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Abstract—In recent years, a variety of Graph Neural Network
(GNN) and Natural Language Processing (NLP) techniques have
been proposed for binary analysis tasks including assembly
embedding generation and binary similarity. However, a ma-
jority of these techniques were developed and tested on rather
restrictive datasets or tasks, generally limited to one compiler,
a limited number of compiler flags, and a small or artificially
augmented dataset ill-suited for the semantic understanding of
binaries required to generate a software bill of behavior. To
that end, we have scraped a new programming competition
dataset an order of magnitude larger than previous largest
datasets, as well as designed a novel GNN architecture tailor-
made for Control Flow Graph (CFG) analysis. We achieve over
92% accuracy on a complex 8000+ class programming problem
classification task and perform extensive ablation studies showing
the increased efficacy our model architectures provide and the
necessity of proper dataset construction and deduplication for
generalizability. We pre-train our models on an embedding task
designed to improve our models’ semantic understanding of
binaries and showcase their ability to group similar binaries
together by behavior. Finally, we train our model as-is on a
popular malware benchmark dataset and achieve near state-of-
the-art performance with little effort: 99.23% accuracy on the
Microsoft Malware Classification Challenge (Big 2015) dataset.
Our data preparation tools are open-sourced, well-documented
and tested, and pip-installable.

Index Terms—Malware, Graph Neural Networks, Natural
Language Processing, Malware Classification, Machine Learning,
Deep Learning, Control Flow Graphs

I. INTRODUCTION

Practical software analysis on modern computing systems
often only involves compiled binaries without access to the
associated source code (e.g. commercial software, firmware,
device drivers, malware, etc.). As such, the field of binary
analysis has become pivotal to ensuring safe and effective
usage of such software in user environments. Binary analysis
techniques are utilized for tasks such as bug hunting [1],
[2], malware analysis [3], and software theft detection [4].
Recent machine learning techniques have opened the door to
automatic generation of a Software Bill of Behaviors (SBOB)
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for binaries - a list of behaviors that a given binary exhibits.
Accurate SBOBs would be an invaluable tool for cybersecurity
professionals as it would automate much of the laborious and
convoluted task of reverse engineering a binary.

Motivated by advances in graph and natural language pro-
cessing techniques, there has been much focus on modeling
techniques that represent the binaries as directed graphs, such
as function call graphs (FCGs) or control-flow graphs (CFGs),
with complex ”natural language” metadata living on graph
vertices (representing the functions or basic code blocks).
These relational and natural language-like data formats, along
with improvements in deep learning, provide a firm basis on
which to ground behavior identification techniques.

Analyzing binaries presents a fundamentally different and
often more difficult challenge than that of analyzing source
code. Much information is lost during the compilation process
including exact object types, function descriptors, variable
names, comments, and clear delineation between functions.
It is possible to reconstruct some of this information, how-
ever compilation is a fundamentally lossy operation in gen-
eral. Modern compilers utilize various optimizations that can
change control flow of the resulting binaries. For example,
entire sections of code may be deleted if found to be unnec-
essary during compilation. Function inlining can drastically
change code structure and ruin the clear abstractions and
organization of well-written code [5]. Loops can be entirely
replaced with SIMD instructions. Constant values can be pre-
computed during compile time. Instructions can be rearranged
to make better use of pipelining and cache memory.

Traditional approaches used deterministic algorithms to
solve binary analysis tasks including graph isomorphism, sym-
bolic execution, and theorem proving techniques [6], opcode
frequencies [7], and locality-sensitive hashing techniques [8].
Recent methods tend to make use of machine learning (ML),
especially neural networks, and show improved performance.
Some approaches model binaries using more traditional ma-
chine learning algorithms such as Support Vector Machines
(SVM) [1], random forests [9], or clustering [2]. Others use
more complex neural network models including Recurrent
Neural Networks (RNN) [10], [11], Convolutional Neural



Networks (CNN) [12], and Graph Neural Network (GNN)
models [13], [14], [15]. Instruction embedding generation
is often a focus with methods including word2vec-like [16]
models [17], [18] as well as the more recent transformer-
based methods [19] and BERT-like [20] methods [21] [22]
[23]. Some methods [24], [25] combine both transformers and
GNN models to make use of both sequential token information
and graph structure. IU Haq and J Caballero provide a great
overview and survey of techniques in the field of binary
similarity in [26].

However, many of these techniques are trained on datasets
containing either few datapoints relative to model size, or a
significant amount of likely similar or duplicated data. Datasets
are often constructed from a small number of original binaries
compiled only with various optimization levels. This increases
the likelihood of neural network ’memorization’ - when the
models overfit on non-generalizable artifacts specific to the
training data. All binary data will require some level of
preprocessing and normalization to combat out-of-vocabulary
(OOV) problems, however there has been little work di-
rectly comparing assembly tokenization and normalization
techniques. Assembly embedding generation is common and
a powerful tool for helping models learn token semantics,
but few compare assembly embedding model architectures for
use in binary analysis models. Trained models are often task-
specific requiring full retraining to apply to new tasks. Few, if
any, methods in the literature have the data and labels to train
unsupervised models that can learn general binary semantics
and behaviors.

