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Executive Summary 
A broad community of climate adaptation 
practitioners, stakeholders and policymakers 
rely on historical reconstructions and future 
projections of local to regional climate. To be of 
value to these users, climate data must be 
credible, salient, and authoritative (Cash et al. 
2002). Namely, data must be consistent with our 
physical understanding of the global Earth 
system, must be relevant for informing the 
decision-making process, and must be backed 
by expert judgment. As more and more data 
products have become available, multiple 
challenges have emerged around the 
production, evaluation, selection, and use of 
these data products. Consequently, to ensure 
crucial decisions leverage the best possible 
historical and future physical climate data, there 
is a pressing need to develop a coordinated 
national climate data strategy that is inclusive of 
all relevant communities of practice. 

In response to this need, the “Understanding 
Decision-Relevant Regional Climate Data 
Projections” workshop was held in-person and 
virtually from November 14-16, 2023, in 
Berkeley, California. This workshop was 
coordinated by the U.S. Global Change 
Research Program (USGCRP) Interagency 
Group on Integrative Modeling (IGIM) and the 
Federal Adaptation and Resilience Group 
(FARG). Participation came from most major 
U.S. federal agencies and their partners who are 
involved in the production and dissemination of 
regional climate data products, including the 
U.S. Department of Energy (USDOE), the 
National Oceanic and Atmospheric 
Administration (NOAA), the National Aeronautics 
and Space Administration (NASA), the U.S. 
Environmental Protection Agency (EPA), 
Federal Emergency Management Agency 
(FEMA), U.S. Geological Survey (USGS), U.S. 
Bureau of Reclamation (USBR), and the 
Department of Defense’s (DOD) Strategic 
Environmental Research and Development 
Program and Environmental Security 
Technology Certification Program (SERDP and 
ESTCP). The workshop brought together a wide 
range of researchers, data producers, end-

users, and interagency representatives to 
understand the current state of the nation’s 
decision-relevant regional climate projections 
and carry that understanding forward to enable 
the development of guidelines for the usage and 
evaluation of such projections. Numerous 
approaches for generating regional climate data 
were discussed, including statistical 
downscaling, dynamical downscaling, hybrid 
downscaling, regionally refined global modeling 
and artificial intelligence. This effort provided a 
forum for sharing knowledge, establishing 
common ground, and moving towards the 
development of a community of practice around 
decision-relevant data. 

The workshop was organized into four sessions 
focused on 1) data production; 2) data use; 3) 
data evaluation; and 4) emerging topics. The 
session on data production featured 10 talks 
from a variety of data producers, representing 
multiple federal agencies and academic 
research groups, followed by breakout sessions 
that sought to frame the needs of a community 
of practice. The session on data use featured 
two panels, each with four panelists presenting 
brief talks on topics related to how they employ 
climate data and their perceptions of gaps 
among existing data products. The session on 
data evaluation again featured two panels, each 
with four panelists presenting brief talks related 
to ascertaining credibility of climate data. The 
final session on emerging topics featured 11 
technically oriented talks on topics related to 
climate data, including bias correction, model 
weighting, ensembles, and performance across 
scales. For each of the first three sessions, there 
was an accompanying breakout discussion 
which featured a mix of participants who 
addressed key questions related to that session 
and the context of the broader workshop theme. 

This executive summary provides a high-level 
synthesis of discussions at the workshop, 
focusing on the outstanding challenges identified 
during the workshop and also potential 
deliverables from a nascent community of 
practice to address these challenges. 
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Challenges for the 
Decision-Relevant Climate 
Data Community 
Building a common vocabulary: In the course 
of the workshop, it became clear that a common 
vocabulary across related communities is 
needed. Terms such as “extreme event” can 
have different meanings depending on the 
needs of particular end-users and the impacts 
they are considering. The workshop itself was 
framed around “decision-relevant” or 
“actionable” data products, but the regional 
extent, spatial resolution, and temporal 
resolution for a product to be considered 
decision-relevant varies depending on the 
decision being made. “Uncertainty” and 
“confidence” also emerged as terms that are 
widely employed in the climate data space, but 
precise, quantitative definitions of these terms 
are rarely provided. 

Filling data gaps: Despite rapid growth in the 
number of climate data products, conspicuous 
gaps remain. For instance, although some 
statistically downscaled products have global 
coverage, higher-resolution coverage of areas 
outside the contiguous United States 
(OCONUS), including Alaska, Puerto Rico, and 
island territories, is still needed. Additionally, few 
high-temporal-resolution (hourly to sub-hourly) 
data products are available even in the 
contiguous United States (CONUS) (not to 
mention OCONUS), despite being needed for 
many applications (e.g., evaluating sufficiency of 
storm sewers and projections of renewable 
energy production). Many opportunities exist for 
addressing these gaps through new simulations 
or innovative downscaling methods. 

Cataloging and characterizing decision-
relevant climate data products: Dozens of 
regional climate data products have emerged in 
the past decade at local-to-global scales. They 
exhibit a variety of spatial and temporal 
resolutions and feature a variety of climate 
variables. However, in the absence of a central 
catalog of data products, end-users and 
researchers have largely relied on word of 
mouth and Internet searches to identify relevant 

data products. Consequently, other, equally 
relevant products have likely been underused or 
unused. A catalog of data products, their 
characteristics, relevant expert guidance, and 
evaluation metrics could benefit all members of 
the climate data community, and enable the 
identification of gaps and synergies among 
presently available products. 

Provisioning common-format, decision-
relevant climate data products: Related to the 
aforementioned challenge of cataloging these 
products, additional challenges exist in 
provisioning these data. Three bottlenecks 
generally stymie data producers interested in 
provisioning their data to a broader audience: 
firewalls at the data source, access restrictions 
and data provisioning support requirements. The 
sheer size of these data products creates 
provisioning challenges that are generally 
beyond the scope of the data producer’s 
expertise and bandwidth. Data archiving and 
distribution portals, such as the Earth System 
Grid Federation and the National Center for 
Atmospheric Research Data Archive, have 
greatly accelerated science through the 
provisioning of relevant climate data sets. 
However, more archival systems (and/or the 
expansion of existing portals) are needed to 
support the variety of products currently being 
used across the community. Opportunities exist 
for leveraging cloud services and/or server-side 
compute to potentially address these needs. 

Avoiding redundancy and leveraging limited 
computational resources: Production of 
climate data products, particularly high-
resolution products generated from process-
based models, generally requires extensive 
computational resources and substantial human 
investments of time and effort to both run the 
models and archive the data. Facilitating better 
communication among data producers could 
identify needs that are addressable through 
coordinated simulations and make better use of 
existing computational resources. For example, 
better lines of communication could make an air 
quality modeler aware of community needs for 
wind power projections, and subsequently lead 
them to include high-frequency hub-height wind 
speeds as a model output. Additionally, the 
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aforementioned identification of gaps among 
existing products could allow the community to 
identify high-priority simulations that have the 
broadest potential value. 

Developing expert analysis and insights for 
data users: The choice of climate data products 
employed for decision-making is often based on 
existing research networks or data availability. In 
general, there is little guidance available to end-
users on whether these products and their 
associated parent climate models meet a 
minimum standard of quality for their purposes. 
Community-developed and supported templates 
for metadata, which could include criteria for 
data documentation and licensing, along with 
requirements for publication of metric scores 
from an established and community-support 
evaluation protocol, and guidelines on best 
practices and/or pitfalls for parent climate model 
and data product averaging and weighting, 
would be helpful for informing decision-makers 
and building confidence in those data products. 
This information would further support data 
selection for widely-used, government-led 
community activities, such as the National 
Climate Assessment and National Nature 
Assessment. An increasing focus of the climate 
data community on “scientific co-production” has 
also highlighted the increasing need for 
researchers and end-users to work together to 
address relevant knowledge gaps, and suggests 
that efforts should be made to identify questions 
about climate data products of greatest 
importance for decision-makers. 

Continuously improving observational 
(training) data products: High-quality 
observational data sets underpin any climate 
data product. Observational data products are 
constructed through various means, generally 
from meteorological station, airborne, or satellite 
observations or a combination thereof. The need 
for continuous improvement arises from the 
sheer number of unconstrained choices made to 
develop a product in terms of gridding and/or 
managing data outages, changes in 
measurement technology, instrument relocation, 
and other requirements to produce (with or 
without homogenization) long-term, high-
temporal-and-spatial-resolution fields. In addition 

to improving these observational products, 
uncertainties around these products need to be 
quantified since they can translate to 
corresponding uncertainties in future impact 
projections. 

Nurturing a cohesive regional climate data 
product community to address these 
challenges: The November 2023 Workshop 
was not the first workshop to address regional 
climate data issues. Many of the topics 
discussed echoed themes of previous 
workshops, but none of them resulted in a 
sustained, coordinated set of research activities 
to address long-standing, and more importantly, 
growing challenges with regional climate data 
and their connections to decision-making. The 
lack of a cohesive community to address the 
challenges discussed in the November 2023 
Workshop was glaringly apparent. Workshop 
participants concluded that a follow-up workshop 
in 12-18 months would allow us to ascertain 
progress and plan for the future. 

Research Needs for the 
Decision-Relevant Climate 
Data Community 
The workshop concluded that substantial near-
term progress could be made in addressing the 
eight challenges above, and laid out several 
potential deliverables that could also support 
longer-term improvements. 

A community of practice: Conversations at the 
workshop highlighted the pressing need to 
ensure that lines of communication remain open 
between data producers, evaluators, and end-
users. A community of practice, involving regular 
meetings and other means of facilitating 
communications between affiliated parties, 
would allow the climate data community to 
evolve to meet the ever-changing needs of this 
space. Beyond improving communication, we 
need to set forth a governance structure, a 
scope of activities, and incentives. These are 
critical for ensuring cohesion for the nascent 
community so that it can achieve and regularly 
measure its progress on the challenges 
identified in the workshop.  
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A common format for decision-relevant 
climate data: Early efforts by the Coupled 
Model Intercomparison Project (CMIP) led to the 
creation of a metadata standard and set of 
common variable names that would ensure 
interoperability of model data. Researchers have 
benefited greatly from this foresight, as most 
analysis tools and workflows can now be rapidly 
applied to model outputs, whether they be from 
Europe, Asia, or North America. Publicly-
available tools such as the Climate Model 
Output Rewriter (CMOR) allow operational 
modeling centers to convert their native model 
outputs to data that conforms to a community 
standard. However, these practices have not 
been widely adopted by the regional climate 
modeling community, leading to workflows 
typically tailored to a particular data product. A 
common framework, decided upon by the 
climate data community, that specifies file 
format, metadata requirements and variable 
naming conventions would accelerate the 
usefulness of decision-relevant climate data. 

A common framework for climate data 
product evaluation: Quantification of the 
performance of climate data products is an 
important step in ascertaining confidence in the 
data for decision support. With no commonly 
accepted standards for climate data evaluation, 
it is difficult to compare climate data products 

and understand issues that may support or 
preclude their use. Consequently, there is a 
substantial and outstanding need for a 
community-developed framework for decision-
relevant climate data product evaluation that 
leverages observation datasets and physical 
principles. Such a framework would identify and 
prioritize metrics, diagnostics, and other criteria 
relevant to the credibility of the data product. 
Providing accompanying expert guidance would 
assist in explaining observed differences 
between data and observations, and support the 
development of new strategies for climate data 
generation. This framework must also 
accommodate and navigate the differences 
inherent in the different types of downscaling 
and bias correction approaches. 

Climate data cyberinfrastructure: 
Cyberinfrastructure to support the climate data 
community could include a maintained catalog of 
climate data products, disk space, and 
bandwidth to support archiving and provisioning 
of climate data and a computing platform for 
server-side analysis of climate data. 
Coordination among agencies could avoid 
redundant investments, ensure greater sharing 
of data, and allow users to avoid difficulties 
associated with accessing data through multiple 
platforms

. 
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1.1 Chapter Summary 
The need for localized, credible, authoritative, 
and accessible climate projections across 
federal, state, and local agencies, as well as 
large swaths of American society, is growing 
rapidly.  Led by the U.S. Department of Energy 
Office of Science and the Strategic 
Environmental Research and Development 

Program (SERDP), several federal agencies 
were brought together to form a steering 
committee to organize a workshop to address 
this need. In conjunction with a team of 
scientists from national laboratories, academia 
and the broader community, the Workshop on 
Understanding Decision-Relevant Climate Data 
Products took place November 14-16, 2023, in 
Berkeley, California. The workshop covered the 
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state-of-the-practice for downscaling and bias 
correcting climate models across the United 
States and using those results for adaptation 
and mitigation planning. The workshop focused 
on the science, organization and translation 
activities that are required to address the rising 
needs and interests of the nation for actionable 
climate information. 

1.2 Background 
A wide variety of federal, state, local, and 
private-sector decision-makers need data that is 
simultaneously salient, credible, authoritative, 
and accessible to pursue climate mitigation 
strategy, adaptation planning and vulnerability 
assessment. Decision-relevant climate data 
products (DRCDPs) are a crucial subset of the 
requisite data, but the need for an improved 
understanding of this data to improve their 
salience and credibility is a longstanding issue. 

In the absence of guidance from a central 
authority, data users have relied on word-of-
mouth or other inconsistent and ad hoc 
approaches for selecting climate data products. 
Recognizing this need, a number of federal 
initiatives and projects have been established to 
support these communities, including the DOE 
HyperFACETS project and the NOAA Climate 
Adaptation Partnerships Program (CAP). 
However, the pathways and mechanisms to 
support cross-agency coordination on climate 
information are still in their infancy. Developing 
guidance for data users also requires an 
improved understanding of the burgeoning 
landscape for climate information provision, 
especially from the private sector. Achieving 
that, in turn, requires a sustained assessment of 
confidence in the proliferating data sets based 
on an accepted framework for comparative 
evaluation of how robust they are for decision-
making. 

 

Box 1: Agency Perspectives 

Numerous federal agencies are producing, analyzing, and using climate data products. Below are agency 
perspectives on the state-of-the-practice and needs for a workshop and climate information moving forward. 

DOE Perspective: The US Department of Energy’s mission encapsulates efforts to ensure America’s 
security and prosperity by addressing its energy and environmental challenges. DOE’s Office of Science 
works to support basic and applied climate science, including efforts focused on modeling and 
understanding extreme weather events and impacts (such as heat waves, atmospheric rivers, tropical 
cyclones, mesoscale convective systems, and other high-impact weather phenomena), subseasonal to 
decadal predictability, long-term projections and developing a deeper understanding of Earth system 
processes at all scales. The aforementioned research makes heavy use of hierarchical modeling, high-
performance computing, and large data sets at decision-relevant scales. Further, development and 
provisioning of global, regional, and local climate data, particularly at the high spatial and temporal 
resolutions needed by decision-makers, directly supports this mission. DOE has a long background 
supporting global to regional climate model evaluation efforts, particularly through the Program for Climate 
Model Diagnosis and Intercomparison (PCMDI), and has worked closely with regional stakeholders on 
questions related to climate data credibility and salience via the HyperFACETS project. This workshop 
provided an opportunity to further build on this exciting work. 

SERDP/ESTCP Perspective: The rapidly advancing research in downscaled climate modeling has led to a 
growing number of tools, data and approaches that collectively serve the growing need for climate services 
and allow for climate change projections to meet the needs of many ancillary science disciplines. This 
interagency-sponsored workshop starts an important conversation that seeks understanding of this growing 
body of models, data, and applications, while preparing for continued improvements and coordination of 
future modeling. 
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NOAA Perspectives: NOAA is a leading provider of forward-looking environmental information for 
preparedness. For decades, the agency has invested in research to advance scientific understanding, 
modeling, prediction and projection of the causes and effects of changes in the climate system; and to 
advance services that help society plan and respond. Applying model-derived data for planning and decision-
making is integral to NOAA's mission. To make model data useful for planning, thorough vetting and 
documentation is essential. Users need plain language summaries of the product's scope and intended use 
case(s) along with key details such as methods of production, calibration, and validation; known sources of 
error and uncertainty; peer review and provenance information; etc. For downscaled climate projections, we 
believe an extra burden of diligence is required to demonstrate and document model outputs' accuracy as 
compared to real-world observations for every parameter (variable), location and time of year. Additionally, 
the utility of particular products compared to other available data sets needs to be examined--which higher-
resolution information is of prime interest to data users, process fidelity and information quality remain key. 
This will ensure that due diligence, including quality assessment and control measures, are an essential 
component of the development of new data and products by service providers. This workshop is an important 
step toward a needed common framework that all federal agencies and their partners can use to thoroughly 
vet and document their products and services. 

