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1. Executive Summary

The main goal of the research project was to identify the geophysical signatures of fracture growth
in natural rocks by utilizing novel geophysical techniques. The research objectives were to (a)
investigate the potential for geophysical methods to determine when cracks initiate, the types and
locations of propagated cracks, and the coalescence of networks of cracks in natural rocks at
multiple scales, (b) determine how damage at the microscale evolved into damage at the
macroscale and then link the microscopic and macroscopic observations, (c¢) quantify crack
coalescence in rocks under realistic stress conditions using coupled mechanical-geophysical-
optical visualization, and (d) identify the precursors in geophysical signals to crack coalescence.
The following research thrusts were explored to achieve the research objectives: (1) uniaxial
compression testing of rock specimens with and without a set of pre-existing flaws and (2) triaxial
compression testing of natural rock specimens. These thrusts allowed for exploring fracturing in
rocks under realistic in situ environments and at multiple scales. This project provided educational
opportunities for nine graduate and undergraduate students and resulted in 27 peer-reviewed
publications.

This first research thrust focused on investigating the micromechanics of fractures in rocks through
uniaxial compression testing combined with advanced geophysical and imaging techniques,
specifically acoustic emission (AE) monitoring, ultrasonic imaging, and 2-dimensional Digital
Image Correlation (2D-DIC). By examining damage processes under time-independent and time-
dependent loading conditions, insights into damage localization, crack initiation, and fracturing
mechanisms were gained. It was observed that the AE signals and the strain-based measurements
directly reflect the state of damage in the rock specimen and could be used to identify the cracking
levels, such as the crack initiation (CI) and crack damage (CD), and the mode of deformation. A
novel calibration apparatus was developed to enhance the accuracy of AE sensors, allowing for
the estimation of key parameters such as magnitude, source dimension, stress drop, and radiated
seismic energy associated with the fractures. The findings highlighted significant variations in the
temporal evolution of AE source parameters during the primary, secondary, and tertiary stages of
creep, identifying tensile cracking as the primary deformation mode.

The second research thrust focused on enhancing the understanding of fracturing processes in
natural rocks through triaxial compression testing, real-time AE monitoring, and ultrasonic
monitoring. We investigated the impact of various factors such as fracture propagation regimes,
injection parameters, rock types, and pre-existing conditions on the hydraulic fracture (HF)
behavior using scaled true-triaxially loaded specimens of Barre granite and Lyons sandstone.
Custom sensor housing facilitated concurrent active and passive monitoring to analyze hydro-
mechanical responses and microseismicity associated with different HF scenarios. A coupled
investigation of passive microseismicity and active signal attributes permitted a detailed
comprehension of the various HF processes (aseismic deformation, fracture initiation and
propagation, fluid permeation, and leak-off) and their dependence on the specific rock type. The
findings of this research demonstrated the effectiveness of AE monitoring techniques in providing
valuable insights into the impact of various factors on the behavior and dynamics of HF processes.
The advancements in monitoring techniques, offering a more thorough and precise approach,
represent a significant step towards optimizing HF practices and ensuring sustainable resource
extraction.
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3. Accomplishments and Objectives

The main goal of this research project was to identify the geophysical signatures of crack initiation
and growth in natural rocks. Discovering the processes resulting in crack network coalescence and
their accompanying geophysical signals in natural rocks were the main objectives of this research
project. The original research hypothesis was that the measurement of the strain and stress fields
around the tips of cracks, investigation of geophysical waveforms transmitted through and
reflected off the rock materials, and analysis of the acoustic analysis data during crack coalescence
experiments would allow accurate identification of the crack types and the coalescence signatures
at multiple length scales. We tested this hypothesis for two specific geometries of uniaxial
compression and triaxial compression, and in both scales, we identified the seismic and aseismic
processes associated with fracturing and their evolution.

