation Setup Basic Inputs Data Field Selection Force Field Selection Unit Field Selection Outputs/Execution

Algorithm Time: Error Calc Method: Correlation start point: Error Threshold: Number of features: Data Type: Minimum data threshold: Test Size: Random state value: Minimum Classification Threshold: Class Num:

Stratify Non Negatives Extrapolation

Select Which Models you wish to use

Ridge Lasso Random Forest
 Bagging Regression AdaBoost Gradient Boosting Regressor
 Multilayer Perceptron

Preliminary Results

Example data replacement performance for the NEWTS USGS Produced Water Databased for multiple feature options.

$$R^2 = 1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \bar{y})^2}$$

y_i = true value
 \hat{y}_i = predicted value
 \bar{y} = average value

UT Austin Archived Historical Produced Water Samples

Samples stored at UT Austin, originally sampled around 1960

- ~850 Historical Produced Water samples from across the U.S.
- Cation compositions analyzed in 1960s are available at the NETL NEWTS group site on EDX
 - Rittenhouse *et al.* Historical Archived Data
- UT Austin and UTEP have analyzed ~80 samples for training AI/ML networks

Examples of intact samples with minimal or no water loss

U.S. DEPARTMENT OF
ENERGY

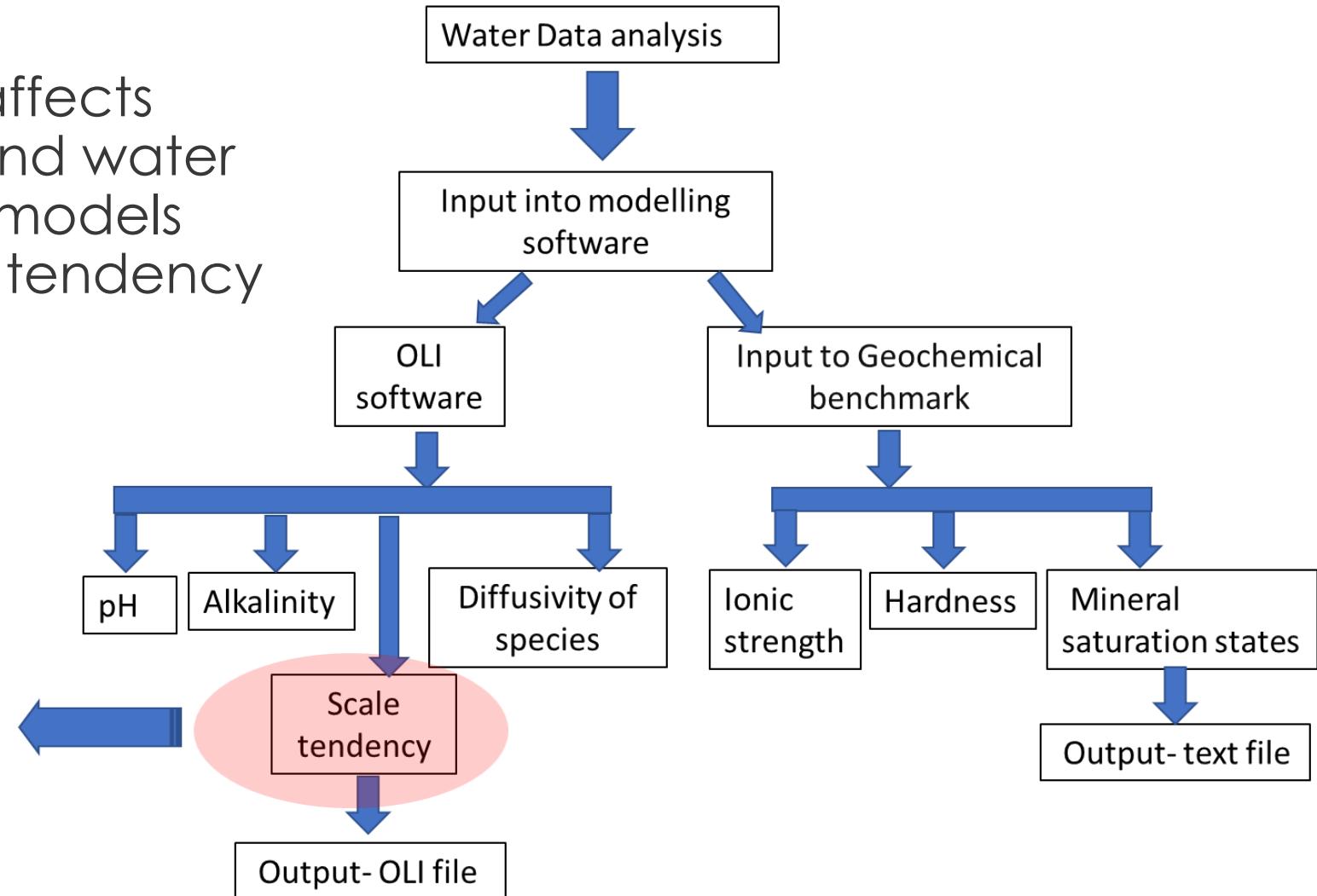
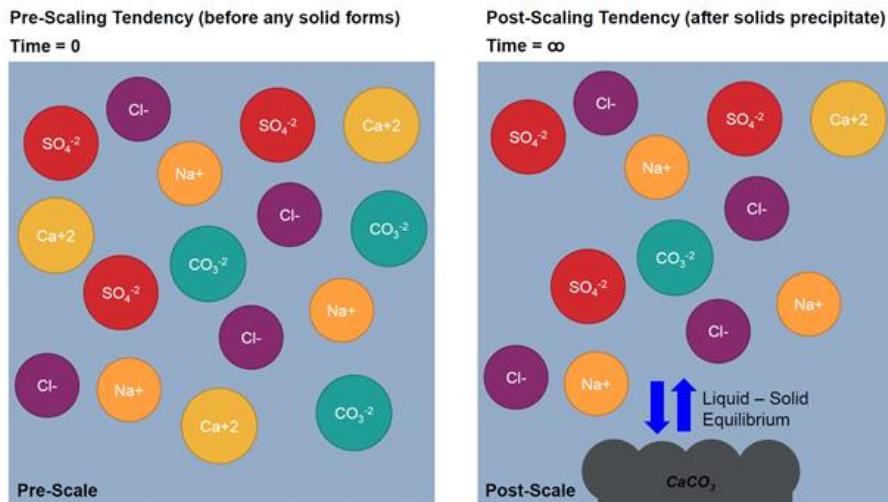
[Rittenhouse *et al.* 1960s Historical Archived Produced Water Dataset - Submissions - EDX \(doe.gov\)](https://doi.gov)

