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ABSTRACT: We demonstrate for the case of photoexcited [Ru(2,2’-bipyridine);]** how
femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to
uniquely probe changes in the valence electronic structure following a metal-to-ligand
charge-transfer (MLCT) excitation. Metal—ligand hybridization is probed by nitrogen-1s
resonances providing information on both the electron-accepting ligand in the MLCT state
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and the hole density of the metal center. By comparing to spectrum calculations based on e #

density functional theory, we are able to distinguish the electronic structure of the electron-
accepting ligand and the other ligands and determine a temporal upper limit of (250 + 40) fs %
for electron localization following the charge-transfer excitation. The spin of the localized

electron is deduced from the selection rules of the RIXS process establishing new
experimental capabilities for probing transient charge and spin densities.

harge-transfer excitations are the initiating step of many

photochemical reactions involving transition metal
complexes. Owing to its wide applicability in fields like light-
harvesting”” and photocatalysis,” the metal-to-ligand charge-
transfer (MLCT) excitation in [Ru(bpy);]** (where bpy =
2,2'-bipyridine) constitutes the prototypical example of such a
process. Specifically, the system and its derivatives are
investigated as photoinduced electron donors in potential
inflammatory sensors,” water splitting,5 and enzyme triggering
reactions® and as dye sensitizer models’ ™" as well as active
moieties in phototherapy' "> and molecular switches.'”'* On
an intramolecular level, the charge-transfer process is initiated
by an optical excitation, which elevates a Ru-4d electron into
an unoccupied bpy 7* orbital. This effectively oxidizes the
metal center, while reducing one bpy ligand and thereby
breaking the symmetry of the electronic ground state. Ultrafast
transient absorption and emission studies have established that
the lowest charge-transfer excitation of many polypyridyl
iron(II) and ruthenium(II) complexes from their singlet
ground-state results in the initial population of a 'MLLCT
state, which has a substantial spin admixture of the lower-lying
*MLCT manifold, resulting in very fast intersystem crossing
into a MLCT state within tens of femtoseconds."”™"” In
[Ru(bpy);]**, the possibly delocalized initial charge distribu-
tion of the MLCT state triggers a solvent response that
stabilizes the charge distribution of the MLCT state. From
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optical spectroscopy, it has been concluded that the transferred
electron is localized on one of the three bpy ligands."*™*° The
localized electron will still hop between ligands but is stabilized
by solute—solvent interactions analogous to a polaron in a
crystalline solid (an excited electron localized in the center of a
lattice distortion that forms in response to the sudden creation
of a mobile charge carrier). While optical spectroscopy
provides robust measures of the involved time scales, the
broad and overlapping spectral features are often difficult to
relate to the electronic structure and spin configuration of the
excited state.'»*'™** Ideally, spectroscopic information from
specific atomic sites would allow following and characterizing
the relaxation from the initially excited charge-transfer
excitation to localized partial charge densities, ie., an
electron—hole pair determined by Coulomb and covalent
metal—ligand interactions.

Atomic site-sensitivity can be provided by X-ray spectros-
copy. By projecting a highly localized core orbital onto
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delocalized valence orbitals in an X-ray absorption process, the
chemical environment around the absorbing atomic species
can be characterized. Picosecond X-ray absorption experiments
at the Ru K- and L-edge of [Ru(bpy),]** and similar systems
established subtle changes in metal—ligand bond lep§ths as a
result of the formation of the *MLCT state.”>*® More
importantly, changes in the local valence electronic structure
and the ligand field around the Ru center, which result from
the metal-center’s photoinduced oxidation, could be deter-
mined using L-edge absorption spectroscopy.g’25 However,
with the underlying metal 2p — 4d transitions primarily being
sensitive to the hole in the metal d orbitals, L-edge absorption
spectroscopy is limited in providing information on the
transferred electron. The latter is only indirectly observed
through changes in covalent metal—ligand interactions which
modulate the Coulomb and exchange interactions that
influence the L-edge line shape. An ultrafast spectroscopic
probe that can adapt both a metal- and ligand-centered view,
within one process, would indeed provide the necessary
information on the transient charge density of an intra-
molecular electron—hole pair.