To this end, we propose and implement a novel binary
analysis ML pipeline capable of processing millions to billions
of binary artifacts and able to employ combinations of several
NLP and GNN advancements that have shown promise in the
recent literature. We perform extensive testing and ablation
studies to give insight into the more efficacious alterations to
binary analysis models, and train our models on a complex
binary similarity task designed to learn binary semantics and
behaviors as opposed to just syntactics. First, we scraped
an extremely large dataset from the popular programming
competition website Codeforces [27], which is an order of
magnitude larger than the next largest programming com-
petition dataset we could find [28]. Second, we developed
open-sourced tools designed to handle binary analysis data
and remove much of the burden of compiling, analyzing, pre-
processing, and normalizing binaries, followed by packaging
them in convenient data structures for ML processing. Third,
we build a framework for training GNN and NLP models
with fidelity at the assembly line, basic block, function, and
full binary levels simultaneously. We pre-train these models
in a task-agnostic way, followed by fine-tuning, and perform
ablation studies on hyperparameters and model architectures.
Lastly, we train our models as-is on the Microsoft Malware
Classification Challenge (Big2015) dataset [29] as a means of
comparison.

Fig. 1. Proposed work flow for binary modeling.

A. Contributions

We make the following contributions:

(a) We develop and implement scalable dataset curation
and postprocessing tools for binary analysis artifacts
and share them with the research community via open
sourcing.

(b) We use these tools to cultivate and train models on
a large, labeled binary analysis dataset comprised of
programming competition submissions.

(c) We apply a unique CFG modeling approach capable of
producing expressive pre-trained and fine-tuned models.

(d) We perform extensive evaluation and ablation studies to
measure the efficacy of the models and to better under-
stand which model components provide greater quality
improvements.

(e) We train our final model as-is on the Big 2015 malware
dataset as a means of comparison and achieve near state-
of-the-art performance out of the gate.

B. Background

Function Call Graph. A Function Call Graph (FCG) is
a directed graph Gf = (Vf , Ef ) with vertices Vf (functions)
and edges Ef ⊆ Vf×Vf where an edge (f1, f2) ∈ Ef denotes
a directed function call edge from function f1 to function
f2. These provide a high-level overview of the structure of a



Fig. 2. Simple example of hierarchical graph representations of a binary.

binary, but are missing much of the fine-grained detail useful in
training machine learning models on binary analysis artifacts.

Control Flow Graph. A Control Flow Graph (CFG) is text-
attributed directed graph Gb = (Vb, Eb) showing control flow
through a binary. It has a set of vertices Vb (also called ’basic
blocks’) and a set of edges Eb ⊆ Vb × Vb where an edge
(b1, b2, η) ∈ Eb denotes a directed edge from block b1 to
block b2 with an edge type η ∈ Z+. Vertices are uniquely
determined by their memory address and are attributed with
textual information in the form of a list of string assembly
instructions. After preprocessing, a vertex b will contain an
nb-length sequence of integer tokens Tb = (t

(b)
1 , t

(b)
2 , ..., t

(b)
nb ).

Edges can come in two types: ’normal’, and ’function call’.
Word2Vec. Given a large corpus of sentences (token se-

quences), words (tokens) can be embedded into a semantic
vector space using word co-occurrence within context win-
dows (local token subsequences of fixed length). In [16],
authors develop two novel architectures: continuous bag of
words (CBOW), which trains word prediction based on the
few words before and afterwards, and skip-gram, which trains
prediction of few words before and after based on each word.
Previous authors utilize this approach to embed assembly [18],
opcode [17], and basic blocks [?].

Each token is given an initial random shallow embedding
vector. For some token at index t in a sentence, the surrounding
w − 1 tokens (w being the odd window length) have their
embeddings summed and sent through a single linear layer
to predict which token is actually present at index t using a
softmax activation function. Errors are propagated backwards
to the initial embedding vectors to learn useful embeddings.

BERT. By pre-training transformer encoder models on
semi-supervised tasks, the authors in [20] produce pre-trained
models able to be fine-tuned in later sequence learning tasks,
and achieve state-of-the-art performance on common NLP
benchmarks. They introduce two pre-training objectives: 1)
the Masked Language Model (MLM) and 2) Next Sentence
Prediction (NSP). For the MLM task, tokens in the sequence
are randomly replaced with a ’[MASK]’ token, and the model
is trained to predict which token was originally present in
that location. For the NSP task, the model is presented two
sentences (along with information about which tokens corre-
spond to which sentences) and is trained to predict whether
the second sentence immediately follows the first sentence

somewhere in the corpus. These models are trained on vast
amounts of data with intensive compute resources. This allows
the models to learn general aspects of token semantics and
sentence structure which can then be fine-tuned later with far
fewer resources and time required than training from scratch.

