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ABSTRACT

In this project, we were creating a sustainable platform for biofuel production, utilizing carbon-fixing autotrophs to supply
oxygen and organic substrates to heterotrophic partners, which in turn produce carbon dioxide to feed the autotrophs. This
symbiotic lichen community could lower the input cost, optimize metabolic exchanges and improve the generation of biofuel
precursors through multi-omics driven genetic engineering.

The cyanobacteria Synechococcus elongatus (S. elongatus) was used as the primary autotroph to provide oxygen and
organic substrates, especially sucrose, to a co-culture system. The strain with overexpression of sucrose transporter cscB
demonstrated a significant increase in sucrose production under salt stress as what we expected. We also implemented 13C
metabolic flux analysis on the sucrose secreting strain S. elongatus cscB-NaCl. Next, transporters proteins like glutamate
exporter mscCG from Corynebacterium glutamicum was overexpressed in S. elongatus to improve metabolite exchange. We
provided sucrose and glutamate to filamentous fungi to enable their growth and production of biochemicals using substrates
from the cyanobacterium.

Two fungi (Aspergillus nidulans and Aspergillus niger) and two yeast strains (Rhodotorula toruloides and Lipomyces
starkeyi) served as heterotrophs in this system. They were co-cultured with S.elongatus under different pH condition, and
growth on different carbon sources to understand the symbiotic system and optimize the parameters for production. The two
fungi strained grew much better at pH 7, 8 and 9 with Yeast Nitrogen Base (YNB) supplementation. Two yeast strains grew
well on pH 7 and 8 with YNB supplementation. All four species achieved the highest biomass level when utilizing sucrose as
the main carbon sources, which demonstrates a great pairing with S.elongatus.

In addition to investigate the metabolite exchange and growth condition of the co-culture system, we incorporated an
Aspergillus strain expressing three genes (PAND, BAPAT and HPDH). Expression of these three genes enabled production
of 3-hydroxypropionic acid (3HP) with a titer of 3-6 g/L regardless of pH and other nutrient conditions. Moreover, we
developed a computational model with different heterotrophic fungi symbiosing with S.elongatus to evaluate the exchange of
hundreds of metabolites. The accuracy and sensitivity had been optimized by high-throughput phenotyping assays.

This project demonstrated ways to enhance a synthetic lichen platform’s efficiency and scalability to create a robust
system for sustainable bioproduct synthesis. The project has enabled us to explore the technological and commercial potential
of sustainable lichen co-culture. The project has also trained the next generation of scientists to address sustainability, carbon
fixation, and design solutions to contemporary global challenges. The lichen platform represented a novel approach to
sustainably producing bioproducts with a reduced carbon footprint and lower costs.
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ACCOMPLISHMENTS
Major goals of the project

The goal of this project was to develop synthetic lichen communities of autotrophic and heterotrophic microbes as a novel
sustainable symbiotic platform for the production of biofuels and commodity chemicals. Carbon-fixing autotrophs provided
oxygen and organic substrates to their heterotrophic partners, which in turn produced valuable biochemicals and carbon
dioxide which could serve as a carbon source for autotrophs. By optimizing and enhancing these interactions, we could create
a robust, sustainable synthetic lichen community. Multi-omics driven genetic engineering and mathematical modeling can
improve metabolite exchange and product generation capabilities for this microbial co-culture platform.

Our aims were:
Computational Modeling: Develop computational lichen models for relevant cyanobacteria in partnership with heterotrophic
fungal partners (such as Aspergillus nidulans and niger). These models aimed to elucidate potential shared metabolite pools
and specify exchange rates required to maximize generation of biomass and products of interest to the DOE.
Metabolite Exchange Engineering: Overcome exchange bottlenecks in cyanobacteria like S. elongatus by expressing
transporters to excrete a wider selection of shared metabolites such as glutamate, aspartate, and others. The capacity to
channel these metabolites into specific products of interest such as 3-hydroxypropionic acid (3HP) was investigated with
metabolic engineering of heterotrophic production partners including yeast and filamentous fungi. The repertoire of shared
metabolites generated by S. elongatus were expanded and channeled into target products from heterotrophic partners for
improving the performance of synthetic lichens.
‘Omics profiling and 13C labeling: Perform transcriptomic, proteomic, and metabolomic profiling to identify which pathway
genes and transporters were expressed and which metabolites were available in the medium when compared to monocultures.
These expression profiles and measurements were used to identify potential exchange candidates that accumulate to
significant levels in the cyanobacteria. 13C labeling was undertaken to follow the movement of carbon from CO2 into final
products and biomass in order to evaluate the impact of exchange engineering modifications on metabolic fluxes and product
yields.