Task 2: Machine Learning Approaches for Energy Wastewater Characterization

Techno-Economic Modeling of Treating Energy Influent and Effluent Wastewater Streams

Before data replacement

Si	Sn	Sr	V	W	Cl	SO4	Br	CO3	HCO3
9	0.003	50							
8	0.012	30							
15	0	60							
8	0.003	50	0						
4	0.003	60	0						
5	0.003	50	0	0.01					
0	0	100							
3	0.003	150	0						
5	0.003	50	0	0.01					
2	0.003	300							
7	0.003	60	0	0.01					
5	0.002	80	0						
100			0.02						
500									
200			0.01						
150			0.01						
150									
150		15	0.015						
100	0.013	10	0.04						
1	0.025	900							
1	0.07	300							
1	0.01	300	0.008						
0		1000	0.01						
0		1000	0.025						
0		300							
0		300							
0		150	0.01						



After data replacement

Si	Sn	Sr	V	W	Cl	SO4	Br	CO3	HCO3
9	0.003	50			72555.7	699.317	241.584		505.966
8	0.012	30			33319.8	657.754	107.375		534.926
15	0	60			36474.6	652.916	173.316		536.389
8	0.003	50	0		57912.9	681.402	209.881		567.832
4	0.003	60	0		88250	715.62	295.268		446.584
5	0.003	50	0	0.01	26524.2	645.571	102.513		507.962
0	0	100			131692	753.957	517.399		240.983
3	0.003	150	0		68915	674.23	302.664		452.968
5	0.003	50	0	0.01	36474.6	654.528	173.316		527.919
2	0.003	300			114946	703.783	441.735		330.563
7	0.003	60	0	0.01	45373.4	661.873	222.138		492.484
5	0.002	80	0		34371.4	649.69	129.355		483.481
100			0.02		669.15				
500									
200			0.01		3139.65		22.5239		
150					669.15				
150									
150		15	0.015		17107.6	640.467	70.3026		583.089
100	0.013	10	0.04		6372.5	631.419			454.124
1	0.025	900			232002	651.796	2202.49		140.296
1	0.07	300			189937	748.572	1323.28		121.017
1	0.01	300	0.008		197784	757.53	1350.12		360.498
0		1000	0.01		208301	644.625	1569.92		
0		1000	0.025		197784	644.625	1350.12		
0		300			176752	757.53	910.512		51.1679
0		300			176752	757.53	910.512		81.1031
0		150	0.01		176752	781.724	910.512		93.7455