Graph Neural Networks. GNNs have been gaining in
popularity recently, with one of the more recent and effective
architectures being the Graph Attention Network (GAT) [30].
Our models are based on a GAT approach. At each time step
(layer), each node gathers the current embeddings from all
of its neighbor nodes. The node then applies a multi-headed
attention mechanism to those embeddings, and combines that
output with its own embedding from the previous time step. A
nonlinearity is applied to produce that node’s new embedding
for the current time step. This is repeated once for each ’layer’
in the GAT. A GAT with k layers utilizes k-hop neighborhood
information.

II. DATA

The collection of binary analysis data for machine learning
generally follows a similar workflow: gather source code,
compile various ways, analyze with static analysis methods,
and convert analysis artifacts into ML-ready formats. To this
end, we have developed an open-sourced Python tool to
help automate this process for binary analysis researchers.
We then performed a large scraping of the Codeforces [27]
programming competition website and sent that data through
our compilation and analysis pipeline to generate training data
for our models.

Fig. 3. Our data curation pipeline.

A. BinCFG (ML-Ready CFGs)

BinCFG [31] is a Python tool designed to parse ana-
lyzer outputs, tokenize and normalize the assembly lines,
and convert that data into ML-ready formats. It can auto-
matically parse the outputs from ROSE [32], and has an
interface for users to build their own CFGs to make use of
outputs from other binary analysis tools. This will produce
an easily traversable Python object containing information
on the functions, basic blocks, assembly lines, edges, and
metadata. One can then tokenize and normalize assembly
lines using one of the built-in normalization methods based
on literature, or easily create new normalizer classes to user
specifications. Finally, these can be converted into memory
and space efficient representations suitable for scalable graph
learning implementations.



B. Data Curation

Real-world collections of binaries are challenging to train
statistical models for many reasons, including (i) a significant
percentage of the artifacts may not compile, (ii) artifacts
may have an alarming number of near-duplicates, and (iii)
the lack of discrete labels covering complex compiled binary
relationships

To address these problems, we scraped 125 million submis-
sions to over 9000 problems from the Codeforces program-
ming competition website [27], along with associated meta-
data. Of those, around 100 million are C/C++ and compilable.

This metadata provides some important mitigation for (iii),
especially with regards to binary similarity as all submissions
can be labeled based on the problem to which they were
submitted. One can assume that, after some deduplication of
problems, submissions to the same problem should be consid-
ered ’similar’ and those to different problems ’dissimilar’. We
perform a deduplication of problems initially by comparing
histograms of character frequencies in problem descriptions,
removing duplicates above a threshold, and manually in-
specting those at or near the boundary to ensure accurate
deduplication.

With respect to (i) and (ii), we compile all 100 million
C/C++ compilable submissions on HPC using our compilation
pipeline CAP (Compile. Analyze. Prepare.) [33], and aim
to remove duplicate source code artifacts. All source codes
were compiled with GCC’s g++ compiler, version 12.1.0, to
x86 64 with ’-O3’ optimization using the ”g++-12-multilib-
i686-linux-gnu” multilib cross compiler within a singularity
container running Ubuntu version 22.04. The code is then an-
alyzed using ROSE’s ’bat-ana’ and ’bat-cfg’ tools to produce
the CFGs running ROSE version 0.11.145.0.

If the source code input is truly identical, then this is
an easy situation to resolve by hashing the source code or
binaries. However, in practice two essentially identical CFGs
often result from two codes with different comments, variable
names, orders of passages of code removed by compiler
optimizations, and other compiler transformations that remove
source code discrepancies. One simple approach for dedupli-
cation is building an opcode histogram for each binary. A more
involved class of techniques involves building a CFG for each
binary artifact and computing relatively inexpensive statistics
involving the CFG topology.

For this purpose, the BinCFG tool will build a vector
containing: graph-level stats (number of nodes, functions, and
assembly lines), histograms of node degrees and sizes (number
of assembly lines at each node), histograms of function degrees
(in the function call graph) and sizes (number of nodes in
each function), and histograms of assembly tokens. We used
a normalization method that replaces immediate values with
’#immval#’, replaces general registers with ’#reg#X’ where
’X’ is the size of that register in bytes, and replaces call
instruction operands with ’#innerfunc#’, ’#externfunc#’, and
’#self#’ for function calls within the binary, external calls
to dynamically loaded functions, and recursive calls, respec-

tively. These normalizations remove much of the extraneous
information that is likely to not change binary functionality
(memory addresses, generic registers) while keeping much of
the important assembly line information. This results in a set of
over 100 million 15,000-dimensional graph statistics vectors.

We then generate subsets of this data based on these
graph statistics by selecting some number of submissions
per problem based on which CFGs are most ’distant’ from
one another in a greedy fashion. We randomly select one
starting datapoint and greedily add datapoints that maximize
the minimum manhattan distance between any two CFG graph
statistics vectors within the current group at each step until the
specified number of datapoints is reached.