Accomplishments under the goals

Yarrowia lipolytica is a promising oleaginous yeast platform currently under development for the bioproduction of an array of
fuel and platform chemical intermediates. Wild-type Y. lipolytica does not possess sucrose-utilization capacity when cultivated
in minimal media, limiting its co-cultivation potential with our team’s engineered, sucrose-secreting cyanobacterial host. Thus,
in order to enable sucrose utilization in Y. lipolytica, we integrated a constitutive promoter element upstream of the strain’s
native sucrose invertase. The resultant strain displayed the capacity to utilize sucrose as a sole carbon and energy source.
Unexpectedly, constitutive overexpression of sucrose invertase conferred additional substrate utilization capacity; the
engineered strain displayed the capacity for cultivation on both mannose and glycerol as sole carbon and energy sources
(Figure 1).

Concurrently, we have initiated efforts to establish a new phototrophic sucrose secretion host. We have screened >300 unique
algal cultivars to identify top-candidate production hosts with rapid growth rate and robustness in varied media conditions that
can be well-suited to co-culture applications. Our top-candidate strain, Picocholorum renovo, boasted high biomass
productivity (34 g m—2 day—1) and thermal- (growth up to 40 °C) and salinity tolerance (growth at 107.5 g L—1 salinity),
suggesting it was uniquely suited for co-culture applications. A series of potential sucrose transport proteins (SWEET
transporters) have been identified for overexpression in P. renovo.

We have also tested several heterotrophic partners at PNNL, including Aspergillus pseudoterreus (aka A. terreus) ATCC
32359, Aspergillus niger ATCC 11414, Rhodotorula glutinis ATCC 204091, and Lipomyces starkeyi NRRL Y-11558 for
growth in cyanobacterium medium at high pH. The ultimate biomass density of samples harvested at stationary phase is shown
in Figures 2a and 2b. Additionally, we tested potential exchange of metabolites as substrates for heterotroph growth, and
potential toxicity of NaCl. We tested cyanobacterium BG11 medium supplemented with 5mM (NH4),SO4 and 20 g/L of
specific substrate at pH 8.4. Incubation temperature was 30°C and 200 rpm. The ultimate biomass density of samples harvested
at stationary phase is shown in Figures 3a and 3b.

We have also incorporated a three gene (PAND - aspartate decarboxylase, BAPAT - B-alanine-pyruvate aminotransferase,
HPDH - 3-hydroxypropionate dehydrogenase) B-alanine-aspartate pathway into A. pseudoterreus ATCC 32359 (Ap) to
produce 3-hydroxypropionic acid (3HP) from aspartate. Expression of this pathway under constitutive promoters resulted in
production of 3HP with titers in the 3-6 g/L range regardless of pH or other nutrient conditions. Furthermore, we used the
same three heterologous gene biosynthetic pathways but with additional genes deleted/added to increase precursor molecules
and avoid catabolism of 3HP in Aspergillus niger. (Figure 4)
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Additionally, Biolog plate experiments for Aspergillus pseudoterreus (aka A. terreus) ATCC 32359 were performed to
investigate carbon utilization by heterotrophs., with data shown in Figures 5-7. We also established a method for tracking
growth rate for S. elongatus — yeast co-culture using flow cytometry, and for physical separation (cell sorting) of the S.
elongatus and yeast cell for specific intracellular metabolite analysis and metabolic flux analysis (Figures 8-10). The ability
to determine a specific phototroph:heterotroph cell ratio could be very valuable in understanding metabolic flux. We also
increased sucrose production by Synechococcus elongatus PCC 7942 engineered with the sucrose transporter CscB by nearly
95% through immobilization of cells into alginate matrix and through application of engineered by S. elongatus with sucrose-
phosphate synthase (SPS) (Figure 11).

We have successfully transformed WT S. elongatus with two plasmids received from Addgene, PAM1414 (luxAB gene) and
PAMS5087 (IPTG-induced expression of YFP). We used the PAMS087 backbone for expression of mscCG
(glutamate/aspartate exporter) via Gibson Assembly.

13C-MFA can thereby be applied to decipher metabolic network regulation and hence guide metabolic engineering.
Synechococcus elongatus PCC 7942 synthesizes sucrose under NaCl stress as a means of coping with osmotic pressure, while
overexpression of CscB, a sucrose transporter, confers the ability to secrete sucrose out of cells (Ducat, 2012). We investigated

global metabolic fluxes in the sucrose-secreting (cscB™) strain versus the wild-type PCC 7942 3C-MFA. Our study was
designed to investigate a) the metabolic response of the wild-type PCC 7942 to osmotic stress upon NaCl supplementation
to the BG11 culture medium, and b) the metabolic response to sucrose secretion in the cscB-expressing strain upon
NaCl supplementation to the BG11 culture medium. We performed 3C-MFA for three cyanobacterial cultures — wild-type