EPA Perspective: EPA both develops and uses decision-relevant information. Although there are broad and 
global trends to climate change, the local effects are heterogeneous in space and through the seasons. 
Consequently, the methods for and abilities of communities to adapt are disproportionate across the Nation. 
Accordingly, the Nation requires scientifically sound and localized information about the potential changes to 
extreme weather events and regional and local climate to inform assessment, adaptation, and resilience 
activities to protect human health and the environment. 

NASA Perspective: NASA's participation in this workshop aligns with its Earth Science to Action Strategy 
(NASA 2024), which emphasizes the translation of Earth science research into actionable information for 
societal benefit. As outlined in NASA’s Climate Strategy (NASA, 2023), the agency provides precise, high-
resolution observations and simulations that advance our understanding of both current and future climate. 
Through these efforts, NASA not only advances scientific discovery but also robustly supports policy-making 
and strategic decision-making across various sectors of government and industry. 

FEMA Perspective: FEMA is both a producer and user of decision-relevant information. Emergency 
managers, hazard mitigation planners and community planners are responsible for taking actions to protect 
life, health, and property both now and as climate change impacts the current hazard landscape. The 
interagency workshop, and subsequent conversations, can help FEMA provide better science-backed 
guidance to its stakeholders on how to determine which data are relevant for specific decisions (i.e., can we 
use a particular future-oriented dataset to design flood-resilient structures? If the state of the science is not 
adequate for design, can we use a future-oriented dataset to help identify "low regret" adaptation options and 
test the sensitivity of those options against plausible climate impacts?). Furthermore, FEMA develops and 
makes available an array of natural hazard and risk information, and the Agency is exploring ways to 
incorporate climate change projections and/or modeling techniques in ways that make the information 
actionable and decision-relevant. 

USGCRP Perspective: USGCRP, as part of its role in producing the National Climate Assessments and in 
taking on the effort to develop an architecture to provide information relevant to decisions for a changing 
climate (i.e., the Climate Resilience Information System, CRIS), has long supported the need to understand 
the landscape of climate projections. With the recent addition of climate services to the USGCRP remit, the 
goals of this workshop are important for providing the scientific underpinnings for informed decision-making 
across the nation. 
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1.3 The Decision-Relevant 

Climate Data Product 
Landscape 

A multitude of global climate model (GCM) 
simulations have been undertaken within 
Coupled Model Intercomparison Project – Phase 
6 (CMIP6) (Eyring et al. 2016). These 
simulations included both the meteorological 
conditions that were possible under historical 
climate, as well as those that could occur under 
a range of possible future scenarios. However, 
CMIP6 GCM data are typically available at 
spatial resolutions around 100km – generally too 
coarse for understanding climate and its 
potential future change on local to regional 
scales. Examples where GCM data may not be 
sufficient include: (1) meteorological and 
climatological conditions around local-scale 
land-surface features such as mountain peaks, 
urban areas, valleys and coastlines; 
(2) calculations that require high temporal 
resolution due to strong nonlinearities or rapidly 
shifting conditions, such as renewable energy 
production or flooding; (3) extreme weather 
events, which often have outsized impacts at 
local scales, often occurring on scales of a few 
dozen kilometers or less and/or at short 
timescales; and (4) processes that are critical for 
climate adaptation and mitigation strategies for a 
given region where GCMs may have significant 
regional biases. 

Figure 1 depicts the temporal and spatial scales 
associated with several important decision-
relevant meteorological and climatological 
features, and highlights the limitation of CMIP6 
and high-resolution GCM data for quantifying 
historical and future impacts. The time and 
space scales at which regional and local 
stakeholders are impacted by a changing 
climate are generally not included in global 
climate projections. To fill this gap, two basic 
strategies have emerged: first, the development 
of “ultra-high-resolution” (UHR) global climate 
models that operate at spatial scales near 4km, 
either globally or over a limited region; and 
second, the use of “downscaling” techniques to 
add fine-scale granularity to GCM data. The 

latter includes dynamical downscaling, which 
uses a regional climate model to simulate the 
regional weather using boundary conditions 
drawn from the GCM, and statistical 
downscaling, which uses empirical relationships 
between coarse and fine scales to interpolate 
GCM data to fine scales. Because they are 
relatively inexpensive, several statistically-
downscaled products are available that map 
dozens of GCM simulations to spatial 
resolutions of  5km or finer, but rarely with 
temporal frequency higher than daily. 
Dynamically-downscaled and regionally-refined 
model products are increasingly available at 
these spatial scales and with sub-daily temporal 
resolution, but are more expensive to compute 
and so usually have fewer ensemble members. 
Because of their high computational cost, 
actionable UHR GCM products are still on the 
horizon, but are expected to play a greater role 
in the coming decade. More information on 
these techniques and their relative advantages 
and disadvantages can be found in chapter 2. 

Because of the scientifically rooted history of 
GCM development and, by extension the CMIP 
project, the focus has primarily been on using 
models to build up the scientific community’s 
understanding of the Earth system. The 
considerations, priorities, and approaches for 
the use of the climate information by 
stakeholders are very distinct from the 
necessary academic research to improve Earth 
system understanding. For stakeholders, that 
understanding is a secondary priority: their 
primary need is for accurate projections with 
narrow uncertainty estimates, often for specific 
events, variables, or combinations of variables 
about which the stakeholder is concerned. 
Climate science for DRCDPs must advance skill 
for these types of projections to be relevant for 
stakeholder planning. To that end, GCM real or 
apparent biases over the historical record can 
seriously undermine the utility of GCM results for 
stakeholders. The natural variability of the Earth 
system also presents challenges to stakeholders 
since the near-term trajectory of the surface and 
atmosphere variables can be dominated by 
fluctuations that are difficult to characterize and 
predict. 
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Nevertheless, despite their relatively coarse 
resolution and the other challenges mentioned 
above, GCMs are also one of the scientific 
community’s most powerful tools for evaluating 
future change. They are based on physical laws 
and representations of the whole Earth system 
and can therefore predict the response of the 
Earth system to imbalances caused by natural 
and/or anthropogenic sources (e.g., changing 
concentrations of atmospheric greenhouse 

gasses and aerosols and changing land-use and 
land cover). The importance of this capability for 
prediction cannot be overstated: the changes 
that the Earth system is experiencing, and will 
likely experience in the coming decades, are 
without precedent in recent history, so modeling 
the Earth system trajectory over this time period 
must rely on physical principles far more than 
historical observations and patterns. 

 
Figure 1. The temporal and spatial scales of weather and climate phenomena that require decision-

relevant climate projections, along with a depiction of the scales covered by CMIP6 and modern 
high-resolution (“High-Res”) GCMs. 

As such, GCM data are almost always the 
starting point for developing higher-resolution 
climate data products. Directly simulating these 
scales with GCMs, while not impossible, is 
computationally prohibitive on a global scale for 
long periods of time. GCMs have also recently 

been built with support for regional refinement 
(localized high resolution), but at the time of this 
report, this solution is still an emerging 
technology. Consequently, decision-relevant 
data have been largely generated using post-
hoc processing techniques. Specifically, 
numerous methods have been developed to 
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“downscale” GCM data to the higher resolutions 
needed by a broad community of end-users 
(generally 1-25km). Downscaling involves 
techniques that introduce additional information 
on the relationships between processes at the 
GCM scale and those processes that impact the 
local scale, whether from historical patterns, 
physical modeling, or a combination of the two. 
A growing community of data producers have 
refined and applied these downscaling methods 
to generate decision-relevant climate data. 

The desperate need for DRCDPs has meant 
rapid growth in the number of such data 
products coming online in recent years, 
particularly over the contiguous United States. 
Already the number of such products has 
prompted confusion from data users, who must 
decide among available options to focus their 
limited resources. Little public guidance is 
available from experts in the community, and 
almost none of it covers the broad space of 
available products. As a result, end-users have 
often been left to blindly navigate a space 
colloquially referred to as the “Wild West” of 
decision-relevant climate data products. 

1.4 Understanding Decision-
Relevant Regional Climate 
Data Products 

Motivated by the need for more effective 
coordination across agencies and in the broader 
climate data community, parallel conversations 
on the best path forward occurred among the 
Interagency Group on Integrative Modeling 
(IGIM), the Federal Adaptation and Resilience 
Group (FARG), elsewhere in USGCRP and 
within federal agencies. The idea of a workshop 
arose in early 2023, with the goal of bringing 
together representatives from the entire climate 
data space, including data producers, analysts, 
end-users, agency representatives and 
scientists, to map out efforts currently underway 
and identify gaps and challenges limiting future 
progress. In large part, the premise of this 
coordinated effort was that a decision-relevant 
climate data community could achieve much 
more together than the sum of its parts. 

Further motivation for the workshop came from 
the recent experience of selecting and 
evaluating climate projections for use in the Fifth 
National Climate Assessment (NCA5; USGCRP 
2023). Among the required attributes were 
publicly available methodology, technical 
documentation, algorithms, and source code for 
the downscaling models, as well as publication 
in peer-reviewed scientific journals. Besides 
meeting FAIR principles (findability, accessibility, 
interoperability, and reusability; 
e.g., Wilkinson et al. 2016) and the Foundations 
for Evidence-Based Policymaking Act (2018) 
requirements, recommended attributes included 
providing variables relevant to climate impacts at 
multiple spatial/temporal scales and appropriate 
spatial and temporal resolutions for decision-
making. Towards the end of the NCA5 process, 
funding from the USDOE supported an initial 
comparison of the two selected datasets (Ullrich 
2023). The evaluation of data products for NCA5 
was initiated only towards the end of the NCA5 
process since there was no procedure in place 
for such efforts. 

During the NCA5 process, it was already clear 
that there will be an expanding universe of 
projections based on data from the sixth phase 
of the Coupled Model Intercomparison Project 
(CMIP6) that could inform the Sixth National 
Climate Assessment (NCA6), as well as serve a 
vast array of adaptation needs across the 
nation. Inclusion in NCAs implies confidence 
that the dataset is sufficiently robust for use in 
decision-making; however, the process for 
NCA5 focused largely on availability for the 
NCA5 timeline, with the comparison limited to 
just two statistical data sets that were available 
prior to the report release in November 2023. 

For the NCA6, as well as for USGCRP’s new 
emphasis on delivering climate services (herein 
defined as the provision and use of climate data, 
information, and knowledge to assist decision-
making), there is a clear need for an approach 
requiring adherence to FAIR standards and the 
Foundations for Evidence-Based Policymaking 
Act (2018), and also for assessing confidence 
for still-to-be determined metrics of robustness 
or benchmarks of a downscaled dataset for 
decision-making. Developing comparable 
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information about each data set will be greatly 
facilitated by improving and standardizing the 
underlying metadata across the diverse and 
rapidly expanding data sets available to support 
the vastly increased and consequential suite of 
user needs. 

Beyond NCA6, the proliferation of new data will 
provide better constraints on future change, but, 
in the absence of an intervention, are expected 
to cause greater confusion among decision-
makers, scientists, translators and end-users 
about how to identify and tailor the most 
appropriate climate information for the myriad of 
applications across every community, business, 
or agency in the nation. Improving our common 
knowledge base about the available downscaled 
products is an important step towards an 
effective decision support system. New, 
community-based approaches are needed to 
advance the capacity of climate-sensitive 
decision-makers to evaluate the appropriate use 
of climate projections to make informed 
decisions on how best to prepare for, and adapt 
to, climate change. 

1.5 Workshop Structure 
The workshop was designed within the context 
of the above background – to understand the 

state of the nation’s decision-relevant regional 
climate projections and carry that understanding 
forward, so as to enable the development of 
guidelines for the usage and evaluation of such 
projections. To achieve this goal, the workshop 
aimed to share knowledge between producers, 
users, and evaluators of downscaled data, 
establish common ground, and begin to build a 
community of practice. The ultimate objective 
was development of guidelines for production, 
evaluation, and use of high-resolution regional 
climate projections of impact-relevant variables. 

Participation came from most major U.S. federal 
agencies and their partners who are involved in 
the production and dissemination of regional 
climate data products. These include DOE, 
NOAA, NASA, EPA, FEMA, USGS, USBR, and 
DOD’s Strategic Environmental Research and 
Development Program and Environmental 
Security Technology Certification Program 
(SERDP and ESTCP). Box 1 contains 
perspectives from each of the participating 
agencies on their specific needs and interests in 
advancing the use of, and confidence in, climate 
data products. Dozens of in-person attendees 
visited Berkeley, California from 
November 14-16, 2023 and were joined by 
dozens more virtual attendees. Figure 2 shows a 
group photo of the in-person attendees. 
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Figure 2. In-person attendees of the DRCDP Workshop from November 14-16, 2023. © The Regents of the 

University of California, Lawrence Berkeley National Laboratory. 

Numerous approaches for generating regional 
climate data were discussed, including statistical 
downscaling, dynamical downscaling, hybrid 
downscaling, regionally refined global modeling 
and artificial intelligence. This effort made great 
strides in sharing knowledge, establishing 
common ground, and moving towards the 
development of a community of practice around 
decision-relevant data. As seen in Figure 3, the 
workshop was an effective opportunity for 
networking and conversations among the 
leaders in this field. 

The workshop was organized into four sessions 
that focused on (1) data production; (2) data 
use; (3) data evaluation; and (4) emerging 
topics. The session on data production featured 
ten talks from a variety of data producers, 
representing multiple federal agencies and 
academic research groups, followed by breakout 

sessions that sought to frame the needs of a 
community of practice. The session on data use 
featured two panels, each with four panelists 
presenting brief talks on topics related to how 
they employ climate data and their perceptions 
of gaps among existing data products. The 
session on data evaluation again featured two 
panels, each with four panelists presenting brief 
talks related to ascertaining the credibility of 
climate data. The final session on emerging 
topics featured 11 technically oriented talks on 
topics related to climate data, including bias 
correction, model weighting, ensembles, and 
performance across scales. For each of the first 
three sessions, there were accompanying 
breakout discussions which featured a mix of 
participants framed around key questions 
related to that session, in the context of the 
broader workshop theme. 
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Figure 3. Breakout discussions at the November 14-16, 2023 DRCDP Workshop. © The Regents of the 

University of California, Lawrence Berkeley National Laboratory. 

1.6 Report Structure 
This report summarizes the discussions from the 
workshop and is roughly structured to cover the 
workshop’s three core themes: chapter 2 
addresses challenges and gaps in decision-
relevant climate data production, chapter 3 
covers needs from climate data end-users, 
chapter 4 focuses on climate data evaluation, 
chapter 5 covers ongoing and future research 
needs and chapter 6 summarizes identified gaps 
and suggests a strategy for the development of 
a community of practice around decision-
relevant climate data. This report is reflective 
and not exhaustive: it aims to present a focused 
discourse relevant to climate scientists and 
stakeholders concerning the state of the science 
and existing gaps, rather than encompass a 
comprehensive review or encapsulate all 
viewpoints. 
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2.1 Chapter Summary 
Because the spatial resolution of global climate 
model outputs is typically around 100km, a wide 
variety of downscaling techniques have been 
developed to supplement climate model 
projections with information on the processes 
that impact climate locally. These techniques 
can take quite different approaches to 
downscaling. This chapter focuses on the state-
of-the-practice for statistical and dynamical 
downscaling and touches on some of the 
strengths and weaknesses of those techniques. 
New frontiers for climate model downscaling 
research and applications are also touched 
upon, including work underway on artificial 
intelligence and machine learning (AI/ML)-based 
methods. 