C. Size Restrictions

Due to the complex nature of programs and compilers,
CFGs have almost no guarantees about the size of CFG
components and statistics. Within our Codeforces dataset, we
have found basic blocks containing over 150,000 instruc-
tions due to loop unrolling, functions with 27,000 nodes,
and binaries with over 4500 functions. Using this data as-is
would create troubles for GNN models including overfitting,
over-smoothing, and high memory usage for backpropagation
passes. To mitigate these problems, we enact some size
restrictions on our input data.

Assembly instructions are limited to 256 per node. This
limit applies to the number of tokens, not necessarily the num-
ber of instructions (depending on the normalization method
used). For any nodes with more than 256 assembly tokens,
we create a new token ’#large block#’ to designate that
block as one with too many tokens. We concatenate together:
[’#large block#’, the first 127 tokens, ’#large block#’, the last
127 tokens]. Our intuition is that this gives the model 1) the
notice that this is a large block and assembly instructions are
missing and 2) information from the beginning and end of the
block so inter-block sequences can be partially reconstructed.

Aggregations are limited per aggregation such that:

• Nodes aggregated into function embeddings are limited
to 256 (2% of CFGs affected)

• Functions aggregated into binary embeddings are limited
to 256 (0.7% of CFGs affected)

• Edge aggregations are limited to 256 (no effect on any
CFGs or FCGs)

For any aggregation that had too many sub-units, a random
subset of the max size of sub-units were selected before
each epoch. If, for example, a function had too many nodes,
we would artificially remove the ’connection’ between some
nodes and that function such that it only has 256 nodes
(the maximum allowed) during its aggregation. Those nodes
would still exist in the graph during message passing; it is
only the function’s aggregation which would no longer see
those removed nodes. These selections were made on a per-
epoch basis so future epochs working with the same CFG may
select a different subset of sub-units during training for their
aggregations.



D. Big 2015

In order to compare our models with other state-of-the-art
techniques, we also include tests on the Microsoft Malware
Classification Challenge (Big 2015) hosted on Kaggle [29].
This dataset is a collection of 9 different malware classes
with both their raw bytes (minus PE file header) and IDAPro
disassembly provided. We parse only the assembly lines from
the IDAPro output and build them into CFGs to showcase
BinCFG’s usefulness on other (non-ROSE) data sources.

We increase the aggregation limits on these binaries to 512
(for all node, edge, and function aggregations) to use more of
the binary as these binaries were on average noticeably larger
than Codeforces binaries.

E. Datasets

We build subsets of data which are used to train our models:
• rand100 - select 100 examples per problem in Codeforces

uniformly randomly
• dist100 - select 100 examples per problem in Codeforces

using the algorithm in II-B to select the 100 most ’distant’
examples

• Big2015 - the Microsoft Malware Classification Chal-
lenge (Big 2015) training dataset consisting of 10868
datapoints

Both the rand100 and dist100 comprise of approximately
850k unique submissions, each of which is then compiled to
x86 64 once with GCC’s g++ compiler version 12.1.0 using
’-O3’ optimization, and once with a random compiler (either
gcc or g++, where applicable depending on the programming
language used in the submission), random compiler version
(7.5.0, 8.4.0, 9.5.0, 10.3.0, 11.3.0, 12.1.0), and random -O[’0’,
’1’, ’2’, ’3’, ’s’, ’g’, ’fast’] optimization. These were compiled
with the ’g++-X-multilib-i686-linux-gnu’ apt package (where
’X’ is the major version number) within a singularity container
running Ubuntu version 22.10. This results in around 1.7
million total datapoints per dataset.

III. METHODOLOGY

This paper sets out to answer the following research ques-
tions:

• RQ.1 Basic Block Embedding. What techniques are best
to embed assembly instructions within basic blocks?

• RQ.2 GNN Architecture. Do more complicated GNN
architectures improve performance over base models?

• RQ.3 Dataset Deduplication. How important is dataset
deduplication before training?

• RQ.4 Spatial Embedding and Pre-Training. Can we
train models to embed CFGs close in space when they
are semantically similar, thus providing an initial attempt
at a software bill of behavior?

A. Tasks

We test our models primarily on predicting which unique
problem a Codeforces submission’s CFG belongs to, dubbed
the ’problem uid prediction’ task. Our models are tested on

this task first in order to determine ideal hyperparameters and
model architectures to use.

For spatial embedding, models attempt to minimize a
distance metric between binary-level embedding vectors of
Codeforces submission CFGs belonging to the same unique
problem, and maximizing the distance between those of dif-
ferent problems. This allows the model to learn semantic
similarity as authors find new and unique ways to solve the
same problem, and those examples are compiled in various
ways generating semantically similar but very syntactically
different code samples. We also show this model could be
used as an initial pre-trained model that can then finetune on
Codeforces problem identification far faster than without pre-
training.

