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Abstract
Objective.Our objective is to formulate the problemof themagnetoencephalographic (MEG) sensor
array design as awell-posed engineering problemof accuratelymeasuring the neuronalmagnetic
fields. This is in contrast to the traditional approach that formulates the sensor array design problem
in terms of neurobiological interpretability the sensor arraymeasurements.Approach.Weuse the
vector spherical harmonics (VSH) formalism to define a figure-of-merit for anMEG sensor array.We
start with an observation that, under certain reasonable assumptions, any array ofm perfectly noiseless
sensors will attain exactly the same performance, regardless of the sensors’ locations and orientations
(with the exception of a negligible set of singularly bad sensor configurations).We proceed to the
conclusion that under the aforementioned assumptions, the only difference between different array
configurations is the effect of (sensor)noise on their performance.We then propose a figure-of-merit
that quantifies, with a single number, howmuch the sensor array in question amplifies the sensor
noise.Main results.Wederive a formula for intuitivelymeaningful, yetmathematically rigorous
figure-of-merit that summarizes howdesirable a particular sensor array design is.We demonstrate
that thisfigure-of-merit is well-behaved enough to be used as a cost function for a general-purpose
nonlinear optimizationmethods such as simulated annealing.We also show that sensor array
configurations obtained by such optimizations exhibit properties that are typically expected of ‘high-
quality’MEGsensor arrays, e.g. high channel information capacity. Significance.Ourwork paves the
way toward designing betterMEG sensor arrays by isolating the engineering problemofmeasuring the
neuromagnetic fields out of the bigger problemof studying brain function through neuromagnetic
measurements.

1. Introduction

Magnetoencephalography (MEG) is a noninvasive brain imagingmodality that studies neuronal activity
throughmeasurement, outside of the head, ofmagnetic fields created by neuronal currents (Hämäläinen et al
1993, Cohen andHalgren 2009). Electric currents in the brain (intracranial currents), in accordancewith
Maxwell’s equations, producemagneticfields that extend to the volume outside the head, where they can be
measured noninvasively. InMEG, onemeasures themagnetic fields with sensors located outside the head and
tries to infer the intracranial currents generating thesemeasurements. The fact that themagneticfields outside
the head (extracranialmagnetic fields) are related to intracranial currents throughMaxwell’s equationsmakes it
possible to infer, with limited certainty, spatiotemporal features of the intracranial currents from the signals
measuredwithMEG sensors.
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Ideally, wewould like tomeasure the extracranial fields and compute the intracranial currents that produced
them. Such computation is called the inverse problem. However, in the general case, the inverse problem is ill-
posed—it cannot be solved uniquely. This is because some intracranial currents produce zero extracranial
magnetic field.7One particularly celebrated example of ‘a silent current’—radial current dipole in a spherically
symmetric conductor—is described in Sarvas (1987). Obviously, no extracranialMEGmeasurement can reveal
anything about the silent currents.

Whereas noMEG sensor array (collection ofmagnetic field sensors) located outside the head can reveal
everything about the intracranial currents, some sensor arrays can revealmuchmore than others, depending on
the number, locations, orientations of sensors and other parameters (Kemppainen and Ilmoniemi 1989,
Hämäläinen et al 1993).

There is another complication to the problemofMEGmeasurement, amore practical one. So farwe
assumed that the extracranialmagnetic fields are caused by the intracranial currents only. However, in any
practical situation themeasurements ofmagnetic fields around the headwill be contaminated by environmental
noise (magnetic fields produced by various artificial sources: power grid, elevators, electricmotors operating
nearby, etc). The environmental noise can be, to a considerable degree, reduced by various shielding techniques
(e.g. Taulu et al 2019), however in any practicalMEG setup the residual noise is still non-negligible. Thus the
magnetic fieldsmeasured by the sensors are a sumof two components: (a) the neuronal component—the
magnetic fields produced by the intracranial currents and associated volume currents in the head, and (b) the
environmental noise produced bymuch stronger currents located far away from the sensors.Wewould like our
sensor array to reveal asmuch as possible about the the intracranial currents not only in the noiseless case, but
also in the presence of the environmental noise.

All of the abovemakesMEG sensor array design an important problem that has attracted considerable
attention.One very tempting approach toMEG sensor array design is to try to summarize the ‘goodness’ of the
array using a single scalar—figure-of-merit. Oncewe find afigure-of-merit that describes well enough the
array’s ability to characterize intracranial currents (preferably, in the presence of environmental noise), sensor
array design becomes amultidimensional nonlinear optimization problem—a problem that has beenwidely
studied, and forwhichmultiple practical tools are available. Unsurprisingly, a variety offigures-of-merit have
been proposed to date. These includemeasures such as precision in locating cortical current sources
(Hämäläinen et al 1993, Beltrachini et al 2021), and information about the sources conveyed by the array
(Kemppainen and Ilmoniemi 1989, Schneiderman 2014, Iivanainen et al 2021).