The actual tasks performed closely followed the proposed activities included in the approved and
funded application. These proposed tasks were: (a) to conduct uniaxial compression tests on rock
specimens with pre-existing flaws through concurrent optical and geophysical visualization, and
(b) to conduct true-triaxial compression tests on rock specimens (analogue and/or natural) with a
fracture network using concurrent active and passive geophysical imaging.

This project contributed to the quantitative analysis of the progressive damage observed in rocks
under monotonic and time-dependent loading conditions by the application of AE monitoring,
ultrasonic imaging, and image-based strain analysis approaches. The strain metrics extracted from
the image-based strain profiles facilitated the real-time analysis of tensile and shear damage
evolution in the rock volume. This analysis was then utilized to establish a quantitative correlation
between the acoustic-visual observation of grain-scale microcrack accumulation in brittle rocks.
A source parameter estimation methodology was developed, utilizing calibrated piezoelectric
sensors, for the seismic characterization of the fractures produced during time-dependent stress
relaxation and creep experiments. Fracture mechanisms associated with rock damage were
analyzed, and their effect on the fracture parameters, such as size, seismic moment, moment
magnitude, stress drop, and radiated seismic energy, was estimated. The energy budgeting
approach was utilized to estimate the different energy components and associated radiation
efficiencies for stress relaxation and creep experiments. It was observed that radiation efficiency
in case of creep was higher than stress relaxation.

The research project contributed towards advancing the understanding of the complex HF
phenomena in rocks by the application of geophysical acoustic techniques. By
selecting/controlling different parameters or boundary conditions, this research investigated their
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effects on the corresponding HF behavior through detailed seismic investigations. The selection
of appropriate parameters might be representative of specific scenarios encountered during field
HF operations. The findings of this research, when applied effectively, can contribute substantially
to improving the understanding, control, and optimization of HF stimulation operations in the field.
The distinct scientific contributions of this research project in enhancing the understanding of HF
and the associated fracturing processes are detailed as follows:

For the first time, various classification criteria were employed to determine the fracture source
mechanisms and their evolution for the microseismicity detected during scaled laboratory HF
experiments. This research project established that the choice of classification criteria would
significantly impact the determined proportions of fracture source mechanisms. This finding
enhances our laboratory HF experiments, providing valuable insights for future research and field
applications.

A major contribution of this research was conducting seismic energy budgeting for scaled
laboratory HF experiments, including determining seismic source parameters and comparing them
to large-scale induced earthquakes. This was achieved by conducting an absolute calibration of the
passive AE sensors using a calibration station configured exactly like the settings of the laboratory
HF experiments. Perhaps it is the only study that has explored the scale invariability of seismic
source parameters between lab-scale HF microseismic events and field-scale induced earthquakes.

It was demonstrated successfully that active and passive seismic monitoring techniques can be
employed in conjunction during laboratory HF experiments. A methodology was proposed to
eliminate the active monitoring contamination from passive microseismicity data, enabling a novel
joint investigation of active signals’ attributes and passive microseismicity. This allowed the
assessment of their variable sensitivities to various aseismic and seismic HF processes in granitic
rocks. Overall, the research provided a valuable methodological framework for integrating active
and passive seismic monitoring in laboratory HF studies, enhancing our comprehension of the HF
processes. This type of monitoring has significant potential for characterizing seismic and aseismic
damages occurring in brittle materials such as rocks and concrete.

The comparative analysis of HF behavior in granite and sandstone using simultaneous active and
passive seismic monitoring techniques provided valuable insights into the differences in HF
initiation and propagation, seismic response, and overall fracturing processes between these two
rock types. This was accomplished by thoroughly investigating the relationship between the
attributes of active signals and passive microseismicity across various rock types. This analysis
enhanced our understanding of the factors and processes influencing HF behavior in granite and
sandstone, contributing to developing more effective stimulation techniques in diverse geological
settings.