B. Pre-Trained Embeddings

RQ.1 involves testing multiple assembly embeddings tech-
niques on the problem uid prediction task. To do this, we pre-
train Word2Vec and BERT models on the assembly within
CFGs. These NLP models are trained on random walks of
assembly instructions following control flow within the CFG.
The process slightly differs between Word2Vec and BERT.

Word2Vec Sentence Generation: To generate sentences
for Word2Vec models, we perform random walks through
the CFG starting at random blocks and following directed
control flow edges. The assembly instructions at each block are
concatenated together to form the final sentence. We enforce
a maximum sentence length of 128 tokens.

BERT Sentence Generation: The process for generating
BERT sentences follows the sentence generation method of
the original BERT paper closely. We perform random walks
through the CFG starting at random blocks and following
control flow until we reach a ’target length’ of contiguous
tokens. The ’target length’ defaults to the maximum length of
a full BERT input (256 tokens), however there is a 10% chance
we will instead use a uniform random target length in the range
[2, 256]. Sequences with < 2 tokens are dropped. We then
attempt to randomly partition these sequences on basic blocks
into two sentences A and B such that each sentence contains
at least one basic block, and at least 1 token. If this can’t be
done (such as when only one basic block was returned in the
sequence), we partition the tokens randomly such that each
sentence has at least 1 token. There is then a random chance
(50%) that we replace sentence B with another randomly
chosen sentence from a different CFG generated with the same
random walk technique. This provides the two sentences for
BERT’s Next Sentence Prediction (NSP) task.

We then mask tokens within the sentences, with a 15%
chance to mask any token up to a max of 20% of the tokens
within any one sentence being masked. There is an 80%
chance that a masked token is replaced with the ”[MASK]”
token, a 10% chance it is instead replaced with a random token
in our lexicon, and a 10% chance it is left unaltered. These
operations produce the data for the Masked Language Model
(MLM) BERT task.



Finally, BERT inputs are generated by concatenating
”[CLS]” token + sentence A + ”[SEP]” token + sentence B +
”[SEP]” token, and padded with a ”[PAD]” token out to the
full 256-token length.

NLP Model Hyperparameters: Word2Vec models use the
Continuous Bag of Words (CBOW) architecture with a hidden
dimension of 128 and window size of 11. BERT models have a
maximum sentence length of 256, a hidden dimension of 128,
4 transformer layers, 8 attention heads, and use a dropout of
0.1. Both models use the Adam optimizer with the default
initial learning rate of 0.001.

C. Model Architecture
Symbol Description
Lt GNN layer at index t

Aggttype Aggregation function for type at layer t
Ut
type Update function for type at layer t
hd Hidden dimension of our model

Ntype Number of elements of a given type

F t
type Feature matrix ∈ RNf×hd for type at layer t

F̂type The final embeddings matrix for type
Ctype ’Connections’ matrix ∈ {0, 1}No×nf

n Regarding the type of nodes
f Regarding the type of functions
b Regarding the type of binaries
a Regarding the type of assembly tokens
c Regarding the type of function call graph
l Regarding the type of GNN layers

[·, ·, . . . ] Concatenation of matrices column-wise

Our base GNN model consists of one or more hierarchical
GNN layers L0, L1, ... similar to [15]. Each GNN layer per-
forms a hierarchical set of message passings and aggregations
for a layer t at the basic block, function, and binary level:

F t
n = U t

n([Aggtn(F
t−1
n , Cn), F t−1

n ])

F t
f = U t

f ([Aggtf (F
t
f , Cf ), F t−1

f ])

F t
b = U t

b([Aggtb(F
t
b , Cb), F t−1

b ])

The initial node embeddings are determined by aggregating
token embeddings for each node:

F 0
n = Ua(Agga(Fa, Ca))

The final embeddings at the node, function, and binary level
are simply the last hidden states:

F̂type = FNl
type

Where an element cij = 1, c ∈ Ca if node i contains the
token embedding at index j, cij = 1, c ∈ Cn if there is a
directed edge from node i to node j, cij = 1, c ∈ Cf if
the node at index j belongs to the function at index i, and
cij = 1, c ∈ Cb if the function at index j belongs to the binary
at index i. The initial token embeddings Fa are computed in
a variety of ways based on the test being performed: from
word2vec-like embeddings, BERT embeddings, or a shallow
learned embedding.

Aggttype(F,C) is an aggregation function that, for each
element in F , will aggregate all other elements in F that
are ’connected to’ that element, as determined by C. U t

type

is an update function meant to introduce a nonlinearity. For
simplicity, we use the same Agg and U for each model, though
they will use different learned parameters for each type/layer.
Agg is a Simple Attention Mechanism (see below), and U is
a single learned linear layer with a ReLU nonlinearity.

If we were only using one CFG per batch, then Cb would
consist of all 1’s. However, our current formulation allows
for the ability to ’stack’ together multiple binaries at a time
to perform mini-batching during training. We concatenate
together connections matrices diagonally such that elements
from one binary will not interfere with those from another, and
use Cb to designate which functions belong to which binary
within a batch.