Aswementioned before, the ultimate, albeit unreachable (in the general case) goal ofMEG is to solve the
inverse problem. Therefore, it is not surprising that some of thefigures-of-merit proposed to date: (a)make
some assumptions about all possible intracranial currents that improve the conditioning of the inverse problem,
and (b) summarize in a single number the sensor array’s ability to solve the inverse problemunder these
assumptions. The problemwith this approach is that it critically depends on the accuracy of the assumptions,
but there is no goodway to ensure such accuracy. Additionally, previously proposedfigures-of-merit generally
focus on the sensor array’s performance in the absence of environmental noise (Kemppainen and
Ilmoniemi 1989,Hämäläinen et al 1993).

In the current paper we propose a novel figure-of-merit forMEG sensor array design that is not centered
around solving the inverse problem.We do not try to solve an ill-posed problemof characterizing the
intracranial currents through additional assumptions that improve the conditioning. Instead, following the
approach byAhonen et al (1993), Grover andVenkatesh (2016), Iivanainen et al (2021), we solve themuch less
ambitious, butwell-conditioned problemofmeasuring themagnetic fields outside of the head as accurately as
possible. This approachmight seem counterintuitive as it explicitly ignores the inverse problem and instead
focuses onmeasuring as accurately as possible something thatmight be of no interest (per se) toMEGusers—the
magnetic field outside the head. Nonetheless, we argue that separating the question ‘What canwe say about
intracranial currents from extracranialmagnetic fieldmeasurements?’ from the question ‘Howcanwemeasure
extracranialmagnetic fields as accurately as possible?’makes a lot of sense from the sensor array designer’s
perspective.8 The former question necessarily requires some assumptions about the intracranial currents, which

7
This statement needs a bit of explanation. An important property of the quasistaticMaxwell equations is their linearity—themagnetic

fields are related to the intensity of the currents that cause themby a linear transformation. Any linear transformation has this property: it is
possible to uniquely identify the transformation’s input given its output (i.e. compute the inverse transformation) if there exists no non-zero
input that causes the transformation to produce zero output. That is why the impossibility to uniquely estimate the intracranial currents
from the extracranial fields is the same thing as existence of a non-zero intracranial current that produces zero extracranialmagnetic field.
8
Strictly speaking, we are cheating here a little bit.Whenwe talk about ‘KmeasuringKmagneticfields as accurately as possible’we

implicitly assume that there exists someway to definewhat ‘accurate’means—in otherwords, that there is away tomeasure the (dis-)
similarity between the twomagneticfields (the true one and the estimate) as a single scalar. In reality there aremany different ways to
quantify the difference between twomagnetic fields, each leading to a different definition for figure-of-merit of the sensor array. In our
simulationswe used the L∞-norm to define the difference, but other other choices are equally possible.
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are particularly problematic during the array design stage since these assumptions are specific to a particular
MEG experiment. The latter question, on the other hand, is independent of such assumptions and constitutes
exactly the question thatMEG sensor array designer should address.

As an additional benefit, our approach provides a straightforward and principledway of incorporating the
resilience to the environmental noise into the figure-of-merit. The question ‘How canwemeasure extracranial
magnetic fields as accurately as possible?’ can be naturally extended to the question ‘Howcanwemeasure the
neuronal component of the extracranial fields as accurately as possible?’without the need for arbitrary weight
factors balancing the accuracy of the inverse problem solution against the noise resilience.

Briefly stated, our approach consists of using the vector spherical harmonics (VSH) decomposition
(Hill 1954, Taulu andKajola 2005) of themagnetic field to define afieldmodel whichwe use to optimize the
sensor array. Using theVSHdecompositionwe define cutoff values for the spherical harmonics degrees l of the
inner and outer expansions corresponding tofields due to neural sources and external interference, respectively.
By using theVSH fieldmodel, we investigate howmeasurement noisemaps intomagnetic field interpolation
noise for a given sensor array configuration.We define afigure ofmerit that quantifies howmuch the noise gets
amplified in the process.We design sensor arrays thatminimize the figure ofmerit, i.e, that aimnot to amplify
noise.

2.Methods

2.1. Array geometry
2.1.1. Array geometry constraints
Whendesigning anMEG sensor array, we cannot place the sensors completely freely. For example, we cannot
place them inside the head, or too far away from the head, or too close to each other, etc.We denote the set of all
admissible sensor configurations asΞ. Each point ξ äΞ is a possible sensor array;Ξ is the domain of the sensor
array optimization problem.

