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ABSTRACT. While algal biofuels have the potential to reduce the national reliance on fossil fuels, 8 

the high water consumption associated with algal biomass cultivation represents a major concern 9 

compromising the sustainable commercialization of this technology. This study focuses on 10 

quantifying the water footprint (WF) and water scarcity footprint (WSF) of renewable diesel 11 

derived from algal biomass and provides insights into where algal cultivation is less water-12 

intensive than traditional ethanol and biodiesel feedstocks. Results are generated with an 13 

engineering process model developed to predict the life cycle water consumption, considering 14 

green, blue, and gray water, of algae facilities across the United States at a high spatiotemporal 15 

resolution. The model predicts average blue WFs of 1.6 and 14.9 m3 GJ-1 in Florida and Arizona, 16 

respectively. When total WFs are compared, the total WF in Arizona is 26% larger than that of 17 

Florida, with dramatic differences between blue and green WFs locations. The analysis reveals 18 



 2

that the total life cycle WFs of algal renewable diesel are smaller than the optimal WFs of corn 19 

ethanol and soybean biodiesel. Algal systems benefit from higher growth rates and offer the 20 

opportunity to manage wastewater streams, therefore generating smaller green and gray WFs than 21 

those of conventional biofuels.  The WSF analysis identifies the Gulf Coast as the most suitable 22 

region for algal cultivation, with cultivation in the western US shown to exacerbate local water 23 

stress levels.  24 

 25 

1. Introduction 26 
Microalgae-derived fuels are perceived as promising alternatives to decarbonizing the 27 

transportation sector. As a third-generation biofuel, cultivation of algal biomass does not 28 

compromise food security and multiple algae species possess higher photosynthetic efficiencies 29 

and generate greater oil yields than terrestrial energy crops 1,2. In addition, algae-to-fuel 30 

pathways have the potential to generate a variety of high-value co-products, which could 31 

potentially improve the economics of algae systems, while concurrently reducing greenhouse gas 32 

emissions 3. However, additional research and development are required not only to reach 33 

economic parity with conventional fuels but also to understand the local and regional 34 

environmental impacts of commercial-scale algal biofuel production.3 35 

Although there are multiple life-cycle assessments (LCA) focused on algal biofuels in the 36 

literature, the lack of freshwater consumption impacts represents a major research gap in the 37 

field.3  Understanding the added water demand that algal cultivation will have on local water 38 

sources is paramount to avoid future water-related risks, particularly when the cultivation of 39 

algal biomass is envisioned to be deployed in locations that are experiencing considerable water 40 

shortages such as the southwest United States (US).4 Water consumption is often measured using 41 
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a water footprint (WF) methodology, where the WF of a product is the sum of direct and indirect 42 

water consumption.5 More recently, a new method to assess the water scarcity footprint (WSF) 43 

of a product has been proposed by the Water Use in LCA (WULCA) research group.6 The 44 

Available Water Remaining (AWARE) is a consensus-based model used to determine a WSF 45 

based on a characterization factor that quantifies water availability and demand in a specific 46 

region over a set timeframe.7  47 

In previous assessments, the water consumption of algal systems has been estimated using the 48 

discussed methods. However, studies often employed one method exclusively resulting in either 49 

a WF8–13 or WSF accounting14,1 and fail to provide a complete assessment of the water impacts.  50 

Previous studies do not account for geographic considerations or are restricted to a few 51 

locations.8,10,13,16  In addition, multiple studies do not use a life-cycle assessment framework and 52 

neglect water consumption of upstream processes or the direct consumption of the conversion to 53 

fuel process8,11,14,17, which underestimates the total water consumption of the algae to fuels 54 

process.10,18 More importantly, quantifying the contribution of rainwater to the water footprint of 55 

algal systems is important to make an objective comparison to terrestrial crops. An accurate 56 

water balance requires models able to calculate evaporation rates at a high spatiotemporal scale11 57 

and careful tracking of algal pond depth to avoid culture dilution caused by high precipitation 58 

rates.8 Wigmosta et al.17 is the only study that includes rainwater in water balance calculations, 59 

however, the evaporation model used in the analysis was validated with small-scale pond data 60 

and was not designed to estimate the evaporation rates of commercial-scale systems accurately.11 61 