grown in BG11 medium (WT), wild-type grown in BG11 medium with additional 200 mM NaCl (WT_NaCl), and cscB*
strain grown in BG11 medium with additional 100 mM NaCl (cscB_NaCl) — under photoautotrophic conditions. We added
13C-labelled bicarbonate into the growing cyanobacterial cultures to initiate the labeling experiment, and sampled and rapidly
quenched the cells at times 0, 1, 2, 5, and 10 min followed by metabolite extraction and GC-MS analysis to quantify labeling
trajectories of more than a dozen intracellular metabolites. We then used the INCA software to estimate pathway fluxes and
generate a quantitative flux map of each strain and growth condition.

We have found that the growth rate varied significantly between the three conditions: “WT” > “WT_NaCl” > “cscB_NaCl”.
While the carbon fixation rate (Rubisco flux in Figure 12) in WT_NaCl decreased by 15% compared to that of WT, the
Rubisco flux in cscB_NaCl increased by 34% compared to that of WT_NaCl, and increased by 15% compared to that of WT

(Figure 12). Other examined fluxes, i.e., GAPDH, FBA, TKT and SBA, in the carbon-fixing CBB cycle of the cscB™ strain
under salt stress also increased compared to the WT and WT_NaCl. It has been reported that introducing a sucrose sink
in S. elongatus leads to increased photosynthesis rate (Abramson, 2016). Our *C-MFA results confirm this finding. The
increased carbon fixation flux in cscB_NaCl was mostly attributed to sucrose biosynthesis since PGI, PGMT and SPP fluxes
were all increased significantly (Figure 12). Conversely, the glycolysis fluxes (ENO, PYK, PPC, MDH and ME) and the TCA
cycle fluxes (CS and PDH) decreased in the cscB_NaCl case compared to the WT and WT_NaCl cultures (Figure 12,
13).Overall, the cscB_NaCl overexpression strain also showed a substantial metabolic rewiring and a significant increase in
sucrose production under salt stress (Figure 14). In addition, the cscB_NaCl strain with overexpressing GADPH
(glyceraldehyde dehydrogenase) demonstrated a 20% increase in sucrose productivity compared to regular cscB_NaCl strain.

For metabolic modeling, there have been two major activities: i) reconstruction, curation and refinement of metabolic models
for fungi and ii) benchmarking of models using our high-throughput phenotyping assays. We updated and reshaped existing
models as well as created new metabolic models. We have done intensive manual curation in  Aspergillus nidulans and A.
niger metabolic models. These models were reconstructed in a semi-automatic matter using the latest annotation of the genome.
We added new reactions and metabolites as well as updated names and IDs to achieve the maximum standards of quality. The
refined version of these models was used as a template to reconstruct the new model of A. pseudoterreous. The current version
of the models contains: A. nidulans 2,373 reactions, 1,884 metabolites and 1,230 genes; A. niger 2,241 reactions, 1,821
metabolites and 1,396 genes and A. pseudoterreus 2,221 reactions, 1,822 metabolites and 1,380 genes.

Secondly, we ensured the high quality of our new and updated models (3 total). We have benchmarked models for Nostoc and
Aspergilli strains using our high-throughput phenotyping assays. We used experimentally determined growth phenotypes
under 190 carbon and 95 nitrogen sources collected from BIOLOG plates PM1, PM2 and PM3. Experimental information
enabled a second round of manual curation to broaden simulation capabilities for each model, increasing the number of true
positive and true negative predicted outcomes. For example, in A. nidulans model we included 129 new reactions to fix false
negative predicted growth and converted to true positive growth over L-proline, D-alanine, dulcitol, etc. We also curated the
model eliminating false positive predictions for formate, acetate, adenosine and inosine. Overall, Nostoc and Aspergullis
nidulans models achieved over 85% accuracy and sensitivity.
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Opportunities provided for training and professional development

This project has provided training for several graduate students. At Johns Hopkins University, two PhD students (Chien- Ting
Li, Jackson Jenkins), one visiting PhD scholar (Liqun Jiang), and two MS students (John Del Toro, Kai-Wen Huang)
have been trained in bacterial and fungal culturing, microbial coculturing, fluorescence microscope imaging, plasmid design,
and genetic engineering of cyanobacteria. At Vanderbilt University, one Post-Doctoral Researcher (Bo Wang) has been
developing metabolic flux analysis techniques. Bo also started a tenure-track position at University of Minnesota in Fall 2024.
This has also provided professional development opportunities as students presented updates to the extended project team, and
present posters at conferences and university poster sessions. Additionally, the project has enabled a training opportunity
through the Department of Energy’s Science Undergraduate Laboratory Internship (Loretta Lutackas, Colorado State
University), providing training in molecular cloning and functional genomic technologies.

