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Abstract

Objective. Our objective is to formulate the problem of the magnetoencephalographic (MEG) sensor
array design as a well-posed engineering problem of accurately measuring the neuronal magnetic
fields. This is in contrast to the traditional approach that formulates the sensor array design problem
in terms of neurobiological interpretability the sensor array measurements. Approach. We use the
vector spherical harmonics (VSH) formalism to define a figure-of-merit for an MEG sensor array. We
start with an observation that, under certain reasonable assumptions, any array of m perfectly noiseless
sensors will attain exactly the same performance, regardless of the sensors’ locations and orientations
(with the exception of a negligible set of singularly bad sensor configurations). We proceed to the
conclusion that under the aforementioned assumptions, the only difference between different array
configurations is the effect of (sensor) noise on their performance. We then propose a figure-of-merit
that quantifies, with a single number, how much the sensor array in question amplifies the sensor
noise. Main results. We derive a formula for intuitively meaningful, yet mathematically rigorous
figure-of-merit that summarizes how desirable a particular sensor array design is. We demonstrate
that this figure-of-merit is well-behaved enough to be used as a cost function for a general-purpose
nonlinear optimization methods such as simulated annealing. We also show that sensor array
configurations obtained by such optimizations exhibit properties that are typically expected of ‘high-
quality’ MEG sensor arrays, e.g. high channel information capacity. Significance. Our work paves the
way toward designing better MEG sensor arrays by isolating the engineering problem of measuring the
neuromagnetic fields out of the bigger problem of studying brain function through neuromagnetic
measurements.

1. Introduction

Magnetoencephalography (MEG) is a noninvasive brain imaging modality that studies neuronal activity
through measurement, outside of the head, of magnetic fields created by neuronal currents (Himéldinen et al
1993, Cohen and Halgren 2009). Electric currents in the brain (intracranial currents), in accordance with
Maxwell’s equations, produce magnetic fields that extend to the volume outside the head, where they can be
measured noninvasively. In MEG, one measures the magnetic fields with sensors located outside the head and
tries to infer the intracranial currents generating these measurements. The fact that the magnetic fields outside
the head (extracranial magnetic fields) are related to intracranial currents through Maxwell’s equations makes it
possible to infer, with limited certainty, spatiotemporal features of the intracranial currents from the signals
measured with MEG sensors.
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Ideally, we would like to measure the extracranial fields and compute the intracranial currents that produced
them. Such computation is called the inverse problem. However, in the general case, the inverse problem is ill-
posed—it cannot be solved uniquely. This is because some intracranial currents produce zero extracranial
magnetic field.” One particularly celebrated example of ‘a silent current’—radial current dipole in a spherically
symmetric conductor—is described in Sarvas (1987). Obviously, no extracranial MEG measurement can reveal
anything about the silent currents.

Whereas no MEG sensor array (collection of magnetic field sensors) located outside the head can reveal
everything about the intracranial currents, some sensor arrays can reveal much more than others, depending on
the number, locations, orientations of sensors and other parameters (Kemppainen and Ilmoniemi 1989,
Himaldinen et al 1993).

There is another complication to the problem of MEG measurement, a more practical one. So far we
assumed that the extracranial magnetic fields are caused by the intracranial currents only. However, in any
practical situation the measurements of magnetic fields around the head will be contaminated by environmental
noise (magnetic fields produced by various artificial sources: power grid, elevators, electric motors operating
nearby, etc). The environmental noise can be, to a considerable degree, reduced by various shielding techniques
(e.g. Taulu et al 2019), however in any practical MEG setup the residual noise is still non-negligible. Thus the
magnetic fields measured by the sensors are a sum of two components: (a) the neuronal component—the
magnetic fields produced by the intracranial currents and associated volume currents in the head, and (b) the
environmental noise produced by much stronger currents located far away from the sensors. We would like our
sensor array to reveal as much as possible about the the intracranial currents not only in the noiseless case, but
also in the presence of the environmental noise.

All of the above makes MEG sensor array design an important problem that has attracted considerable
attention. One very tempting approach to MEG sensor array design is to try to summarize the ‘goodness’ of the
array using a single scalar—figure-of-merit. Once we find a figure-of-merit that describes well enough the
array’s ability to characterize intracranial currents (preferably, in the presence of environmental noise), sensor
array design becomes a multidimensional nonlinear optimization problem—a problem that has been widely
studied, and for which multiple practical tools are available. Unsurprisingly, a variety of figures-of-merit have
been proposed to date. These include measures such as precision in locating cortical current sources
(Hamaldinen et al 1993, Beltrachini et al 2021), and information about the sources conveyed by the array
(Kemppainen and Ilmoniemi 1989, Schneiderman 2014, livanainen et al 2021).