Importance of Modeling Results

Chemistry matters

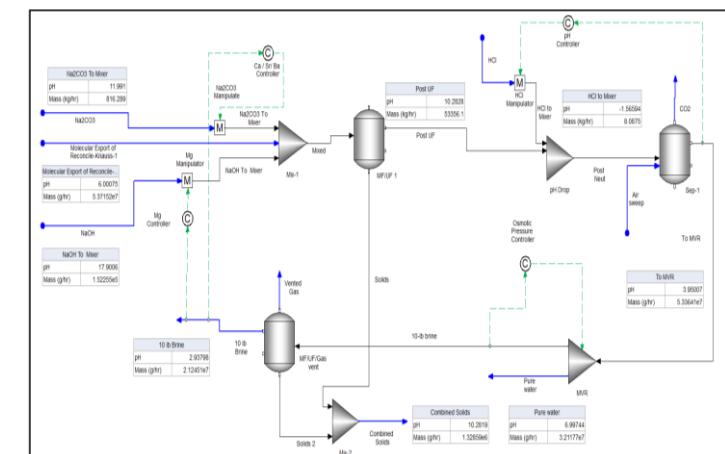
Formation of mineral scales affects water treatment processes and water quality. The thermodynamic models accurately identify the scale tendency of wastewater

Aqueous Chemistry Modeling: Case Studies

Using OLI Studio to evaluate scale tendency of FGD effluent from Roxboro plant

Input into OLI Studio

Unique_ID	Analyte	Procedure Unit	270
Data Collected	-	-	7/28/2001
Sample Point	-	-	Influ after set basin
Type of Wastewater	-	-	Settling Pond Effluent
Sample Description	-	-	Effluent from Settling Pond
Wastewater Classification	-	-	FGD Pond Effluent
Plant Name	-	-	Roxboro
Plant ID	-	-	939
Total Dissolved Solids Total	Total Dissi	Total	mg/L
pH			
	#REF!	Blank & T mg/L as CaCO ₃	
Silica	Silica	mg/L of SiO ₂	
Bi(OH)3	Boron Hydroxide	mg/L of Bi(OH) ₃	441.019702
TiO2	Titanium dioxide	mg/L of TiO ₂	
Sb(OH)5	Antimony hydroxide	mg/L of Sb(OH) ₅	0.09577253
Al(OH)3	Aluminum	mg/L of Al(OH) ₃	1.48777777
Be(OH)2	Beryllium	mg/L of Be(OH) ₂	0.003963919
Cr(OH)	Chromium	mg/L of Cr(OH)	0.01694615
Ag+1	Silver	mg/L of Ag ⁺	0.0001
K+1	Potassium	mg/L of K ⁺	
Li+1	Lithium	mg/L of Li ⁺	
Na+1	Sodium	mg/L of Na ⁺	
NH+1	Ammonium	mg/L of NH ₄ ⁺	
Th+1	Thallium	mg/L of Th ¹⁺	0.0024
VO2+1	Vanadium	mg/L of VO ₂ ⁺	0.02279465
Ba+2	Barium	mg/L of Ba ²⁺	0.401
Ca+2	Calcium	mg/L of Ca ²⁺	
Cd+2	Cadmium	mg/L of Cd ²⁺	0.0027
Co+2	Cobalt	mg/L of Co ²⁺	0.021
Cu+2	Copper	mg/L of Cu ²⁺	0.01
Hg+2	Mercury	mg/L of Hg ²⁺	0.0011
Mg+2	Magnesium	mg/L of Mg ²⁺	
Mn+2	Manganese	mg/L of Mn ²⁺	1.81
Ni+2	Nickel	mg/L of Ni ²⁺	0.120
Pb+2	Lead	mg/L of Pb ²⁺	0.015
Sr+2	Strontrium	mg/L of Sr ²⁺	
Zn+2	Zinc	mg/L of Zn ²⁺	0.038
Fe+3	Iron	mg/L of Fe ³⁺	1.0
Mo+3	Molybdenum	mg/L of Mo ³⁺	0.0445
Sn+4	Tin	mg/L of Sn ⁴⁺	
Br-1	Bromide	mg/L of Br ⁻	
Cl-1	Chloride	mg/L of Cl ⁻	430
F-1	Fluoride	mg/L of F ⁻	9.4
CN-1	Cyanide	mg/L of CN ⁻	
NO3-1	Nitrate	mg/L of NO ₃ ⁻	
CrO4-2	Chromate	mg/L of CrO ₄ ²⁻	
SO4-2	Sulfate	mg/L of SO ₄ ²⁻	120
SO3-2	Sulfite	mg/L of SO ₃ ²⁻	
SeO4-2	Selenate	mg/L of SeO ₄ ²⁻	
SeO3-2	Selenite	mg/L of SeO ₃ ²⁻	
AsO4-3	Arsenic(V) Tetraoxid	mg/L of AsO ₄ ³⁻	
PO4-3	Phosphate	mg/L of PO ₄ ³⁻	