We present femtosecond resonant inelastic soft X-ray
scattering”’ (RIXS) at the K-edge of ligand atoms, specifically
at the nitrogen K-edge,”® > as such a probe: Resonant N Is
core-excitations, which promote ligand core—electrons to
unoccupied metal-centered orbitals with subsequent resonant
emission from ligand-centered valence electrons, report on the
charge density of the ligand modulated by charge density
changes at the metal. This provides simultaneous information
on the transferred electron as well as the hole on the metal and
is manifested in valence excitation spectra deep into the
vacuum ultraviolet regime specific to certain chemical sites.””**
Due to the underlying spin selection rules governing the dipole
transitions of the RIXS process in the soft X-ray photon range,
the contained spectral information also gives information on
different spin states, since specific valence excited final states
are only dipole-allowed in specific spin configurations of the
system.

Thus far, time-resolved RIXS in the soft X-ray regime has
been employed in L-edge measurements on iron complexes in
order to follow the evolution of the valence electronic structure
locally at the metal center during ligand-exchange™ ™ and
charge-transfer dynamics.”**” At the N K-edge, however, only
time-resolved X-ray absorption studies on transition metal
complexes have previously been realized,””*”*" while time-
resolved RIXS has only been used to study the transiently
deprotonated N site in an organic molecule.”® In the case of
charge-transfer excited [Ru(bpy);]*’, time-resolved N K-edge
RIXS allows one to directly access, distinguish, and evaluate
the valence electronic structure of the different bpy groups
(electron-accepting and non-electron-accepting) and follow
the electron—hole pair in time since the spectroscopic probe
also includes the metal valence charge density. Thereby, our
results and analysis provide a robust temporal upper limit for
electron and hole localization by exploiting the sensitivity of
our experimental method to the dynamics of charge-transfer
excitations for both electron and hole. We utilize the spin-
selection rules of N K-edge RIXS to demonstrate how such
ultrafast measurements can follow the spin crossover
associated with the MLCT excitation.

Figure 1 shows the molecular structure as well as steady-
state RIXS data of [Ru(bpy);]** measured at the N K-edge.
The data is acquired by simultaneously scanning the incident
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Figure 1. DFT-optimized molecular structure and steady-state N K-
edge RIXS map of aqueous [Ru(bpy);]*". By integrating along the
energy transfer axis, the PFY spectrum (shown on top) is acquired.
On the left, a resonant emission spectrum is displayed, which is
acquired by integrating across the main absorption line.

energy and pump—probe delay. By integration over all pump—
probe delays t < 0, the steady-state RIXS map is generated.
The RIXS map is displayed as a function of the energy transfer,
which corresponds to the energy of the valence-excited final
states of the RIXS process. By integration along the energy
transfer axis, the partial fluorescence yield (PFY) X-ray
absorption spectrum (XAS) can be generated. It is dominated
by a single intense transition at 399.6 eV, which can be
assigned to the elevation of a N 1s core—electron into the
unoccupied bpy 7* manifold. In the two-step approximation of
the RIXS process, the core-excitation is followed by a resonant
emission step, whose spectrum is additionally shown on the
left in Figure 1. It is acquired by integrating the RIXS map
along the incident energy axis across the main absorption
resonance between 399.15 and 399.85 eV. The resonant
emission spectrum exhibits a feature at 0 eV energy transfer
corresponding to elastic scattering. The most intense feature is
located at 7 eV energy transfer followed by additional features
with lower intensity up until 25 eV energy transfer. The general
shape of the spectrum is similar to previous measurements on
[Fe(bpy);]**, where the resonant emission originated mostly
from the recombination of electrons occupying ligand-centered
orbitals of the bpy ligand with the N 1s core-hole.”®