As we mentioned before, the ultimate, albeit unreachable (in the general case) goal of MEG is to solve the
inverse problem. Therefore, it is not surprising that some of the figures-of-merit proposed to date: (a) make
some assumptions about all possible intracranial currents that improve the conditioning of the inverse problem,
and (b) summarize in a single number the sensor array’s ability to solve the inverse problem under these
assumptions. The problem with this approach is that it critically depends on the accuracy of the assumptions,
but there is no good way to ensure such accuracy. Additionally, previously proposed figures-of-merit generally
focus on the sensor array’s performance in the absence of environmental noise (Kemppainen and
Ilmoniemi 1989, Hamilidinen et al 1993).

In the current paper we propose a novel figure-of-merit for MEG sensor array design that is not centered
around solving the inverse problem. We do not try to solve an ill-posed problem of characterizing the
intracranial currents through additional assumptions that improve the conditioning. Instead, following the
approach by Ahonen et al (1993), Grover and Venkatesh (2016), Iivanainen et al (2021), we solve the much less
ambitious, but well-conditioned problem of measuring the magnetic fields outside of the head as accurately as
possible. This approach might seem counterintuitive as it explicitly ignores the inverse problem and instead
focuses on measuring as accurately as possible something that might be of no interest (per se) to MEG users—the
magnetic field outside the head. Nonetheless, we argue that separating the question ‘What can we say about
intracranial currents from extracranial magnetic field measurements?” from the question ‘How can we measure
extracranial magnetic fields as accurately as possible?” makes a lot of sense from the sensor array designer’s
perspective.” The former question necessarily requires some assumptions about the intracranial currents, which

7 This statement needs a bit of explanation. An important property of the quasistatic Maxwell equations is their linearity—the magnetic
fields are related to the intensity of the currents that cause them by a linear transformation. Any linear transformation has this property: it is
possible to uniquely identify the transformation’s input given its output (i.e. compute the inverse transformation) if there exists no non-zero
input that causes the transformation to produce zero output. That is why the impossibility to uniquely estimate the intracranial currents
from the extracranial fields is the same thing as existence of a non-zero intracranial current that produces zero extracranial magnetic field.

8 Strictly speaking, we are cheating here a little bit. When we talk about ‘... measuring ... magnetic fields as accurately as possible’ we
implicitly assume that there exists some way to define what ‘accurate’ means—in other words, that there is a way to measure the (dis-)
similarity between the two magnetic fields (the true one and the estimate) as a single scalar. In reality there are many different ways to
quantify the difference between two magnetic fields, each leading to a different definition for figure-of-merit of the sensor array. In our
simulations we used the L>°-norm to define the difference, but other other choices are equally possible.
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Figure 1. Sampling volume used in our paper. Blue dots are sampling locations used for the discretization of the continuous sampling
volume {r|r € Vi, }. For 2D (left) and 3D (right) sampling volumes.

are particularly problematic during the array design stage since these assumptions are specific to a particular
MEG experiment. The latter question, on the other hand, is independent of such assumptions and constitutes
exactly the question that MEG sensor array designer should address.

As an additional benefit, our approach provides a straightforward and principled way of incorporating the
resilience to the environmental noise into the figure-of-merit. The question ‘How can we measure extracranial
magnetic fields as accurately as possible?” can be naturally extended to the question ‘How can we measure the
neuronal component of the extracranial fields as accurately as possible?” without the need for arbitrary weight
factors balancing the accuracy of the inverse problem solution against the noise resilience.

Briefly stated, our approach consists of using the vector spherical harmonics (VSH) decomposition
(Hill 1954, Taulu and Kajola 2005) of the magnetic field to define a field model which we use to optimize the
sensor array. Using the VSH decomposition we define cutoff values for the spherical harmonics degrees / of the
inner and outer expansions corresponding to fields due to neural sources and external interference, respectively.
By using the VSH field model, we investigate how measurement noise maps into magnetic field interpolation
noise for a given sensor array configuration. We define a figure of merit that quantifies how much the noise gets
amplified in the process. We design sensor arrays that minimize the figure of merit, i.e, that aim not to amplify
noise.

2. Methods

2.1. Array geometry

2.1.1. Array geometry constraints

When designing an MEG sensor array, we cannot place the sensors completely freely. For example, we cannot
place them inside the head, or too far away from the head, or too close to each other, etc. We denote the set of all
admissible sensor configurations as =. Each point £ € 2 is a possible sensor array; Z is the domain of the sensor
array optimization problem.