The effect of pre-existing fracturing on the HF patterns was analyzed in terms of hydro-mechanical
response, morphology, fracture source mechanisms, variations in seismic source parameters, and
radiated seismic energy. This was accomplished by inducing different levels of fracturing in
granite blocks before conducting the HF experiments. These findings provided insights into the
HF behavior of fractured rock masses encountered in the field, advancing our understanding of the
effects of different levels of pre-existing fractures/discontinuities on the HF processes.
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4. Project Activities

To minimize duplication, this final technical report includes citations of all peer-reviewed
publications from this project. Thirteen journal papers and fourteen conference proceedings have
been published. To make all publications publicly available, they have been submitted through
annual progress reports or uploaded directly to the DOE Office of Scientific and Technical
Information (OSTI) website. The following provides some selected and notable research
highlights.

Highlight 1. Evolution of tensile and shear cracking under compression

We performed laboratory-scale unconfined compression experiments on Barre granite
specimens with pre-existing flaws to study the evolution of tensile and shear cracking that
occurs during different stress levels (Figure 1). Moment tensor inversion of AE events in
combination with the non-elastic strain component obtained through the 2D-DIC technique
was used to track the changes in the source mechanisms of the stress-induced cracks. The
mode of deformation computed from the image-based strain profiles enabled visual
comparison of the nucleation, growth, and interaction of the tensile and shear cracks with the
microseismic source mechanism observed by moment tensor inversion of the AE events.
Comparing the results obtained from the two techniques on the same dataset demonstrated a
quantitative correlation between the acoustic and visual observations in terms of the cracking
mechanisms obtained at different stages of cracking from crack initiation at the flaw tips to
the failure of the rock specimen (Figures 2-3) (Zafar et al. 2022a).
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(a) . (b) Prismatic Specimen
Figure 1. Experimental setup for AE monitoring and 2D-DIC procedures: (a) (1) AE monitoring system, (2) lighting
system for DIC, (3) CCD camera, (4) Linear variable differential transformer (LVDT), (5) Load cell, (6) Nano 30
AE sensors, (7) Barre granite specimen; (b) Speckled Barre granite specimen, small boxes denote the position of the
AE transducers, the dotted line represents the ROI, flaw length is 12.5 mm and flaw inclination angle is 60° (all the
dimensions are in mm) (After Zafar et al. 2022a).
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Figure 2. (a) Variation of tensile crack evolution obtained through AE in the region of interest (ROI) for all the three
Barre granite (BG) specimens; (b) Variation of non-elastic component of tensile strain obtained through DIC for the
three specimens in the ROI; (c) Variation of shear crack evolution obtained through AE; (d) Variation of non-elastic
component of maximum shear strain obtained through DIC in the ROI; (e) Correlation between the tensile crack
evolution and the non-elastic tensile strain component in the ROI for the three rock specimens (blue- BG-1, red-BG-
2, black-BG-3), (f) Correlation between the shear crack evolution and the non-elastic maximum shear strain
component in the ROI for the three rock specimens (blue-BG-1, red-BG-2, black-BG-3), the Cl and CD has been
distinguished by the yellow and green circles on the map (After Zafar et al. 2022a).
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Figure 3. Comparison between the mode of deformation obtained through AE (shear cracks) and DIC (shear

component of strain) at different stress levels in the ROI for BG-3, insets show the zoomed view of the

subfigures at 80% and 95% of the UCS (After Zafar et al. 2022a).
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Highlight 2. Micromechanics of fracture propagation during relaxation and creep