Output from OLI Studio

Scaling Tendencies

Row Filter Applied: Values > 1.0e-4

Solids	Post-Scale
Fe(OH)3 (Bernalite)	1.00000
BaSO4 (Barite)	1.00000
PbSO4 (Anglesite)	0.0195029
B(OH)3	0.0101386
AgCl	1.96141e-3
Al(OH)3 (Gibbsite)	1.47368e-4

Becomes Input into OLI Flowsheet

Integration with Modeling Software

Leveraging tools for filling data gaps & modeling treatment

Integrating data streams with open source & commercial aqueous chemistry modeling software to:

- Provide high quality case studies for modeling
- Information on precipitates and speciation
- Provide thermodynamic context including pH, osmotic pressure, and activity coefficients, etc.
- Enable direct integration with treatment modeling software for ease of use

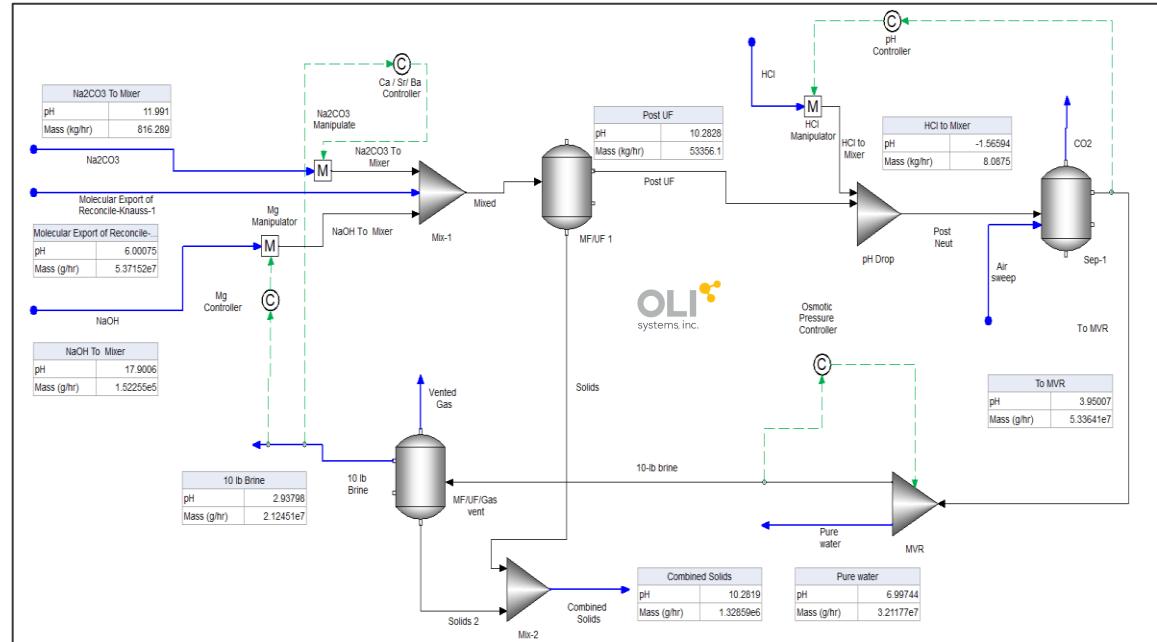
Software include:

- OLI Studio
- Geochemist's Workbench
- DuPont Wave
- NAWI Water-Tap3

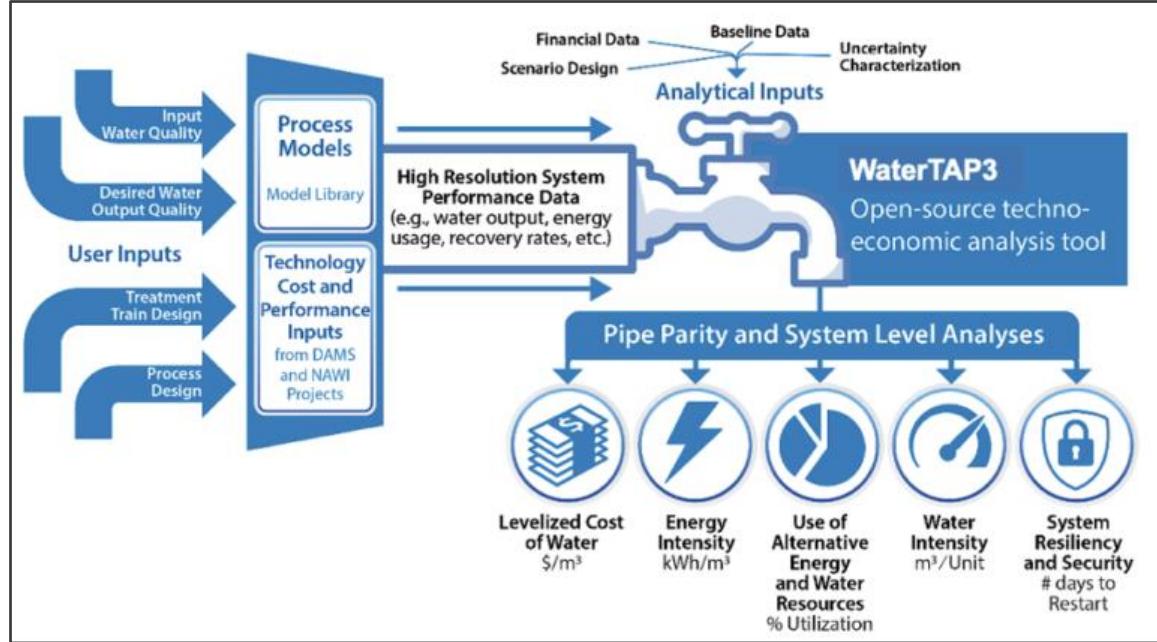
U.S. DEPARTMENT OF
ENERGY

Case Studies publicly available on

[EDX NEWTS Group](#)


The screenshot shows the NEWTS Database interface. At the top, there is a navigation bar with 'Data and Resources' and buttons for 'Download Checked' and 'Check All'. Below this is a search bar labeled 'Filter resources by name...'. A dropdown menu shows 'Date: Newest → Oldest'. The main content area displays a list of datasets with columns for 'File Type', 'Name', and 'License'. Below this is a table titled 'Datasets from the National Energy Water Treatment and Speciation Database' with columns for 'Analyte', 'Procedure', 'Units', 'Wght. Avg.', 'Input', 'Converted Units', and 'Converted Avg.'. The table lists various chemical elements and their properties.