2.2 Background 
The need for spatial downscaling of climate 
model outputs for assessing the impacts at 
regional and local scales was noted very early in 
the IPCC assessment cycle (Gates 1985). 
Downscaling methods grew from simple spatial 
disaggregation (e.g., Wood et al. 2002) of GCM 
outputs to more sophisticated statistical (Wilby 
et al. 1998, Pierce et al 2014, Pierce and Cayan 
2016, Gutmann et al. 2022) and, increasingly, 
dynamical downscaling approaches (Bowden et 
al. 2012, Otte et al. 2012, Mearns et al. 2014, 
Prein et al. 2017, Komurcu et al. 2018, Rahimi et 
al 2024a, Wang and Kotamarthi 2015, 
Rasmussen et al. 2014, etc.). Hybrid methods 
that combine statistical and dynamical 
downscaling have also been developed. Using 
AI/ML models to downscale climate models has 
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rapidly developed over the past few years and 
can be expected to become a key method for 
downscaling in the near future (e.g., Huntingford 
et al. 2019, Hobeichi et al. 2023). 
Simultaneously, approaches that operate 
climate models at increasingly finer grid spacing 
globally or with grid refinements (Fox-Rabinovitz 
et al. 2005, Zarzycki et al. 2015) over regions of 
interest from within a global model are becoming 
more available and viable for performing multi-
decadal and multi-ensemble simulations. 
Figure 4 depicts the general workflows for each 
of these methods, which highlights both 
similarities and differences among these 
methods. 

A consistent theme of the workshop discussions 
was that the use of multiple DRCDPs could 
better represent the broad range of scientific 
understanding of climate-sensitive physical 
processes that can impact planning, and that a 
single DRCDP could underestimate or 
overestimate risk. Conversations at the 
workshop emphasized that there is no single 
approach that should be the basis for informing 
decisions, but that a rich ecosystem of methods 
can provide multiple lines of evidence to 
constrain future uncertainties. Notably, each of 
these methods does not necessarily exist in 
isolation, and new techniques are continually 
being developed that hybridize these 
methodologies, adopting features from more 
than one approach. 

 
Figure 4. Production workflows for different decision-relevant climate data production methods. ESM 

stands for Earth system model, RCM stands for regional climate model, and RRM stands for 
regionally refined model. 

2.3 Data Production Methods 

2.3.1 Statistical Downscaling 

Statistical downscaling methods include a wide 
range of approaches and are by far the most 
widely used for decision-relevant climate data 
products. The relative ease of implementing 
these methods with GCM outputs and the ability 
to produce large ensembles of bias corrected 
results has made them popular with end-users. 
Their fidelity relative to historical observations 

can be demonstrated, and they are more 
realistic at local scales than GCM outputs. At the 
workshop, presentations were given on 
statistical downscaling products with a mix of 
national and global coverage, including the 
Localized Constructed Analogs, Version 2 
(LOCA2) (Pierce et al, 2023), the Seasonal 
Trends and Analysis of Residuals Empirical-
Statistical Downscaling Model (STAR-ESDM) 
(Hayhoe et al, 2023) and NASA Earth eXchange 
Global Daily Downscaled Projections (NEX-
GDDP-CMIP6) (Thrasher et al, 2022). 
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The primary challenges for this method are 
(1) extending the downscaling beyond surface 
air temperature and precipitation to a larger 
number of variables due to the paucity of 
appropriate local weather data and (2) 
preserving the dynamical and/or thermodynamic 
consistency of variables and maintaining known 
physical relationships between these variables 
when doing so. 

Statistical methods trained on historical data 
inherently incorporate assumptions of 
stationarity: they assume the spatial patterns of 
the past remain the same into the future, despite 
evidence, theory, and a fundamental 
understanding of Earth system dynamics that 
suggest nonstationarity, for example, shifts in 
storm tracks (Yin 2005, Bengtsson et al. 2006, 
Ulbrich et al. 2008, O’Gorman 2010), sharpening 
of precipitation (Chen et al., 2023), and other 
dynamical and thermodynamical changes in the 
Earth system are expected in the coming 
decades due to the global hydrological response 
of the Earth system to warming (Jeevanjee and 
Romps, 2018). Furthermore, presently available 
statistical methods struggle with variables that 
require a “memory” of past conditions, such as 
snowpack and soil moisture, and cannot capture 
related feedbacks (e.g., higher near-surface 
relative humidity when soil moisture and 
subsequent evapotranspiration is high). 

For statistical downscaling, the choice of gridded 
historical products, application of bias correction 
and details of the downscaling algorithms affect 
uncertainty in the results (Ullrich 2023, 
Lafferty and Sriver 2023). An understanding of 
how to quantify these uncertainties and 
communicate this information remains a 
conspicuous research gap. 

2.3.2 Dynamical Downscaling 

Under dynamical downscaling, GCM projections 
are used as initial and lateral boundary 
conditions to drive higher-resolution RCMs. The 
ability of dynamical downscaling to better 
capture non-stationary changes in future 
climates is valuable for decision-makers, and 
distinct from what statistical methods provide. 

Like GCMs, RCMs have land surface and 
atmospheric components and use established 
physical parameterizations based on theory, 
observations, and modeling. Internal 
consistency among variables in RCMs is then 
achieved via these model components and 
parameterizations.  

At the workshop, several groups (e.g., Argonne 
National Laboratory (ANL), Oak Ridge National 
Laboratory (ORNL), Environmental Protection 
Agency (EPA), National Center for Atmospheric 
Research (NCAR), University of California-Los 
Angeles (UCLA), State University of New York 
at Albany (SUNY Albany) and Pacific Northwest 
National Laboratory (PNNL)) spoke about 
unprecedented and ambitious work underway to 
dynamically downscale CMIP6 GCMs. These 
efforts have made major advances in 
understanding the physical process 
representations and model configurations 
needed for high-quality representation of local 
climate processes and relevant 
nonstationarities. However, each effort seeks to 
investigate unique questions and geographies, 
while also being a major undertaking in terms of 
person-power, computational resources, and 
data science. 

Despite its fundamental strengths and recent 
advances, dynamical downscaling continues to 
be computationally limited to a few GCMs, 
especially compared to statistical downscaling. 
Typically this means selecting one to three 
GCMs that are representative of the physical 
processes affecting the region of interest, which 
provides an abridged view of the uncertainty 
space afforded by including more GCMs. 
Similarly, only a limited number of socio-
economic scenarios can be explored in the 
analysis, again limiting the decision maker's 
choices, and further narrowing the range of 
plausible futures. 

At the same time, many groups are pursuing 
dynamical downscaling. The sheer number of 
disconnected efforts to dynamically downscale 
GCMs at the continental, national, and sub-
national scales signifies opportunities for the 
community: for instance, the pooling of 
computational resources to produce larger and 
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more coordinated dynamically downscaled GCM 
ensembles across the contiguous United States 
(CONUS) and outside the continental United 
States (OCONUS) using different RCMs. One 
option is to capture the overlapping downscaled 
GCM simulations across the western U.S. for 
MPI-ESM1-2-HR from UCLA and ORNL, albeit 
with different RCMs. Given that 22 GCMs were 
downscaled for CMIP5 (CORDEX-SAT, 2020), it 
is reasonable to suggest that at least as many 
GCMs may be dynamically downscaled in 
CMIP7. Additional options are included in the 
section ‘Common gaps in downscaling’. 

In addition to coordination, several gaps related 
to improving dynamical downscaling were 
discussed at the workshop: 

Bias correction: A critical challenge is the need 
for bias corrected model outputs to address both 
RCM biases and the biases they inherited from 
GCMs. There is an ongoing debate on whether 
bias correction should be applied to inputs of an 
RCM, outputs of an RCM, or neither. Several 
authors have found that bias correcting the GCM 
input fields to the dynamic downscaling models 
at continental scale does not appear to reduce 
the simulated bias on larger regional and 
continental scales (Xu and Yang 2015, 
Wang and Kotamarthi 2015). Recently, however, 
Rahimi et al. (2024b), Risser et al. (2024), and 
others have also been exploring the impacts of 
pre-downscaling bias correction and found that it 
does lead to greater skill in the RCM orographic 
precipitation, snowpack, and temperature 
simulation. An additional consideration is 
whether the bias correction should only target 
averages, or if producers should use a more 
complicated bias correction of the GCM 
boundary conditions. Post-simulation bias 
correction of RCMs has an extensive history, 
particularly in the hydrology community, and 
various methods have been explored (Maraun 
2013, Adeyeri et al. 2020, Yang et al. 2015, 
Wilcke et al. 2013, Francois et al. 2020). This 
form of bias correction is often necessary 
because impact models (e.g., flooding, wildfires, 
energy, health) are often highly sensitive to 
meteorological inputs. Preservation of the 
correlation between variables that are generated 
by the downscaling and the time series of the 

distributions, while not altering the tails of the 
distributions, are major challenges for post-RCM 
bias correction that are still being investigated.  

Pseudo-Global Warming (PGW): The PGW 
method, which applies GCM-derived climate 
deltas to a historical reanalysis before dynamical 
downscaling, allows one to estimate a high-
resolution change signal in future climates. This 
approach was used recently to build a long-
running high-resolution climate data product 
over the contiguous United States that 
represented the historical period and eight 
possible futures (Jones et al. 2023), and recent 
work has compared it to direct downscaling of 
GCMs (Hall et al. 2024). Examples of questions 
surrounding PGW’s applicability include the 
following. First, is the assumption of time-
invariant natural variability justifiable? For 
example, for intense heat waves, strong land-
atmospheric coupling in a warmer world may 
lend itself to evapotranspiration reductions and 
sensible heat flux increases. This may lead to 
deepening of the ‘heat dome’ and an amplified 
heat wave, compared to expectations from the 
GCM warming delta. Second, the PGW method 
is sometimes applied using GCM ensemble 
deltas; however, given the unique 
thermodynamic and hydrologic sensitivities of 
each GCM, does an ensemble developed with 
this approach represent an actual ensemble of 
possible futures with acceptable levels of 
uncertainty incurred from this approach? Or, 
must unique PGW experiments be conducted for 
individual GCMs before average regionalized 
change signals are computed and examined? 

Convection-permitting scale 
downscaling/regional climate modeling: 
Convection permitting regional climate modeling 
(with horizontal resolutions grid spacing ≲ 4km), 
was previously untenable because of its heavy 
computational and storage cost, but is becoming 
increasingly possible because of significant 
software and hardware advancements. This 
method has the potential to improve the 
representation of mean and extreme values of 
climate variables (Prein et al. 2017, Komurcu et 
al. 2018, Akinsanola et al. 2024), particularly 
because increased spatial and temporal 
resolution allows for more detailed interactions 
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between land surface, boundary layer and cloud 
processes. As computational expense continues 
to decline, this methodology may produce 
simulations with process fidelity and consistency 
among variables to enable comparisons 
between models and across ensembles, and the 
exploration of a wider range of what-if scenarios. 

Hybrid downscaling: There is emerging 
interest in using dynamical downscaling 
products, instead of gridded observations, as 
training data for statistical downscaling. This 
technique would greatly expand the number of 
variables available to statistical models and 
enable higher temporal resolution. It would also 
allow those models to be trained on both 
historical and future data, which should help to 
alleviate issues with stationarity. Only recently 
have sufficiently long duration simulations come 
online that could provide enough training data, 
and bias correction remains necessary to correct 
biases from the GCM and RCM. 

Investigating parameterization stationarity: 
Many of the physical parameterizations used by 
both RCMs and their parent GCMs are based on 
(typically a small number of) empirical 
observations. Although substantial work has 
gone into generalizing those parameterizations 
to work well across a variety of geographies, it is 
far more difficult to demonstrate that 
parameterizations are valid outside the directly 
observed time period (e.g., Baumberger et al. 
2017). Namely, additional research is needed to 
ensure that those parameterizations are climate-
aware and are not inadvertently introducing 
stationarity into the non-stationary processes 
that dynamical downscaling intends to capture. 

2.3.3 AI/ML-Based Methods 

AI/ML has made extensive strides in the past 
decade and has emerged as a new approach for 
a wide range of scientific applications, including 
downscaling and bias correction. Although not 
yet operationalized, among those deep learning-
based models that have shown success to date 
are super-resolution (SR) methods and learned 
multi-resolution dynamic downscaling (LMRDD) 
methods. SR methods use a high-resolution 

data set that is upscaled to a coarse resolution 
(e.g., the resolution of the GCM to be 
downscaled) to build a AI/ML model. These 
methods and variations have now been used to 
downscale wind (Stengel et al. 2020) and 
precipitation (Geiss and Hardin 2020). 
Conversely, the multi-resolution LMRDD method 
uses the GCM model output and its dynamically 
downscaled output (without any upscaling) to 
train the LMRDD model (Wang et al. 2021). As 
with statistical downscaling methods, SR models 
are limited by the availability of high-resolution 
observational data sets and suboptimal 
accuracy of coarse resolution modeled 
precipitation due to the physics 
parameterizations at these scales. LMRDD 
models are limited by the availability of 
dynamically downscaled data sets, which are 
comparatively rare. However, once developed, 
these models are significantly less 
computationally expensive than dynamical 
methods, so they can be employed to 
downscale an entire set of GCM simulations, 
scenarios, and time slices. A recent approach 
has been to use diffusion based models for 
downscaling (Ling et al. 2024). 

2.3.4 Regionally Refined Global 
Modeling 

RRMs are GCMs that have a non-uniform grid 
with high resolution over a particular 
geographical region, thus avoiding the need for 
a secondary RCM driven by GCM output and 
permitting two-way coupling between the high-
resolution and global domains (e.g., Zarzycki et 
al. 2015, Tang et al. 2020). RRMs can also be 
employed as RCMs, for instance through 
nudging of the coarse region towards some 
reference data. However, only a few operational 
GCMs have support for regional refinement, 
given the algorithmic complexity usually 
necessitated by this approach. To date, RRMs 
have been more widely employed for modeling 
on weather time scales than climate time scales, 
but have demonstrated success in simulating 
several types of weather phenomena (e.g., Liu 
et al. 2023). A depiction of a regionally-refined 
mesh with coverage of the CONUS is given in 
Figure 5. 
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Figure 5. A regionally refined model grid used for simulating climate over the contiguous United States. A 

higher density of grid cells provides more resolution and targets computational resources at the 
region of interest. 

2.3.5 Global Cloud-Resolving 
Models 

Global cloud-resolving models (GCRMs) refer to 
GCMs that can explicitly resolve convective 
processes, thus avoiding the need for a 
convective parameterization (e.g., Donahue et 
al. 2024). It is expected that explicitly resolved 
dynamics will avoid persistent issues with 
parameterized convection (Molinari and Dudek 
1992, Rio et al. 2019) and improve the 
simulation of sharp meteorological gradients 
(e.g., in extreme weather events). With grid 
spacing of the order of 4km or less, these 
models can only run on large supercomputing 
systems, and to date have only produced 
simulations of a few simulated years. 
Nonetheless, with exponential growth in 
computing power, there is an expectation that 
these models will be increasingly employed for 
modeling of the climate system in the next 
decade. While GCRMs still do not capture the 
finest scales of relevance in the atmosphere 
able to impact local climate (e.g., large eddy 
scales), they are starting to become an 
important benchmark for downscaling, 

particularly in regions that lack reliable 
observational data (e.g., OCONUS). GCRMs 
can also explore the sensitivity of local 
projections to the simulation of weather and 
climate processes at high-resolution across the 
Earth. 

2.3.6 Libraries of Short-Term 
Simulations 

Although the discussed data production efforts 
have primarily focused on large ensembles of 
long-term climate simulations, efforts could also 
focus on large ensembles of extreme events, 
performed over a shorter time window and thus 
permitting higher spatial resolution (e.g., Huang 
et al. 2020). These ensembles could better 
target computational resources and address 
end-user needs. Events could come from the 
historical record, and simulated using RCMs or 
RRMs, potentially in combination with the PGW 
methodology. They could also come from GCM 
large ensembles, leading to a larger sample of 
synthetic events or events beyond what has 
occurred in the historical record. Such 
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ensembles naturally yield scenarios for 
assessing and quantifying impacts. 