For the purpose of this paper, we assume point-like sensors thatmeasuremagnetic field along a certain
direction (sensor orientation). There are no constraints on sensor orientations; the only constraint on sensor
locations is that all the sensors are locatedwithin a closed volume adjacent to the head, called sampling volume
Vsamp. ThusΞ is uniquely defined byVsamp and the number of sensorsm

Vr e r e, , 1 , 1m
samp  {( )∣ } ( )X Î =

where r and e denote the location and orientation of a sensor, respectively.Whereas these assumptions are not
perfectly realistic, the resulting simulations provide important insights into the real-worldMEG sensor array
design as wewill see in section 3.

In this paperwemostly consider two different sampling volumes: a 3D and a 2D. Both are helmet-shaped,
defined as a union of two geometric primitives (see figure 1):

1. A section of a cylindrical shell (wrapped around the subject’s headwith an opening in front of the face), and

2. A hemispherical shell covering the top of the head

The height of the cylindrical shell was 15 cm, and the opening spanned an angle ofπ/2 radian. For the 3D
volume both primitives have afinite thickness of 0.1 m (inner radius of 0.15 mand outer radius of 0.25m), and

Figure 1. Sampling volume used in our paper. Blue dots are sampling locations used for the discretization of the continuous sampling
volume {r|r ä Vsamp}. For 2D (left) and 3D (right) sampling volumes.
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for the 2D volume both have zero thickness with the inner and outer radii being equal to some valueR (and to
each other). Thus for the 2D sampling volume our sensor array is a function ofR.9

In addition to the 3D sampling volume described above, in some of our experiments we also use an
anatomically-constrained variation of the 3D sampling volume. Themain difference between the two is that in
the anatomically-constrained version the inner wall of the sampling volume is defined by the subject’s individual
anatomy—sensors can be placed anywhere down to the distance of 7 mm from theMRI-based anatomical head
surface (see figure 2). The offset of 7 mm is based on a typical dimension of anOPMsensor (Shah et al 2018); for
the purpose of our simulationswe used an anatomical head surface provided by theMNE-Python package
(Gramfort et al 2013).

Note that whereas 3D sampling volume is a closed region of 3D space of non-zero volume, the 2D volume is
a zero-volume surface. Nevertheless, wewill use the term ‘volume’ for both of them for convenience.

2.1.2. Uniformly-spaced radial arrays
Wedefine a special type ofMEG sensor array—an (approximately) uniformly-spaced radial array—that we are
going to use as an example of what a reasonable non-optimizedMEG sensor arraymight look like.

The uniformly-spaced radial array ofN sensors (see figure 3) comprisesN sensors approximately uniformly
distributed over the 2D sampling volume of radiusR. The points are distributed over the sampling volume (2D
surface in this case)using an algorithmbased on the idea of the generalized spiral set on a sphere (Saff and
Kuijlaars 1997). The orientations of the sensors (e.g. the directions alongwhich themagnetic field ismeasured)
are normal to the sampling volume. Thus uniformly-spaced radial array is a function ofN andR.

2.2. Arrayfigure-of-merit definition
Let us assume that we are given a sampling volumeVsamp and number of sensorsm, thus defining the domainΞ
of our sensor array optimization problem. For each particular sensor array configuration ξ äΞwehavem
measurements of themagnetic field atm (possibly distinct) locationswithinVsamp. At each location rwe
measure a single component of themagnetic field vectorB(r), along the particular sensor’s orientation.We
assume that everywhere throughoutVsamp the value ofB(r) is accurately enough approximated by thefirst n
VSHcomponents (where n= Lα(Lα+ 2)+ Lβ(Lβ+ 2) for some appropriately chosen positive integers Lα and

Figure 2.The difference between the anatomically-constrained (left) and regular (right) 3D sampling volumes. In bothfigures the
sensors are located on the innermost wall of the sampling volume. Blue spheresmark sensor locations; red arrows denote the direction
alongwhich themagnetic field ismeasured.

Figure 3.Auniformly-spaced radial sensor array. Blue spheresmark sensor locations; red arrows denote the direction alongwhich the
magnetic field ismeasured.

9
Note thatR affects only the radii of the two primitives comprising the sampling volume, whereas the height of the cylindrical shell is fixed to

0.15 m independently ofR. Thus arrays for different values ofR are not scaled versions of each other.
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where B r
lm

( )a and B r
lm

( )b are VSHbasis functions that are perfectly known, representing neuromagnetic and
interference field components, respectively,αlm andβlm are the unknownVSH coefficients that depend on the
distribution of the intracranial currents and the environmental noise sources, respectively. Then, in the notation
of Taulu andKajola (2005), ourmeasurement constitutes a linear operator given by aVSHmatrix S:

Sx, 3( )f =

wheref is the vector of valuesmeasured by theMEG sensor array, x is the vector of theVSH coefficients

x , , , , , ,L L L L
T

1, 1 , 1, 1 ,[ ]a a b b= ¼ ¼- -a a b b

and S is anm× nmatrix determined by the sensor array geometry, wherem is the number of sensors and n is the
number of VSH components.

