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CO2 electroreduction commercialization progress
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1. Fan et al.  Science Advances, 6, eaay3111.
2. Leonzio et al. (2024), Chemical Engineering Research and Design, 208, 934-955.

CO2 electroreduction (CO2RR) to CO and 
HCOOH is closer to commercialization2
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Gas-fed flow electrolyzers show promise 
for large-scale applications1
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Cathode composition and CO2RR selectivity
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1. Hori (2008), “Electrochemical CO2 Reduction on Metal Electrodes”. In Modern Aspects of Electrochemistry. Eds C. G. Vayenas et al. Springer New York. pp 89-189
2. Wang et al. (2024), Angewandte Chemie International Edition, 63, e202401821.
3. Nguyen-Phan, T., Ellis, J., Nagarajan, A., Howard, B., Mpourmpakis, G., and Kauffman, D. (2024), Applied Catalysis B: Environmental, 340, 123250.

PdNi Cu Zn

Pd Ag Cd

Pt Au Hg

28 29 30

46 47 48

78 79 80

Ga Ge As

In Sn Sb

Tl Pb Bi

31 32 33

49 50 51

81 82 83

H2 HCOO- CO C2+

Selectivity primarily defined by electrode 

material1,2 and fine-tuned via doping3
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Variations on CO2 inlet concentrations
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1. Badgett et al. (2022), iScience, 25, 104270.
2. Von Der Assen et al. (2016), Environmental Science & Technology, 50, 1093-1101.
3. Van Daele et al. (2022), Journal of CO2 Utilization, 65, 102210

Highly concentrated CO2 streams are 
just 2.6% of net supply1

Increasing emissions

?
Understand the interplay 

between CO2 inlet 
concentration and surface 

oxidation on product selectivity 
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Preliminary CO2RR results on a SnO2 cathode
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Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.

H2CO HCOOH

Half-cell in situ Raman experiments

Partially reduced Sn peaks remain at 

increasing cathode potentials
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• CO increase with %CO2, 

whereas H2 evolution 

competes at low %CO2.

• Optimal (   ) HCOOH 

selectivity at 20 %CO2.



Computational methods

8

1. Perdew et al. (1996), Physical Review Letters, 77, 3865-3868
2. Grimme et al. (2010), The Journal of Chemical Physics, 132, 154104.

3. Vandevondele & Hutter (2007), The Journal of Chemical Physics, 127, 114105
4. Goedecker et al. (1996), Physical Review B, 54, 1703-1710
5. Nørskov et al. (2004), The Journal of Physical Chemistry B, 108, 17886-17892.

Periodic DFT calculations using the CP2K software package:

• PBE exchange-correlation functional1.

• Grimme’s D3 dispersion corrections2.

• MOLOPT basis sets3 with an auxiliary planewave basis set’s 

cutoff of 500 Ry.

• Goedecker, Teter, and Hutter pseudopotentials4.

• Energy of proton-electron pairs accounted for with the 

computational hydrogen electrode approximation5.

SnO2

Sn2O3SnO

Sn3O4Sn

* + CO2(g)

CO & HCOOH Reaction Pathways

OCHO*

COOH*

HCOOH(l)

CO* + 

H2O(l)

CO(g)

H+ + e-

H+ + e-
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Predicted phase stability of Sn (Pourbaix diagram)
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1. Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
2. Van Daele et al. (2022), Journal of CO2 Utilization, 65, 102210

Partially oxidized Sn2O3 stable at low 

cathodic potentials and basic environments

3. Weng et al. (2018), Physical Chemistry Chemical Physics, 20, 16973-16984.
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expected due to OH production2,3

Flooded pore
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CO2RR pathways on SnxOy surfaces
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• HCOOH is the thermodynamically favored product.

• Lower thermodynamic barriers on metallic Sn.

Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.

* H* H2 (g) * COOH* CO* * OCOH* HCOOH (l)CO (g)
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CO2RR pathways on SnxOy surfaces
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Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.

* H* H2 (g) * COOH* CO* * OCOH* HCOOH (l)CO (g)
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Preliminary CO2RR results on a Bi2O3 cathode
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Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
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Half-cell in situ Raman experiments
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CO2RR pathways on ß-Bi2O3 and Bi surfaces
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• Lower thermodynamic barriers on metallic Bi.

• H2 slightly favored thermodynamically over reduced Bi.

* H* H2 (g) * COOH* CO* * OCOH* HCOOH (l)CO (g)

Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.



Combined selectivity trends of Bi and Sn
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• H2 evolution competing at lower %CO2.

• Sn partial oxides might decrease CO2 selectivity.

?

Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.



Lateral interactions and carboxyl stability
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Lateral interactions stabilize the carboxyl intermediate (favoring CO production)
1. Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
2. Chen et al. (2021), ACS Catalysis, 11, 4349-4361.

1/4 ML 2/4 ML 1/6 ML 2/6 ML



Summary
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1 Mixed oxide/reduced Sn phase, 

resulting in shifts in CO:HCOOH ratio
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Summary
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1

2 Reduced Bi phase, resulting in 

higher HCOOH selectivity

Mixed oxide/reduced Sn phase, 

resulting in shifts in CO:HCOOH ratio
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Reduced Bi phase, resulting in 

higher HCOOH selectivity

Summary
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1

2

3 Lateral interactions stabilize the 

carboxyl intermediate (CO pathway)

Mixed oxide/reduced Sn phase, 

resulting in shifts in CO:HCOOH ratio
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Building the Pourbaix diagram (Persson et al 
framework)
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1. Persson et al. (2012). Physical Review B. 85. 235438

The framework1 proposes a way to compute the formation 

energies of ions combining DFT and experimental data 

Solid and liquid (other than water) materials

μ0 = EDFT – TsDFT – Σ(Ei
DFT-Tsi

DFT)

Reference states
(e.g., 2xLi and O)

State of interest 
(e.g., Li2O)

Ion species

μ0 = μ0,EXP + μS
0, DFT - exp 

DFT error computed on a 
solid material (e.g., Li2O)

Experimental potential 
of aq species (e.g., Li+)

In this work: used the atomic simulation environment (ASE) Pourbaix function (assume all 

dissolved species have a concentration of 10-6 M) with computed μ0 values. 