Time-dependent rock deformation caused by the initiation and growth of fractures leads to the
weakening of the rock mass. Understanding the fracturing mechanisms involved in time-dependent
behavior in brittle rocks is very important. To achieve this goal, a systematic series of experiments
was performed on double-flawed prismatic Barre granite specimens under unconfined
compression. The first series aimed to identify the failure mechanism in the short-term failure
mode under monotonic loading. The second series involved multistage relaxation (constant strain)
experiments to analyze the damage at different strain levels, and the third series explored fracture
propagation under multistage creep (constant load) experiments. The spatial and temporal
evolution of cracking mechanisms were evaluated using the AE and 2D-DIC techniques to observe
the whole crack growth process as well as the accumulated inelastic strain at the specified region
of interest. Results suggest that in the case of multistage creep experiments, the time to failure was
less compared to the multistage relaxation when loaded above the crack damage threshold (CD)
estimated from the monotonic testing. The frequency magnitude distribution of the AE events
generated in the three loading conditions followed the Gutenberg Richter model. A relatively lower
b-value was obtained for the creep experiments, indicative of high-energy AE events and faster
crack growth. In addition, the AE and DIC results also revealed a high evolution of tensile cracks
at different stages of creep and relaxation compared to shear and mixed-mode cracks (Figure 4)

(Zafar et al. 2022D).
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Figure 4. Temporal evolution of different types of cracks for monotonic loading experiment obtained through (a)
moment tensor inversion; (b) DIC analysis; for the relaxation experiments obtained through (c) moment tensor
inversion; (d) DIC analysis; for the multistage creep experiments through (e€) moment tensor inversion; (f) DIC

analysis (After Zafar et al. 2022b).
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Highlight 3. Energy budget of brittle fracturing in granite

Creep and relaxation are the two major time-dependent fracturing processes in rocks. While
a considerable amount of research has been done in understanding these two mechanisms, critical
gaps remain regarding how different energy components evolve during time-dependent fracturing
processes in rocks. A series of relaxation and creep experiments were conducted on prismatic Barre
granite specimens in the laboratory to estimate the energy budget of brittle fracturing in granite.
For the input energy the work done by the machine (W) is calculated and for the output energy the
radiated seismic energy (Ey), released in the form of AEs, is calculated as the only measurable
output energy component in the conducted experiments. The low-frequency plateau (2,) and
corner frequency (f,) for each AE waveform was estimated by fitting the observed AE spectra
with the theoretical spectra using Omega model. These parameters were used to estimate the
seismic moments (M) based on the radiation pattern for the double couple (shear) and non-double-
couple (non-shear) events. The range of f, and M, varied from 150 kHz to 750 kHz and 10 to 10-
1 N.m, respectively (Figure 5). Moment magnitude (M,,) varied in a wider range from -9 to -6 in
creep and -8.5 to -7 in relaxation. Stress drops (Ac) and source radius (r) were estimated for the
AEs using Brune’s model. The results report on three primary observations: (1) the effects of
different source mechanisms on the estimated source parameters showed that M, and Ac were
higher for double-couple (DC) events as compared to non-double-couple (NDC) events in both
relaxation and creep. (2) The seismic efficiency in the case of creep is 70% higher than that in
relaxation. (3) The stress drop estimated in relaxation and creep demonstrated a breakdown in
scaling with the seismic moment (Figure 6) (Zafar et al. 2023).
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Figure 5. Comparison of our laboratory source estimates of approximate source radius and seismic moment for
relaxation and creep to those from a range of other studies (considering each study calculated the source radius and
seismic moment using different seismological models) (After Zafar et al. 2023).
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Figure 6. Stress drop scaling with seismic moment for field and laboratory studies. The red and blue circles
represent the observations made in the current stud. Field and other lab data collected from Cocco et al. (2016)
(After Zafar et al. 2023).

