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Multiphase flow dynamics

= Solvent/gas flow interactions
with geometry impact
interfacial, wetted areas

Multiphase flow Mass tfransfer and

dynamics reaction kinetics
Mass transfer and reaction
kinetics = Variations in
interfacial area impact mass

MEA + CO, « Products

transfer +H,0
= Exothermic reactions with Solvent Zﬁ I PN,
Monoethanolamine (MEA) N ATAL NI 5 W
lead to heat release . Heat Release
Heat transfer and Heat transfer and
thermodynamics = thermodynamics
Temperature rise infroduces
variations to reaction rates and
solvent physical properties R
(density, viscosity, surface Cas \W Tempera’ru.re dependent
tension, etc.) " properties = Non-
Solvent linearities
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Additive manufacturing = increased flexibility
with device geometries

What is the optimal geometry of the intensified
device for effective heat removal and
absorption performance?

Computational Fluid Dynamics (CFD) is a
powerful tool to effectively resolve the solvent-
flue gas intferface and obtain detailed
calculations for the following as a function of the
column design.
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Wetted area (packing-solvent interface)
Interfacial area (solvent-flue gas interface)
Liquid holdup

Pressure drop
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« Packing geometry is created
from collocated sheets

 Each sheet is formed by
patterning the repetifive
elemental unit cell

 FreeCAD based Python script
automatically generates
geometry for a user-defined set
of parameters

* FreeCAD supports command
line execution of the script = No
GUl interface required

To.012m
(0.48")

« Supports saving the geometry in
STL, STEP, and .IGES formats
suitable for CAD import in CFD r
software

, U.S. DEPARTMENT OF




Packing Designs for Analysis N=|NATIONAL
TL TECHNOLOGY
LABORATORY

Four classes of packing
designs were considered
for analysis:

1. Original Design O
derived from the
angular parameters
(Bp,vp) defining the
Sulzer Mellapak 250Y

2. Design A obtained by
modifying the crimp
angle g, to 30°

3. Design B obtained for
B, = 60°
4. Design C obtained for Design A Design B Design C Original O

Bp =90° Fixed Parameters:

H=14.75x103m
t; =0.891 x103m
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» For each design class,
three different corrugation
angles y, are considered

« Design space:

Al A2 A3

B, = 30°
B,=45 Bl B2 B3
B,=60°  CI C2 Cc3

B,=90°  OI 02 03

Mellapak Mellapak
250.Y-like 250.X-like
geometry geometry

Al A2 A3
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A3 B3 _ C3 03
Increasing f3,,
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A2 B2 C2 02
Increasing f3,,
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CFD Model and Simulation Setup
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« Transport of liquid volume fraction («;):

a(prap)
ot

« Mass conservation:

+V-(pv)=m; 0=<aqxt)<1;a+ta;=1 m; = Mass transfer from gas
to liguid phase

0
= +V-(pv) =0 p = piag + pgag

« Momentum conservation:

Val

0
a(pv) +V- (,D'U'U) =V (O') +FS + pg FS: USK5(n)n; K=V (n) and n = Vel

o = —pl +2uS; S =~ (Vv + V") u= e + pga,
« Species transport:

(pla; ) + V- (piaiYyjv) = =V Jij + aiR;j + zkmk'i'j J:; = Species diffusion flux; R; ; = Chemical

reaction rate

- Energy conservation:

0 e ; ecies ho
(p)+V-((pe+p)v)=v-(kVT+(T-v))— Z Z ’ —]aiRl-j
ot j=1  M; "

i=1

&5 %, U.S. DEPARTMENT OF
.9/ ENERGY
4_ -_-)..;
e — B

Nphases




Problem Setup and Numerical Details N=[NATonAL
TL TECHNOLOGY
LABORATORY

Numerical solver and algorithm:

« Multiphase flow solver. OpenFOAM

» Interface tracking: Explicit Volume of
Fluid (VOF) method

« Second-order discretization for
velocity and pressure

Simulation conditions:

» Liquid and gas phase in counter-
current flow configuration

« Solvent: 30% MEA, 70% H,O (by mass)