Note that theVSHbasis allows us to separate the neuronal fields from the environmental noise.We canwrite
x as a sumof xα and xβ, containing coefficients for the internal and external parts of theVSH expansion:

x x x

x I x
x I x. 4( )

= +
=
=

a b

a a

b b

Here Iα and Iβ are diagonal selectormatrices that respectively select only internal or external basis coefficients
from x

and

Assuming thatm� n and the rank of S is n, we can solve equation (3) for x:

x S ,†f=

where S† is theMoore–Penrose pseudoinverse of S. Now, let us consider some possible sensor location (and
orientation, as we assume that our sensor onlymeasures themagnetic field along its orientation), wherewe could
have placed the sensor. For any possible location r ä Vsamp and orientation e (e is a unit vector) the reading of the
sensorf(r, e)would be:

r e s x s S, , 5r e r e, ,( ) ( )†ff = =

where sr,e is a row vector of length n specifying the values of theVSH components at (r, e). Equation (5) is
essentially an interpolation procedure that allows us to compute the readings of any possible sensor located
anywhere in the sampling volume.

Now, let us go one step further and say that wewant to estimate only the neuronal componentfα(r, e) of the
possiblemeasurementf(r, e), without the environmental noise. To achieve this we restrict the interpolation to
the inner basis only:

r e s x s I S, . 6r e r e, ,( ) ( )†ff = =a a a

10
Formore details on this, see the supplementarymaterial.
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Equation (6) holds exactly if themeasurementsf are exact and all the assumptions outlined above (namely, that
thefirst nVSHcomponents capture all the energy of themagnetic field and S is full rank)hold. In this case, it
does notmatter where our sensors are located, wewill always be able to perfectly simulate any sensor array
restricted to the sampling volume.

However, in reality the sensors are noisy. Thus, instead of reading true values ofmagnetic fieldf, the sensors
give us a noisy estimate f̂

. 7noise
ˆ ( )f f f= +

Substituting equation (7) into (6) gives us the noise for the estimation of thefα, whichwe call the interpolation
noise:11

s I S s I S
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a

If we define our sensor array configuration by a vector ξ that contains all sensors’ locations and orientations,
and observe that S† is a function of ξ, wewill see that each sensor array configuration ξ yields an interpolation
noise distribution over the sampling volume:

r e s I S, , . 9r enoise , noise( ) ( ) ( )†x x ff = a

Observe that the term sr,eIαS
†(ξ) in equation (9) is a row vector of the lengthm (number of sensors).We assume

that sensor noisefnoise is aGaussian, zero-mean randomvector with the elements independent and identically
distributed, where each component has variance ofσ2 12. Thenfnoise(r, e, ξ) becomes a zero-meanGaussian
randomvariable with variance ∥sr,eIαS†(ξ)∥2σ2, where ∥•∥ denotes the Frobenius normof a vector. Hence, for
each sensor array configuration ξ and each location-orientation pair (r, e):

r e r e, , 0, , , , 10noise interp
2( ) ( ( ) ) ( )x xf s~

where

r e s I S s I S S S, , . 11T T
r e r einterp , ,

1   ( ) ( ) ( ( ) ( )) ( ) ( )†x x x x xs s s= =a a
-

σinterp(r, e, ξ) describes the distribution of noisefnoise at each location-orientation point (r, e).Wewant to
summarize the spatial distribution ofσinterp(r, e, ξ) over thewhole sampling volumewith a single value that will
serve as afigure-of-merit for comparing different sensor arrays. There are numerousways to do this; for the

purpose of this paper we define the figure-of-merit to be themaximumof
r e, ,interp( )xs

s
over the sampling volume:
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Intuitively, one can think about q(ξ) in the followingway: assume I have an array ξ of sensors with additive
gaussian noise of varianceσ2. Throughout the array’s sampling volume I have amagnetic field that is a sumof
two components: the brainmagnetic field (signal of interest) and the environmentalmagnetic field
(interference). Ifmy sensor array has thefigure-of-merit value of q, itmeans that I will be able to estimate the
signal-of-interest component of the field anywherewithin the sampling volume;my estimatewill be noisy with
additive gaussian noise of standard deviation not worse than qσ. One can think of q as theworst-case noise
amplification factor; we are going to use the term ‘noise amplification factor’ throughout the paper.