Figure 2a shows the PFY XAS spectrum of [Ru(bpy);]** for
positive and negative pump—probe delays. The individual
spectra are normalized to the number of FEL shots, which are
included in the respective delay range. The spectra are then
scaled so that the maximum of the ground state spectrum is
unity to visualize the relative magnitude of the spectral changes
upon laser excitation. The absorption of an optical photon
causes a decrease of the main X-ray absorption resonance as
well as an intensity increase before and after the main
resonance. To isolate the laser-induced changes in the PFY
spectrum, Figure 2b shows the difference between the two
spectra from Figure 2a. The observed spectral changes upon
photoexcitation are well described by the calculated difference
spectrum. The calculation is based on time-dependent density
functional theory (TD-DFT) and carried out for each unique
N atom. In the case of the ground state, the molecule is
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Figure 2. (a) PFY XAS of [Ru(bpy);]** for negative and positive
pump—probe delays in the range of —1.5 to +1.5 ps. (b) Difference
PFY between the two spectra from part a compared to a calculated
difference spectrum between the *MLCT state and the ground state of
[Ru(bpy);]**. (c) Calculated spectra of the ground state (GS) and the
*MLCT. The spectrum of the *MLCT state is further broken down
into contributions from the two N4 atoms of the electron-accepting
bpy ligand and the four Nj, sites of the spectator ligands.

sufficiently symmetric that the XAS spectrum resulting from
creation of a core-hole on any one of the N atoms is
equivalent. Due to the symmetry reduction associated with the
MLCT excitation, however, the spectrum of the *MLCT is the
sum of six TD-DFT spectra. The calculated difference
spectrum is then generated as the weighted difference between
the excited and ground state spectrum and scaled to the
maximum of the depletion in the experimental data at 399.45
eV. The calculation shows very good agreement with the
experiment, reproducing the depletion of the main absorption
line at 399.45 eV and the signal increase below and above the
main absorption line.

In order to rationalize the dominant core-excitations causing
the spectral trends observed in the experimental PFY spectrum,
Figure 2¢ shows the simulated spectra of the ground state and
the MLCT state as well as a breakdown of the MLCT
spectrum into contributions from different ligands. The
spectrum of the MLCT can be divided into contributions
from the electron-accepting reduced bpy group (denoted as
N,.q) and the two other bpy groups (denoted as N;), which
merely act as spectators of the charge-transfer excitation. This
distinction is motivated by the observation that the orbital of
the transferred electron is clearly localized at a single bpy
group (see Supporting Information). The good agreement of
such a description with experiment reinforces previous notions
of a localized electron in the MLCT state'? and, for the first
time, ties the associated reduction of symmetry to differences
in the underlying electronic structure between the two types of
ligands.

The general character of the spectrum of the Nj sites is very
similar to the ground state spectrum, however slightly shifted
to higher energies. This is due to the N sites mainly
experiencing the effective oxidation of the Ru center as a result
of the charge-transfer excitation. The depopulation of the Ru
ty, orbitals reduces the Coulomb-repulsion between the N,
ligands and the metal. This leads to an increase in o-donation,
a relation, which has previously been observed also for other
charge-transfer excitations.””** These changes in covalency
cause the N 1s core-level energies to drop by on average 0.4 eV
at the N, sites, which shifts the transitions to higher
energ)7.32'43

A completely different spectral behavior can be observed for
the N, q sites. There, the intensity of the main 7* resonance is
drastically reduced and shifted to lower energy (see Supporting
Information for associated difference density) causing the
emergence of the pre-edge feature at 398.8 eV in the
experimental difference spectrum in Figure 2b. The energetic
shift can be associated with the increase of electron density on
the ligand caused by the MLCT process and results in a 0.5 eV
increase in the N 1s orbital energy. The decrease in intensity
can be attributed to the fact that the lowest-lying #* orbital is
half-filled in the MLCT state. Additionally, the calculations in
Figure 2c suggest a new low-energy resonance to appear for the
N,.q sites at 397.3 eV. The character of this resonance can be
clearly assigned to a N 1s — Ru t,, excitation (see Supporting
Information). This feature becomes visible in the N,.4

Experiment Theory (b)
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Figure 3. (a) Experimental RIXS spectra for negative and positive pump—probe delays compared to calculated RIXS spectra. The experimental
spectra are acquired by integrating the incident energy across the regions marked in the PFY spectrum displayed on the left. The calculated spectra
are based on the single-electron approximation and evaluated for excitation energies within the experimental incident energy regions. (b) Schematic
representation of the observed RIXS transitions based on a single-electron picture.
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spectrum because the increase in the N4 1s orbital energy and
the presence of the t,, hole yield a lowered excitation energy,
which is separated from the rest of the N K-edge XAS
spectrum. Second, while the N Is — Ru t,, transition is
formally forbidden, the Ru-based t,, acceptor orbital exhibits a
small amount (~2%) of N, p-character providing dipole
intensity. The new transition therefore constitutes a direct
fingerprint for the depopulation of metal d orbitals and thus
local oxidation of the metal center by the MLCT excitation as
seen from the N K-edge.*' It should be noted that the
experimental difference PFY spectrum shows no significant
intensity increase in the range of 397.3 eV. However, in the
following, we provide unambiguous experimental evidence for
the presence of this transition, which allows one to selectively
access the reduced bpy ligand of the *MLCT state and extract
the corresponding site-specific RIXS spectrum.