This is critical as evaporation rates not only impact water balances but also propagate to 62 

temperature and growth rate calculations.11 The WF of algal systems has not been clearly defined 63 
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in the literature due to a lack of appropriate models and incorrect modeling assumptions or 64 

methodological inconsistencies.   65 

This study focuses on estimating the WF and WSF of renewable diesel derived from algal 66 

biomass by integrating water life cycle assessment methodologies with a robust dynamic 67 

cultivation model. This work builds upon previous modeling work11 with novel aspects including 68 

a thorough investigation of the impacts of water recycling, rainwater, and indirect water 69 

consumption on the WF of the system. By using the high-fidelity model validated by Quiroz et 70 

al.11, the impacts of system scale on evaporation rates and consequently on water consumption, 71 

pond temperatures, and growth rates are accurately modeled. In addition, Results from the model 72 

provide freshwater and rainwater consumption of the biomass production process with a high 73 

spatial and temporal resolution that is. Furthermore, the cultivation model was coupled with a 74 

state-of-the-art conversion model19 to analyze the direct and indirect water consumption of the 75 

biomass-to-fuel process. The local water scarcity impacts associated with the deployment of 76 

commercial-scale algal biofuel systems across the US are also investigated. When integrated, the 77 

models provide a geospatial analysis of the life cycle WF, including blue, green, and indirect 78 

WFs, and WSF of the algae to renewable diesel process. Results identify the most water-79 

intensive processes in the algae-to-fuel pathway, compare the magnitudes of direct and indirect 80 

water consumption, and illustrate the most suitable locations for algae fuel production based on 81 

water consumption impacts. The discussion focuses on comparing these results to the water 82 

intensity of saline algal cultivation and traditional biofuel systems. feedstocks and biofuels.  This 83 

is the first work to complete a holistic life cycle water assessment and water scarcity evaluation 84 

for the entire US of an algal-based biorefinery.  85 
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2. Methods 86 
This study assesses the geographically resolved water consumption of algal biofuels through 87 

two different water LCA methodologies. Both are informed by mass and energy balances 88 

calculated from an engineering process model encompassing the geographically resolved 89 

biomass cultivation, dewatering, and fuel conversion stages, as shown in Figure 1. The following 90 

subsections provide detailed descriptions of the cultivation (including the growth model), 91 

conversion, and water LCA methods adopted in this study.  92 

 93 

Figure 1. System diagram illustrating the microalgae cultivation process in open-raceway ponds, 94 

three-step dewatering process, and conversion and upgrading to renewable diesel through 95 

hydrothermal liquefaction (HTL) and hydrocracking.  96 

2.1 Cultivation Model 97 
The cultivation model used in this analysis includes the biomass growth process in 98 

commercial-scale open-raceway pond (ORP) systems followed by a three-step dewatering 99 

process consisting of settlers, membranes, and centrifuges. Detailed descriptions of these 100 

modules are provided in the following subsections.  101 

2.1.1 Open-Raceway Pond Model 102 
ORPs have been the most studied algae growth architecture in the literature due to their low 103 

cost and simplicity. Given the open nature of these systems, ORPs are subjected to the changing 104 
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conditions of the environment, therefore, models with hourly timescales are required to 105 

accurately simulate pond conditions. Thermal conditions in the ORP system were calculated 106 

using the model validated by Quiroz et al.11, while growth rates were simulated using the 107 

dynamic growth model validated by Greene et al.20 Temporally and spatially resolved outputs for 108 

a 400-hectare facility cultivating the strain UTEX 393 were generated following the framework 109 

in previous modeling work with results presented in the Supporting Information (SI).11  110 