2.3.7 Common Gaps in 
Downscaling 

Geographic Coverage: At the workshop, there 
was significant discussion about the lack of high-
quality high-resolution climate data products for 
domains outside of CONUS. In particular, the 
U.S. Virgin Islands, Puerto Rico, Guam, Hawaii, 
and Alaska (a region collectively referred to as 
OCONUS) are all limited in both observations 
and simulated climate data products. High-
resolution data are particularly relevant for the 
U.S. islands because local climate can vary 
significantly over the width of the island and 
differs from the surrounding ocean, meaning that 
presently-available global statistically 
downscaled products (typically available at 0.25 
degrees) are still too coarse. The relative 
sparsity of the observing network in these 
regions and the need for high spatial resolution 
suggests a need for new data generated using 
dynamical downscaling (e.g., Fandrich et al. 
2022, Mizukami et al. 2023). However, with few 
observations, validating climate data products is 
also difficult, likely necessitating supplementing 
in situ observations with satellite data. Beyond 
the U.S. and Europe, similar issues are also 
present, particularly among countries that don’t 
have strong operational infrastructure for 
observing and simulating weather. Differences in 
the quality or source of observational data has 
also produced curious artifacts among presently 
available climate datasets; for example, many 
data products end abruptly at the U.S. border, 
even when these excluded regions are part of 
CONUS-relevant watersheds. 

Availability of high-temporal resolution data: 
DRCDPs with sub-daily frequency are largely 
unavailable at present. Extreme weather events 
necessitate high-temporal resolution data, 
although the precise interval depends on the 
specific use case. For extreme storms that could 
lead to flooding, hourly data is desirable. 
Meteorology also significantly influences 
resource adequacy for energy supply and 
demand, particularly renewable resources. For 

example, estimates of wind power capacity 
factors, which are proportional to the cube of 
wind speed, are very sensitive to short-term 
variation of winds and so reasonably accurate 
calculation of power production requires at least 
hourly wind data. Going further, a real-time (sub-
hourly) meteorological data set is necessary for 
an efficient electrical grid stabilization and 
management system, so as to characterize the 
magnitude of risk and variability, aiding in 
effective capacity planning and optimal 
scheduling (Fu et al. 2024). 

Quantified uncertainties among data 
products: To ensure comparability and 
reliability across products, common techniques 
for quantifying uncertainty across climate 
datasets are needed. For example, while there 
are established methods for developing 
measures of uncertainty from a set of models 
and ensemble members, the selection of the 
ensemble size and the quality of the models 
used in generating the ensemble affect the 
outcome of this calculation.  

Production of secondary impact variables: 
Risk and impact estimates that are of interest to 
stakeholders (e.g., drought, wildfires, inland and 
coastal floods) require additional processing and 
climate variables beyond those needed for 
assessing heat wave frequencies and 
precipitation intensities. Development of robust 
estimates of impact frequencies, intensities and 
duration and their associated uncertainties 
depends on having a large ensemble of model 
simulation outputs. These ensembles allow for 
more robust calculation of the return periods that 
are usually dictated by stakeholder needs. 
Additional downstream models are further 
needed for estimating these impacts (e.g., inland 
hydrology models). 

2.3.8 Data Provisioning 

Data provisioning refers to the distribution of 
data, along with accompanying details on how 
they were produced and how they should be 
used. Ideally, data provisioning efforts should 
aspire to FAIR principles (Wilkinson et al. 2016). 
Support for data producers to address FAIR 
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principles remains a major challenge in the 
climate data community, particularly in light of 
the issues identified here. 

Lack of downscaled data standards: Lack of 
consistency among climate data products can 
create confusion among data users and prevent 
interoperability of data products across 
workflows. Consistency here refers to both 
documentation of the data products and the data 
files themselves. Consistent documentation 
should include producer-developed descriptions 
of the data set’s characteristics (resolution, 
geographic coverage, time period, etc.), how it 
was generated and how it should be used. At 
present, such information is either only available 
from direct engagement with data producers or 
is inconsistently presented in technical 
documentation and websites. Consistent data 
requires common formats, metadata, variable 
naming, and units, even among gridded 
observational products. To an extent, the 
Coordinated Regional Climate Downscaling 
Experiment (CORDEX) has been effective at 
spearheading standardization in the 
downscaling community (McGinnis and Mearns 
2021). Nonetheless, additional work is needed 
to achieve widespread adoption of community 
standards for robustness. 

Limited computational resources: 
Computational cost is high for long-period (i.e., 
20 years but ideally 30) dynamically downscaled 
projections, especially when using convection-
permitting (≲ 4km) modeling. There is a need to 
recognize that not all groups that conduct 
dynamical downscaling have access to 
computing resources to support “sufficiently 
long” simulations or a “sufficiently large” 
ensemble or “sufficiently fine” resolution. 
Significant costs are associated with running the 
model, storing the data, post-processing, and 
dissemination. Also, end-users may want further 
processing, e.g., to set thresholds on resulting 
fields for specific risk questions, but these may 
not be possible to provide without rerunning the 
model. This, and similar interactive analysis 
capabilities, would benefit many end-users and 
relieve the pressure on end-users for finding 
computational resources to perform such 
calculations. 

Data access: Data must be accessible by 
decision-makers if those data are going to 
support needs for resilience and adaptation 
planning. Whereas GCM output is generally 
contributed to a common repository, such as 
that maintained by the Earth System Grid 
Federation and replicated by other groups 
worldwide, downscaled data do not have a 
unified portal or interface for distribution. 
Reasons include lack of a common domain (i.e., 
subset of the globe), lack of a common spatial 
and temporal resolution, lack of a common suite 
of output variables and size of the available 
output. In addition, differences in downscaling 
methods, philosophies and other scientific 
decisions make different instantiations of 
downscaled data more appropriate for some use 
cases than others. Furthermore, differences and 
availability of computing infrastructure and 
resources among the groups that develop the 
data (including computer security limitations, 
disk availability, documentation, and staff 
limitations) can inhibit sharing downscaled data 
with external users. 

Spatial disaggregation: Local decision-makers 
often ask for very high-resolution data from 
climate models/data products (<1km) that does 
not exist and would be very costly to produce 
and distribute. However, upon engaging with 
these groups it is sometimes clear that the data 
they presently use is highly uncertain. 
Consequently, it is important to understand for 
what spatial scales and purposes these high-
resolution datasets actually provide benefit over 
coarser resolution products. As noted in Ullrich 
(2023), although many climate data products 
provide information on a higher-resolution grid, 
the credible resolution of those data sets are 
likely to be much coarser. In fact, in some 
circumstances it may be better to use coarser-
resolution data to avoid spurious high-frequency 
noise. End-user needs may also vary depending 
on whether they are putting climate data into 
their own impact models, or if they plan to use 
climate data to inform decisions more broadly. 
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3.1 Chapter Summary 
In spite of rapid climate science advances, most 
climate data users continue to find it extremely 
difficult to appropriately examine and work with 
climate data. Co-production and other such 
collaborative approaches that bring together 
data producers and different kinds of users can 
support better understanding of decision-making 
contexts and improve the actionability of climate 
data. However, co-production is resource and 
time intensive because it needs to be expert-
facilitated and collaborative across many 
disciplines. 

3.2 Background 
This chapter discusses what is known or not 
known about various stakeholder groups’ needs 
for climate information. The sub-sections 
discuss types of climate information users, types 

of actionable climate information, types of use-
cases or decisions for which climate information 
is needed and finally federal agencies that are 
actively working towards better identifying and 
understanding different stakeholder groups’ 
needs for climate information. 

3.3 Types of Climate Data 
Users 

Many varied groups use climate information and 
data products, but tend to have very different 
use-cases (or needs) as well as varied technical 
capabilities. This makes it difficult to understand 
which climate data products are the best fit in 
these different contexts (Bessembinder et al. 
2019). Groups who use climate information can 
range from researchers through planners and 
decision-makers to tribal entities and public 
consumers of data. Figure 6 showcases one 
such categorization of different data user groups 
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that was developed for the California Energy 
Commission funded Cal-Adapt Analytics Engine 
project. 

 
Figure 6. Categorization of different climate data user groups developed for the Cal-Adapt Analytics 

Engine project and select examples. Figure and categorization developed by: Justine Bui, Grace 
Di Cecco, Ashley Conrad-Saydah, Nancy Freitas, Kripa Jagannathan, Nancy Thomas, Owen 
Doherty, Mark Koenig, and the Cal-Adapt Analytics Engine Team (based on preliminary results 
from ongoing work). 

Technical proficiency in using climate data 
varies both within and among these user groups 
(Bessembinder et al. 2019, Raaphorst et al. 
2020). Particularly, the diversity in needs and 
capabilities among different planning and 
decision-making communities can be quite 
large, as their needs depend on the type of 
decision as well as each group’s mandates, 
missions, and risk framing. These user groups 
can range from relatively decentralized 
community/municipal planning to deliberate, 
structured decision-making in federal agencies 
managing public trust resources. Some have (or 
can have) access to technical personnel and 
resources who can seamlessly incorporate 
output from climate models or downscaled 
projections into their own modeling (e.g., 
consultative relationships are fairly common in 
water resources). Others have severely limited 
technical capacity and rely heavily on ongoing 
partnerships to obtain, characterize, and use 
data and derived information to make decisions. 
Furthermore, the needs and capabilities of these 
user groups evolve over time. 

While decision contexts for each individual 
agency or group might be unique, many 

workshop attendees discussed the need for a 
better understanding and categorization of the 
types of users and their needs based on broad 
data demand categories that branch into more 
decision contexts. The need to move away from 
the data producer versus data user dichotomic 
categorization was also discussed. Specifically, 
users can also be engaged partners in data 
production processes, particularly with the 
increase of collaborative scientific processes 
such as co-production (Bremer and Meisch 
2017, Lemos et al. 2012). 

3.4 Types of Actionable 
Information 

The term “actionable” is often not defined by the 
type of information, but rather primarily by the 
decision context, including governance and 
decision-making processes in which the 
information will be used. The same type of 
information may be actionable in one context, 
but not in another. However, some common 
information needs exist and have been 
documented in various types of literature 
(Hackenbruch et al. 2017, Vincent et al. 2020, 
Jagannathan et al. 2022). Figure 7 summarizes 

https://analytics.cal-adapt.org/
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one such typology of actionable climate 
information. Almost universally, users need 
repeatable, accessible, thoroughly vetted, and 
defensible projections of climate change. Many 
users almost invariably need information on (a) 
understanding how averages and common 
event likelihoods are shifting and the relative 
probability/timing of those shifts, (b) extremes 
(time/space events that were historically rare or 
are novel in the future, and/or have the biggest 
economic or ecosystem impacts) and (c) 
downscaled climate data not just for temperature 
and precipitation, but a host of related, derived 
physical and hydrologic variables (or decision-
relevant metrics) that actually drive Earth system 
processes and impact actual management 
endpoints, such as droughts, floods, runoff, 
streamflow, soil moisture, snow, and permafrost. 
Researchers have identified what these metrics 
and variables may look like in different contexts 
(for instance in Vincent et al. 2020, Jagannathan 
et al. 2021, Reed et al. 2022). 

Actionable information for users needs to be 
specific to the domain and at a scale/resolution 
that represents decision-makers’ 
purview/decision context(s). The data need to 
cover a range of scenarios and models that 
capture the main sources of projection 
uncertainty to arrive at a plausible range of 
futures that match the risk framing required by 
the decision-maker and their mandate(s). 
Workshop discussions also noted that a 
“plausible range” of futures cannot just be 
scientifically determined; rather, this range 
needs to be examined in a risk management 
context, with an assessment of relative 
likelihood/probability/quasi-probability/level of 
concern for different points on the range. 
Overall, there is a need to iterate between the 
decision-maker's need for true probabilistic risk 
assessment and scientific limitations on 
providing such probability assessments. 

 
Figure 7. Typology of actionable climate information derived from the iterative co-production 

engagements conducted in the DOE-funded HyperFACETS project. Based on Jagannathan et al. 
2022. 

3.5 Types of Uses of Climate 
Information 

Often users are requested by data providers to 
elucidate the types of uses they intend for the 
climate data, i.e., the decision/s that they intend 
to make with the climate information. However, 
the use and decision landscape is extremely 
vast and complicated and often difficult to 
quickly summarize. For instance, the types of 
use or decisions vary by: sector, the type of 
management issue within the sector, and the 

numerous individual decisions or use-cases 
within each of these sector-specific 
management issues (see Figure 8 for an 
example). Furthermore, each decision is not a 
discrete event but a dynamic and long-drawn 
process requiring different types of information 
at different times. Figure 9 illustrates one 
typology of uses of climate information 
developed through an analysis of co-production 
engagements between climate scientists and 
water, energy, and land managers across the 
U.S. 
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Figure 8. Potential types of use or decisions by sector, management issue, and individual decision or 

use-case. 

 
Figure 9. Typology of uses of climate information derived from the iterative co-production engagements 

conducted in the DOE-funded HyperFACETS project. Reproduced from Jagannathan et al. 2022. 
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3.6 Boundary Agencies 
Engaging with Climate 
Information Users 

Making information actionable often requires 
more than providing the right climate data and 
projections. It needs investment in relationships 
and resources for deliberate and iterative 
boundary spanning between 
researchers/purveyors and decision-
makers/users. Boundary agencies, who aim to 
connect and bridge the boundaries between 
information providers and users, are extremely 
important players in this space. This boundary 
spanning includes undertaking nuanced needs 
assessments for the different user communities, 
and facilitating partnerships where data are co-
developed, translated, and interpreted for 
different use contexts. Several specialized 
agencies have been tasked with undertaking 
such boundary-spanning activities. 

Some prominent national-level agencies doing 
this work include the NOAA Climate Adaptation 
Programs (NOAA-CAPs, formerly called the 
NOAA RISAs), who have been doing this since 
the mid-1990s and represent a compelling set of 
regional partnerships that have substantially 
contributed to knowledge of 
stakeholder/rightsholder elicitation and needs 
assessments. NOAA’s National Centers for 
Environmental Information (NCEI) also has a set 
of regional Climate Service Directors engaging 
with end-users to ascertain climate information 
needs. The U.S. Geological Survey (USGS) 
Climate Adaptation Science Centers (CASCs) 
engage with end-users whose 
missions/mandates include adaptation to climate 
change within the U.S. Department of the 
Interior and partners. The CASCs also engage 
with the Bureau of Indian Affairs and tribal 
entities seeking climate science as input into 
adaptation based on multiple sources of 
knowledge. The U.S. Department of 
Agriculture’s (USDA) regional Climate Hubs are 
another set of prominent boundary agencies, 
working across the USDA and with partners to 
support climate-informed decisions for robust 
agriculture, healthy forests, and resilient 
communities. In addition to these federal 

agencies, several large climate research 
projects such as the DOE-funded Urban 
Integrated Field Labs (UIFL) and 
HyperFACETS, as well as state-level data-
sharing and curation platforms such as the Cal-
Adapt and Cal-Adapt Analytics Engine, are also 
prominent in understanding user needs and 
providing actionable climate information and 
tools. Increasingly, private climate service 
providers and climate consulting firms are also 
playing a significant role in this space. 
Collaborations with these boundary agencies, as 
well as reviewing resources developed by these 
agencies such as user guides or needs 
assessment reports, can be extremely valuable 
for the data producer community; for example, 
the climate data user guide from the Electric 
Power Research Institute (EPRI 2024), the 
consumer report for climate information from 
Great Lakes Integrated Sciences and 
Assessments (GLISA; Briley et al. 2020), and 
the White House Office of Science and 
Technology Policy (OSTP) guide on selecting 
climate information (OSTP 2023). 

3.7 Progress in Meeting User 
Needs for Climate 
Information 

3.7.1 Collaborative Approaches to 
Improve the Actionability of 
Climate Data 

Collaborative data production processes that 
iteratively engage with potential users, and 
incorporate users’ experiences and knowledge 
into the process, have been shown to increase 
the actionability of data for decision-making. 
Over the last 20 years, more nuanced 
characterizations of these approaches have 
emerged, and have increased our ability to work 
with a wide range of users in varied engagement 
modes such as through consultative 
partnerships, meaningful collaboration, or 
iterative co-production (see Meadow et al. 2015, 
Bremer and Meisch 2017). There is increasing 
evidence across different contexts that 
collaborative processes tend to improve the 
credibility, legitimacy, and salience of climate 
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data, and hence improves the use of climate 
projections in decision-making. 