Results dissemination to the community of interest

Multiple posters were presented at the DOE 2020 Genomic Sciences Program Annual Pl Meeting. One project related to flux
modeling was presented by Cristal Zuniga (UCSD) and Bo Wang. A second poster was presented by Jackson Jenkins to
summarize successes in cell culture and engineering for this project. A series of manuscripts encompassing development of
synthetic co-culture pairings and genome-scale modeling have been published in peer-reviewed journals, establishing a first-
in-class foundation for synthetic lichen development.
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Figure 1. Genetic engineering of Y. lipolytica has conferred expanded substrate
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Fig. 8. Microscopy image of S. elongatus — R. glutinis mixed culture
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Fig. 9. S. elongatus — R. glutinis flow cytometry
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Fig. 10. Results of cell sorting of S. elongatus and R. glutinis based on the differences in cell size and shape
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Figure 12. Metabolic fluxes in the wild-type and cscB-expressing S. elongatus 7942 strains with or without salt stress
elucidated by *C-MFA. 100 mM NaCl was added into the BG11 culture medium to induce salt stress. “WT”, the
wild-type strain grown in BG11 medium; “WT_NaCl”, the wild-type grown in BG11 medium with additional 100
mM NacCl; “cscB_NaCl”, the cscB* strain grown in BG11 medium with additional 200 mM NaCl. Error bars indicate
standard errors.
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Figure 13. Comparison of metabolic fluxes in three cyanobacterial cultures — WT, WT_NaCl, and cscB_NaCl. The
flux for each enzyme is normalized to that of the wild-type strain according to the data in Figure 1. Error bars indicate
standard errors.
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1.

IMPACT

Impact on the development of the principal discipline(s) of the project

Developing a co-culture platform for the production of biofuels and bioproducts aims to address several key
challenges being faced by the bioenergy community. First, this platform allows for the generation of bioproducts
without the need for external carbon feeding. Cyanobacteria like S. elongatus fix carbon dioxide into high energy
substrates like sucrose (and glutamate, lysine, and other metabolic engineering targets). This not only removes carbon
dioxide from the atmosphere, but also reduces the need for additional substrate feeding to fungal partners that are
pumping out bioproducts of interest. From an academic perspective, this project will provide new insights into
metabolic interactions in coculture systems. Community metabolic models informed by isotope tracing studies and
multi-omics co-culture analysis will suggest changes in metabolic flux from axenic to co-culture settings, and should
suggest new analytical methods to understand coculture interactions. As these skills are developed, co-cultures can
be more widely used by the scientific community for creation of biofuels, biochemicals, and other sustainably
generated products.

Impact on other disciplines

The project offers a series of basic and applied science across a range of additional disciplines including
environmental science, photobiology, marine science, biochemistry, and genomics. Lichens are widely dispersed in
the environment and this project will help to understand the interactions. Understanding the ways in which different
phototrophs harvest light will impact photobiology. Many of these organisms live in aquatic environments and thus
knowledge is obtained about organismal behavior in these settings. Furthermore, a series of reactions are under way
and the group is elucidating biocatalysis of product generation. The study will also elucidate aspects of analytical
biochemistry and tools are developed to follow the movement of labeled molecules between species.

Impact on the development of human resources
Trainees are being educated in the bioenergy field at levels ranging from undergraduate through graduate and
postgraduate level. This training will be important as these students graduate and go onto jobs in the STEM fields.

Impact on physical, institutional, and information resources that form infrastructure
Nothing to Report

Impact on technology transfer
Commercial technologies involving lichens are still in their infancy. This project represents one of the initial efforts
to evaluate the technological and commercial potential of sustainable lichen cocultures.

Impact on society beyond science and technology

This project is training the next generation of scientists to tackle issues on sustainability, carbon fixation, and
designing solutions to the challenges our world is facing today. This platform will be a new method to sustainably
create a variety of bioproducts with a reduced carbon footprint and reduced cost.

Foreign Spending
Not Provided
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CHANGES - PROBLEMS

1. Changes in approach and reasons for change
Nothing to Report

2. Actual or anticipated problems or delays and actions or plans to resolve them
Most of the participating laboratories were unable to perform experimental research projects between March 2020
and early June 2020 due to COVID-19 pandemic shut down. Computation efforts continued unabated during this
period.

3. Changes that have a significant impact on expenditures
Nothing to Report

4. Significant changes in use or care of human subjects, vertebrate animals, and/or biohazards
Nothing to Report

5. Change of primary performance site location from that originally proposed
Nothing to Report

6. Carryover Amount
Nothing to Report
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