For the purpose of this paper, we assume point-like sensors that measure magnetic field along a certain
direction (sensor orientation). There are no constraints on sensor orientations; the only constraint on sensor
locations is that all the sensors are located within a closed volume adjacent to the head, called sampling volume
Viamp- Thus Zis uniquely defined by Vi, ., and the number of sensors m

E 2 {(r, ©)lr € Vamp [lell = 1}, M

where r and e denote the location and orientation of a sensor, respectively. Whereas these assumptions are not
perfectly realistic, the resulting simulations provide important insights into the real-world MEG sensor array
design as we will see in section 3.

In this paper we mostly consider two different sampling volumes: a 3D and a 2D. Both are helmet-shaped,
defined as a union of two geometric primitives (see figure 1):

1. Asection ofa cylindrical shell (wrapped around the subject’s head with an opening in front of the face), and

2. Ahemispherical shell covering the top of the head

The height of the cylindrical shell was 15 cm, and the opening spanned an angle of 7/2 radian. For the 3D
volume both primitives have a finite thickness of 0.1 m (inner radius of 0.15 m and outer radius of 0.25 m), and
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Figure 2. The difference between the anatomically-constrained (left) and regular (right) 3D sampling volumes. In both figures the
sensors are located on the innermost wall of the sampling volume. Blue spheres mark sensor locations; red arrows denote the direction
along which the magnetic field is measured.

Figure 3. A uniformly-spaced radial sensor array. Blue spheres mark sensor locations; red arrows denote the direction along which the
magnetic field is measured.

for the 2D volume both have zero thickness with the inner and outer radii being equal to some value R (and to
each other). Thus for the 2D sampling volume our sensor array is a function of R.”

In addition to the 3D sampling volume described above, in some of our experiments we also use an
anatomically-constrained variation of the 3D sampling volume. The main difference between the two is that in
the anatomically-constrained version the inner wall of the sampling volume is defined by the subject’s individual
anatomy—sensors can be placed anywhere down to the distance of 7 mm from the MRI-based anatomical head
surface (see figure 2). The offset of 7 mm is based on a typical dimension of an OPM sensor (Shah et al 2018); for
the purpose of our simulations we used an anatomical head surface provided by the MNE-Python package
(Gramfortetal 2013).

Note that whereas 3D sampling volume is a closed region of 3D space of non-zero volume, the 2D volume is
azero-volume surface. Nevertheless, we will use the term ‘volume’ for both of them for convenience.

2.1.2. Uniformly-spaced radial arrays
We define a special type of MEG sensor array—an (approximately) uniformly-spaced radial array—that we are
going to use as an example of what a reasonable non-optimized MEG sensor array might look like.

The uniformly-spaced radial array of N sensors (see figure 3) comprises N sensors approximately uniformly
distributed over the 2D sampling volume of radius R. The points are distributed over the sampling volume (2D
surface in this case) using an algorithm based on the idea of the generalized spiral set on a sphere (Saff and
Kuijlaars 1997). The orientations of the sensors (e.g. the directions along which the magnetic field is measured)
are normal to the sampling volume. Thus uniformly-spaced radial array is a function of Nand R.

2.2. Array figure-of-merit definition

Let us assume that we are given a sampling volume V,,, and number of sensors 1, thus defining the domain =
of our sensor array optimization problem. For each particular sensor array configuration £ € = we have m
measurements of the magnetic field at m (possibly distinct) locations within V. At each location r we
measure a single component of the magnetic field vector B(r), along the particular sensor’s orientation. We
assume that everywhere throughout Vi, ,,,, the value of B(r) is accurately enough approximated by the first n
VSH components (where n = L(L,, + 2) + Lg(Lz + 2) for some appropriately chosen positive integers L, and

? Note that R affects only the radii of the two primitives comprising the sampling volume, whereas the height of the cylindrical shell is fixed to
0.15 mindependently of R. Thus arrays for different values of R are not scaled versions of each other.
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Lﬁ)i
1

Ly
B(r) = Bu(r) + Bs(r) =) > imBa,(r)

I=1m=-1
L 1
+>° > BmBg, (), )
I=1m=-1

where B, (r) and Bg, (r) are VSH basis functions that are perfectly known, representing neuromagnetic and
interference field components, respectively, a,,, and 3y, are the unknown VSH coefficients that depend on the
distribution of the intracranial currents and the environmental noise sources, respectively. Then, in the notation
of Taulu and Kajola (2005), our measurement constitutes a linear operator given by a VSH matrix S:

¢ = Sx, (3)
where ¢ is the vector of values measured by the MEG sensor array, x is the vector of the VSH coefficients
X = [O[L, e >XL Lo» ﬂl,f Dreee )ﬂLg,L@ ]T >

and Sisanm x nmatrix determined by the sensor array geometry, where m is the number of sensors and 7 is the
number of VSH components.

