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Gas-fed flow electrolyzers show promise CO, electroreduction (CO,RR) to CO and
for large-scale applications! HCOOH is closer to commercialization?

1. Fanetal. Science Advances, 6, eaay3111.
2. Leonzio et al. (2024), Chemical Engineering Research and Design, 208, 934-955.
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Cathode composition and CO,RR selectivity  [N=|vanova
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1. Hori (2008), “Electrochemical CO, Reduction on Metal Electrodes”. In Modern Aspects of Electrochemistry. Eds C. G. Vayenas et al. Springer New York. pp 89-189
2. Wang et al. (2024), Angewandte Chemie International Edition, 63, €202401821.
3. Nguyen-Phan, T., Ellis, J., Nagarajan, A., Howard, B., Mpourmpakis, G., and Kauffman, D. (2024), Applied Catalysis B: Environmental, 340, 123250.
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1. Badgeftt et al. (2022), iSci , 25, 104270. H H wvi
2. V?)ngDeer iss?en(ef ol.) (étﬁli)r?%ivironmenfalScience&Technology, 50, 1093-1101. OXquhon on prOdUCt SeIeChV“y

3. Van Daele et al. (2022), Journal of CO2 Utilization, 65, 102210
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Preliminary CO,RR results on a SnO, cathode
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Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
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Half-cell in situ Raman experiments
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Partially reduced Sn peaks remain at
increasing cathode potentials
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Periodic DFT calculations using the CP2K software package:
« PBE exchange-correlation functionall.

« Grimme’s D3 dispersion corrections2.

« MOLOPT basis sets® with an auxiliary planewave basis set’s
cutoff of 500 Ry.

« Goedecker, Teter, and Hutter pseudopotentials4.

« Energy of proton-electron pairs accounted for with the
computational hydrogen electrode approximations.

CO & HCOOH Reaction Pathways

Sn Sn304 Sn02 m g OCHO* H* + e- HCOOH(I)
‘ b e

¥+ COy(9)
CO(9)
*
Sno $n,0, COOH ..8 Hes e  CO*+ :
—" H,0() — @°
3. Vandevondele & Hutter (2007), The Journal of Chemical Physics, 127, 114105
1. Perdew et al. (1996), Physical Review Letters, 77, 3865-3868 4. Goedecker et al. (1996), Physical Review B, 54, 1703-1710
2. Grimme et al. (2010), The Journal of Chemical Physics, 132, 154104, 5. Nearskov et al. (2004), The Journal of Physical Chemistry B, 108, 17886-17892.
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Predicted phase stability of Sn (Pourbaix diagram) [N=|tanonat
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Partially oxidized Sn,O, stable at low
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1. Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.

2. Van Daele ef al. (2022), Journal of CO2 Utilization, 5, 102210 3. Weng et al. (2018), Physical Chemistry Chemical Physics, 20, 16973-16984.
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CO,RR pathways on $n,O, surfaces
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« HCOOH is the thermodynamically favored producit.
 Lower thermodynamic barriers on metallic Sn.

Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
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CO,RR pathways on $n,O, surfaces

N: NATIONAL

ENERGY
TL TECHNOLOGY
LABORATORY
* ; H* . H,(9) * | COOH*| CO* | CO(g) * . OCOH* | HCOOH ())
3 28
| ! 1.9 : N o | |
2 i — E ',’ ‘Il\ 1.2 i 1.5 i
s 1 a ! | — V. m¥ |
o /| | Yy & P
6 04 =——— | —— - —’i e | —
d 1
-1
-2 1
_3 T T T T T : T T 1 T
0 1 2 0 1 2 0 1 2

Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
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Preliminary CO,RR results on a Bi,O, cathode [N=]wrona
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Half-cell in situ Raman experiments
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Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
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CO,RR pathways on B-Bi,O, and Bi surfaces N=|NAToNAL
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 Lower thermodynamic barriers on metallic Bi.
« H, slightly favored thermodynamically over reduced Bi.

Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.

U.S. DEPARTMENT OF




Combined selectivity tfrends of Bi and Sn N=|raronaL
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- H, evolution competing at lower 7%CO.,.
« Sn partial oxides might decrease CO, selectivity.

Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
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Lateral interactions and carboxyl stability N=|NAToNAL
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Lateral interactions stabilize the carboxyl intermediate (favoring CO production)

1. Ellis, J., El Berch, J., Mpourmpakis, G., Kauffman, D. In preparation.
2. Chenetal (2021), ACS Catalysis, 11, 4349-4361.
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Summary

100 sccm gas feed

Mixed oxide/reduced Sn phase,
resulting in shifts in CO:HCOOH ratio
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Mixed oxide/reduced Sn phase,
resulting in shifts in CO:HCOOH ratio
Reduced Bi phase, resulting in

higher HCOOH selectivity

Lateral interactions stabilize the
carboxyl intermediate (CO pathway)
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Building the Pourbaix diagram (Persson ef al  [N=]uanova

TECHNOLOGY
frq meWOrk) TL LABORATORY
The framework! proposes a way to compute the formation
energies of ions combining DFT and experimental data

Solid and liquid (other than water) materials lon species
0 = EDFT DFT _ DFT_Te<. DFT 0O = 0,EXP O, DFT - e
p® = EPF = TsPH — 3 (BPF-TsPH) WO = HOEXP + g P
State of interest Reference states Experimental potential  DFT error computed on a
(e.g., Li,O) (e.g., 2xLi and O) of ag species (e.g., Lif)  solid material (e.g., Li,O)

Use these potentials in conjunction with Nernst equation to obtain most stable phases

[Reactants] + H,O «—— [Products] + mH* + ne-
-NFE = AGY%,, + 2.303*RT*l0g(C\cactant/ product) — 2.303*RT*m*pH

In this work: used the atomic simulation environment (ASE) Pourbaix function (assume all
dissolved species have a concentration of 10-¢ M) with computed p° values.