There is also an increased recognition that well-
designed-and-executed collaborative processes 
require dedicated time, capacity, and resources, 
and also need a specific set of expertise, skills, 
and capacities (Lemos et al. 2014). More 
resources are needed to increase and  better 
support these critical boundary-spanning 
activities (Goodrich et al. 2020). Therefore, 
emerging work is also focusing on how to scale 
up such co-production or collaborative 
approaches in a cost- and resource-effective 
manner. Although every decision context is 
unique, there is also an acknowledgement that it 
is not possible to intensively engage with every 
potential user and decision context. Many 
scholars are conducting “meta” studies of 
several co-production efforts and starting to 
develop generalizable frameworks (and 
actionable recommendations) of the broad types 
of data products, decision contexts, engagement 
approaches, and institutional contexts that can 
be applicable to multiple users and decision 
contexts (Bamzai-Dodson et al. 2021). 

3.7.2 Examples of Collaborative 
Efforts 

Many promising and successful examples of 
producer-user collaborations in different 
agencies and regional contexts have recently 
emerged and were highlighted at the workshop. 
It was noted that collaborative efforts can be at 
the project, programmatic, or institutional level 
(such as in the NOAA-CAPs, or USGS CASCS, 
where the entire institutional structures are also 
collaborative and specifically intended to 
develop actionable climate information 
partnerships). Projects ranged from 
development of nation-wide or state-wide 
climate data tools and portals to individual 
projects working with a group/groups of users to 
develop actionable information. Some projects 
that were discussed include the DOE-funded 
HyperFACETS, IFLs and Climate Risk and 
Resilience Portal; South Central CASC’s 
Edwards Aquifer Authority project; Alaska 
CASCs programs on provision of climate 

information/services; Weather Effects on the 
Lifecycle of DOD Equipment Replacement or 
WELDER project; and the Cal-Adapt Analytics 
Engine. 

3.8 Remaining Gaps in Meeting 
User Needs 

Four categories of gaps were identified as 
needing further work. 

3.8.1 Gaps in Available Data and 
Tools 

The workshop attendees noted that despite 
several advances in the provision of climate 
data, some gaps in regional data (e.g., data and 
methods for Alaska and the Pacific islands) as 
well as decision-relevant variables and 
resolutions, still persisted. In addition, there are 
limited user-friendly tools and analytics to help 
users parse through and work with the incredibly 
large amounts of downscaled climate data 
available. Other chapters of this report further 
elaborate on these data and tool gaps. 

3.8.2 Lack of Guidance on 
Appropriate Use of Climate 
Data for Decision 
Applications 

Even the most sophisticated of climate data 
users in the practitioner community often find it 
extremely difficult to navigate the complexities of 
the diverse types of climate data products 
available to them. Most users report that there 
are no transparent and user-centric guidances 
(i.e., dos and don’ts) on appropriate use of 
climate data for decision applications (Vano et 
al. 2018). Most recommendations on climate 
data use tend to be extremely academic without 
much understanding of the applicability within 
the bounds and limitations of a decision-making 
space. Yet, users are often called out for using 
data inappropriately. The workshop attendees 
noted the lack of actionable guidance as one of 
the biggest gaps in the use of climate 
information, and one of the biggest research and 
scientific gaps in climate science today. 
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Users need better guidance, first on choice of 
data products (i.e., when to use each type of 
data), and on the pros and cons of using 
different data products for different applications. 
They also need guidance on the most 
‘scientifically appropriate but also practically 
operational’ way of using climate information for 
specific decisions. Guidance on the following is 
often lacking: 

• Depth of analysis needed for different 
application types (e.g., when can you rely on 
an online ranking or visualization tools that 
provide broad regional summaries or 
statistics or vulnerability rankings, versus 
when there is a need for deeper analysis of 
data). 

• Best practices and well-characterized 
approaches in integrating climate model 
outputs into impacts and management 
modeling that transparently identify the risks 
and the additional uncertainties during such 
coupling. 

• Choices of resolution or downscaling 
approaches: 

– Pros and cons of choosing between 
different downscaling datasets 

– When finer-scale resolution is required 
or necessary 

– Comparison of uncertainties between 
various approaches 

– Needs for physical consistency among 
variables. 

• Approaches to characterize and understand 
different sources and magnitudes of 
uncertainties and how they translate to 
choices of scenarios, models, etc. This can 
include use of various risk-relevant metrics 
such as likelihood, probability density 
function (PDF), and confidence level and 
prediction intervals, combined with scientific 
metrics of uncertainties. 

Such guidance needs to be developed 
collaboratively between producers, users, 
regulatory agencies, and boundary agencies. 
The role of boundary agencies and boundary 
chains in helping to translate these guidelines 

accurately into different decision contexts is 
critical. Local climate boundary agencies might 
need to be empowered and strengthened so that 
they can serve as a valuable conduit between 
the producer and user communities. Some 
workshop participants also brought up the 
relatively recent proliferation of using AI for 
climate services, and the need for guidance on 
this space. 

3.8.3 Lack of Credibility 
Evaluations from a 
Practitioner’s Standpoint 

Another gap for users that came up prominently 
during the workshop was that credibility 
evaluations of climate data are often conducted 
purely from a climate science perspective 
without consideration of credibility for use in 
decisions. It was brought up that credibility may 
mean different things to different producers, 
users, and data evaluators; hence credibility 
could also be context dependent. As one 
workshop participant mentioned: “10TB of highly 
resolved projection that is highly publishable 
may be useless in the wrong decision context, 
so definitions of credibility can vary.” Among the 
academic community, there are opportunities to 
develop evaluation methods to better 
characterize the skill and applicability of 
datasets for various use cases. 

More specifically, it was discussed that, in the 
interest of scientific confirmation and diversity of 
available products, in many instances there 
should not be a single designated ‘official’ set of 
downscaled projections for any and all 
purposes. At the same time, in a tangled 
ecosystem of semi-authoritative products, it is 
difficult to say who decides the standards for 
data being fit-for-purpose, and there likely 
should be a structured, facilitated, collaborative 
effort to address this issue among various 
stakeholders. Some specific aspects of 
credibility assessments that came up included 
the need for a standardized evaluation workflow 
(as discussed in chapter 4), a standard set of 
questions to ask to understand how a 
stakeholder defines credibility, and a 
standardization of metadata information that all 
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data products must have: i.e., the temporal and 
spatial resolution, map projection, time periods, 
quality control information, narrative about the 
data set, and so on that should be included with 
data set documentation to assist users, 
translators, and evaluators with assessing and 
using projection data (as discussed in 
chapter 2). 

3.8.4 Gaps in User Engagement 
and Resources to Support it 

Despite progress in user engagement, 
discussions nonetheless identified many 
remaining gaps. For instance, it was brought up 
that most data producers’ understanding of 
actual decision contexts in which the data may 
be used was very limited. Therefore there is still 
a need for data producers to better engage with 
and understand the different users’ workflow and 
contexts. Further, it was brought up that not all 
engagements are successful, and there is only 
emerging understanding on what types of 
engagements work and which ones do not work. 
There is a need for more evaluation/synthesis of 
engagement approaches and resulting/implied 
best practices. There is emerging evidence that 
successful user engagement often requires 
skilled expert facilitators who have competence 
both in climate data/developer representation 
and the decision context/stakeholder/user 
representation; however, such expertise is hard 
to come-by and training to build such 
competencies is very limited. Further, climate 
data user-mapping (i.e., mapping of stakeholder 
questions to particular datasets) can be a 
complicated endeavor, and it is often hard to 
even identify who in an organization actually 
uses the climate data and makes decisions on 
data choice. Lastly, the conflict of interest that 
might arise when climate data provision services 
for-profit activities was also brought up. While 
private data providers will have an important role 
in enabling accessibility of the data, there may 
also be cases where there are some potential 
conflicts of interest. 

3.9 Way Forward 
Given the uneveness in available computational, 
financial, and human resources across sectors, 
utilities, agencies, and companies, more 
research and evaluation of how climate data are 
actually being used, and who is using it, is 
necessary. New climate data sets need to be 
informed by the actual needs and questions 
from the practitioners, rather than from 
aspirations on how they could be used. 
Furthermore, the role of ML chatbots or other 
ChatGPT-like ML tools in the provision of data 
also needs to be explored (and critiqued). AI and 
machine learning approaches can potentially be 
powerful tools to assist in meeting end-user 
needs, but there is a need for careful 
consideration/development of ethical standards 
and guardrails for AI use. 

Improving the provision of useful and usable 
climate data for a variety of research, decision-
making, and other applications requires a 
collaborative relationship between data 
producers, evaluators, users, and boundary 
agencies that work to connect data providers 
and users. One potential approach is a 
community of practice (COP), but if a new COP 
is being developed, then it needs to have a clear 
and well-defined goal, and adequate resources 
to help sustain and maintain it. Best practices 
and literature on effectively designing and 
sustaining such COPs should also be followed 
(e.g., Miles et al. 2006, Page and Dilling 2019). 
Connections (and overlap) with other 
communities of practice such as the Science for 
Climate Action Network (SCAN), the Cal-Adapt 
Analytics Engine, DOE’s Multi-Sector Dynamics  
research-to-operations-to-research community 
of practice (MSD R2O2R), the Electric Power 
Research Institute’s ClimateREADi group, the 
Integrated Hydro-Terrestrial Modelling group 
(IHTM), and the Consortium of Universities for 
the Advancement of Hydrologic Science 
(CUAHSI), should be explored. 

https://journals.ametsoc.org/view/journals/wcas/11/4/wcas-d-18-0130_1.xml
https://analytics.cal-adapt.org/
https://analytics.cal-adapt.org/
https://multisectordynamics.org/connecting-msd-research-to-operations/


 

30 

3.10 References 
Bamzai-Dodson, A, AE Cravens, AA Wade, and 
RA McPherson. 2021. “Engaging with 
stakeholders to produce actionable science: a 
framework and guidance.” Weather, Climate, 
and Society  
13(4): 1027–1041, 
https://doi.org/10.1175/WCAS-D-21-0046.1 

Bessembinder, J, M Terrado, C Hewitt, N 
Garrett, L Kotova, M Buonocore, and R 
Groenland. 2019. “Need for a common typology 
of climate services.” Climate Services 16: 
100135, 
https://doi.org/10.1016/j.cliser.2019.100135 

Bremer, S, and S Meisch. 2017. “Co-production 
in climate change research: reviewing different 
perspectives.” Wiley Interdisciplinary Reviews: 
Climate Change 8(6): e482, 
https://doi.org/10.1002/wcc.482 

Briley, L, R Kelly, ED Blackmer, AV Troncoso, 
RB Rood, J Andresen, and MC Lemos. 2020. 
“Increasing the usability of climate models 
through the use of consumer-report-style 
resources for decision-making.” Bulletin of the 
American Meteorological Society 101(10): 
E1709–E1717, https://doi.org/10.1175/BAMS-D-
19-0099.1 

EPRI. 2024. Climate Data Users Guide. V1.0.0. 
3002028078. Palo Alto, California. 
https://www.epri.com/research/products/000000
003002028078 

Goodrich, KA, KD Sjostrom, C Vaughan, L 
Nichols, A Bednarek, and MC Lemos. 2020. 
“Who are boundary spanners and how can we 
support them in making knowledge more 
actionable in sustainability fields?” Current 
Opinion in Environmental Sustainability 42: 45–
51, https://doi.org/10.1016/j.cosust.2020.01.001 

Hackenbruch, J, T Kunz-Plapp, S Müller, and 
JW Schipper. 2017. “Tailoring climate 
parameters to information needs for local 
adaptation to climate change”. Climate 5(2): 25, 
https://doi.org/10.3390/cli5020025 

Jagannathan, K, S Buddhavarapu, PA Ullrich, 
AD Jones, and HyperFACETS Project Team. 
2023. “Typologies of actionable climate 
information and its use.” Global Environmental 
Change 82: 102732, 
https://doi.org/10.1016/j.gloenvcha.2023.102732 

Jagannathan, K, AD Jones, and I Ray. 2021. 
“The making of a metric: Co-producing decision-
relevant climate science.” Bulletin of the 
American Meteorological Society 102(8): 
E1579–E1590, https://doi.org/10.1175/BAMS-D-
19-0296.1 

Lemos, MC, CJ Kirchhoff, and V Ramprasad. 
2012. “Narrowing the climate information 
usability gap.” Nature Climate Change 2(11): 
789–794, https://doi.org/10.1038/nclimate1614 

Lemos, MC, CJ Kirchhoff, SE Kalafatis, D 
Scavia, and RB Rood. 2014. “Moving climate 
information off the shelf: boundary chains and 
the role of RISAs as adaptive organizations.” 
Weather, Climate, and Society 6(2): 273–285, 
https://doi.org/10.1175/WCAS-D-13-00044.1 

Meadow, AM, DB Ferguson, Z Guido, A 
Horangic, G Owen, and T Wall. 2015. “Moving 
toward the deliberate coproduction of climate 
science knowledge.” Weather, Climate, and 
Society 7(2): 179–191, 
https://doi.org/10.1175/WCAS-D-14-00050.1 

Miles, EL, AK Snover, L Whitely Binder, E 
Sarachik, P Mote, and N Mantua. 2006. “An 
approach to designing a national climate 
service.” Proceedings of the National Academy 
of Sciences of the United States of America 
103(52): 19616–19623, 
https://doi.org/10.1073/pnas.0609090103 

OSTP 2023. Selecting Climate Information to 
Use in Climate Risk and Impact Assessments: 
Guide for Federal Agency Climate Adaptation 
Planners. White House Office of Science and 
Technology Policy. Washington, D.C., USA, 
https://www.whitehouse.gov/wp-
content/uploads/2023/03/Guide-on-Selecting-
Climate-Information-to-Use-in-Climate-Risk-and-
Impact-Assessments.pdf 

https://doi.org/10.1175/WCAS-D-21-0046.1
https://doi.org/10.1016/j.cliser.2019.100135
https://doi.org/10.1002/wcc.482
https://doi.org/10.1175/BAMS-D-19-0099.1
https://doi.org/10.1175/BAMS-D-19-0099.1
https://www.epri.com/research/products/000000003002028078
https://www.epri.com/research/products/000000003002028078
https://doi.org/10.1016/j.cosust.2020.01.001
https://doi.org/10.3390/cli5020025
https://doi.org/10.1016/j.gloenvcha.2023.102732
https://doi.org/10.1175/BAMS-D-19-0296.1
https://doi.org/10.1175/BAMS-D-19-0296.1
https://doi.org/10.1038/nclimate1614
https://doi.org/10.1175/WCAS-D-13-00044.1
https://doi.org/10.1175/WCAS-D-14-00050.1
https://doi.org/10.1073/pnas.0609090103
https://www.whitehouse.gov/wp-content/uploads/2023/03/Guide-on-Selecting-Climate-Information-to-Use-in-Climate-Risk-and-Impact-Assessments.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/Guide-on-Selecting-Climate-Information-to-Use-in-Climate-Risk-and-Impact-Assessments.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/Guide-on-Selecting-Climate-Information-to-Use-in-Climate-Risk-and-Impact-Assessments.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/Guide-on-Selecting-Climate-Information-to-Use-in-Climate-Risk-and-Impact-Assessments.pdf


 

31 

Page, R, and L Dilling. 2019. “The critical role of 
communities of practice and peer learning in 
scaling hydroclimatic information adoption.” 
Weather, Climate, and Society 11(4): 851–862, 
https://doi.org/10.1175/WCAS-D-18-0130.1 

Raaphorst, K, G Koers, GJ Ellen, A Oen, B 
Kalsnes, L van Well, J Koerth, and R van der 
Brugge. 2020. “Mind the gap: towards a typology 
of climate service usability gaps.” Sustainability 
12(4): 1512, https://doi.org/10.3390/su12041512 