The foundational model from Quiroz et al.11 was modified to include precipitation data to 111 

model realistic pond operations. Daily precipitation data for 21 years, retrieved from the Center 112 

for Hydrometeorology and Remote Sensing database, was disaggregated into hourly time steps 113 

and included in the water balance.21 The depth of the ponds was kept between 15 and 25 cm by 114 

tracking hourly net evaporation rates, defined as the difference between evaporation and 115 

precipitation rates. If the pond depth exceeded the allowable maximum, the pond was harvested 116 

and reset to 15 cm and a concentration of 0.1 g L-1. Similarly, potential culture dilution caused by 117 

incoming precipitation was prevented by ensuring the concentration in the ponds was maintained 118 

above 0.1 g L-1. Further details on model calculations, implementation, and data curation are 119 

presented in the SI. 120 

2.1.2 Dewatering Model 121 
The dewatering module is composed of a three-step dewatering process to remove excess 122 

water from the biomass, 0.45 g L-1 to 200 g L-1, based on the modeling work of Davis et al.22 The 123 

biomass was first routed through settlers where it exits with a concentration of 10 g L-1. The 124 

water retrieved from the biomass stream is recycled back to the ponds except for when the ponds 125 

are drained due to excess precipitation. During pond drainage, the clarified water was routed 126 

back to the local water source. The clarified water stream exiting the settlers was assumed to 127 

contain a negligible concentration of nutrients and algae.22   128 
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Subsequently, the biomass stream is routed to the remaining dewatering processes depicted in 129 

Error! Reference source not found., and recycled water is sterilized in an ultra-violet sterilizer 130 

before being returned to the ORPs.  For the case when ponds do not have enough biomass to be 131 

restarted to 0.1 g L-1, mainly caused by constant harvesting during intense precipitation periods, 132 

a fraction of biomass is routed from the exit stream of the centrifuge back to the ponds. This 133 

pond operating strategy reduces freshwater consumption by storing all available rainfall and 134 

preventing culture failure induced by diluted cultures.  135 

Energetics and recycling efficiencies of the dewatering and cultivation equipment are 136 

presented in Table 1.  The recycling efficiencies used in this study are informed by previous 137 

modeling work in the literature22 and represent a current technical hurdle that must be addressed 138 

for the optimal performance of commercial-scale systems. The impacts of these assumptions and 139 

other key model inputs were tested through a sensitivity analysis, and further methods are 140 

presented in the SI. 141 

 142 

 143 

 144 

 145 
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 150 

 151 
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Table 1. Primary model inputs used for the calculation of mass and energy flows in the biomass 152 
production process. 153 

 Value Unit 

Open-Raceway Ponds   
Inoculation density 11 100 g L-1 

Harvest density 11 450 g L-1 
Harvest volume 23 75 %, fraction of pond 

CO2 utilization 22  90 %  
Biomass Elemental Composition   

Carbon (C) 22 48.3 %, AFDW basis  
Nitrogen (N) 22 9.5 %, AFDW basis 

Phosphorous (N) 22 1.2 %, AFDW basis 
Others (H, O, S) 22 41.0 %, AFDW basis 

Biomass Component Composition   
Lipids 22 22.1 %, AFDW basis 

Protein 22 25.4 %, AFDW basis 
Carbohydrates 22 52.5 %, AFDW basis 

Ash 22 8.00 %, DW basis 
Diammonium Phosphate Composition   

Phosphorous 20 20 %, weight  
Nitrogen 20 18 %, weight 

Ammonia Composition   
Nitrogen 20  82 %, weight 

Dewatering    
Settlers target concentration 22 10 g L-1 

Biomass blowdown loss 22 0.1 % 
Settlers separation efficiency 22 90 % 

Membrane target concentration 22 130 g L-1 
Membrane separation efficiency 22 99.5 % 
Centrifuge target concentration 22 200  g L-1 
Centrifuge separation efficiency 22 97 %  

Energy Consumption   
CO2 delivery power 22 0.0439 kWh kg-1 CO2 

Paddlewheel power 22 55.1 kWh hectare-1 day-1 
Membrane power 22 0.04 kWh m-3 
Centrifuge power 22 1.35 kWh m-3 