Analyte	Procedure	Units	Wght. Avg.	Input	Converted Units	Converted Avg.
Alkalinity, HCO3		mg/L	48.03	HCO3-	mg/L	48.03
Aluminum	Total	ug/L			mg/L	
Ammonia as N	Total	mg/L			mg/L	
Antimony	Total	ug/L			mg/L	
Arsenic	Total	ug/L	190.00	AsO4-3	mg/L	0.35
Beryllium	Total	ug/L			mg/L	
Boron	Total	ug/L	167,106.67	B as B(OH)3	mg/L	167.11
Bromide	Total	mg/L	27.35	Br-	mg/L	0.03
Cadmium	Total	ug/L	0.00	Cd+2	mg/L	0.00
Calcium	Total	ug/L	2,079,500.00	Ca+2	mg/L	2,079.50
Chemical Oxygen Demand	Total	mg/L			mg/L	
Chloride	Total	mg/L	2,389.67	Cl-	mg/L	2,389.67
Chromium	Total	ug/L	200.07	Cr(OH)3	mg/L	0.40
Cobalt	Total	ug/L		Co+2	mg/L	
Copper	Total	ug/L	158.62	Cu+2	mg/L	0.16
Lithium	Total	mg/L	290.25	Li+	mg/L	0.29
Magnesium	Total	ug/L	1,014,700.00	Mg+2	mg/L	1,014.70
Manganese	Total	ug/L			mg/L	
Mercury	Total	ng/L	89,133.33	Hg+2	mg/L	0.09



Integration with Modeling Software

Leveraging tools for filling data gaps & modeling treatment

Input Water Stream

Input Water Quality

National Alliance
for Water Innovation

U.S. DEPARTMENT OF
ENERGY

Case Studies publicly available on

[EDX NEWTS Group](#)

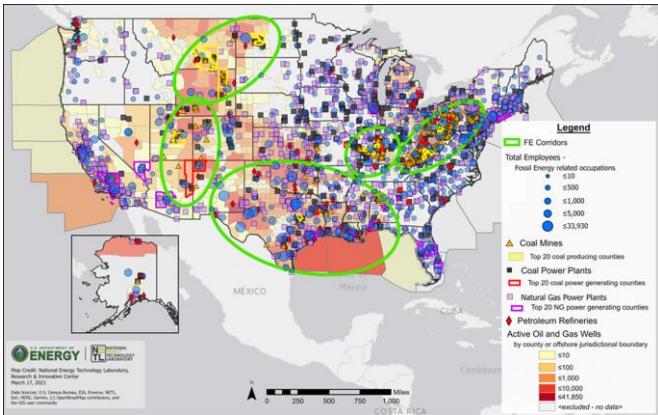
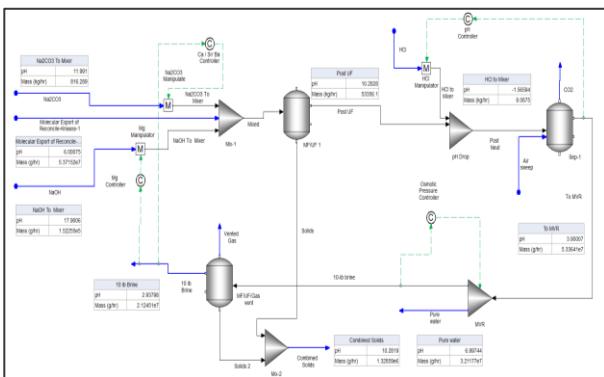
Thermal & Electrochemical Power Plant Design and Cost Estimation, Siefert (2023)