Reed, KA, N Goldenson, R Grotjahn, WJ 
Gutowski, K Jagannathan, AD Jones, LR Leung, 
SA McGinnis, SC Pryor, AK Srivastava, and PA 
Ullrich. 2022. “Metrics as tools for bridging 
climate science and applications.” Wiley 
Interdisciplinary Reviews: Climate Change 
13(6): e799, https://doi.org/10.1002/wcc.799 

Vano, JA, JR Arnold, B Nijssen, MP Clark, AW 
Wood, ED Gutmann, N Addor, J Hamman, and 
F Lehner. 2018. “DOs and DON'Ts for using 
climate change information for water resource 
planning and management: guidelines for study 
design.” Climate Services 12: 1–13, 
https://doi.org/10.1016/j/cliser.2018.07.002 

Vincent, K, E Archer, R Henriksson, J Pardoe, 
and N Mittal. 2020. “Reflections on a key 
component of co-producing climate services: 
defining climate metrics from user needs.” 
Climate Services 20: 100204, 
https://doi.org/10.1016/j.cliser.2020.100204 
  

https://doi.org/10.1175/WCAS-D-18-0130.1
https://doi.org/10.3390/su12041512
https://doi.org/10.1002/wcc.799
https://doi.org/10.1016/j/cliser.2018.07.002
https://doi.org/10.1016/j.cliser.2020.100204


 

32 

4.0 The State of Benchmarking and Evaluation for Regional 
Climate Data Sets and Projections 

Lead Authors: 
Hugo Lee, NASA Jet Propulsion Laboratory, huikyo.lee@jpl.nasa.gov  
Paul Ullrich, Lawrence Livermore National Laboratory, ullrich4@llnl.gov  

Contributing Authors: 
Moetasim Ashfaq, Oak Ridge National Laboratory, mashfaq@ornl.gov  
Ankur Dixit, Cornell University, ad933@cornell.edu 
Keith Dixon, National Oceanic and Atmospheric Administration, keith.dixon@noaa.gov  
Ethan Gutmann, National Center for Atmospheric Research, gutmann@ucar.edu  
Alex Hall, University of California – Los Angeles, alexhall@g.ucla.edu  
Sepideh Khajehei, NASA Ames Research Center, sepideh.khajehei@nasa.gov  
David Lafferty, University of Illinois – Urbana-Champaign, davidcl2@illinois.edu  
Flavio Lehner, Cornell University, flavio.lehner@cornell.edu 
Ruby Leung, Pacific Northwest National Laboratory, ruby.leung@pnnl.gov 
Elias Massoud, Oak Ridge National Laboratory, massoudec@ornl.gov 
Tanya Spero, U.S. Environmental Protection Agency, spero.tanya@epa.gov 
Adrienne M. Wootten, University of Oklahoma, amwootte@ou.edu 

 
4.1 Chapter Summary 
Benchmarking and evaluating downscaled data 
sets against observations and/or with controlled 
experiments are critical steps that support and 
enable the use of those data sets in a wide 
range of applications for resilience and 
adaptation planning. The global modeling 
community has established mature and standard 
approaches to evaluation and benchmarking, 
but downscaled data producers, translators, and 
practitioners have not. With new data production 
efforts underway and novel production 
techniques emerging, standardized evaluation 
techniques that are independent of production 
method are increasingly needed. The 
components necessary to achieve robust 
standards for benchmarking and evaluation of 
downscaled climate projections, as well as some 
of the research needed to achieve that goal, are 
presented and discussed. 

4.2 Background 
This chapter compiles the discussions from the 
workshop and provides a summary of the 
current landscape of benchmarking and 
evaluation for downscaled products. 
"Benchmarking" refers to the methodology of 
comparing downscaled products with reference 
observations (e.g., in situ weather data), 
observational products (e.g., gridded 
temperatures and precipitation), or optimal 
methodologies acknowledged by the climate 
scientific community. In contrast, "evaluation" 
denotes a comprehensive analysis focused on 
determining the reliability, precision, and 
relevance of downscaled products, while using 
various metrics. Benchmarking and evaluation 
are crucial for establishing the ability of climate 
models to produce useful results for decision-
making, both individually and collectively. For 
example, Figure 10 depicts a common workflow 
for deriving meaningful conclusions from 
decision-relevant climate data, where 
information from benchmarking and evaluation 
provides an essential early step that shapes the 
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conclusions drawn from those data. Evaluation 
provides data producers with insights that can 
guide future model improvements and help 
users to understand the strengths and limitations 
of data sets for specific applications. This 
practice advances the understanding of climate 
change, where metrics serve as indicators for 
possible issues within the process 
representations that can be directly or indirectly 
relevant to a model’s ability to represent a 

particular impact. When a model exhibits a low 
metric score or sets of scores, it indicates a 
need for further qualitative and physical 
investigations. Evaluation is also used for 
deriving model weights in ensemble runs, for 
linking confidence in model results to its 
representation of historical climate, and for 
deriving best estimates and uncertainty in future 
change. 

 
Figure 10. A schematic representation of the evaluation workflow connecting data products to output 

supporting data producers and end-users. 

4.3 Standardized Evaluation of 
Decision-Relevant Climate 
Data 

Standardized model evaluation for GCMs today 
is a far more mature discipline, largely due to 
efforts by DOE’s PCMDI in the early 1990s that 
laid the groundwork for CMIP (Potter et al. 
2011). At present, extensive and readily 
available benchmarking tools (for instance, the 
PCMDI Metrics Package (Lee et al. 2023) and 

ESMValTool (Righi et al. 2020)), are frequently 
used by operational centers for diagnosing 
model biases and tracking model improvements 
over time. For example, Figure 11 shows a 
“portrait plot” for GCMs, in this case for 
quantifying relative model performance on a 
variety of climatological metrics. Efforts focused 
on standardized evaluation have greatly 
contributed to the tracking of and improvements 
in GCM performance across CMIP generations 
as well as building confidence in model 
projections (Bock et al., 2020). 
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Figure 11. A visualization of GCM performance across standard climatological metrics using a portrait plot. 

Visualizations such as these are commonplace in GCM evaluation, and could be adapted for use 
by the regional climate data community. 

However, there are notable differences for 
standardized evaluation of DRCDPs that hinder 
an exact translation of accumulated GCM 
diagnostic techniques and experiences to the 
DRCDP space. First, GCM evaluation primarily 
addresses evaluation of the simulated climate 
system, while decision-relevant data needs to be 
evaluated with end-user needs in mind. 
Currently, there is no approach to mapping end-
user needs to bespoke evaluation approaches 
and metrics. Second, GCM evaluation is more 
easily coordinated because the geographic 
coverage of each model and experiment is the 
same; the choice of domain extent can be very 
impactful on DRCDP results and is an integral 
part of the evaluation process. Finally, the 
evaluation of DRCDPs must consider the 
sensitivity of those projections to initial and 
boundary conditions and/or training data 
choices. 

Despite the features that are unique to DRCDP 
evaluation, there was general consensus at the 
workshop that there is a need for the 
development of a standardized DRCDP 
evaluation framework for ascertaining the 
performance of various downscaled products, 
tracking that performance over time, and 
allowing data users to readily intercompare and 
understand differences among products using 
consistent evaluation criteria with rational, 
justifiable bases. 

Such a framework would consist of a suite of 
standard metrics and diagnostics, along with 
prescribed methods for performing that 
computation that are relatively flexible across 
methodological choices in the data production 
process (e.g., downscaling method, choice of 
grid). This further necessitates a clear 
articulation and justification of the standard 
metrics and diagnostics used to perform this 



 

34 

evaluation, along with what is learned from such 
evaluation. Of course, such a standardized 
evaluation workflow may meet the needs of 
many users but not all. Some users will have 
unique needs that require additional evaluation 
for either new metrics or other variables that 
may only apply in particular circumstances. 
Further, not all metrics and diagnostics would be 
appropriate for all data products. For example, 
systematic process-based evaluation of 
statistically downscaled products (such as 
metrics based on feature tracking) is often not 
feasible due to the limited variety or temporal 
frequency of variables. 

Discussions also touched upon the potential for 
user-oriented evaluation tools, which reconcile 
the need for standardization with the diverse 
applications of downscaled products, and the 
associated need for maximizing utility and 
ensuring distinctiveness in metrics collections 
(as discussed in, e.g., Reed et al. (2022)). One 
framework for such tools is the Coordinated 
Model Evaluation Capabilities (CMEC) effort 
currently underway at DOE, which provides a 
decentralized framework for sharing of 
evaluation capabilities. 

With the development of such a standard 
framework, questions arose regarding the 
establishment of an independent entity 
responsible for such evaluations and what is 
required to make that entity viable. Such an 
independent entity would only function with 
dedicated effort from contributors, and its 
continuity could be challenged by funding 
constraints. In particular, the entity would need 
dedicated, long-term efforts by contributors to 
build, support, maintain, and adapt software, as 
well as dedicated efforts by contributors to 
ensure robust, rigorous, state-of-the-science, 
and state-of-the-practice DRCDP evaluation. 
Given the success of the CMIP and CORDEX 
examples over decades, many of the pathways 
necessary to develop such an entity have been 
established. 

4.4 Inherited Biases from 
GCMs 

The biases that GCMs exhibit in their historical 
simulations relative to historical observations 
have been very persistent across phases of 
CMIP and are a thorny issue (Ehret et al. 2012). 
These biases pose a particular problem for 
dynamical downscaling techniques because the 
process modeling that underlies such 
downscaling is sensitive to biases in initial and 
boundary conditions (Rummukainen 2016). 
Also, these biases cannot be corrected without 
incurring uncertainty, and potentially introducing 
physically unjustifiable inconsistencies among 
variables. GCM biases are not likely to be 
resolved at the regional level in the short-term 
(i.e., in CMIP6Plus or CMIP7), because the 
contributions to those biases are complex and 
emerge from GCM parameterization errors, 
GCM structural errors, and the internal variability 
of the Earth system. Anyway, GCM development 
should seek to improve overall GCM 
performance and consistency with the physical 
system, rather than only focusing on removing 
biases in one particular region. From an end-
user standpoint, additional research is needed 
on whether or not these biases materially impact 
projections (and subsequent decisions) or if they 
are relatively benign. From the standpoint of 
data producers, quantification of biases is 
essential, and further research is needed on the 
best ways to address these biases without 
fundamentally altering the processes or 
physically based relationships that exist between 
variables. Evaluation-based approaches for 
down-selection of GCMs may be desirable when 
selecting GCMs for particular regions 
(Goldenson et al. 2023). Further, thoughtful 
approaches (e.g., Risser et al. 2024, Rahimi et 
al. 2024) that provide clear justification and 
uncertainty quantification for the use or the 
avoidance of bias correction are needed. 

4.5 Data Averaging and 
Weighting 

With multiple DRCDPs derived from different 
GCMs, different ensemble members of a GCM, 
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and different downscaling techniques, the 
distillation of information for the end-user is 
especially important and requires caution. 
Ensembling, which refers to combining 
simulations with similar physical representations 
and software architectures into ensembles, has 
long been a practice of the CMIP program to 
(1) avoid over-reliance on a single projection, 
(2) capture a range of climate projections using 
different GCMs, and (3) recognize that natural 
variability in the Earth system requires 
probabilistic projections. While there were many 
fewer projections available to NCA5 than were 
available for CMIP6, NCA5 adopted an 
analogous approach to ensembling as CMIP6 
and blended LOCA2 and STAR-ESDM. With the 
advent of numerous downscaled CMIP6 
products, combining them to capture a more 
comprehensive spread of uncertainty may also 
yield, depending on how it is performed, a result 
that has reduced extreme-value information 
relative to individual DRCDPs, if only the mean 
is provided. It is important to recognize that the 
spread in projections across climate products 
and their ensemble members may contain 
important information about the uncertainty of 
future change; however, to date little research 
has been done on the best way to combine 
information from multiple methods of data 
production. This is especially the case for 
consideration of combining statistical and 
dynamical products, as well as combining 
different dynamical products whose domains 
overlap with the geography of interest. 
Advances in the application of meta-analysis to 
boost statistical significance, such as recent 
work to constrain equilibrium climate sensitivity 
(Sherwood et al. 2020), would be useful in 
boosting confidence in projections. 

The consideration of similarities in base models, 
whether referring to GCMs or downscaled 
products, is a complex aspect of evaluating 
downscaled products. Determining the weights 
of ensemble projections, particularly when 
dealing with outliers, requires a careful analysis 
of model lineage and output similarity (Pennell 
and Reichler 2011). Determining whether an 
outlier is signaling a real climatic possibility or is 
simply the result of issues faced by a particular 
model remains a key challenge for climate 

scientists and requires exhaustive evaluation of 
the outlier. 

4.6 Metrics and Diagnostics 
Metrics and diagnostics are measures and 
depictions of differences between a model 
product and a reference data set, and are 
fundamental for climate data evaluation. 
Workshop participants highlighted many 
examples where new metrics and diagnostics 
research could address questions related to 
whether climate data products (individually or 
collectively) are fit for purpose when employed 
in particular use cases. 

Beyond temperature and precipitation: 
Discussions among participants revealed a 
consensus that evaluation metrics should extend 
beyond traditional measures of surface air 
temperature and precipitation. This includes 
development of metrics and reference products 
for wind, snow, soil moisture, runoff, circulation, 
humidity, evapotranspiration, and radiation. 
Additionally, metrics are needed to relate 
atmospheric (e.g., mid-to-upper troposphere) 
and surface states (e.g., sea surface 
temperatures) to surface air temperature, 
precipitation, and sub-daily extremes. Such 
metrics are integral to a more holistic 
understanding of key processes governing 
regional climate. However, many statistically 
downscaled data sets currently do not provide 
data to support such additional evaluation, and 
the lack of sufficient training data complicates 
such extended evaluation. This suggests a need 
to develop hybrid approaches (as discussed in 
chapter 2) or new observational products. 

Feature-based metrics: Feature-based metrics 
are crucial for understanding the spatial and 
temporal characteristics of weather and climate 
features in projections, particularly for those 
features that have significant implications for 
regional impacts. Such metrics should 
encompass surface air temperature features 
(e.g., heat domes), contiguous regions of 
precipitation, atmospheric rivers, low- and high-
pressure systems, and mesoscale convective 
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systems as essential elements of a 
comprehensive evaluation strategy. 

Intervariable relationships: A significant gap 
exists in the evaluation of the relationships 
between different atmospheric and surface 
variables (e.g., the tendency for wind speeds to 
be lower when temperatures are high). 
Evaluating DRCDPs based on these 
relationships is imperative for accurately 
modeling and predicting climate behavior for two 
reasons: (1) because of the strong connection 
between variable relationships and impact-
relevant climatic processes and (2) for data 
users to have confidence that DRCDP data sets 
can provide useful information on those 
intervariable relationships that represent 
compound risks. 

Modes of variability: Better metrics are needed 
that capture teleconnections between large-
scale interannual-to-multi-decadal modes of 
variability in the climate system and regional 
climate. One example is to evaluate the 
relationship between sea surface temperatures 
(SSTs) and precipitation patterns. This 
relationship is critical for accurately modeling 
climate dynamics and physics, especially in 
regions where El Niño and La Niña are major 
drivers of surface temperature and precipitation. 

Complex indices from external communities: 
The need to include more complex indices 
defined by user communities such as fire 
weather indices and drought conditions was 
emphasized in discussions. Such metrics are 
increasingly important in the context of climate 
change, where the frequency and intensity of 
multi-factor extreme events are changing. 

Weather types: The ability to distinguish and 
accurately evaluate the skill of a DRCDP for 
different weather types is an important step to 
more broadly characterize the skill of a 
dynamical downscaling product. For example, 
convective and stratiform rainfall have distinct 
impacts on regional hydrology and ecosystems 
and are therefore crucial for climate impact 
assessments, but metrics for disentangling 
different precipitating storm types remain a 
challenge. Extending the evaluation of DRCDPs 

to encompass a broader range of weather 
events enables a more robust characterization 
of a downscaling method's effectiveness and its 
implications for regional climate predictions. 

Focus on user needs: The workshop 
emphasized the importance of developing 
metrics inspired by user needs and applications. 
These use-inspired metrics would allow for the 
assessment of climate data in the context of 
real-world applications and sector-specific 
requirements. 