Figure 3a shows experimental RIXS spectra integrated over
the incident energy region of the ground state 7* resonance
(marked blue) as well as the t,, resonance (marked red) for
positive and negative pump—probe delays. Most importantly,
the latter shows an emergence of intensity at energy transfers
between 3 and 13 eV following the optical excitation. The
detected fluorescence in this range clearly demonstrates the
presence of a resonant excitation for the *MLCT state at this
incident energy as predicted by the calculations in Figure 2c.
This is despite the resonance not rising above the noise level in
the experimental PFY difference spectrum in Figure 2b,
because it is acquired by integrating over a wide range of
energy transfers. In the RIXS spectrum recorded at the ground
state 7* resonance, a uniform decrease of intensity up until 20
eV energy transfer can be observed reflecting the overall
decrease of the main absorption line in the PFY spectrum upon
optical excitation.

In order to rationalize the spectral features in the transient
RIXS spectra, calculated RIXS spectra based on a one-electron
picture (see Supporting Information) are additionally
presented in Figure 3a. The calculated RIXS spectra show
good qualitative agreement with the experiment. The overall
decrease in intensity at the ground state 7* resonance is
reproduced as well as the emergence of fluorescence in the
range of the t,, resonance which is absent before the optical
excitation. It should be emphasized that, despite minor
variations, the general shape of the RIXS spectra is maintained
after the optical excitation and is very similar at the two
different excitation energies. This indicates that the orbitals
and their energies involved in the X-ray emission step of the
RIXS process largely remain the same and the variations in
final state energies can for the most part be rationalized by the
underlying differences in X-ray excitation energies in the
different incident energy regions. This is illustrated by the
molecular orbital diagram displayed in Figure 3b. As has been
mentioned previously, the ground state RIXS spectrum
following an excitation at the #* resonance is characterized
by electronic decays dominantly from occupied bpy orbitals
resulting in ligand-centered valence-excited final states.”® In the
case of at the newly opened t,, resonance, however, the system
is core-excited at lower incident energy. With emission
energies remaining constant, this creates new low-energy
valence excited final states of dominantly ligand-to-metal
charge-transfer (LMCT) character.

Additionally, due the half-filled Ru t,, level in the SMLCT
state (compare Figure 3b), core-excitation at the t)g resonance
creates exclusively spin-down core-holes. The Pauli exclusion
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principle for Fermions and spin selection rules of dipole
transitions (AS = 0) therefore dictate that only spin-down
electrons can subsequently fill the N 1s core-hole following the
core-excitation. This allows one to retrieve information about
the spin state of the system from the spectra measured at the
t, resonance, since the spin-up electron occupying the bpy 7*
orbital in the *MLCT state cannot recombine with the spin-
down N 1s core-hole, although the two orbitals have significant
overlap. Such a transition is, however, allowed as long as the
system is in the initially populated 'MLCT configuration.
Exploiting these selection rules therefore introduces sensitivity
to the spin state of the charge-transfer excited state. As will be
shown in the following, this opens up novel opportunities to
temporally follow the earliest transients involved in the charge-
transfer dynamics.

The spectral changes discussed so far were averaged over all
negative and positive delays and have been assigned to
dominantly correspond to the presence of the ground and the
SMLCT state, respectively. To follow the spectral changes as a
function of pump—probe delay, Figure 4 shows the full
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Figure 4. Delay traces acquired by integration over spectral ranges in
the difference PFY spectrum as well as the difference RIXS map. The
temporal evolution of the spectral signatures can for the most part be
described by the emergence of the *MLCT state within the time-
resolution of the experiment.