Simple Attention: This attention mechanism computes a
simple multi-headed attention on a matrix of features F ∈
RNfeat×d, and a ’connections’ matrix C ∈ RNobj×Nfeat where
cij = 1 if the object at index i ’connects to’ the feature at
index j within F . This is a general attention mechanism that
reduces along a dimension and can be used to perform one or
more different aggregations within models.

For each ’object’ (row in F ), we use a multi-headed
simple attention attention mechanism to aggregate all feature
vectors from F that ’connect to’ that object, as designated by
C. This process is repeated for all objects to produce new
embedding vectors. In practice, we vectorize these operations
using PyTorch sparse tensor operations.

Shallow Embeddings and Positional Encodings: For some
experiments, we make use of a shallow learned embedding
layer instead of pre-trained NLP embedding methods. Op-
tionally, we insert positional encodings into the assembly
embeddings within each node. We implement the same sinu-
soidal positional encoding scheme to those used in the original
transformer paper [?]:

PEp,i =

{
sin(p/10000i/d), i is even
cos(p/10000(i−1)/d), i is odd

Tn,p = Eemb(n, p) + PEp

Where Tn,p is the final pre-aggregation token embedding for
the token at index p within node n, Eemb(n, p) is the current
learned shallow embedding for the token at index p within
node n, and PEp is the full positional encoding vector for the
position p.

Skip Connections and Jumping Knowledge: For some
experiments, we add skip connections to the initial node
features and jumping knowledge into the models. We theorize
that the assembly at each node plays a pivotal role in model
efficacy, and that having direct connections to those unaltered
initial assembly embeddings (rather than having to retain
information through layers) will boost performance. When
using jumping knowledge, the final node, function, and binary
embeddings instead become the mean of all of the embeddings
from previous layers:



F̂type =

∑Nl

t=1 F
t
type

Nl

Adding skip connections changes the updating of node
hidden states:

F t
n = U t

n([Aggtn(F
t−1
n , Cn), F t−1

n , F 0
n ])

FCG Neighborhood Aggregation: For some experiments,
we introduce an FCG neighborhood aggregation step to the
function hidden state update within each layer.

ht
f = Aggtf (F

t
n, Cf )

F t
f = U t

n([h
t
f , F t−1

f , Aggc(h
t
f , Cc)])

Node Function Call Information: Node hidden state
updates can optionally be supplemented with function call
information. When a node calls another function, that func-
tion’s hidden state from the previous layer is concatenated
to the node’s values immediately before the update linear
layer that produces that node’s embedding. If a node does
not call a function, we instead concatenate a learned ”No
Call” embedding Enc. If the node’s call location could not
be parsed by the binary analysis tool, then we assume the
”No Call” embedding. If a node calls multiple locations (e.g.
using a call table), then we pick the first function present as
the embedding to use.

F t
n = U t

n([Aggtn(F
t−1
n , Cn), F t−1

n , Et
n])

Et
n =

{
F t−1
f,i , if the node calls the function at index i

Enc, if the node does not call any function

Bidirectionality: One improvement we propose in this
paper is the use of a bidirectional GNN. Our CFGs are
directed, however they are quite sparse (most nodes having
< 3 outgoing edges and < 2 incoming edges) leading to
few edges for the network to learn. On the other hand,
converting to undirected graphs may lose useful directional
information for training. We propose a bidirectional GNN
which uses two separate layers during each node or function
neighborhood aggregation: one to learn (Hf , Aggttype, U

t
n) -

the ’forward’ direction following program execution, and one
to learn (Hb, Aggttype, U

t
n) - the ’backward’ direction working

with the transposed connection information CT
type. These are

then averaged to produce the final node/function embedding
in that layer.

Hf = U t
type([Aggttype(F

t−1
type, Ctype), F t−1

type])

Hb = U t
type([Aggttype(F

t−1
type, C

T
type), F t−1

type])

F t
type =

Hf +Hb

2

D. Implementation

These models are implemented in Python 3.9 using PyTorch
2.1 and are trained on 2 NVIDIA A100 GPUs.

TABLE I
RQ.1 BASIC BLOCK EMBEDDING METHOD PERFORMANCE
BEST PERFORMANCE IN EACH COLUMN MARKED WITH bold.

Embedding Method

Self Word2vec BERT

Normalizer Acc F1 Acc F1 Acc F1
deepbindiff-inst 0.690 0.672 0.601 0.586 0.614 0.598
deepbindiff-op 0.467 0.464 0.540 0.529 0.558 0.543

deepsemantic-inst 0.728 0.710 0.633 0.616 0.641 0.626
deepsemantic-op 0.583 0.571 0.565 0.552 0.589 0.574

innereye-inst 0.682 0.668 0.496 0.499 0.540 0.535
innereye-op 0.684 0.667 0.600 0.586 0.610 0.594

safe-op 0.711 0.695 0.638 0.623 0.669 0.654

IV. EXPERIMENTS

All experiments (except for RQ.3) are performed on both
rand100 and dist100 datasets combined (RQ.3 trains on one
or the other, then tests on both). Models are trained to predict
which problem a given CFG is from. There are 8016 ’unique’
problems with > 1 valid submission in these datasets, creating
an 8016-class classification task for our models to solve. The
data is split into 80% training set, 10% validation set (on which
all RQ’s are tested), and a final 10% test set which is used to
show final performance. Models are trained for 1500 epochs
using 16,000 CFGs per epoch and a batch size of 64.