Note that the VSH basis allows us to separate the neuronal fields from the environmental noise. We can write
xasasum of x,, and x5, containing coefficients for the internal and external parts of the VSH expansion:

X = Xq + Xg
Xo = [ox
X3 = I@X. (4)

HerelI,, and I zare diagonal selector matrices that respectively select only internal or external basis coefficients
fromx

1
- . Lo (Lo + 2) rows
1
Ioz = 0
. . Lg(Lg + 2) rows
0
and
0.
. Lo (Lo + 2) rows
0
Ig = 1
) . Lﬁ(Lﬁ + 2) TOWS
1

Assuming that m > n and the rank of S is 1, we can solve equation (3) for x:
x = STo,

where S' is the Moore—Penrose pseudoinverse of S. Now, let us consider some possible sensor location (and
orientation, as we assume that our sensor only measures the magnetic field along its orientation), where we could
have placed the sensor. For any possible locationr € V,mp and orientation e (eis a unit vector) the reading of the
sensor ¢(r, e) would be:

H(r, e) = speX = 8.5, (5)

where s, . is a row vector of length # specifying the values of the VSH components at (r, ). Equation (5) is
essentially an interpolation procedure that allows us to compute the readings of any possible sensor located
anywhere in the sampling volume.

Now, let us go one step further and say that we want to estimate only the neuronal component ¢ (r, e) of the
possible measurement ¢(r, e), without the environmental noise. To achieve this we restrict the interpolation to
the inner basis only:

¢a(r) e) = Sr,eXq = Sr,eIaST(b- (6)

10 . . .
For more details on this, see the supplementary material.
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Equation (6) holds exactly if the measurements ¢ are exact and all the assumptions outlined above (namely, that
the first n VSH components capture all the energy of the magnetic field and S is full rank) hold. In this case, it
does not matter where our sensors are located, we will always be able to perfectly simulate any sensor array
restricted to the sampling volume.

However, in reality the sensors are noisy. Thus, instead of reading true values of magnetic field ¢, the sensors
give us a noisy estimate (}5

a) = d) + ¢noise‘ (7)

Substituting equation (7) into (6) gives us the noise for the estimation of the ¢, which we call the interpolation
noise:

Sr,eIaSTq?) = Sr,eIaST(d) + Dnoise)
- Sr,eIOzST(]-s + Sr,EIWSTd)noise
- ¢g (I', e) + Sr,eI(!S-lL(ﬁnoise
= ¢, (1, €) + @i (T ©). ©))
If we define our sensor array configuration by a vector £ that contains all sensors’ locations and orientations,

and observe that S is a function of €, we will see that each sensor array configuration £ yields an interpolation
noise distribution over the sampling volume:

¢noise(r’ €, £) = Sr,eIas'r(E) ¢)noise' (9)

Observe that the term sr,eIQST(S) in equation (9) is a row vector of the length 1 (number of sensors). We assume
that sensor noise ;s is @ Gaussian, zero-mean random vector with the elements independent and identically
distributed, where each component has variance of o '. Then ¢yjs(T; €, £) becomes a zero-mean Gaussian
random variable with variance ||s; I,S'(£)||?0?, where |||| denotes the Frobenius norm of a vector. Hence, for
each sensor array configuration £ and each location-orientation pair (r, e):

¢n0ise(r’ €, 5) ~ N(()) O'interp(n €, 5)2): (10)

where
O'interp(r) €, S) = ”Sr,elas+(£)||a = ||Sr,eIa(S(E)Ts(S))ils(E)THJ- (11)

Tinterp(T €, &) describes the distribution of noise ¢,,isc at each location-orientation point (r, e). We want to
summarize the spatial distribution of gincerp(T, €, §) over the whole sampling volume with a single value that will
serve as a figure-of-merit for comparing different sensor arrays. There are numerous ways to do this; for the

Ointerp (T, €, &)

purpose of this paper we define the figure-of-merit to be the maximum of over the sampling volume:

q(é.) é max O-interp(ry <, £)

revsamp
[lell=1

+
max [[sr.elaST(E)|
[lell=1

max 5L (S(€)S(€)'S©)" - (12)

f[ell=1

Intuitively, one can think about g(£) in the following way: assume I have an array & of sensors with additive
gaussian noise of variance o”. Throughout the array’s sampling volume I have a magnetic field that is a sum of
two components: the brain magnetic field (signal of interest) and the environmental magnetic field
(interference). If my sensor array has the figure-of-merit value of g, it means that I will be able to estimate the
signal-of-interest component of the field anywhere within the sampling volume; my estimate will be noisy with
additive gaussian noise of standard deviation not worse than go. One can think of g as the worst-case noise
amplification factor; we are going to use the term ‘noise amplification factor’ throughout the paper.