Highlight 4. Brittle creep and associated acoustic emissions in granite

Results from conventional creep experiments show that three stages of creep (trimodal creep
curve) exist for brittle materials. The first stage is the primary stage where the strain rate is
inversely proportional to time. In the secondary stage, partially reversible strain occurs in which
the strain rate is small and constant. The final stage is the tertiary stage, where an accelerated strain
rate occurs, causing the rock to fail. It is hypothesized that AE can be used as a proxy to identify
the transitions from one stage to another in creep; therefore, the different focal mechanisms of the
fractures produced and the associated seismic source parameters in the three stages of creep in
brittle rocks are worthy of systematic exploration. Our research work aimed at investigating how
AE signatures can monitor brittle deformations during the three stages of creep and its correlation
with the mechanical observations so that these AE signatures can be relied upon to reveal critical
creep stages and the impending failure at the field scale. Creep experiments were conducted on
double-flawed prismatic Barre granite specimens in the laboratory under uniaxial compression to
investigate the temporal and spatial evolution of the AE events during the primary, secondary, and
tertiary stages of creep (Figure 7). Results illustrate that the creep in granite follows Omori’s law
and inverse Omori’s law in the primary and tertiary creep regimes, respectively. Non-double-
couple (NDC) sources were the dominant failure mechanisms in all stages of creep. These results
can be of great importance as continuous and non-destructive monitoring of structures in rock and
the associated seismicity can serve as precursory indications of instability of the rock engineering
structures and in the analysis of earthquake aftershocks and recurrences.

This report is written for public disclosure and does not contain proprietary or classified information.
Principal Investigator: Hedayat Award Number: DE-SC0019117 Page 9



(a) Before Creep (b) Primary Creep (c) Secondary Creep (d) Tertiary Creep

160

140 6000

120 5000

100
E 4000 »
£ 80 g
> 3000 =

60 L

40 2000

20 f 1000

o0 &
0 T T T T
0 50 0 50
X(mm) X(mm) X(mm) X(mm)

M,- o 8 @ -7 (
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Highlight 5. Microseismic monitoring of laboratory hydraulic fracturing experiments

While HF is a widely employed process, the underlying fracturing processes are still heavily
contested. The attributes of the HF-generated fracture network can exhibit substantial variation
when dealing with specific HF propagation regimes encountered in the field. In this research
project, HF experiments were performed on true-triaxially loaded Barre granite cubes, with
microseismic monitoring, to identify and characterize the fracturing mechanisms associated with
different viscosity injection fluids (Figure 8). Utilizing fluids with high (0il/1450 cP) and low
(water/1 cP) viscosity represented two key HF propagation regimes: viscosity- and toughness-
dominated. The experiments conducted with oil involved higher breakdown pressures, larger fluid
volumes, and slower fracture propagation speeds. The frequency-magnitude distribution (b-value)
for all experiments (1.9-2.3) was similar to those encountered for large-scale operations. Slightly
larger b-values were encountered during the initiation phase (2.4-2.7) relative to the fracture
propagation and post-fracturing phases (1.9-2.2). Polarity and moment-tensor inversion were used
to characterize the source mechanisms. For the HF experiments with oil, tensile fractures were
most dominant (92%) in the initiation phase compared to fracture propagation and post-fracturing
phases (70-75%) (Figure 9). Similar tensile fracturing dominancy was not observed with water,
which is attributable to fluid permeation and leak-off. Regardless of the injection fluid or
classification criteria employed, tensile fractures were the dominant type consistently, with fewer
occurring in water experiments, but the specific ratio of crack types varied with different source
mechanism criteria employed (Butt et al. 2023a).
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Figure 8. (a) Schematic of the specimen and borehole configuration used for the HF experiments. A small borehole
with a radius of 5 mm was drilled with respect to its distance to the boundaries of the cubic block (82.55 mm) (b)
The location of 16 Nano-30 AE sensors in different platens, selected for the HF experiments providing sufficient
coverage of the entire block. (c) Schematic of the complete experimental setup. The data from the AE sensors were
amplified and recorded in the computer for post-experiment analysis. The data from the hydraulic pistons and the
pressure sensor, located 50mm above the borehole entrance, was also recorded in the same computer to achieve
synchronization between the pressure, confining stress, and the AE data (not to scale) (After Butt et al. 2023a).
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Figure 9. The evolution of crack source mechanisms during the three phases of Oil_Test#1 experiment, determined
based on the ISO-CLVD method: tensile (a-c), shear (d-f), and compression (g-i) mode, along with the percentages,
in the top, middle and bottom rows respectively. The color of the symbols corresponds to the fracturing phase. In (j),
symbols represent the evolution of moment magnitude in different phases of the experiment. The dark red color
lines indicate the evolution of source mechanism proportion (tensile, shear, and compression) (After Butt et al.
2023a).