Once thefigure-of-merit q(ξ) is defined,finding the best sensor array ξopt becomes an optimization problem

qargmin , 13opt ( ) ( )x x=
x XÎ

whereΞ is the domain of the optimization problemdefined by the sampling volume and the number of sensors
m (for the definition ofΞ see equation (1)).

11
Note that computingfα involves not only interpolation, but also external noise rejection.

12
This is quite a reasonable assumption for real-worldMEGdevices. Note, however, that our analysis can be trivially extended to themore

general casewhere each sensor has a different noise variance.
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In this paperwe try to solve equation (13) using numerical nonlinear optimization algorithms.We report the
improvement in q(ξ) yielded by the optimization, demonstrate the resulting sensor geometries, and compare
ourfigure-of-merit to the information-capacity-based figure-of-merit proposed in the previous works.

2.3. Channel information capacity of a sensor array
Wewanted to compare the behavior of our proposed figure-of-merit to some establishedmetric that has been
used by theMEGcommunity.We chose channel information capacity (Kemppainen and Ilmoniemi 1989) as a
referencemetric for such a comparison. Channel information capacitymeasures the amount of information
(quantified as number of bits per sample) that themagnetic field asmeasured by the array conveys about the
distribution of current sources inside the head, under particular assumptions about the source distribution and
its statistics.

Under the assumption of spatial white sensor noise with varianceσ2 and aGaussian source distributionwith
a covariancematrixΣ, the information capacity can be calculated as (Kemppainen and Ilmoniemi 1989)

I P
1

2
log 1

1

2
log 1 , 14

i
i

i

i
2 2

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )å å
l
s

= + = +

where Pi are the SNRs of the orthogonal channels defined by the eigencomponents and the eigenvaluesλi of the
covariancematrix LΣLT, where L is the lead-fieldmatrix representing themeasuredmagnetic fields produced by
the sources.

2.4. Implementation details
Wedid all the computations in Python 3 programming language using popular libraries for scientific computing
and visualization such as SciPy (Virtanen et al 2020), NumPy (Harris et al 2020), andmayavi (Ramachandran
andVaroquaux 2011). All the source code used for the simulations described in this paper is available from
GitHub (Zhdanov andNurminen 2023) under theGNUGeneral Public License (Gnu general public
license 2007).

2.4.1. VSH computation
Wecomputed S(ξ) and sr,eusing the implementation of VSHs inMNE-Python (Gramfort et al 2013).We used
Lα= 10 and Lβ= 3 for theVSH expansion, which resulted in 135 components in the expansion.

2.4.2. Approximating spatial distribution of interpolation noise
Theoretically, q(ξ) is defined as amaximumof a continuous function ∥sr,eIαS†(ξ)∥ over a bounded domain {(r,
e)|r ä Vsamp, ∥e∥= 1}= {r|r ä Vsamp}× {e|∥e∥= 1} (see equation (12)). In practice, we approximated the
continuous domain {r|r ä Vsamp} by a dense discrete grid of 2500 points for the 3D and 1000 points for the 2D
sampling volumes.

For the 2D sampling volume, the 1000 points are approximately uniformly spread across the helmet
surface13 (see figure 1 left). Helmet surface being approximately 0.25m2, the resulting density of the sampling
locations is about 1 location per 0.000 25m2.

For the 3D sampling volume, the sampling grid comprises 5 concentric shells, each shell similar to the 2D
volume described above. The shells radii are uniformly distributed on the interval 0.15–0.25 m,making the
radial spacing between two neighboring shells 0.02 m. Each shell has 500 sampling locations uniformly
distributed across it, for the outermost shell this leads to the density of about 1 sampling location per 0.001m2.

2.4.3. Initialization of the optimization procedure
The optimization procedure is initializedwith a uniformly-spaced radial sensor configuration (see section
uniformly-spaced radial arrays formore details). For the 3D array optimization procedure, we try three different
initial conditions corresponding the radiiR= 0.15 m,R= 0.2 m, andR= 0.25 m for the initial sensor array
configuration.

2.4.4. Optimization procedure
Weevaluated several general-purpose nonlinear optimization algorithms: basin-hopping, differential
evolution, and dual annealing. Of these, the dual annealing demonstrated the best performance, sowe used it for
all thework described in the paper.

The dual annealing, as implemented by the scipy.optimize.dual_annealing function of the scipy toolbox, is a
stochastic optimization algorithmderived from the generalized simulated annealing (Xiang et al 1997). This

13
We distribute the points on the helmet surface are using a variation of the ‘golden ratio’ algorithm for approximately evenly distributing

points on a spherical surface.
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method combines the classical simulated annealingwith the fast simulated annealing algorithms augmented by a
local search on accepted locations.