UV sterilizer power 22 2.71e-03 kWh m-3 
Freshwater pump power 22 0.257 kWh m-3 

Ponds to settlers pump power 22 0.0189 kWh m-3 
Settlers recycling pump power 22 0.0177 kWh m-3 

Settlers to membrane pump power 22 0.129 kWh m-3 
Membrane to centrifuge pump power 22 0.0194 kWh m-3 

Recycling stream pump power 22 0.184 kWh m-3 
 154 

 155 
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2.2 Conversion Model 156 
After dewatering the biomass to 20% solids, the biomass was converted to biocrude via 157 

hydrothermal liquefaction (HTL) based on the work of Chen et al.19 Inputs to the HTL model 158 

include biomass composition and biomass productivity yields. The ash-free lipid, protein, and 159 

carbohydrate content of the biomass were set to 22%, 25%, and 53%, respectively.23 The ash 160 

content of the biomass was assumed to be 8%.23 After the biomass is processed to a biocrude, 161 

upgrading to renewable diesel and naphtha is done via hydrocracking.19 The nutrient-rich 162 

aqueous stream exiting the HTL module is recycled back to the ponds, while the gaseous stream 163 

is utilized for on-site heat and power.19 164 

2.3 Water LCA Methods 165 
The primary goal of this study is to determine the WF and WSF of microalgae biomass and 166 

biofuels. The direct and indirect water consumption of the supply chain was included to provide 167 

a final value of life cycle water consumed per functional unit. Two different system boundaries 168 

were established to facilitate comparison to other energy crops and biofuels from previous 169 

assessments. The first system boundary includes the biomass cultivation and dewatering to 20% 170 

solids processes while the second system boundary is expanded to incorporate the fuel 171 

conversion process (Fig. 1). Similarly, the functional units for each system configuration were 172 

set to one metric ton of ash-free dry weight biomass and one GJ of renewable diesel, 173 

respectively.  174 

2.3.1 Water Footprint Methodology 175 
The most common method used to quantify the water consumption of bioenergy systems is the 176 

water footprint method developed by Hoekstra et al.5 The total WF of a product is defined as the 177 

addition of three different WF components: blue, green, and gray WFs. Each component is 178 

further divided into a direct and indirect WF. The indirect WF measures upstream water 179 

consumption in the supply chain, while the direct WF refers to on-site water consumption. It is 180 
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worth noting that this method considers water consumption only and neglects the impacts to 181 

water quality.5  182 

 The blue WF of a product measures the amount of water consumed from surface or 183 

groundwater sources.5 In the case of algal cultivation, freshwater consumption is equal to the 184 

difference between the volume of water withdrawn from the water source (to make up for 185 

evaporation losses and water incorporated in the biomass stream) and the volume of clarified 186 

water returned to the catchment area, due to system drainage. Accordingly, an increase in the 187 

water discharged due to inefficiencies in the dewatering equipment has no impact on the net 188 

freshwater consumption of the system. However, an increment in the volume of discharged water 189 

could have implications for the gray WF of the system, as discussed below. The water used for 190 

cooling equipment and other processes in the conversion stage was assumed to all be consumed, 191 

making the total blue water demand equal to the sum of the water consumed in the cultivation 192 

and conversion processes.  193 

  In addition to estimating blue WFs, computing the green WF is essential in the water analysis 194 

of energy crops. The green WF measures the volume of rainfall that is not returned to 195 

groundwater sources and is either stored or consumed.5 Green water demand was calculated by 196 

tracking the volume of rain entering the ponds. This study assumed that all rainwater is stored in 197 

the ponds and therefore all precipitation contributes to the green WF.  198 

In contrast to the blue and green components, the gray WF measures freshwater pollution and 199 

is defined as the volume of freshwater required to dilute pollutants to meet water quality 200 

standards.5  Different from terrestrial crops, the gray WF of algal cultivation can be minimized 201 

by proper nutrient recycling and treating waste streams before disposal.16 For example, all 202 

disposed water from cultivation is previously clarified in the settlers to reduce the concentration 203 
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of suspended solids in the clarified water stream. Based on experimental data reported in the 204 