Once the figure-of-merit (&) is defined, finding the best sensor array &,,; becomes an optimization problem

€0pt = argminq(§), (13)
EeE
where = is the domain of the optimization problem defined by the sampling volume and the number of sensors
m (for the definition of = see equation (1)).

11 . . . . L
Note that computing ¢,, involves not only interpolation, but also external noise rejection.

12, . . . . . . ..
This is quite a reasonable assumption for real-world MEG devices. Note, however, that our analysis can be trivially extended to the more
general case where each sensor has a different noise variance.
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In this paper we try to solve equation (13) using numerical nonlinear optimization algorithms. We report the
improvement in (&) yielded by the optimization, demonstrate the resulting sensor geometries, and compare
our figure-of-merit to the information-capacity-based figure-of-merit proposed in the previous works.

2.3. Channel information capacity of a sensor array
We wanted to compare the behavior of our proposed figure-of-merit to some established metric that has been
used by the MEG community. We chose channel information capacity (Kemppainen and Ilmoniemi 1989) asa
reference metric for such a comparison. Channel information capacity measures the amount of information
(quantified as number of bits per sample) that the magnetic field as measured by the array conveys about the
distribution of current sources inside the head, under particular assumptions about the source distribution and
its statistics.

Under the assumption of spatial white sensor noise with variance o and a Gaussian source distribution with
acovariance matrix ¥, the information capacity can be calculated as (Kemppainen and Ilmoniemi 1989)

1 1 A
I==Y log,(Pi+ 1) = —Zlogz(—’z + 1), (14)
25 25 o

where P;are the SNRs of the orthogonal channels defined by the eigencomponents and the eigenvalues ); of the
covariance matrix LXL”, where L is the lead-field matrix representing the measured magnetic fields produced by
the sources.

2.4.Implementation details

We did all the computations in Python 3 programming language using popular libraries for scientific computing
and visualization such as SciPy (Virtanen et al 2020), NumPy (Harris et al 2020), and mayavi (Ramachandran
and Varoquaux 2011). All the source code used for the simulations described in this paper is available from
GitHub (Zhdanov and Nurminen 2023) under the GNU General Public License (Gnu general public

license 2007).

2.4.1. VSH computation
We computed S(§) and s, . using the implementation of VSHs in MNE-Python (Gramfort et al 2013). We used
L, =10and L = 3 for the VSH expansion, which resulted in 135 components in the expansion.

2.4.2. Approximating spatial distribution of interpolation noise

Theoretically, g(£€) is defined as a maximum of a continuous function || sr,eI(YST(é)H over abounded domain {(r,
e)|r € Viamp llell = 1} = {r|r € Viump} X {e]lle]l = 1} (see equation (12)). In practice, we approximated the
continuous domain {rr € Vg, } bya dense discrete grid of 2500 points for the 3D and 1000 points for the 2D
sampling volumes.

For the 2D sampling volume, the 1000 points are approximately uniformly spread across the helmet
surface'” (see figure 1 left). Helmet surface being approximately 0.25 m?, the resulting density of the sampling
locations is about 1 location per 0.000 25 m”>.

For the 3D sampling volume, the sampling grid comprises 5 concentric shells, each shell similar to the 2D
volume described above. The shells radii are uniformly distributed on the interval 0.15-0.25 m, making the
radial spacing between two neighboring shells 0.02 m. Each shell has 500 sampling locations uniformly
distributed across it, for the outermost shell this leads to the density of about 1 sampling location per 0.001 m>.

2.4.3. Initialization of the optimization procedure

The optimization procedure is initialized with a uniformly-spaced radial sensor configuration (see section
uniformly-spaced radial arrays for more details). For the 3D array optimization procedure, we try three different
initial conditions corresponding the radii R = 0.15 m, R = 0.2 m, and R = 0.25 m for the initial sensor array
configuration.

2.4.4. Optimization procedure
We evaluated several general-purpose nonlinear optimization algorithms: basin-hopping, differential
evolution, and dual annealing. Of these, the dual annealing demonstrated the best performance, so we used it for
all the work described in the paper.