We used the default values for themaximumnumber of global iterations (1000) and the limit for the number
of objective function calls (107). These parameters resulted in a optimization run lasting 3–5 d on a typical
desktop computer.

It is important to note, that dual annealing is an optimization procedure over a continuous parameter space:
the parameter variables are not restricted to a set of possible discrete values. The only constraint that we used
during the optimization process was the requirement that all the sensors should be inside the sampling volume.

2.4.5. Channel information capacity computation
Weused 1000 random current dipoles to compute the channel information capacity. Each dipole’s locationwas
randomly chosen from a uniformdistribution from a spherical volume of radius 0.07 m centered at the origin.
Each dipole’s orientationwas randomly chosen from a uniformdistribution on a sphere. The total dipole
moment (root-sum-squared across all the dipoles)was 2× 10−8 A mand the standard deviation of the sensor
noise was 10−14 T.

2.5. Computational experiments
In this paper we report the results of three computational experiments.

2.5.1. Investigation of uniformly-spaced radial arrays
As a uniformly-shaped radial sensor array is a function of its radiusR and the number of sensorsN, in ourfirst
computational experiment we study the behavior of the array’s noise amplification factor as a function of these
two parameters.

2.5.2. Array optimization based on a 3D sampling volume
In the second experiment we try tofind an optimal (w.r.t. the noise amplification factor) design for a sensor array
of 240 sensors within a 3D sampling volume.We investigate the stabilty of the optimization procedure w.r.t. the
starting condition by runningmultiple experiments with different initial conditions.

Additionally, we investigate the behavior of the optimization procedure for different orders of the expansion
of theVSHbasis.

2.5.3. ArrayOptimization based on an anatomically-constrained 3D sampling volume
In the third experiment we perform a single optimization run using an anatomically-constrained 3D sampling
volume.

2.5.4. Array optimization based on a 2D sampling volume
In this experiment we repeat the optimization experiment we performed on a 3D sampling volume, but this time
on a 2D sampling volume of radius 15 cm.Note that 15 cm is the inner radius of the 3D sampling volume;
however 2D volume-based optimization is not the same as the 3Doptimizationwith sensor locations restricted
to a 2D surface. The two procedures use different fitness functions, since they have different sampling volumes.

3. Results

3.1. Investigation of uniformly-spaced radial arrays
Figures 4 and 5 show the behavior of the noise amplification factor for uniformly-spaced radial arrays as a
function of array radiusR and the number of sensors. The noise amplification factorwas calculated based on
equation (12). Fromfigure 4, we see that when the number of sensors is doubled from120 to 240, the noise
amplification factor shows a reduction of roughly two orders ofmagnitude. Figure 5 shows that the noise
amplification factor improves when the array radiusR decreases.

3.2. Array optimization based on a 3D sampling volume
Figures 6 and 7 depict the behavior of the sensor array’s noise amplification factor and channel information
capacity during a 3D sampling-volume-based optimization procedure. Both the noise amplification factor and
the channel information capacity improve asmore iterations are performed. Themaximumand average noise
amplification factors saturate approximately at values 1.0 and 0.2, respectively, while the channel information
capacity reaches a value of approximately 30 bits per sample. The optimizationwas repeatedwith different initial
sensor locations. In general, the results are quite consistent between runs, and the initial locations do not have a
significant effect on thefinal optimization result.
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Figure 8 depicts the evolution of the sensor array geometry during one optimization run, where the initial
location of the sensors is on the outer surface. As the algorithmprogresses, the sensorsmostlymigrate to the
inner surface. On the average, about 6 sensors out of 240 remained close to the outer surface.

Figure 9 illustrates the distribution of sensor orientations during optimization. In the initial condition, the
orientations aremostly alignedwith the radial normal of the spherical coordinate system; the alignment is not
exact due to the helmet-like shape of the sensor array. At early stages of optimization, the tangential directions
start to dominate. At convergence, the sensors havemixed orientations, with amajority of thembeing oriented
more towards the radial direction.

Finally, figure 10 illustrates the dependence on themethod on the selectedVSHdegree cutoff. The
optimizationwas repeated for different values of Lα. Using a lowerVSHdegree cutoff results in faster
convergence and lower overall noise amplification for the sensor array.

3.3. Array optimization based on an anatomically-constrained 3D sampling volume
Figures 11 and 12 depict the behavior of the sensor array’s noise amplification factor and channel information
capacity during an optimization procedure for the anatomically-constrained 3D sampling volume. The
optimization procedure generally behaves very similarly to that of the regular 3D sampling volume.Onemajor
difference is that the anatomically-constrained version attainsmuch higher channel information capacity,

Figure 4.Behavior of the noise amplification factor for uniformly-spaced radial arrays as a function of the number of sensors and array
radiusR.