Broader spatial coverage: The geographical 
scope of evaluation needs to expand beyond the 
CONUS to at least cover the OCONUS (Basile 
et al. 2024). Expanding the evaluation of climate 
projections for a broader range of regions is 
crucial for understanding climate impacts on a 
global scale and for supporting resilience and 
adaptation in regions that may be 
underrepresented in current regional climate 
projections. 

The role of resolution: There is a need for a 
more nuanced understanding of how spatial and 
temporal resolution affects the quality of climate 
data products. The value introduced by adding 
spatial resolution to a climate projection (e.g., 
going from 100km to 25km or 25km to 4km) 
must be demonstrated, balancing both the 
greatly increased computational demands and 
time required to produce high-resolution data 
against the enhanced detail and potential 
improvements in capturing relevant climatic 
processes. This is especially true at even finer 
spatial resolution (~1km) where the ability to 
ground-truth the product against observations is 
extremely limited. For statistically downscaled 
products, which rely completely on the veracity 
of gridded historical data, comparisons of 
different options reveals the difficulty of 
interpolating between weather stations (Behnke 
et al. 2016, Ullrich 2023, Walton and Hall 2018) 
needed to achieve high spatial resolution. 
Selecting any downscaled data set based 
largely on high spatial resolution, without 
considering the realism of the actual variables 
used for impact analysis, should be carefully 
considered. 
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Evaluation of regional climate sensitivity: 
Finally, the goal of climate downscaling methods 
is to aid in the evaluation of future climate 
impacts on adaptation decisions. Metrics need 
to be developed to evaluate the reliability of 
future projections from different downscaling 
methods. Evaluation with respect to historical 
trends, perfect model experiments, or historical 
climate modes are steps down this path, and a 
common framework for such evaluation would 
greatly benefit the entire community. For 
instance, in the case of the 5th National Climate 
Assessment (NCA 5 report), the metric used to 
evaluate and weight models was Equilibrium 
Climate Sensitivity (ECS), which captures a 
model’s temperature sensitivity to increase 
atmospheric CO2 levels (Massoud et al. 2023). 
While this selection seems reasonable, as 
pointed out in Pierce et al. (2009) there may be 
little relationship between ECS and regional 
model performance. Additional metrics are likely 
needed for regional scales, such as hydrologic 
sensitivity or magnitude (and sign) of 
precipitation change, often normalized by 
warming. 

Notably, there was broad consensus for the 
establishment of a process for selecting valuable 
metrics, as suggested in Reed et al. (2022). The 
chosen metrics should be capable of guiding the 
evaluation of statistically and dynamically 
downscaled products, as well as hybrid 
approaches. 

4.7 Other Gaps and Challenges 
in DRCDP Evaluation 

The workshop emphasized a significant 
challenge in the field of climate science: 
effectively linking the evaluation of climate 
models and DRCDPs with the characterization 
and communication of their confidence and 
credibility. There is a noted danger in assessing 
or establishing model credibility based entirely, 
or partially, on its use in applications or when its 
usage is mandated by policy directives. This 
underscores the need for independent 
evaluation to provide unbiased, rational, 
scientifically based assessments of downscaled 
products. 

However, there are barriers to conducting these 
assessments and the workshop highlighted 
several opportunities for advancing the science 
and applicability of data evaluation, which we 
summarize here. 

Evaluating techniques versus output: When 
evaluating downscaling methods, it is vital to 
distinguish between evaluating downscaling 
techniques themselves and the output they 
produce, because the former includes the 
implementation of methods and operational 
choices, while the latter also evaluates the 
selection of training and/or evaluation data. For 
example, one common method for evaluating 
statistical techniques involves downscaling 
coarsened observations and comparing the 
results to the original high-resolution data set. 
While this method provides some insights into 
the sub-grid information that the statistical 
method introduces, along with nonlinearities that 
need to be resolved to avoid grid-scale biases, it 
fails to address the significant set of biases 
introduced by global climate models. Therefore, 
this method should be considered as part of a 
broader, more inclusive evaluation strategy 
rather than as a standalone solution. 

Evaluating performance in an uncertain 
future: Understanding the relationship between 
historical model performance and future 
projections remains a fundamental challenge. 
There is a need for a systematic approach to 
analyze how biases in historical simulations are 
related to future projections, including the 
credibility of those projections. This task is made 
more complex by the differences in regulatory 
frameworks among various data users, 
especially where the use of bias-corrected data 
can be both a limitation and a necessity. 

Quantification of uncertainty: Another concern 
raised in the workshop is the quantification of 
uncertainty in both observational and 
downscaled products. An in-depth investigation 
into the uncertainties specific to each 
downscaling approach is also needed. 
Communicating this understanding of 
uncertainties to end-users in a manner that 
informs their selection and use of downscaled 
products remains a considerable challenge. 

https://nca2023.globalchange.gov/
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Guidance on translating these uncertainties into 
impact models is essential for robust decision-
making. 

New high-quality observational products: 
The availability and quality of observational data 
are critical to model evaluations. The workshop 
highlighted the need for more observations in 
data-sparse regions and for variables that are 
currently not widely available. Furthermore, 
ensuring that observations are publicly available 
is important for comprehensive evaluations. 
Observational data products, particularly their 
methodology for processing observations, 
require rigorous evaluation themselves to 
ensure their suitability for evaluating DRCDPs, a 
concern that becomes even more prominent 
outside of CONUS, where observations are 
relatively sparse and options for data products 
may be severely limited. 

Effect of spread in observational products: 
Gridded observational products can vary 
substantially depending on the measurements 
used and the methods for processing those 
data. However, evaluation efforts rarely consider 
multiple observational products or account for 
this spread in observational data products. More 
research is imperative to estimate spread in 
observational data products, and the potential 
impact the choice of observational product has 
on the conclusions of that evaluation. 

Selecting a subset of products: Specific 
criteria for the selection of a particular product or 
products for use in a study or report are 
inevitably tied to the specific decision context. 
However, identifying general “best practices” for 
the selection of products based on scientifically 
justifiable choices was a common refrain during 
the workshop to help in guiding groups who lack 
capacity to keep abreast of this fast-moving 
field. This is a common practice for all mature 
professions and timely for the climate adaptation 
field. However, defining such criteria would 
require substantive discussions between 
producers, evaluators, and users, with the 
added benefit that such discussions would be 
helpful in developing a better understanding of 
the whole ecosystem of products. 
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5.1 Chapter Summary 
The workshop organizers solicited brief technical 
talks from the attendees to discuss the current 
state of the practice and state of the science. 
These talks also provided a diversity of 
perspectives on the biggest issues facing 
decision-relevant climate data products, and 
potential future directions to tackle these issues. 
This chapter summarizes the nine presentations 
given at the workshop. 

5.2 Envisioning the Next 
Generation of U.S. Climate 
Predictions and 
Projections 

Annarita Mariotti, NOAA HQ 

A national strategy for next-generation U.S. 
climate predictions and projections is crucial to 
meet the needs for decision-relevant climate 
products. The development of this strategy 
starts with the realization that significant 
accelerated progress is both necessary and 
possible over the next several years, based on 
the scientific and technological opportunities 
now at hand. Fundamental to the strategy are 
the strengths of the U.S. climate modeling 
community, including innovation and diversity in 
the federally funded climate modeling groups, 
academia, and the private sector. A strategy is 
to encompass unprecedented levels of 
coordination and resources for transformative 
opportunities in both science and 
science-to-service pathways, and the enabling 
environments necessary for progress. These 
include advances in computing infrastructure for 
climate modeling, data storage and data 
analytics to support both science and service 
needs, and workforce and partnerships. Given 
the increasing diversity of modeling types 
supporting decisions, the strategy would include 
coordination for the development of a 
model-agnostic evaluation framework based on 
both scientific understanding and decision-
relevant metrics. 

5.3 Model Weighting Based on 
Equilibrium Climate 
Sensitivity 

Elias Massoud, Oak Ridge National Laboratory 

During a recent workshop, the use of Bayesian 
Model Averaging (BMA) on CMIP6 models was 
discussed, with the aim of constraining the 
model ensemble based on ECS. The BMA 
method allows for combining information from 
multiple models, providing a more detailed 
understanding of climate projections. In this 
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context, BMA helped address the 'hot model' 
problem that is known in CMIP6, where some 
models show higher ECS values than others, 
potentially skewing overall climate projections. 
The weights derived from BMA in this work were 
used in the recent NCA 5th report, where they 
were applied to downscaled models used in 
regional climate assessments. This approach 
offers a realistic and probabilistic assessment of 
future climate scenarios on a local scale, aiding 
regional decision-making. 

5.4 A Multi-Resolution 
Framework for Evaluating 
High-Resolution Climate 
Simulations 

Kyo Lee, NASA Jet Propulsion Laboratory (JPL) 

This presentation explored evaluation of 
effective data resolution by developing a 
methodology to compare spatial patterns from 
various sources using Hierarchical Equal Area 
isoLatitude Pixelization (HEALPix) within JPL’s 
Regional Climate Model Evaluation System. 
This work focused on temperature trends and 
mean precipitation, using HEALPix’s equal-area 
pixels and hierarchical structure to enable 
efficient remapping and comparison of data sets 
at different resolutions. A hierarchical data 
analyzer (HDA) has been designed to support  
multi-resolution analysis and the examination of 
spatial variance, map differences, and 
anisotropic patterns. This analysis technique 
was demonstrated by examining temperature 
trends in the Northwest region and comparing 
precipitation spatial variances between DOE’s 
regionally refined model and satellite 
observations. The findings highlight the added 
value of higher spatial resolution in 
understanding spatial variability, though the 25-
km resolution may not capture small-scale 
precipitation processes accurately. This 
framework can assess the value of high spatial 
resolutions in other downscaled data sets. 

5.5 A Seamless Approach for 
Evaluating Climate Models 
across Spatial 
Scales/Evaluating Impact 
of Bias Correction on 
Downscaling Uncertainty 

Alex Hall, University of California Los Angeles 

Issues surrounding bias correction pose 
significant challenges for decision-relevant 
climate data products. Bias correction is often 
necessary for decision relevance, yet its effect 
on climate change signals is largely 
unevaluated. This creates a significant (and 
unaccounted for) source of uncertainty. To begin 
to address this, dynamically downscaled 
simulations of future climate over the western 
U.S. were compared with and without a prior 
bias correction of the driving GCM data. It was 
found that the impacts of bias correction on 
regional temperature and precipitation change 
signals are small relative to other uncertainty 
sources such as internal variability and GCM 
diversity. Furthermore, it was found that in some 
cases (e.g., snow projections) bias correction 
produces a more physically credible solution. 
Much work remains to understand the impacts of 
bias correction, including why bias correction 
distorts regional signals, and the full spectrum of 
circumstances when bias correction actually 
produces more physically defensible results. 

5.6 Assessing Physical 
Climate Risks: Challenges 
and Opportunities 

Muge Komurcu, NASA Ames 

Dynamical downscaling using convection-
permitting regional climate modeling (<=4km 
horizontal resolution) can improve both mean 
and extreme features of climate in local scales 
compared to the driver Earth system model (or 
climate reanalysis) as shown in Komurcu et al. 
2018. However, it is computationally expensive 
to run these models, and to post-process, store, 
and distribute the resulting data, which makes it 
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challenging to downscale multiple models, 
scenarios, and realizations, to assess 
uncertainties and probabilities of projected 
change. Though missed by many published 
studies, it is also essential to downscale a 
climate reanalysis data set for the region using 
the same model set-up first to evaluate the 
methodology prior to applying it to downscale 
ESM historical climate and projections. 
Resulting higher-resolution projections enable 
many opportunities for collaborations between 
climate scientists and other experts (e.g., 
architects, civil engineers, hydrologists, 
economists) to assess physical climate risks, to 
produce region-specific adaptation pathways, 
and to create climate-resilient urban and 
infrastructure design. However, dedicated 
funding opportunities for these collaborations 
are limited. Public and stakeholder outreach 
undertaken by physical scientists can be crucial 
to promote these opportunities. 

5.7 Designing and Using 
Heterogeneous Ensembles 
of Climate Scenarios for 
Decision-Making 

L. Ruby Leung and Claudia Tebaldi, Pacific 
Northwest National Laboratory 

The impacts of extreme weather risks vary with 
the likelihood of extreme weather events and 
their consequences. Consequences are largely 
driven by the intensity of weather events for 
which model resolution matters. To estimate the 
likelihood of extreme weather events in specific 
regions, large ensembles of simulations are 
critical because of the significant uncertainty in 
large-scale circulation. Hence to support 
decision-making regarding the impacts of 
extreme weather risks, large ensemble size, 
high resolution, and multiple models are 
essential elements of ensemble modeling for 
robust estimation. Despite the groundbreaking 
performance of the Simple Cloud-Resolving 
Energy Exascale Earth System Model’s 
Atmosphere Model (SCREAM) global cloud-
resolving model on the Frontier exascale 
computer (1 SYPD), the type of ensembles 

needed to quantify extreme weather risks and 
their impacts is unattainable without 
transformational expansion of computing 
resources and improvements in computational 
performance. Currently, a heterogeneous 
ensemble of simulations consisting of regional 
and global models at different resolutions with 
different ensemble sizes exist. Challenges for 
the community include: (1) how to combine 
strengths from existing small-ensemble/single-
member higher-resolution simulations and 
medium/large ensemble of lower-resolution 
simulations; (2) how to design a new 
heterogeneous ensemble through coordinated 
efforts; and (3) how to augment physical 
modeling with machine learning (e.g., ensemble 
boosting) and leverage the heterogeneous 
ensemble to estimate the probability of extreme 
events. 

5.8 The North American 
Coordinated Regional 
Climate Downscaling 
Experiment (NA-CORDEX): 
Overview and Status 

Melissa Bukovsky, University of Wyoming 

Rachel McCrary, National Center for 
Atmospheric Research 

Dominique Paquin, Ouranos 

Christopher McCray, Ouranos 

William Gutowski, Iowa State University 

Sara Pryor, Cornell University 

The CORDEX vision is to advance and 
coordinate the science and application of 
regional climate downscaling through global 
partnerships. It emerged from a 2009 World 
Climate Research Programme (WCRP) call for 
enhanced downscaling coordination and serves 
as a formal CMIP diagnostic MIP. Coordination 
enhances the functionality of model ensembles 
for end-users and makes optimum use of a 
limited resource pool. However, achieving 
coordination has proven challenging due to the 
diverse array of disparate downscaling 
endeavors pursued under varying rationales, 
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compounded by inadequate levels of support. 
Data storage also continues to be a challenge. 
NA-CORDEX, despite these challenges, has to 
date served a wide audience. CMIP5 
downscaling efforts have garnered 160+ data 
set and 100+ journal citations, contributed to 
three IPCC reports and the Interactive Atlas, 
with the 40TB public archive maintaining a 
monthly download rate of about 5.1TB since 
completion. The coordination and production of 
downscaled CMIP6 simulations is underway, but 
it is expected to face similar challenges. For 
international CORDEX and protocol details, visit 
cordex.org, and for North American efforts, visit 
na-cordex.org. 

5.9 A Unified Framework for 
Evaluating the Risk of 
Extreme Temperature 
Events 

Greg Tierney, North Carolina State Climate 
Office 

As heat is the leading cause of weather-related 
deaths in the United States, risk assessment of 
extreme temperature events is crucial in 
understanding the potential impacts of a 
changing climate on human health. By 
employing an intensity-duration-frequency (IDF) 
curve framework, long used in the hydrological 
community, a concise but comprehensive 
analysis can be conducted for several return 
periods and event durations simultaneously. 
Applying this framework to future climate data 
products is beneficial along two paths. First, the 
IDF analysis can be a diagnostic tool evaluating 
the model's ability to realistically replicate 
extreme temperature events at an appropriate 
magnitude and frequency. Second, IDF analysis 
can be used prognostically to evaluate the future 
risk of extreme temperature events, enabling 
communities to better prepare future adaptation 
and mitigation measures. Expansion of this 
framework beyond temperature to broader 
human health indices (when possible, given the 
underlying climate data products) will serve to 
enrich such risk assessment going forward. 