The dual annealing, as implemented by the scipy.optimize.dual_annealing function of the scipy toolbox, isa
stochastic optimization algorithm derived from the generalized simulated annealing (Xiang et al 1997). This

13 o . . e ¢ 5 . . .
We distribute the points on the helmet surface are using a variation of the ‘golden ratio” algorithm for approximately evenly distributing
points on a spherical surface.
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method combines the classical simulated annealing with the fast simulated annealing algorithms augmented by a
local search on accepted locations.

We used the default values for the maximum number of global iterations (1000) and the limit for the number
of objective function calls (107). These parameters resulted in a optimization run lasting 3—5 d on a typical
desktop computer.

Itis important to note, that dual annealing is an optimization procedure over a continuous parameter space:
the parameter variables are not restricted to a set of possible discrete values. The only constraint that we used
during the optimization process was the requirement that all the sensors should be inside the sampling volume.

2.4.5. Channel information capacity computation

We used 1000 random current dipoles to compute the channel information capacity. Each dipole’s location was
randomly chosen from a uniform distribution from a spherical volume of radius 0.07 m centered at the origin.
Each dipole’s orientation was randomly chosen from a uniform distribution on a sphere. The total dipole
moment (root-sum-squared across all the dipoles) was 2 x 10~® A m and the standard deviation of the sensor
noise was 10" T.

2.5. Computational experiments
In this paper we report the results of three computational experiments.

2.5.1. Investigation of uniformly-spaced radial arrays

As a uniformly-shaped radial sensor array is a function of its radius R and the number of sensors N, in our first
computational experiment we study the behavior of the array’s noise amplification factor as a function of these
two parameters.

2.5.2. Array optimization based on a 3D sampling volume
In the second experiment we try to find an optimal (w.r.t. the noise amplification factor) design for a sensor array
0f 240 sensors within a 3D sampling volume. We investigate the stabilty of the optimization procedure w.r.t. the
starting condition by running multiple experiments with different initial conditions.

Additionally, we investigate the behavior of the optimization procedure for different orders of the expansion
of the VSH basis.

2.5.3. Array Optimization based on an anatomically-constrained 3D sampling volume
In the third experiment we perform a single optimization run using an anatomically-constrained 3D sampling
volume.

2.5.4. Array optimization based on a 2D sampling volume

In this experiment we repeat the optimization experiment we performed on a 3D sampling volume, but this time
on a 2D sampling volume of radius 15 cm. Note that 15 cm is the inner radius of the 3D sampling volume;
however 2D volume-based optimization is not the same as the 3D optimization with sensor locations restricted
toa 2D surface. The two procedures use different fitness functions, since they have different sampling volumes.

3. Results

3.1. Investigation of uniformly-spaced radial arrays

Figures 4 and 5 show the behavior of the noise amplification factor for uniformly-spaced radial arrays as a
function of array radius R and the number of sensors. The noise amplification factor was calculated based on
equation (12). From figure 4, we see that when the number of sensors is doubled from 120 to 240, the noise
amplification factor shows a reduction of roughly two orders of magnitude. Figure 5 shows that the noise
amplification factor improves when the array radius R decreases.

3.2. Array optimization based on a 3D sampling volume

Figures 6 and 7 depict the behavior of the sensor array’s noise amplification factor and channel information
capacity during a 3D sampling-volume-based optimization procedure. Both the noise amplification factor and
the channel information capacity improve as more iterations are performed. The maximum and average noise
amplification factors saturate approximately at values 1.0 and 0.2, respectively, while the channel information
capacity reaches a value of approximately 30 bits per sample. The optimization was repeated with different initial
sensor locations. In general, the results are quite consistent between runs, and the initial locations do not have a
significant effect on the final optimization result.
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Figure 4. Behavior of the noise amplification factor for uniformly-spaced radial arrays as a function of the number of sensors and array
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Figure 5. Behavior of the noise amplification factor for uniformly-spaced radial arrays as a function of the number of sensors and array
radius R.

Figure 8 depicts the evolution of the sensor array geometry during one optimization run, where the initial
location of the sensors is on the outer surface. As the algorithm progresses, the sensors mostly migrate to the
inner surface. On the average, about 6 sensors out of 240 remained close to the outer surface.

Figure 9 illustrates the distribution of sensor orientations during optimization. In the initial condition, the
orientations are mostly aligned with the radial normal of the spherical coordinate system; the alignment is not
exact due to the helmet-like shape of the sensor array. At early stages of optimization, the tangential directions
start to dominate. At convergence, the sensors have mixed orientations, with a majority of them being oriented
more towards the radial direction.