« Flue gas: 10% CO,, 1.5% H,0, 88.5%
N, (by mass)

- Constant static contact angle of
57.5° between interface and packing
walls

« RANS SST k — w turbulence model
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Simulation details:
at the ouftlet Al 30° 30° 1196.36
« Two different liquid inflow velocities A2 30° 45° 858.4
are considered for each case: vy, = . \
0.1 m/sand v;,, =0.3m/s A3 30 60 709.26
_ , o B 45° 30° 800.44
« Adjustable fime step-size given by ) )
CFL < 1 is considered, which results in B2 45 45 580.78
time-step sizes between 10-° and 10-4 B3 45° 60° 485.13
seconds Cl 60° 30° 618.79
« Mesh resolutfion: 1.8 x 104 cells C?2 60° 45° 456.98
« Total 24 CFD simulations were C3 60° 60° 385.46
performed using 128 cores for up to O] 90° 30° 460.7
168 hours
02 90° 45° 357.36

O3 90° 60° 315.28
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Simulation details:
« Constant gas mass flux of 0.1 kg/m?2 - s og
at the outlet ~> 1200 —e— Design A
« Two different liquid inflow velocities B —=— Design B
are considered for each case: vy, = % 1000 , Design C
0.1 m/sandv;,, =0.3m/s = :
. . S o —*— Design O
« Adjustable time step-size given by 0
CFL < 1is considered, which results in < 3800
time-step sizes between 10-5 and 10-4 2 A
seconds .§ 600
* Mesh resolution: ~1.8 x 10¢ cells A Smaller B,
|®)]
» Total 20 CFD simulations were Z 400 \‘.\.
performed using 128 cores for up to 2
w ‘ :

168 hours 20 10 60 30
Vp
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Simulation Results
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Normalized wetted area for v, =45 Normalized interfacial area for v, =45° Liquid holdup for ~, =45°
0.4 0.125
0.3
0.100
0.3
~<::“ 0.2 -q:\g‘ = 0.075
< — A2 = 0.2 — A2 — A2
| 0.050
— B2 ‘ — B2 — B2
0.1 01/
— C2 | — C2 0.025 — C2
— 02 "‘ — 02 — 02
0-0 i 3 3 i 9% i 3 3 g 0:000 i 2 3 i

t[s] t[s] t[s]

Normalized wetted area = 4,,/4, Normalized interfacial area = 4,/4, Liquid holdup (k) = lfV a;dx
Wetted area (4,,) = [ a,dA Interfacial area (4,) = fV | Va; | dx v

walls

« Interfacial and wetted areas are generally observed to approach a statistically stationary state within 4
flow-through time intervals.
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Normalized wetted area for v, =45 Normalized interfacial area for v, =45° Liquid holdup for ~,=45°

0.3
0.5 0.6
0.4 05
=03 = 04 =
= 0 — A2 = A2 A2
. B2 0.2 B2 0.1 B2
0.1 - C2 C2 co
02 02 02
0.05 i 5 5 0.0 5 0.05 5

t[s]

Normalized wetted area = 4,, /4,
Wetted area (4,) = [, a;dA

walls

« Interfacial and wetted areas are generally observed to approach a statistically stationary state within 4

flow-through time intervals.
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Interfacial area (4;) = [, | Va; | dx
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Effects of Geometry Modifications: Solvent N=|NAToNAL
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Effects of Geometry Modifications: Solvent N=|NAToNAL
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2.1—
ny,

A2 B2 C2 02

« Distribution of time-averaged liquid volume fraction < a; >, on XZ planar slice at v;,, = 0.3 m/s at steady-state.
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Effects of Geometry Modifications

Normalized wetted area (v;,, =0.1m/s) 0 ﬁormalized interfacial area (v;, =0.1m/s)
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Liquid holdup (v;, =0.1m/s)

. A 0.25 — A
0.4 —=— B 0.35 = B
& 0.20 . C
g, == 0 . 0.30 =+ 0
150'3 ffj: g0.15
< <
0.25 —*— A
= B 0.10
0.2 0.20 —+ C
—— 0 0.05
20 40 60 80 20 40 60 80 20 40 60 80
Tp T e

- Relafive fo 4,, packings with smaller crimping and corrugation angles have a higher normalized wetted area.