difference RIXS map with the experimental PFY difference
spectrum from Figure 2b above. Incident energy regions A and
C correspond to the regions discussed in Figure 3, while B and
D cover regions before and after the main edge. To increase
the signal-to-noise ratio, region A is restricted to the area for
which an increase in intensity could be observed in Figure 3
(elastic scattering as well as positive energy losses). Area A’ is
additionally introduced as a spectral region which will be
discussed separately. By integrating the scattered photons
within the marked regions for time intervals of 70 fs, the time
traces shown on the right of Figure 4 can be extracted (error-
bars deduced from /N of detected photons within a spectral
region). To visualize the relative magnitude of the spectral
changes in the individual regions, the traces are normalized to
the integrated signal of region C before time-zero (intensity of
the ground state 7*-resonance). The relative changes detected
in regions A to D are modeled by a step-function convolved
with a Gaussian. The good description of the data by the fit
demonstrates that the dominant signal changes happen
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synchronously and within the (250 + 40) fs rise-time of the
Gaussian-broadened step-function. This assessment again
confirms the previously drawn conclusion that the *MLCT
state is the species dominantly contributing to the observed
spectral changes. Furthermore, due to the good description of
the observed spectral changes by a localized *MLCT state, the
retrieved rise-time of 250 fs can be established as an upper
limit for electron localization in [Ru(bpy);]*" in agreement
with previous transient absorption experiments.

Traces of an additional species can be identified which do
not correspond to the formation of the *MLCT state, but
instead point toward the shortlived 'MLCT state. For a
discussion of this observation, we turn to region A’, which is
located at the t,, resonance of the SMLCT state and at negative
energy transfer (compare Figure 4). As discussed previously,
the core-excitation at the t,, resonance only creates spin-down
nitrogen-1s core-holes. Due to spin selection rules, this core-
hole can therefore only be efficiently filled by the decay of the
transferred electron via a dipole transition as long as the system
is in the initial '"MLCT state with a singlet spin configuration
right after the optical excitation. Region A’ is thus centered at a
negative energy transfer which exactly corresponds to the
energy of the optical excitation (see Experimental Details).
Conceptually, this can be understood as energy, which is
deposited in the system by absorption of an optical photon and
subsequently added to the energy of the core-excitation. An
anti-Stokes transition®’ then results in a net gain in energy of
the emitted X-rays and the final state character of this
transition therefore corresponds to the singlet ground state of
[Ru(bpy);]**. Such anti-Stokes transitions have been pre-
viously observed in L-edge RIXS measurements > and
calculations,® where they have been characterized to
constitute unique spectroscopic fingerprints of short-lived
transient intermediates during photochemical reactions. The
delay trace derived from region A’, however, cannot be
considered statistically significant evidence for an anti-Stokes
line. This is not surprising given that the lifetime of the
'MLCT state has been reported to be on the order of 20 fs by
theory™* as well as experiment.'® Still, the increase in intensity
around time-zero points toward the presence of such a feature.
To guide the eye, the delay trace retrieved from region A’, is
therefore fitted with a Gaussian function (shaded area refers to
95% confidence interval), whose temporal width corresponds
to the previously determined signal rise-time and exceeds the
'MLCT lifetime by 1 order of magnitude. While the data
presented here does not constitute an unambiguous detection
of the 'MLCT state, it provides a template for the design of
future experiments with the improved time-resolution and
count rates at upcoming high-repetition rate XFEL facilities.

In summary, we have shown how time-resolved RIXS at the
ligand K-edge can be a powerful tool to follow charge-transfer
dynamics in transition metal complexes. In particular, by
directly evaluating the differences in the electronic structure
between the electron-accepting and nonelectron-accepting
ligands, the method confirms the localized nature of the
SMLCT state of [Ru(bpy);]** on time-scales upward of 250 fs
and uniquely provides valence excitation spectra specific to the
reduced ligand. Furthermore, by exploiting the stringent
selection rules of the RIXS process, new experimental schemes
could be proposed which would allow one to capture and
characterize the elusive primary '"MLCT state. Such experi-
ments, which are expected to be routinely performed at
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upcoming high-repetition rate X-ray free electron lasers, would
nicely complement studies using femtosecond KB X-ray
emission spectroscopy, a technique that is powerful in terms
of determining the spin-state of the metal center but, due to its
purely metal-centric character, struggles to distinguish between
'MLCT and *MLCT states.*~**
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