Finally, figure 10 illustrates the dependence on the method on the selected VSH degree cutoff. The
optimization was repeated for different values of L,,. Using alower VSH degree cutoff results in faster
convergence and lower overall noise amplification for the sensor array.

3.3. Array optimization based on an anatomically-constrained 3D sampling volume

Figures 11 and 12 depict the behavior of the sensor array’s noise amplification factor and channel information
capacity during an optimization procedure for the anatomically-constrained 3D sampling volume. The
optimization procedure generally behaves very similarly to that of the regular 3D sampling volume. One major
difference is that the anatomically-constrained version attains much higher channel information capacity,
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Figure 6. Noise amplification factor (NA) as a function of iteration during a 3D sampling volume-based optimization procedure. The
optimization was repeated for different initial sensor locations: sensors on outer surface, inner surface, and halfway between the
surfaces. N = 8 runs are plotted for each of these conditions. The solid and dashed lines indicate the maximum and mean noise
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Figure 7. Total information as a function of iteration during a 3D sampling volume-based optimization procedure. The optimization
was repeated for different initial sensor locations: sensor on outer surface, inner surface, and halfway between the surfaces. N = 8 runs
are plotted for each of these conditions.
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Figure 8. Progression of the sensor arrangement during the optimization for a 3D sampling volume.

which is to be expected, considering the fact that it can position sensors much closer to the sources of the signal
inside the head.

Figure 13 depicts the evolution of the sensor array geometry during an optimization run. This too is
qualitatively similar to the results for the regular 3D array.
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Figure 10. Maximum noise amplification factor (NA) as a function of iteration during a 3D sampling volume-based optimization
procedure for different values of L., with L = 3.

3.4. Array optimization based on a 2D sampling volume

In figures 14 and 15, we show the results for a 2D sampling volume, similarly to those presented in figures 6 and 7
for a 3D volume. Figure 16 depicts the behavior of the sensor array’s geometry during the optimization
procedure. In this case, noise amplification factor improves as the algorithm progresses. Similarly, channel
information capacity generally improves as a function of iteration. However, there is a steep drop in the channel
information capacity after the firstiteration. The algorithm starts with an initial configuration where the sensors
are distributed uniformly on the surface and pointing radially (figure 16). After the first iteration, the algorithm
deviates from this configuration and the channel information capacity decreases. However, as the algorithm
progresses the channel information capacity eventually reaches the initial level while the noise amplification
factor shows an improvement of approximately two orders of magnitude. Looking at figure 16, we observe
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Figure 11. Noise amplification factor (NA) as a function of iteration for optimization on anatomically-constrained 3D sampling
volume.

300 +

250 -

200 +

150 A

100 +

Total information (bits)

50 4

0 2000 4000 6000 8000 10000 12000 14000
N of iterations

Figure 12. Channel information capacity as a function of iteration for optimization on anatomically-constrained 3D sampling
volume.
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Figure 13. Progression of the sensor arrangement during the optimization for an anatomically-constrained 3D sampling volume.
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Figure 15. Channel information capacity as a function of iteration for a 2D sampling volume-based optimization procedure.
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Figure 16. Progression of the sensor arrangements during the optimization for a 2D sampling volume.

significant changes in the sensor orientations, which correspond to an improved noise amplification factor and
increased channel information capacity.

4. Discussion
4.1. General remarks

In this paper, we investigated the question of how to optimally measure the magnetic fields in MEG with a
limited number of sensors while the assumptions about the underlying neural current distribution are minimal.
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As a general model for a discretized, multi-channel, magnetic field measurement we use the VSH expansion.
This provides us with a a tool for interpolating the magnetic field within the sampling volume. The problem of
interpolating magnetic field over a curl-free domain has been studied before. Solin et al (2018) suggest a method
for interpolating magnetic field in an arbitrarily shaped curl-free region that relies on a scalar potential function
in a way that is similar to what we do. However, operating over an arbitrarily-shaped domain, the method
cannot utilize the approximate spherical symmetry of the measurement geometry that we have in the MEG case.

The VSH model can be thought of as a weakly informative prior to optimize the sensor positions and
orientations. The VSH prior has three parameters: the origin and the cutoff values for the inner and outer VSH
expansions. The origin represents the assumption about the sensor-to-source distance while the cutoff values of
the inner and outer VSH expansions constitute an assumption that the magnetic field is bandlimited in the VSH
(spatial-frequency) domain. As the VSH prior is general, i.e. it is not specific to any particular subject head
geometry it can be used to construct a general optimized sensor array.

One unique feature of the VSH decomposition is that it allows us to separate the field to components
representing the neural signals of interest and external interference components. By using both components to
construct the field model (or prior) for sensor optimization, the sensor array simultaneously samples the neural
signals and the interference allowing to separate them.