literature24–27, the algae culture was assumed to consume all available nutrients and therefore the 205 

nutrient load in the harvested and water discharged streams was assumed to be negligible. For 206 

the same means, the effluent from the conversion stage was recycled back to the ponds instead of 207 

being directly disposed. Considering the above assumptions, algal cultivation does not generate a 208 

gray WF and the analysis focused on blue and green WFs with a sensitivity to this assumption 209 

explored. 210 

The indirect WFs attributed to process consumables were retrieved from different LCA 211 

databases and literature. Water consumption associated with the production of diammonium-212 

phosphate, ammonia, hydrogen, and natural gas was retrieved from the GREET 2021 model.28 213 

The water consumed in electricity generation was determined by expanding the methods 214 

presented in Lee et al.29 to an eGRID subregion level.30  More detailed indirect WF calculations 215 

are provided in the SI.  216 

2.3.2 Available Water Remaining Methodology 217 
The Available Water Remaining in the US (AWARE-US) model31 was used to calculate the 218 

WSF of algal biomass and biofuels based on a monthly analysis that is averaged into seasonal 219 

results. This model defines the WSF as the product of direct freshwater consumption and a 220 

characterization factor (CF). The CF is a water-stress indicator characterizing the water 221 

availability and demand of a given location relative to the water availability of a specific 222 

location.6,7 The AWARE-US model provides monthly characterization factors for US counties 223 

relative to the US average freshwater availability.31 The output of the analysis is a monthly WSF 224 

at a county level. The methods used to interpolate model outputs to a county level are described 225 

in the SI. 226 
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3. Results and Discussion 227 
The WF of algae biofuels is presented and disaggregated into the direct blue, green, and 228 

indirect blue, and then summed for a total WF. The grey water footprint is regarded as negligible 229 

assuming optimal operation of the system. Process model outputs are then analyzed to 230 

understand the parameters that have a major impact on WF results. Results are combined with 231 

AWARE-CF to determine the WSF of algal-based biofuels with seasonal resolution. The results 232 

presented in this section are the averages of the 21-year simulation. 233 

3.1 National Water Footprint Mapping 234 
The life cycle WF for all simulated sites were surface interpolated and results for the algal 235 

fuels system are summarized in Fig. 2. The range of total life cycle WF was calculated to be 30 236 

m3 GJ-1 with the maximum located in the northwest US (39 m3 GJ-1), while Hawaii and southern 237 

California yield the smallest WFs, ranging between 9 and 10.6 m3 GJ-1. The large WFs in the 238 

Pacific Coast are explained by the high precipitation rates and low biomass yields in the region. 239 

Similarly, the large WF of hydroelectricity has a modest impact on the indirect water 240 

consumption of algae farms located across the northwestern US (Fig. 2C). While the larger 241 

indirect WF of sites in Florida is correlated to the energy penalty associated with elevated 242 

rainwater usage. These results show that even in scenarios with high energy consumption, the 243 

indirect WF is an order of magnitude lower than the direct blue and green components of 244 

freshwater cultivation. In conclusion, direct freshwater and rainwater consumption are the largest 245 

contributors to the total WF and the indirect WF of upstream processes was found to be strongly 246 

dependent on the WF of electricity generation. 247 

 The results from the work illustrate that the indirect WF of freshwater cultivation is low and 248 

dominated by electricity usage in the system. Contrastingly, the indirect WF is dramatically 249 

impacted in a saline cultivation scenario, where the indirect WF component is particularly 250 
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relevant to saline cultivation, where freshwater is mostly consumed upstream and there is an 251 

increase in electricity consumption due to higher pumping and blowdown energy needed to 252 

maintain adequate salinity levels. The differences in WFs between freshwater and saline 253 

cultivation scenarios for Tampa, FL, and Corpus Christi, TX were quantified following the saline 254 

modeling assumptions provided in the SI. Results show that saline cultivation in Corpus Christi, 255 