Use these potentials in conjunction with Nernst equation to obtain most stable phases

[Reactants] + H2O ←→ [Products] + mH+ + ne-

-nFE = ΔG0
Rxn + 2.303*RT*log(areactant/aproduct) – 2.303*RT*m*pH



Complexities in obtaining transition states
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1. Akhade, Sneha A., et al. Catalysis Today 288 (2017): 63-73.
2. Bard, Allen J., Larry R. Faulkner, and Henry S. White. Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022.

CATHODE

*A

e-

H+

BULK CATHOLYTE

Applied potential shifts the 

Fermi level (average energy 

of available electrons @ 0K) of 

the electrode2

Solvated ions, 

and the electric 

field in the double 

layer are difficult 

to simulate1

Elect

ric 

Field

Electron 
transfer (non-
equilibrium)



Computational Hydrogen Electrode (CHE)
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1. Akhade, Sneha A., et al. Catalysis Today 288 (2017): 63-73.
2. Bard, Allen J., Larry R. Faulkner, and Henry S. White. Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022.
3. Nørskov, Jens Kehlet, et al. The Journal of Physical Chemistry B 108.46 (2004): 17886-17892.

GIS = GA* + μH+ + μe-

CATHODE

*A

e-

H+

BULK CATHOLYTE

REF ELECTRODE

e-

H+

e-

H+

H
H

This reaction is in equilibrium 

(analogous to the Reversible 

Hydrogen Electrode)

½ GH2 = μH+ + μe-

We use the 

Computational 

Hydrogen 

Electrode (CHE) 

Approach3



CHE helps just with reaction energies
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1. Nørskov, Jens Kehlet, et al. The Journal of Physical Chemistry B 108.46 (2004): 17886-17892.
2. Oberhofer, H., (2018), “Electrocatalysis Beyond the Computational Hydrogen Electrode”, In: Andreoni, W., Yip, S. (eds) “Handbook of Materials Modeling”. Springera

CATHODE
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e-

H+

e-

e-

e-

H+

H+

e-

H+H+

Simulate 

this

Reservoir

Reservoir

Rethink the initial state
We simulate a series of Proton-Coupled 

Electron Transfer (PCET) steps

The Limiting Potential (UL) is equal to ΔGmax /e … the 

min potential one must supply for the reaction to be 

thermodynamically favored 

ΔG = GAH* - GA* + μH+ + μe- + neU

FINAL 

STATE

INITIAL 

STATE

APPLIED 

POTENTIAL BIAS

A*

AH*
AH2

UL

Δ
G



Slab models
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Coverage on Sn
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1/4 ML 2/4 ML 3/4 ML 4/4 ML

Formate

1/4 ML 2/4 ML 3/4 ML 4/4 ML

Carboxyl



Coverage on Bi
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1/6 ML

Carboxyl
2/6 ML 3/6 ML 4/6 ML 5/6 ML 6/6 ML

1/6 ML

Formate
2/6 ML 3/6 ML 4/6 ML 5/6 ML 6/6 ML



SnO2 strong H binding: generating a vacancy
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Surface

H*

Surface + H2(g)

Vacancy + 

H2O(l)

HH

+

+

O
H H

VACANCY

SnO2 is readily reduced to form H2O



Half cell reactor studies
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CO2 electroreduction
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1. Shin et al. (2021), Nature Sustainability, 4, 911-919
2. Nitopi et al. (2019), Chemical Reviews, 119, 7610-7672

M
e

m
b

ra
n

e

G
a

s 
D

if
fu

si
o

n
 L

a
y

e
r

G
a

s 
D

if
fu

si
o

n
 L

a
y

e
r

A
n

o
ly

te

C
a

th
o

ly
te

e-
C

a
ta

ly
st Oxygen 

Evolution

Reaction

P
ro

d
u

c
ts

CO2

C
a

ta
ly

st

Gas-fed flow electrolyzers can convert CO2 at ambient conditions

CO2 + 2(H+ + e-) → CO + H2O

CO2 + 2(H+ + e-) → HCOOH

Closer to 

commercialization1

CO2 + 8(H+ + e-) → CH4 + 2H2O

2CO2 + 12(H+ + e-) → C2H4 + 4H2O

2CO2 + 14(H+ + e-) → C2H6 + 4H2O

3CO2 + 18(H+ + e-) → C3H7OH + 5H2O

More electron 

transfer steps

Only Cu-based 

catalysts2



Effects of feed concentration on CO2RR selectivity
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1. Van Daele et al. (2022), Journal of CO2 Utilization, 65, 102210
2. Dutta et al. (2015), ACS Catalysis, 5, 7498-7502

CO2 inlet concentrations impact product 

selectivity in gas-fed flow electrolyzers 

Gas-fed flow electrolyzer: CO2RR experiments1

CO2 diluted in N2 | fixed current density at 100 mA/cm2

Partially oxidized Sn reported as 

the most selective phase2
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