Compared to previous studies on MEG array optimization using fixed sensor orientations (Beltrachini et al
2021, livanainen et al 2021), the VSH formalism allows us to also optimize the sensor orientations. The obtained
results suggest that when the sensors are measuring a single field component the optimal sensor orientation is
not always radial as would be suggested when directly comparing radial component to the two tangential
components (e.g. livanainen et al 2017). The deviation from radial orientation can be mostly explained by two
different factors. First, the orientation of the spatial covariance function of the bandlimited VSH model is not
radial everywhere in the sampling volume. Second, the introduction of external VSH components to the model
necessitates sampling of the tangential components to allow better separation of the inner and external
components.

Recently, optically pumped magnetometers (OPMs) measuring two (Colombo et al 2016, Borna et al 2017)
or all three components (Brookes et al 2021, Boto et al 2022) of the magnetic field have been developed. We did
not optimize arrays comprising of triaxial or dual-axis OPMs, but we note that the methodology presented in the
paper can be used to optimize such arrays.

A central point of our approach to defining the MEG sensor array’s figure-of-merit is separating the question
‘What can we say about intracranial currents from extracranial magnetic field measurements?” From the
question ‘How can we measure extracranial magnetic fields as accurately as possible?’. However, it is not clear
how these questions are related. The sensor array may sample a high percentage of the field energy (~99%, for
example) giving a highly accurate reconstruction of the magnetic field, but the source estimation might benefit
from additional sensors.

4.2. Interpretation and significance of the obtained results

As shown in figure 4, as we interpolate the magnetic field based on the spatially discretized measurement, the
noise amplification factor decreases as the number of sensors increases. This is an intuitively obvious result, but
figure 5 also indicates that decreasing the physical dimensions of the actual array results in a decreasing noise
amplification factor. This can be understood by an increased density of spatial sampling as the sensors will be
distributed across a smaller surface area.

In order to validate our approach against other metrics, we chose to compare the progression of the noise
amplification factor to the channel information capacity, which is a commonly used quantity in the evaluation of
MEG sensor arrays. We found that decreasing noise amplification factor during the progress of sensor array
optimization was consistent with increasing total information, as shown in figures 6 and 7. As aresult of the
optimization procedure, the sensors are distributed across the inner surface of the sampling volume with widely
different orientations, see figure 8. Similar results, with respect to the connection between noise amplification
and channel information capacity as well as the sensor orientations, were obtained in the 2D case, as indicated in
figures 14-16.

Itis intuitively desirable to place the sensors as close as possible to the head with sensor normal pointing
symmetrically, e.g. in the radial direction. However, for the purpose of distinction between the internal and
external magnetic fields, it is beneficial to break the spherical measurement symmetry as much as possible, as
suggested already by Nurminen et al (2013). This can be achieved by having the sensors be close to the head while
the sensor orientations become widespread and randomly distributed. At the end of the optimization procedure
leading to these random orientations, the corresponding channel capacity returns to the initial level as well.
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4.3. Other remarks

Note that in the process of optimization noise magnification factor drops below 1. This means that with our
sensor configuration we can estimate magnetic field everywhere, including the sensor locations, better than what
we get by directly measuring it with a single sensor.

4.4. Limitations

Our results rely heavily on the assumption that the magnetic fields within the sampling volume can be accurately
modeled with a truncated VSH expansion (see the supplementary material). This assumption has some potential
problems:

1. In real MEG measurements the assumptions of the VSH expansion about the current geometry (three
concentrical compartments) do not hold because the middle compartment includes a part of the participants
body (neck, etc) and thus cannot be guaranteed to be current-free. Moreover, for on-scalp sensor arrays, a
single sphere separating the sensor array and the head cannot be found.

2. Truncating VSH expansion naturally introduces truncation error. The truncation error decreases when we
increase the cutoff orders for the internal and external parts of the expansion (L, and Lzaccordingly). It is not
clear which cutoff values are sufficient; they depend on the SNR of the measurement.

3. The residual VSH components of the field outside the truncated VSH expansion will alias if they are above
the noise level and if the sensor array does not provide sufficient oversampling of a given truncation.

Moreover, strictly speaking, the interpolation noise computation only accurately models the noise for a single
‘virtual’ sensor. If we use it to model noise for a virtual sensor array of multiple sensors, the noise modeling for
each sensor will be accurate, but the noise in the virtual array will be correlated across sensors, thus the array
performance will not be the same as that of a real physical array with equivalent sensor noise.
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