Highlight 6. Energy budgeting of laboratory hydraulic fracturing

We investigated the source parameters of microseismicity detected during laboratory HF of granite
conducted with high- (gear 0il/1000 cP) and low- (water/1 cP) viscosity injection fluids. These HF
experiments were monitored with a real-time acoustic emission (AE) setup consisting of 16
calibrated sensors. The spectral parameters (corner-frequency and low-frequency spectral plateau)
were determined for each AE event by fitting Omega-models with variable high-frequency fall-
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off exponents to the detected AE signals. Seismic parameters such as seismic moment, source
radius, stress drop, and seismic energy were determined after incorporating the focal-mechanism
information determined through moment-tensor inversion. Higher breakdown pressures and
fracture propagation times, along with greater number and strength of microseismicity, were
observed for experiments conducted with higher-viscosity fluid (Figure 10). For both experiments,
an inverse relationship was observed between corner frequency and seismic moment, similar to
those observed for large-scale induced earthquakes. The corner frequency, seismic moment, stress
drop, and seismic energy were noticeably higher for the higher-viscosity injection fluid. However,
the seismic source radius was slightly
larger for the lower-viscosity fluid.
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Highlight 7. Laboratory
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active and passive seismic
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combined active and passive seismic monitoring were conducted on true triaxially loaded Barre
granite cubes with different fluid injection rates. The seismic inelastic fracturing was detected by
10 passive acoustic emission sensors, where 3678 and 2370 seismic source events were detected
for the high and low injection rate experiments, respectively. For active monitoring, strong
variations in the attributes of signals were observed which were transmitted through four source-
receiver pairs, placed both perpendicular and parallel to the generated hydraulic fracture. Positive
velocity changes were observed for active sensor pairs with ray paths passing through the
generated hydraulic fracture, indicating fluid permeation. In contrast, a slight but permanent
velocity decrease was characterized by isolated dry deformation. Compared to velocity, the energy
of the active signals was 1-2 orders of magnitude more sensitive to different HF processes.
However, the sensitivity
and signatures of the active
signal  attributes  were 0. ' e S 400 000
found to be dependent on - ! : :
|
I
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Highlight 8. Hydraulic fracturing and seismic response of granite and sandstone

Through active and passive monitoring, we investigated the HF response of crystalline (granite)

and sedimentary (sandstone) rocks.

Passive monitoring successfully
mapped the generated HF, which
was found to be more tortuous
for granite together with a
relatively higher number of
microseismic  events.  The
analysis of crack source
mechanisms through moment-
tensor inversion indicated a
slightly lower proportion of
opening cracks for granite. The
sensitivity of the active signals’
attributes (velocity, amplitude,
and energy) was significantly

higher for the granite HF
processes than for sandstone
(Figure 12). A combined
investigation of active and
signals made it possible to
identify  and differentiate

between various HF phenomena
in granite and sandstone. The
initial aseismic deformation and
fluid leak-off were notably
prominent in granite specimens.
While encountered for both
granite and sandstone, stronger
isolated dry fracturing induced
variations in both velocity and
amplitude of the active signals
during granite HF. Acquiring in-
depth knowledge about the
specific features of induced HF
in different rock types can
contribute towards improved
control and efficiency of
stimulation  operations  in
geologically diverse
environments.
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Figure 12. The pressurization rate (%) (red line) along with the change in

velocity (blue line) and amplitude (green line) for the active sensor pair
S2R2 during (a) granite and (d) sandstone HF experiments. The spatial
distribution of AE events (red circles circles) detected during (b-c) granite
and (e-f) sandstone HF experiments between the duration highlighted in
(a) and (d), respectively. The location of active sensor pair (S2R2) is also

included in the figure.
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