A. RQ.1 Basic Block Embedding

We test 4 different assembly line normalization methods
based on deepbindiff [34], innereye [35], safe [10], and
deepsemantic [23]. We followed what was outlined in their
respective papers as closely as possible, using code as guid-
ance (when available), implementing our own version so they
can be tested in a common framework and contain necessary
specifications for uncommon assembly lines.

For each of those normalization methods we test 3 embed-
ding methods: a self-learned shallow embedding, pre-trained
word2vec-like embeddings, and pre-trained BERT embed-
dings. See Section III-B for embedding method descriptions.

Finally, for each configuration, we test tokenization both at
the instruction level and at the opcode/operand level. When
tokenizing at the instruction level, normalizations are applied
to all opcodes/operands then all opcodes/operands within an
instruction are concatenated together to form the final token.
Otherwise, each opcode/operands constitutes its own token
post-normalization. We do not test the safe-inst method as
it produces far too many tokens to be feasible (and, generaliz-
able), generating millions of tokens due to its lax normalization
scheme.

For these 21 tests, we used a hidden dimension of 128,
3 GNN layers, and the simple attention mechanism with 8
heads as the aggregation method for all aggregations. All other
specialized architecture additions are turned off.

Table I shows the results of these embedding models.
Instruction-level tokenization performed better than op-level
tokenization for the deepbindiff and deepsemantic normaliza-
tion methods, while innereye performed better with the op-
level tokenization. Across the board, self-learned embedding



TABLE II
RQ.1 NORMALIZER AND EMBEDDING METHOD DATA SIZE (GB)

Embedding Method
Normalizer # Unique Tokens Self Word2vec BERT

deepbindiff-inst 2105 30 833 833
deepbindiff-op 460 76 2900 2900

deepsemantic-inst 17606 30 833 833
deepsemantic-op 723 106 4000 4000

innereye-inst 615799 36 833 833
innereye-op 557 100 3800 3800

safe-op 10556 100 3800 3800

methods had higher or essentially equivalent accuracies and
F1-scores than both the word2vec and BERT embedding
methods, with less expensive training. The best performing
normalization/tokenization technique was deepsemantic-inst.

This embedding/normalization method has added benefits
as instruction-level tokenization reduces the number of tokens
per basic block, and self-embedding requires no pre-training
nor embedding of assembly instructions, drastically reducing
the storage space (see Table II) and time required to generate
data. The deepsemantic-inst normalization method maintains
a good balance between reducing the vocabulary size while
keeping enough useful information for the models to train on.

B. RQ.2 GNN Architecture

We perform ablation studies targeting 1) model architecture
and hyperparameters, and 2) complexity of input data. We
start with a model using the parameters: hidden dimension of
256, 3 GNN Layers, bidirectionality, simple 8-headed atten-
tion mechanism, function call graph embedding aggregations,
positional encodings on assembly lines, initial node feature
skip connections, jumping knowledge, and node function call
information.

Figure 4 shows the ablation study results. Most ablations
show a degradation in accuracy and F1-score implying the
utility of our model architecture choices.

When looking at the complexity of the input data, we start
with the same model as was used at the start of the initial
ablation studies (however, using an ’undirected’ model). We
test three alterations to input data and model architecture: 1)
removing graph topology, treating everything as a ’bag-of-
nodes’ or ’bag-of-functions’, 2) removing function information
with binary embeddings instead computed from the aggrega-
tion of all nodes within that binary, and 3) removing assembly
line information forcing the models to rely solely on graph
topology.

Table III shows the results of these tests under Ablations
- Dataset Complexity. The models lose a small amount
of performance without function information, a noticeable
amount without graph topology information, and most of their
performance without assembly line information. This indicates
that, while all types of information are useful to the model,
proper assembly line data is vital for model performance.

Fig. 4. Ablation studies described in §IV-B. From left to right: the full
bidirected model, directed model, undirected model, removing positional
encodings, removing function message passing layers, removing node skip
connections to initial node embeddings, removing function call embeddings
from node updates, turning off jumping knowledge, removing previous
hidden states from message passing updates, using averaging as aggregation,
removing function information entirely to instead aggregate node embeddings
into final binary embeddings, using a hidden dimension of 128, and using a
single GNN layer.

C. RQ.3 Dataset Deduplication

Models are trained either on dist100, or rand100, then tested
on the combination of both validation sets for those datasets.
These models use the same architecture as the starting model
for the ablation studies in Section IV-B.