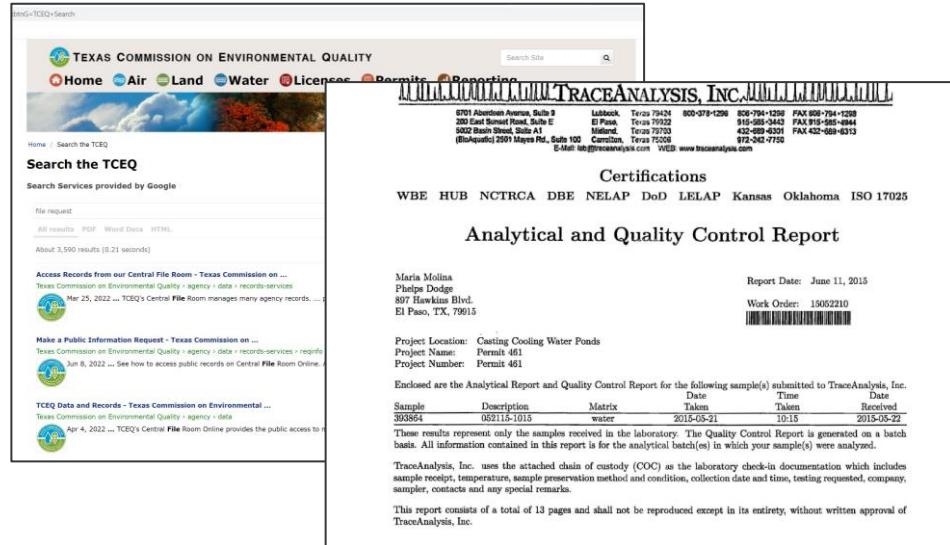
- Textbook (online already), Class lecture slides and Homework (soon to be added)
- Site will host the material to conduct and share detailed thermodynamics analysis of power plant design and/or water treatment
- Location to Share AspenPlus and OLI Flowsheet model and such as the OLI Flowsheet models
- Combined with NEWTS, makes seamless integration from water compositions to full thermodynamic analysis of water treatment design

NETL RESOURCES

VISIT US AT: www.NETL.DOE.gov

Burt.Thomas@netl.doe.gov



Nicholas.Siefert@NETL.DOE.GOV


Water Data Challenges

Prior state of energy water data

- Energy process wastewater data are **disparate, incomplete, and difficult to access**
- Stored in **unusable or disparate formats**
- Regulated by different **federal and state agencies**
- Existing datasets are **not comprehensive** for energy wastewater data: most data is still **hidden** behind regulatory agency doors

These data are necessary to design **treatment technologies** and understand cross-industry wastewater **re-use opportunities**

Addressing Water Data Challenges

NEWTS Data Collection & Modeling Methods

Addressing these challenges through:

1) Systematic data collection

- Set key words for data search & acquisition
- Investigating federal & state data sources
- Literature review
- Data catalog for metadata capture

2) Aqueous chemistry modeling of streams to supplement available data

- Ensure compatibility with chemistry modeling software
- Fill in missing data & supplement reported information

3) Presenting data through an online interactive data platform

- Visualization, interaction and access to data

Example Processed Data

EPA FGD Effluent Dataset

Date Collected	Lab No	Analyte	CAS_NO	Method	Proced	Units	Non-Det	Amount	J-V
8/24/2010 TA	Nickel		7440-02-0	200.8	Total	ug/L	D	580	
8/25/2010 TA	Nickel		7440-02-0	200.8	Total	ug/L	D	450	
8/26/2010 TA	Nickel		7440-02-0	200.8	Total	ug/L	D	570	
9/29/2010 TA	Nickel		7440-02-0	200.8	Total	ug/L	D	600	
12/8/2010 TA	Nickel		7440-02-0	200.8	Total	ug/L	D	560	
1/12/2011 TA	Nickel		7440-02-0	200.8	Total	ug/L	D	510	
8/23/2010 TA	Nitrate Nitrite as N		STL00217	353.2	Total	mg/L	D	67	
8/24/2010 TA	Nitrate Nitrite as N		STL00217	353.2	Total	mg/L	D	67	
8/25/2010 TA	Nitrate Nitrite as N		STL00217	353.2	Total	mg/L	D	47	
8/26/2010 TA	Nitrate Nitrite as N		STL00217	353.2	Total	mg/L	D	62	
9/29/2010 TA	Nitrate Nitrite as N		STL00217	353.2	Total	mg/L	D	83	
12/8/2010 TA	Nitrate Nitrite as N		STL00217	353.2	Total	mg/L	D	94	
1/12/2011 TA	Nitrate Nitrite as N		STL00217	353.2	Total	mg/L	D	94	
8/23/2010 TA	Nitrogen, Kjeldahl		STL00296	351.2	Total	mg/L	D	130	
8/24/2010 TA	Nitrogen, Kjeldahl		STL00296	351.2	Total	mg/L	D	23	
8/25/2010 TA	Nitrogen, Kjeldahl		STL00296	351.2	Total	mg/L	D	12	
8/26/2010 TA	Nitrogen, Kjeldahl		STL00296	351.2	Total	mg/L	D	21	
9/29/2010 TA	Nitrogen, Kjeldahl		STL00296	351.2	Total	mg/L	D	23	
12/8/2010 TA	Nitrogen, Kjeldahl		STL00296	351.2	Total	mg/L	D	17	
1/12/2011 TA	Nitrogen, Kjeldahl		STL00296	351.2	Total	mg/L	D	15	
8/23/2010 TA	Phosphorus, Total		7723-14-0	365.1	Total	mg/L	D	3.7	
8/24/2010 TA	Phosphorus, Total		7723-14-0	365.1	Total	mg/L	ND	0	
8/25/2010 TA	Phosphorus, Total		7723-14-0	365.1	Total	mg/L	D	3.2	
8/26/2010 TA	Phosphorus, Total		7723-14-0	365.1	Total	mg/L	D	4.3	
9/29/2010 TA	Phosphorus, Total		7723-14-0	365.1	Total	mg/L	D	1.9	
12/8/2010 TA	Phosphorus, Total		7723-14-0	365.1	Total	mg/L	D	1.2	
1/12/2011 TA	Phosphorus, Total		7723-14-0	365.1	Total	mg/L	D	2.5	
8/23/2010 TA	Calcium		7723-14-0	360.0	Discontinued	ug/L	D	150	