1. Persson et al. (2012). Physical Review B. 85. 235438
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awcmone RIS 5 P
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to simulate! > ) Spec‘lfically adsorbe!i?ﬁon
x! xl (O = Solvent molecule
v ﬁ"q_ Applied potential shifts the
r © T . Fermi level (average energy
(e Potental e — of available electrons @ 0K) of
[_ CATHODE o of lectons | the electrode?
Electron T _ ¥

transfer (non-
equilibrium)

1. Akhade, Sneha A., et al. Catalysis Today 288 (2017): 63-73.
2. Bard, Allen J., Larry R. Faulkner, and Henry S. White. Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022.
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Compuvutational Hydrogen Electrode (CHE) ¥E R

G5 = Gp- "" M+ T He,

This reaction is in equilibrium
(analogous to the Reversible
Hydrogen Elecirode)

We use the
Computational
Hydrogen

Electrode (CHE) O

REF ELECTRODE

CATHODE 1/2 GH2 = Uy + Moo

1. Akhade, Sneha A., et al. Catalysis Today 288 (2017): 63-73.
2. Bard, Allen J., Larry R. Faulkner, and Henry S. White. Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022.
3. Narskov, Jens Kehlet, et al. The Journal of Physical Chemisiry B 108.46 (2004): 17886-17892.
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CHE helps just with reaction energies N=|Naroa
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We simulate a series of Proton-Coupled

Rethink the initial state

Q Q Electron Transfer (PCET) steps
m) Reservoir AG =Gy - Gpu + Py + Ho. + nel
O Q O lFm}AL' | INITIAL | lAPP'LIED'
STATE STATE POTENTIAL BIAS
AH,
Simulate o AR -
= this < i Py
A U,
[ CATHODE ] —
e e e . The Limiting Potential (U,) is equal to AG,,,, /€ ... the
e e » Reservolr min potential one must supply for the reaction to be
thermodynamically favored

1. Narskov, Jens Kehlet, et al. The Journal of Physical Chemisiry B 108.46 (2004): 17886-17892.
2. Oberhofer, H., (2018), “Electrocatalysis Beyond the Computational Hydrogen Electrode”, In: Andreoni, W., Yip, S. (eds) “Handbook of Materials Modeling”. Springera
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a) R-Bi,05(201) b) a-Bi,0,(120) c) Bi (1012)

a)  sn,0, (100) b) Sn,0, (100)

d) Sn0, (110) e) SnO (001) f) Sn (200)
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Coverage on Bi N=|NanionaL
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SnO, strong H binding: generating a vacancy

SnO, is readily reduced to form H,O

Surface + H,(g)

S
3 0.0
o 0
J Surface
-1 Vacancy +
| o H,0()
] i : SR A -2.4
_3 : T
0 1 2
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Half cell reactor studies
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CO, electroreduction
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Gas-fed flow electrolyzers can convert CO, at ambient conditions

T
e |
| | |
co,
o o
> >
SPl o ¢ | S
sEY > s/ 2y 5 | Oxygen
2= 2 9 5 42 Evolution
4] :l:"asca: .
v a8l o g < 8} =5 Reaction
= %) %)
O O O
o lia O
S
o

1. Shinet al. (2021), Nature Sustainability, 4, 911-919
2. Nitopiet al. (2019), Chemical Reviews, 119, 7610-7672
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CO,+ 2(H* + &) — CO + H,0
CO,+ 2(H* + &) — HCOOH c

More electron
transfer steps

CO,+ 8(H*+e) —» CH, + 2H,0O
2CO,+ 12(H* + &) —» C,H, + 4H,0
2CO,+ 14(H* + &) —» C,H, + 4H,0
3CO,+ 18(H* + &) — C;H,OH + 5H,0 vOnIy Cu-based
catalysts?




Effects of feed concentration on CO,RR selectivity [N=|tanonat
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Gas-fed flow electrolyzer: CO,RR experiments!
CO, dilutedin N, | fixed current density at 100 mA/cm?

sno T T T T T T T T T T
|- co mEH, T Hcoo" 1

O $nO, : high formate yield

o

mixed oxidation state:
highest formate yield

Raman Intensity

Faradaic efficiency (%)
[@))]
o

40 - .
20 i
0 e
10 20 30 40 50 60 70 80 90 100 Sn: ~ Raman Shift
Feed composition (vol% CO,) low formate yield
CO, inlet concentrations impact product Partially oxidized Sn reported as
selectivity in gas-fed flow electrolyzers the most selective phase?

1. Van Daele et al. (2022), Journal of CO2 Utilization, 65, 102210
2. Dutta et al. (2015), ACS Catalysis, 5, 7498-7502
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