Table III shows the results of these tests under Dist100
vs. Rand100. They have similar accuracies and F1-scores,
however models trained on the dist100 dataset perform slightly
better on both test sets joined together. These results show
that, while deduplication can help train better models, simply
having enough input data and compiling that data in various
ways is still enough to produce decently generalizable models.

D. RQ.4 Spatial Embedding and Pre-Training

Fig. 5. Proposed work flow for binary embedding.



We start with the same model as was used at the start of the
initial ablation studies (however, using an ’undirected’ model).
This model is pre-trained using a triplet loss function (with
margin=1.0) where submissions from the same problem uid
are positive samples, and those from different problem uid’s
are negative samples. The model trains for 1000 epochs on
both the dist100 and rand100 datasets, and are split such that
no two examples from the same problem appear in the same
set.

On the test set, the model achieves a Silhouette score of
0.1198 indicating a decent amount of clustering with some
overlapping clusters present (likely due to the > 8000 clusters
that would be present in the training set). The model has
an accuracy (percentage of triplets with anchor closer to the
positive) of 0.9901 on the test set. We also select some
datapoints to plot using UMAP [36] shown in Figure 6. That
plot shows excellent grouping of samples together, with the
occasional overlap of clusters, as predicted by the Silhouette
score.

Fig. 6. UMAP of pre-trained embeddings from 30 random problem uid’s, 5
samples per problem

This model was also used as a starting point to fine-tune
the problem identification task on. While they had similar per-
formance (0.9198 accuracy, 0.8526 F1-score), the fine-tuned
model trained far faster, starting with a jump in validation
set accuracy The first epoch to achieve > 80% validation
set accuracy was epoch 166, compared to epoch 699 of base
models.

E. Final Performance

We test our best performing model on our final test set and
achieve and accuracy of 0.9923 and F1-score of 0.9824.

We take that same model architecture and train on the
Big2015 dataset with a 70/30 train/test split and train for
20 epochs. Our model achieves an accuracy of 0.9923 and
F1-score of 0.9844. Note that we do include the ’Simda’
malware in our tests; some papers remove that example due
to it having very few examples in the dataset (42 / 10868).
We also rely only on the raw disassembly from the IDAPro
output, not including any information on variables, basic
blocks, functions, data types, etc. produced from IDAPro.
Basic blocks and functions were built manually by checking

TABLE III
MODEL RESULTS ON PROBLEMUID PREDICTION TASK

BEST PERFORMANCE IN APPLICABLE TABLES MARKED WITH BOLD.

Ablations - Dataset Complexity
Removed Information Accuracy F1-Score
graph topology 0.8536 0.7464
function information 0.9053 0.8283
assembly lines 0.1585 0.0877

Dist100 vs. Rand100
Trained Dataset Accuracy F1-Score

dist100 0.9281 0.8675
rand100 0.9190 0.8519

Pre-Trained Model
Accuracy F1-Score

pre-trained model 0.9198 0.8526

Final Performance
Accuracy F1-Score

dist100/rand100 0.9256 0.8625

jump or call locations without any extra static or dynamic
analysis. These results are near state-of-the-art with very little
effort taken to parse/analyze the binaries, and using only basic
CFG information.

V. RELATED WORK

The highest accuracy model we could find at the time
of this paper on the Big2015 dataset was that of HYDRA
[37]. The authors provide an extensive comparison of machine
learning methods both in the literature and developed by
them with their method having the highest combined accu-
racy (0.9975) and F1-score (0.9951). Their technique uses a
multimodal network for extracting and combining data from
various sources including API information, byte sequences,
and opcode sequences. Our models are within one percentage
point and would rank 4th on their list of 27 state-of-the-art
modeling techniques.

VI. CONCLUSION

In this paper, we developed open-sourced tools to aid in
the construction of a new, complex binary identification task
performed on millions of binaries scraped from the Codeforces
[27] programming competition website and compiled various
ways. We implemented novel GNN architectures and trained
those models on this dataset showing > 92% accuracy on an
8016-class classification problem. Our ablation studies show
the utility of our architecture choices including a bidirectional
GNN structure, positional encodings applied to assembly lines
within each node, hierarchical node → function → graph
aggregations, and skip connections. Our tests on assembly
normalization and embedding techniques indicate deepseman-
tic to be an effective normalization scheme, and show no
improvement when using pre-trained assembly embedding
models as opposed to shallow embeddings learned during
GNN training. Ablations involving data input formats show
that, while the graph topology and function information are
helpful to the models, assembly tokens are pivotal to learning
this task. Pre-Training these models to embed binaries by
their problem uid generated distinct clusters defined by binary



behavior, and increased training speed when fine-tuning on
the problem uid prediction task. Finally, we showed that with
little effort, our modeling approach can be applied to another
common binary analysis benchmark achieving near state-of-
the-art performance on the Microsoft Malware Classification
Challenge (Big 2015) dataset.
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