Figure 5.Behavior of the noise amplification factor for uniformly-spaced radial arrays as a function of the number of sensors and array
radiusR.
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which is to be expected, considering the fact that it can position sensorsmuch closer to the sources of the signal
inside the head.

Figure 13 depicts the evolution of the sensor array geometry during an optimization run. This too is
qualitatively similar to the results for the regular 3D array.

Figure 6.Noise amplification factor (NA) as a function of iteration during a 3D sampling volume-based optimization procedure. The
optimizationwas repeated for different initial sensor locations: sensors on outer surface, inner surface, and halfway between the
surfaces.N = 8 runs are plotted for each of these conditions. The solid and dashed lines indicate themaximumandmean noise
amplification, respectively.

Figure 7.Total information as a function of iteration during a 3D sampling volume-based optimization procedure. The optimization
was repeated for different initial sensor locations: sensor on outer surface, inner surface, and halfway between the surfaces.N = 8 runs
are plotted for each of these conditions.

Figure 8.Progression of the sensor arrangement during the optimization for a 3D sampling volume.
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3.4. Array optimization based on a 2D sampling volume
Infigures 14 and 15, we show the results for a 2D sampling volume, similarly to those presented in figures 6 and 7
for a 3D volume. Figure 16 depicts the behavior of the sensor array’s geometry during the optimization
procedure. In this case, noise amplification factor improves as the algorithmprogresses. Similarly, channel
information capacity generally improves as a function of iteration.However, there is a steep drop in the channel
information capacity after the first iteration. The algorithm starts with an initial configurationwhere the sensors
are distributed uniformly on the surface and pointing radially (figure 16). After the first iteration, the algorithm
deviates from this configuration and the channel information capacity decreases. However, as the algorithm
progresses the channel information capacity eventually reaches the initial level while the noise amplification
factor shows an improvement of approximately two orders ofmagnitude. Looking at figure 16, we observe

Figure 9.Distribution of sensor orientations during optimization.Data fromN = 25 runswith the sensors starting at the outer
surface are combined in the plot, for a total of 6000 sensors. ‘Outward radial’ refers to the radial normal of the spherical coordinate
system,with the origin at the center of the sensor helmet.

Figure 10.Maximumnoise amplification factor (NA) as a function of iteration during a 3D sampling volume-based optimization
procedure for different values of Lα, with Lβ = 3.
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Figure 11.Noise amplification factor (NA) as a function of iteration for optimization on anatomically-constrained 3D sampling
volume.

Figure 12.Channel information capacity as a function of iteration for optimization on anatomically-constrained 3D sampling
volume.

Figure 13.Progression of the sensor arrangement during the optimization for an anatomically-constrained 3D sampling volume.
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significant changes in the sensor orientations, which correspond to an improved noise amplification factor and
increased channel information capacity.

4.Discussion

4.1. General remarks
In this paper, we investigated the question of how to optimallymeasure themagnetic fields inMEGwith a
limited number of sensors while the assumptions about the underlying neural current distribution areminimal.

Figure 14.Noise amplification factor (NA) as a function of iteration for a 2D sampling volume-based optimization procedure.

Figure 15.Channel information capacity as a function of iteration for a 2D sampling volume-based optimization procedure.

Figure 16.Progression of the sensor arrangements during the optimization for a 2D sampling volume.
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As a generalmodel for a discretized,multi-channel,magnetic fieldmeasurement we use theVSH expansion.
This provides uswith a a tool for interpolating themagnetic fieldwithin the sampling volume. The problemof
interpolatingmagnetic field over a curl-free domain has been studied before. Solin et al (2018) suggest amethod
for interpolatingmagnetic field in an arbitrarily shaped curl-free region that relies on a scalar potential function
in away that is similar towhat we do.However, operating over an arbitrarily-shaped domain, themethod
cannot utilize the approximate spherical symmetry of themeasurement geometry that we have in theMEGcase.

TheVSHmodel can be thought of as a weakly informative prior to optimize the sensor positions and
orientations. TheVSHprior has three parameters: the origin and the cutoff values for the inner and outer VSH
expansions. The origin represents the assumption about the sensor-to-source distancewhile the cutoff values of
the inner and outer VSH expansions constitute an assumption that themagnetic field is bandlimited in theVSH
(spatial-frequency) domain. As theVSHprior is general, i.e. it is not specific to any particular subject head
geometry it can be used to construct a general optimized sensor array.

One unique feature of theVSHdecomposition is that it allows us to separate the field to components
representing the neural signals of interest and external interference components. By using both components to
construct the fieldmodel (or prior) for sensor optimization, the sensor array simultaneously samples the neural
signals and the interference allowing to separate them.