TX provides a 30% reduction in the total WF by eliminating freshwater consumption to make up 256 

for evaporation which exceeds the increased indirect water consumption from pumping (Fig 257 

S13). In Tampa, FL saline cultivation increased the indirect WF component by an order of 258 

magnitude, which resulted in similar total WFs as the freshwater cultivation scenario. These two 259 

case studies highlight the potential of coastal areas for reducing the WFs of algal systems 260 

through saline cultivation, but also show it is location-dependent. 261 
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 262 

Figure 2. Life cycle water footprint breakdown of algal diesel: (A) direct blue water footprint, (B) 263 

direct green water footprint, (C) indirect blue water footprint, and (D) total water footprint.  264 

The regional differences observed in Fig. 2 emphasize the need for water LCAs with 265 

geospatial resolution. For instance, the blue WF (Fig 2A) is driven purely by evaporation rates 266 

with the highest rates located in dry climates such as the Desert Southwest. Contrastingly, the 267 

southeastern US shows the largest green WFs (Fig 2B) and the smallest blue WFs, explained by 268 

the high precipitation rates in the region.  However, when comparing the total WF of these 269 

regions, similar trends are observed in total WFs. For example, the total WF of Phoenix, AZ was 270 
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found to be only 3% larger than that of Macon, GA, although freshwater consumption in Phoenix 271 

represents 85% of the total water consumption compared to 14% in Macon, GA. The freshwater 272 

consumption in a water-scarce region such as the southwestern US will potentially bring about 273 

more severe environmental impacts than the consumption of rainwater in Georgia. This 274 

comparison stresses a limitation of the water footprint method, as it only accounts for water 275 

consumption, but does not consider water stress impacts. This is further explored in this study 276 

through water scarcity calculations.  277 

The results from this study were also compared to published water LCAs using identical 278 

system boundaries and metrics. Compared to the algal WFs (m3 GJ-1) reported by Ou et al.32, an 279 

average difference of 14% across the eight sites used for comparison was estimated. These 280 

discrepancies were larger in sites located in the Midwest US and are attributed to differences in 281 

evaporation modeling, meteorological data, and biomass yields. At the same time, the model 282 

used in this study predicts lower freshwater consumption per area (m3 m-2 yr-1) across the eight 283 

sites used for comparison, corresponding to an average difference of 38%. Moreover, the 284 

magnitudes of other water consumption sources (i.e. conversion and indirect) agree with the 285 

results from this analysis, implying that differences between water LCAs of algae systems are 286 

mainly attributed to variations in net evaporation rates and growth rates.  287 

  Furthermore, a WF comparison to first and second-generation biofuels shows blue WFs of 288 

algal fuel systems can approximate those of conventional corn ethanol and soybean biodiesel 289 

systems, and the difference depends on the location where algal biomass is cultivated. In 290 

particular, the blue WF of algal fuels in the southwestern US is generally larger than the average 291 

blue WFs of corn ethanol and soybean biodiesel cultivated in Iowa, but comparable if algal 292 

biomass is cultivated in the Gulf Coast region (Fig, 3A). A comparison to wheat straw ethanol 293 
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shows that algal production in California and Texas incurs smaller blue WFs; however, when 294 

algal biomass is cultivated in Arizona, production of first and second-generation biofuels 295 

generates a smaller blue WF. Although a larger volume of freshwater is required for algal 296 

cultivation in these locations, the higher biomass yields make the blue WF of algal biofuels 297 

comparable to those of its first and second-generation counterparts. In summary, the regional 298 

variations of freshwater consumption and biomass yields must be considered to determine the 299 

scenarios under which algal fuels present a smaller blue WF than conventional biofuel systems.   300 

In the context of the green WF component, algal systems present some advantages over 301 

terrestrial energy crops. Notably, the impact of higher growth rates achieved by algae systems is 302 

best reflected when comparing the green WF between biofuels. The results illustrated in Fig. 3A 303 

show that algal renewable diesel uses less rainwater per unit of energy than all other biofuel 304 

systems. 305 

 In terms of gray water, algal cultivation presents the advantage of generating no gray WF if 306 

pollutants loadings in waste streams are carefully tracked, ponds are properly managed, and 307 

recycling across process stages is practiced.16,33 It is important to note that complete nutrient 308 

assimilation in the ponds is critical for maintaining negligible gray WFs in algae systems. 309 