Raw data: one row per measurement

EPA FGD Effluent data in NEWTS Template

Unique_ID	Analyte	Procedure Unit	485	486	487	488	489	490
			10/27/2008	10/27/2008	10/27/2008	10/27/2008	10/27/2008	10/27/2008
Influ after set basin	Influ prior set ba:	Outfall002						
Settling Pond Effluent	Settling Pond Infl	Bio Treatment						
Sample Description	Effluent from Settling	Effluent to Settlir						
Wastewater Classification	Wastewater	Effluent from Final						
Plant Name	Plant	Internal point						
Plant ID	Roxboro	Commingled W						
Total Dissolved Solids	Total Diss.	Total	mg/L					
pH								
Alkalinity mg/L	Alkalinity	Blank & T mg/L as CaCO ₃						
Silica	Silica	mg/L of SiO ₂						
B(OH)3	Boron Hydroxide	mg/L of B(OH) ₃	450.743872	381.5306632	44.15917121	441.019702	4.15279253	
Ag+	Silver	mg/L of Ag ⁺	0.0002	0.02	0.0002	0.0002	0.0002	
K+	Potassium	mg/L of K ⁺						
Li+	Lithium	mg/L of Li ⁺						
Na+	Sodium	mg/L of Na ⁺						
NH4+	Ammonium	mg/L of NH ₄ ⁺						
Ba+2	Barium	mg/L of Ba ²⁺	0.31	0.579	0.201	0.169	0.045	
Ca+2	Calcium	mg/L of Ca ²⁺						
Co+2	Cobalt	mg/L of Co ²⁺	0.011	0.032	0.011	0.011	0.011	
Cu+2	Copper	mg/L of Cu ²⁺	0.016	0.074	0.016	0.016	0.016	
Hg+2	Mercury	mg/L of Hg ²⁺	0.00052	0.028	0.00011	0.00012	0.00011	0.0043
Mg+2	Magnesium	mg/L of Mg ²⁺						
Mn+2	Manganese	mg/L of Mn ²⁺	0.846	3.5	0.245	0.592	0.154	
Ni+2	Nickel	mg/L of Ni ²⁺	0.096	0.158	0.018	0.018	0.018	
Pb+2	Lead	mg/L of Pb ²⁺	0.019	0.032	0.019	0.019	0.019	
Sr+2	Strontium	mg/L of Sr ²⁺						
Zn+2	Zinc	mg/L of Zn ²⁺	0.049	0.259	0.038	0.038	0.038	
Al+++	Aluminum trivalent	c mg/L of Al ³⁺						
Cr+++	Chromium trivalent	c mg/L of Cr ³⁺						
Fe+3	Iron	mg/L of Fe ³⁺	0.22	40.8	0.22	0.22	0.22	
Sn+4	Tin	mg/L of Sn ⁴⁺						
Br-1								
Cl-1								
F-1								
NO3-1								
CrO4-2								
HPO4---								

Processed data:

- One column per stream
- Easy input into modeling software
- Easy charge balance calculation; data comparison; gap analysis