Compared to previous studies onMEGarray optimization usingfixed sensor orientations (Beltrachini et al
2021, Iivanainen et al 2021), the VSH formalism allows us to also optimize the sensor orientations. The obtained
results suggest that when the sensors aremeasuring a singlefield component the optimal sensor orientation is
not always radial as would be suggestedwhen directly comparing radial component to the two tangential
components (e.g. Iivanainen et al 2017). The deviation from radial orientation can bemostly explained by two
different factors. First, the orientation of the spatial covariance function of the bandlimitedVSHmodel is not
radial everywhere in the sampling volume. Second, the introduction of external VSH components to themodel
necessitates sampling of the tangential components to allowbetter separation of the inner and external
components.

Recently, optically pumpedmagnetometers (OPMs)measuring two (Colombo et al 2016, Borna et al 2017)
or all three components (Brookes et al 2021, Boto et al 2022) of themagnetic field have been developed.We did
not optimize arrays comprising of triaxial or dual-axisOPMs, butwe note that themethodology presented in the
paper can be used to optimize such arrays.

A central point of our approach to defining theMEG sensor array’s figure-of-merit is separating the question
‘What canwe say about intracranial currents from extracranialmagnetic fieldmeasurements?’ From the
question ‘How canwemeasure extracranialmagnetic fields as accurately as possible?’. However, it is not clear
how these questions are related. The sensor arraymay sample a high percentage of the field energy (∼99%, for
example) giving a highly accurate reconstruction of themagnetic field, but the source estimationmight benefit
from additional sensors.

4.2. Interpretation and significance of the obtained results
As shown infigure 4, as we interpolate themagnetic field based on the spatially discretizedmeasurement, the
noise amplification factor decreases as the number of sensors increases. This is an intuitively obvious result, but
figure 5 also indicates that decreasing the physical dimensions of the actual array results in a decreasing noise
amplification factor. This can be understood by an increased density of spatial sampling as the sensors will be
distributed across a smaller surface area.

In order to validate our approach against othermetrics, we chose to compare the progression of the noise
amplification factor to the channel information capacity, which is a commonly used quantity in the evaluation of
MEG sensor arrays.We found that decreasing noise amplification factor during the progress of sensor array
optimizationwas consistent with increasing total information, as shown infigures 6 and 7. As a result of the
optimization procedure, the sensors are distributed across the inner surface of the sampling volumewithwidely
different orientations, seefigure 8. Similar results, with respect to the connection between noise amplification
and channel information capacity as well as the sensor orientations, were obtained in the 2D case, as indicated in
figures 14–16.

It is intuitively desirable to place the sensors as close as possible to the headwith sensor normal pointing
symmetrically, e.g. in the radial direction.However, for the purpose of distinction between the internal and
externalmagnetic fields, it is beneficial to break the sphericalmeasurement symmetry asmuch as possible, as
suggested already byNurminen et al (2013). This can be achieved by having the sensors be close to the headwhile
the sensor orientations becomewidespread and randomly distributed. At the end of the optimization procedure
leading to these randomorientations, the corresponding channel capacity returns to the initial level as well.
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4.3.Other remarks
Note that in the process of optimization noisemagnification factor drops below 1. Thismeans that with our
sensor configurationwe can estimatemagnetic field everywhere, including the sensor locations, better thanwhat
we get by directlymeasuring it with a single sensor.

4.4. Limitations
Our results rely heavily on the assumption that themagnetic fields within the sampling volume can be accurately
modeledwith a truncatedVSH expansion (see the supplementarymaterial). This assumption has some potential
problems:

1. In real MEG measurements the assumptions of the VSH expansion about the current geometry (three
concentrical compartments) do not hold because themiddle compartment includes a part of the participants
body (neck, etc) and thus cannot be guaranteed to be current-free.Moreover, for on-scalp sensor arrays, a
single sphere separating the sensor array and the head cannot be found.

2. Truncating VSH expansion naturally introduces truncation error. The truncation error decreases when we
increase the cutoff orders for the internal and external parts of the expansion (Lα and Lβ accordingly). It is not
clear which cutoff values are sufficient; they depend on the SNRof themeasurement.

3. The residual VSH components of the field outside the truncated VSH expansion will alias if they are above
the noise level and if the sensor array does not provide sufficient oversampling of a given truncation.

Moreover, strictly speaking, the interpolation noise computation only accuratelymodels the noise for a single
‘virtual’ sensor. If we use it tomodel noise for a virtual sensor array ofmultiple sensors, the noisemodeling for
each sensorwill be accurate, but the noise in the virtual arraywill be correlated across sensors, thus the array
performancewill not be the same as that of a real physical arraywith equivalent sensor noise.
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