- Foreach g,, packings with y, = 45° are observed to be optimal in ferms of normalized interfacial area. The
normalized interfacial area is observed to increase with g, indicating that the Mellapak 250Y-like geometry is
optimal (among the cases considered) for normalized interfacial areq.

- Liquid holdup is up to 66% higher for packings with lower g, af lower angles.
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Wetted area (v;, =0.1m/s) Interfacial area (v;, =0.1m/s) Dry pressure drop
—— A
500 200 40 = B
—+— C
—400 — 175 30 ——
g B = O
o > A
£ 300 £.150 S
200 ~—= B 125 —=— B
—%— C —a— C 10
100 —— 0 100 —— 0
20 40 60 80 20 40 60 80 % 40 60 80
Tp T T

« The absolute wetted area per unit volume, A4,,, is higher for packings with smaller corrugation and crimping
angles. Compared to g, = 90°, the wetted area is up to 3 fimes higher for g, = 30°.

« The absolute interfacial area per unit volume, A4,, is generally higher for packings with smaller corrugation and
crimping angles. Compared fo g, = 90°, the inferfacial area is up fo 1.4 times higher for g, = 30°.

- The dry pressure drop is higher for packings with smaller corrugation angles. Compared to g, = 90°, the pressure
drop is up fo 2.6 times higher for g, = 30°.
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Normalized wetted area (v;, =0.3m/s Normalized interfacial area (v;, =0.3m/s) Liquid holdup (v;, =0.3m/s)
—eo— A —— A
0.45 0.6
= B 0.25 = B
. C ~x C
0.40 0.5
0 —+— 0
Fj < QO.ZO
£ 0.35 =04 S
< = o A
0.15
0.30 0.3 = B
—h— C
0.25 0.2 /\‘ —+— O 0.10
20 40 60 80 20 40 60 80 20 40 60 80
M Tp T

- For higher g,, packings with y,, = 60° are generally observed to be optimal in ferms of normalized interfacial
area. The normalized interfacial area is observed to increase with g, indicating that the Mellapak 250X-like
geometry is optimal (among the cases considered) for normalized interfacial area.

- For each y,, liquid holdup is generally similar across packings with different g,.
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Wetted area (v;;, =0.3m/s) Interfacial area (v;,, =0.3m/s) Dry pressure drop
220 e A
500 40 = B
— A C
=400 En =30 0
;g ;1 200 5
£ E Y
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« The absolute wetted area per unit volume, A4,,, is higher for packings with smaller corrugation and crimping
angles. Compared to g, = 90°, the wetted area is up fo 2.63 times higher for g, = 30°.

« The absolute interfacial area per unit volume, A4,, is generally higher for packings with smaller corrugation and
crimping angles. The highest interfacial area is observed for packing B2, i.e., with g, =y, = 45°.
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« Hydrodynamics of columns equipped with different packing designs ranging from more
compact to less compact structures relative to the Mellapak Y series packing structure (packing
0O2) were analyzed using CFD.

« Among the packings tested, those with corrugation and crimp angles of 30° were shown to
achieve highest wetted areas, with up to 2.6 and 3 times more wetted areas than Mellapak Y
series packing structures for similar-sized columns under similar operating conditions.

» A frade-off is observed between dry pressure drop and observed wetted area. While packings
with smaller g, and y,, show higher wetted areas, these packings produce even higher pressure

drop. In this regard, packings with y,, = 60° show the lowest liquid holdup and dry pressure drop

per unit wetted area. This suggests that such packings are also capable of supporting higher
liquid load without causing the column to be flooded.

- Considering this trade-off, packing C3 (8, = 60° and y,, = 60°) is observed to be more effective
than Mellapak Y (O2) or X (O3) series packing structures, as it packs 7.8% more specific area than
O2, while providing 52.6% more interfacial area at a higher liquid load and reducing the dry
pressure drop by 52.2%.
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