5.10 Making Complex Data 
Actionable for Regional 
Decision-Making via the 
Cal-Adapt: Analytics 
Engine 

Owen Doherty, Eagle Rock Analytics 

Making unapproachably large quantities of 
climate projections accessible and useful for 
decision-makers requires an understanding of 
how the data will be used, scientifically informed 
analysis, appropriate statistical techniques, and 
computational/technological advances that 
empower end-users to use the climate 
projections. In turn, developing such a solution 
requires collaborative contributions, innovation, 
and a willingness to iterate from engaged and 
empowered users, social scientists, climate 
scientists, and computer/data scientists. 
Through co-production at Cal-Adapt we have 
assembled a collective of energy sector experts 
and leaders, government regulators, social and 
climate scientists across national laboratories, 
the University of California, and industry, as well 
as technical innovators including staff from 
Amazon Web Services to collectively produce 
the Cal-Adapt: Analytics Engine. The Cal-Adapt: 
Analytics Engine provides the data, compute 
resources, and expert guided notebooks to 
enable users to execute complex analysis that 
lead to regional decision-making using 
scientifically and statistically rigorous workflows. 
In this presentation we walk through a number of 
examples, including use of observational data at 
weather stations for on-the-fly bias correction to 
create future time series for energy sector 
stakeholders to use in energy system models 
and vulnerability assessments. We also 
demonstrate how global warming levels can be 
used in vulnerability assessments, and highlight 
the need for guidance and best practices to 
support users to enable decision-making at the 
regional scale. 
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6.1 Chapter Summary 
The Decision-Relevant Climate Data Product 
workshop sought to identify ongoing gaps in 
connecting the state of the science of localized 
climate projections to actionable climate 
information for end-users. This chapter 
summarizes these gaps, describes lessons 
learned from the global climate modeling 
community with the Coupled Model 
Intercomparison Project, and presents near- and 
medium-term upcoming challenges and 
opportunities. The chapter concludes by 
describing the features of a viable community of 
practice for DRCDPs so that the large and 
growing body of climate data users has salient, 
credible, authoritative, and accessible regional 
climate projection information. 

6.2 Background 
This workshop arose due to a set of ongoing, as 
well as a few acute, needs for decision-relevant 
climate information across the broad ecosystem 
of data producers, translators, evaluators, and 
end-users. Presentations and discussions 
focused on sharing of efforts currently underway 
and identifying gaps that limit the utility of 
climate data products by researchers and end-
users. 

6.3 Summary of Identified 
Gaps 

Identified gaps were organized in three 
categories, reflecting the three themes of the 
workshop: data production, data use, and data 
evaluation. In addition, workshop discussions 
identified two cross-cutting gaps related to 
observational data and cyberinfrastructure. 

6.3.1 Gaps in Data Production 

Workshop discussions highlighted data 
production needs that include: (1) more 
high-temporal-resolution (i.e., sub-daily to sub-
hourly) climate projections to address climate 
change impacts on renewable energy and 
extreme weather; (2) quantified uncertainties 
from the methods used for generating climate 
projections; (3) better methods for diagnosing 
variables relevant for climate change impacts 
such as flood extent, soil moisture, and wildfires; 
and (4) data homogenization and 
standardization to improve data availability and 
utility across workflows. From a data access and 
availability perspective, we noted the need for 
DRCDPs to follow findability, accessibility, 
interoperability, and reusability (FAIR) principles. 
This is because of a lack of community 
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standards for variable names and file metadata 
that preclude interoperability of these data sets, 
and the lack of a catalog of decision-relevant 
data products that would allow end-users to 
learn about what is available. An improved 
organizational structure will reduce redundancy 
in data production Additionally, the continuing, 
pressing need for high-resolution climate 
projections outside the CONUS, particularly over 
islands and in the Arctic, was expressed; 
however, this need is underscored by the lack of 
high-quality observational data in these regions, 
particularly data available with broad spatial 
coverage and long duration. 

6.3.2 Gaps in Data Use 

Data users identified an outstanding need for 
decision-relevant variables and increased spatial 
and temporal resolution, along with tools and 
computing resources that allow decision-makers 
to easily work with large amounts of climate 
data. Data users often mention the lack of 
specific and operational guidance on how to 
(and how not to) use climate data for specific 
applications. A dire need for scientifically 
rigorous and decision-relevant credibility 
evaluations of data products was also identified 
as a key gap, particularly as there is a 
proliferation of many different types of climate 
data products. As an overarching issue, there is 
often limited engagement and inclusion of user 
perspectives in climate data production and 
evaluation. This has led to many gaps in 
understanding how climate data are eventually 
used by different types of decision-makers and 
users in different types of applications. With the 
NCA6 now starting to spin up, there is a need for 
formal guidance (developed through 
collaborative engagements between data 
producers, users, and evaluators) on how the 
federal government should identify and select 
climate data products so as to avoid ad hoc 
solutions. 

6.3.3 Gaps in Data Evaluation 

The workshop identified a clear and outstanding 
need for a standard framework for climate data 
product evaluation, with the caveat that some 

flexibility is required to incorporate differences in 
user needs. Discussions further identified a 
need for new metrics beyond temperature 
and precipitation, particularly key impact 
variables such as hub-height winds, snow, 
humidity, and radiation. Future work could also 
consider relationships and covariances between 
variables, as well as more complex secondary 
variables such as fire weather conditions or 
drought indices. New metrics should also 
incorporate observational uncertainties when 
scoring data products, particularly in 
observation-poor regions. Conversations also 
highlighted potential benefits from an 
independent organization for evaluating climate 
data products, particularly to build trust in these 
data products and support consistent evaluation 
across products. 

6.3.4 Cross-Cutting Gaps: 
Observational Data 

Observational data products are the basis for 
testing regional climate projections, and yet 
there are many choices made in constructing 
these products (e.g., bilinear interpolation 
between stations to form a gridded product, 
homogenization and sanitization of underlying 
observations, movement of stations, data-filling 
procedures, etc.) that materially impact the 
comparisons with downscaling projections. 
Major gaps exist in terms of research that 
establishes the fitness for purpose (or lack 
thereof) of observational products for generally 
establishing confidence in projections and more 
specifically establishing confidence in such 
projections for specific climate impacts (e.g., 
gridded observational products are inappropriate 
to test a projection’s extreme precipitation 
performance unless the gridding procedure 
preserves precipitation extremes such as Risser 
et al. 2019. Research is needed to establish a 
chain of custody between observations, 
observational products, and their usage for 
DRCDP evaluation, along with improved 
quantification of observational uncertainty. And, 
as mentioned earlier, there is a need for more 
observational products outside CONUS. 
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6.3.5 Cross-Cutting Gaps: 
Cyberinfrastructure 

A recent President's Council of Advisors on 
Science and Technology (PCAST) report on 
extreme weather risk in a changing climate 
similarly emphasized the need for quantification 
of risk from extreme weather, the maintenance 
of an extreme weather data portal, and the need 
to inventory and release relevant federal data 
(PCAST 2023). Indeed, presently available 
cyberinfrastructure is largely insufficient for 
distribution of decision-relevant climate data 
sets. Because decision-relevant climate data 
products have significantly higher resolution and 
(in some cases) a greater number of available 
variables, these data sets, when taken 
altogether, have grown to be similar in 
magnitude to the size of the CMIP6 archive. The 
workshop highlighted the need to investigate 
partnerships with federated climate data 
infrastructure like the Earth System Grid 
Federation (ESGF) or cloud service providers. 
Additionally, there is a need for software and 
hardware to support no-cost-to-user server-
side analysis and evaluation of data 
products so as to sidestep the need for bulk 
data transfer and enable greater access and 
lower barriers to entry for using these data 
products. 

6.4 Parallels with the Coupled 
Model Intercomparison 
Project 

Decision-relevant climate information is related 
to, but distinct from, the international consortium 
of climate modeling experiments that comprise 
the CMIP, largely because (1) the information 
contained in CMIP models is too coarse to be 
used for local decisions and (2) global climate 
modeling is fundamentally an academic 
undertaking to advance the scientific 
understanding of the Earth system. CMIP 
models and experiments are sometimes aligned 
with, and sometimes separate from, the 
requirements for salient, credible, authoritative, 
and accessible regional climate projection 
information. 

However, there are obvious parallels between 
the gaps identified above and the efforts that 
have been undertaken as part of CMIP. For 
instance, data distribution for CMIP is largely 
handled through the ESGF (Cinquini et al. 
2014), a resource that allows essentially any 
user to query and download available data sets. 
For data to be contributed to ESGF, groups are 
required to make it compliant with Climate and 
Forecast (CF) standards (Hassell 2017, Eaton et 
al. 2024), which prescribes specific variable 
naming conventions and file metadata. To be 
considered part of CMIP, modeling groups must 
also submit a set of common model simulations 
known as the Diagnostic, Evaluation and 
Characterization of Klima (DECK) (Eyring et al. 
2016). These simulations, in conjunction with 
common standards for data format, permit any 
group to perform intercomparisons using their 
own evaluation tools. Consequently, groups 
such as PCMDI are able to provide interactive 
graphics to intercompare CMIP model 
performance on a variety of relevant metrics. 
Given that the standards and approach to 
climate model intercomparison are less than 30 
years old (Touzé-Peiffer et al. 2020), lessons 
learned from CMIP thus provide a potential 
foundation for analogous efforts within the 
decision-relevant climate data community. 

6.5 Upcoming Challenges and 
Opportunities 

Conversations at the workshop further 
highlighted upcoming challenges and 
opportunities for the decision-relevant climate 
data, particularly collaborations with active 
groups that produce or rely on climate data. 

The Sixth National Climate Assessment 
(NCA6): The NCA is a congressionally 
mandated report on the state of the climate 
system, with the sixth report expected in 2027. 
The NCA5, published in November 2023, used 
two statistically downscaled products for 
historical climate and future projections. These 
statistical ensembles reflected advances in 
techniques that had been used in the fourth 
report, and they were the only available datasets 
during the development of NCA5. These 
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products were eventually averaged to produce a 
single projection of future change, despite such 
a step being scientifically questionable 
(Zwiers et al. 2013). Efforts to validate these 
data sets kicked off in early 2023 (Ullrich 2023), 
despite acknowledgement that a process should 
have been in place earlier. For the next NCA6, 
several new and/or updated statistically and 
dynamically downscaled data products are 
expected to meet the basic data and publication 
needs of this report. There will be a need to 
develop formal and objective criteria for 
selecting or weighing available products to 
maximize utility for data users. 

CMIP6plus and CMIP7: The rapid expansion of 
global climate model projections, with more 
modeling centers contributing to CMIP 
experiments, more ensemble members per 
modeling center contribution, and more CMIP 
experiments, has created (and is contributing to 
the growth in) barriers to entry for the very 
stakeholders that the climate projection data is 
meant to serve. CMIP6 alone has been 
responsible for the generation of over 15.8 PB of 
climate data (Balaji et al. 2018), a number that is 
expected to increase at least fivefold for CMIP7 
(Stockhause et al. 2024). Downscaled data sets 
derived from CMIP ensemble members will 
further exacerbate data storage requirements, 
particularly when considering a growing number 
of impacts-relevant variables. Efforts to steer the 
generation of decision-relevant climate 
projection data onto a sustainable pathway that 
fully harnesses the advancements in climate 
science that are contained within CMIP, while 
handling data growth and the distillation of 
climate information that end-users require, are 
sorely needed. 

North American Coordinated Regional 
Downscaling EXperiment (NA-CORDEX): 
CORDEX (cordex.org), including its North 
American branch (na-cordex.org), has a long 
history of success in coordinating downscaling 
efforts, using a community vetted protocol for 
downscaling (dynamical and statistical) and data 
archiving to facilitate simulation intercomparison 
and enhance data usefulness. As such, NA-
CORDEX provides an excellent opportunity and 
platform for coordination, data dissemination, 

and knowledge exchange with the decision-
relevant climate data community. CORDEX 
CMIP6 downscaling in North America is still in 
its early stages, leaving ample opportunity to 
explore and engage in this effort. 

Outstanding questions in climate data 
production and data science: The strengths 
and weaknesses of statistical and dynamical 
downscaling methods, and questions about bias 
correction and training data, will also persist 
without intervention. Furthermore, the 
operationalization of non-traditional downscaling 
methods, especially data-driven approaches, 
could amplify the problems of enormous data 
volumes and challenges for climate data access. 

Interagency coordination: Among federal 
agencies, there are both overlapping and unique 
needs for decision-relevant climate data. 
However, data production efforts have largely 
occurred in isolation, an issue that could be 
addressed through better coordination. Sharing 
of data products would also allow us to better 
quantify and constrain uncertainties in future 
projections. 

6.6 Definition of a Community 
of Practice 

The workshop discussions were very frank on 
the challenges inherent in the establishment of a 
Community of Practice (COP) for DRCDP. The 
primary focus of a community of practice would 
be to facilitate and encourage communication 
between parties and to leverage limited human 
and computational resources (see Figure 12). 
These efforts have been attempted before 
(e.g., Barsugli et al. 2013), but have not resulted 
in the establishment of such a community. Past 
efforts have had difficulty maintaining 
momentum, in part because of inconsistent 
agency support and insufficient buy-in from 
across the community. Recognizing and learning 
from these efforts, it is clear that more sustained 
support is required from a diverse community of 
data producers, evaluators, and users, inevitably 
tied to the perceived value in the interactions 
supported through ongoing collaboration. 
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Potential goals that could be tackled by a COP 
include: 

 
Figure 12. Communication pathways that are needed and potentially addressed by a community of 

practice. 

Regular assessment of the state of the 
discipline: The COP could regularly assess the 
state of the discipline, identify emergent gaps, 
and track progress on filling those gaps. This 
goal could be accomplished through regular 
(potentially annual) meetings among members 
of the COP, structured similarly to this 
workshop. 

Coordinated data production and 
cyberinfrastructure support: As noted earlier, 
because of the significant computational cost of 
downscaling, particularly dynamical 
downscaling, it is highly desirable to maximize 
the value from each simulation performed and 
avoid redundancy in data production. Bringing 
together data producers and users would 
support the selection of variables, along with 
their corresponding spatial and temporal 
resolution, that maximize utility among user 
groups. A COP would provide a platform for 
sharing those needs among relevant groups. 

Development of expert guidance: Data users 
highlighted a pressing need for expert guidance 
related to the use of DRCDPs. The COP would 
provide a forum to exchange knowledge on 
decision-relevant climate data, including how 
and when particular data products should be 
used, and where care needs to be taken in their 
use. 

Development of data user engagement and 
co-production: Engaged data users are critical 
for COP success because they can ensure that 

end-user considerations are prioritized in 
scientific analyses. The COP can, on a rotating 
basis, undertake specific risk analyses in direct 
collaboration with the end-users who are 
participating in the COP and who face those 
risks. These actions ideally would demonstrate 
to other end-users the benefits of participating in 
the COP and encourage additional end-user 
participation. 

Development of standards: The workshop 
identified a need for common data standards for 
climate data sets, and the need for a standard 
evaluation protocol that is cognizant of 
differences in user need. Committees mandated 
with the development and maintenance of these 
standards could be accomplished via a COP. 

Sharing experiences and lessons learned: 
Subgroups within the COP addressing 
challenges in data production, valuation, and 
use could meet regularly to discuss shared 
experiences and lessons learned to enhance the 
utility of the COP, improve the quality of the 
data, and better meet the needs of the end 
users. 

Recognition for CoP participation: Ensuring 
social cohesion, participation, and a sense of 
community is advanced through regular, 
meaningful, positive recognition of contributions 
to the COP and community-building activities. 
Awards for contributions can, if thoughtfully 
administered, also incentivize ongoing 
participation.  
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Many outstanding questions remain related to 
the COP, including guidelines for membership, 
governance structure, mechanisms for agency 
support, and how to ensure continued relevance 
and trustworthiness. While the workshop was 
effective at providing a potential outline for such 
a COP, further discussions are needed to 
develop a structure that would support the 
broader DRCDP community. 
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