Negligible gray WFs in algal systems are dependent on proper pond management, and operating 310 

the ponds without carefully tracking nutrient loadings and water discharged volumes could result 311 

in considerable gray WFs (Fig. S2). Contrastingly, the gray WF of terrestrial crops is a function 312 

of fertilizer loss and has been found to represent a large portion of the total WF34,35, particularly 313 

for corn ethanol (Fig. 3A). Based on the modeled gray WFs, findings of this comparison suggest 314 

that a shift to algal biofuels has the potential to lower the gray and green water consumption of 315 

bioenergy.  316 
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As shown in Fig. 3A, if all components are considered, the total WF of algal biofuel systems is 317 

approximately four to six times smaller than the average WF of corn ethanol while an order of 318 

magnitude smaller than that of soybean biodiesel. If only blue and gray WFs are compared, algal 319 

systems have a larger total WF than soybean and switchgrass biofuels but a smaller total WF 320 

than corn grain and wheat straw ethanol. This comparison indicates that from an overall WF 321 

perspective, algal systems benefit from their higher growth rates and opportunity for recycling 322 

nutrients.  323 
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 324 

Figure 3. A) Life cycle water footprint comparison between renewable diesel from microalgal 325 

biomass for six locations in the United States and average regional life cycle water footprints for 326 

first and second-generation biofuels derived from corn grain (CG), switchgrass (SG), wheat straw 327 

(WS), and soybean (SB). The water footprints of corn grain and wheat straw ethanol, as well as 328 

those of soybean biodiesel and switchgrass biodiesel blend, were retrieved from the literature36–39 329 
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and represent average values of high crop production areas: corn and soybean are assumed to be 330 

grown in the Corn Belt and the southeastern US, while switchgrass and wheat straw are mainly 331 

cultivated in the central and eastern US. B) Life cycle water footprint of algal fuel systems across 332 

six locations in the US. Inset, the blue water footprint breakdown. The water footprint values of 333 

algae sites represent the average of the 21 simulated years. 334 

 335 
3.2 Water Footprint Breakdown 336 

The results shown are all driven by the different parameters calculated by the engineering 337 

process model, thus, evaluating the mass and energy balance is critical to identifying 338 

opportunities for reducing freshwater consumption. The analysis indicates that freshwater and 339 

rainwater consumption in the biomass production process dominates the overall water 340 

consumption of algae systems. As seen in the blue WF breakdown of the six case study locations 341 

shown in Fig. 3B, water consumed in the conversion process is minimal compared to the 342 

evaporation losses during the cultivation stage. Consequently, algae fuel systems benefit from 343 

the recycling of cultivation water embedded in the biomass making them less water-intensive 344 

than traditional terrestrial-based biomass systems, where the water leaving with the biomass is 345 

assumed to be consumed. The outcomes from both modeled system boundaries demonstrate that 346 

water consumed in the biomass production stage dominates the total WF and the co-location of 347 

biorefineries with farms decreases the WF of algae fuels by promoting water recycling across 348 

processes.  349 

Beyond the effects of water recycling, the usage of rainwater also contributes to minimizing 350 

freshwater withdrawal and consumption. This is observed when comparing the net evaporation 351 

rates in this study, ranging from 0.05 to 1.47 m3 m-2 yr-1, with the range previously calculated by 352 

Quiroz et al.11 (0.30-1.68 m3 m-2 yr-1). The wider range presented in Quiroz et al.11 is expected, 353 
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as rainwater was not accounted for, and instead, a “gross” evaporation rate was estimated. The 354 

southeastern US is one of the regions that benefit the most from rainfall utilization. For example, 355 

in Tampa, FL most of the water consumption can be supplied with rainwater. The model outputs 356 

demonstrate that the net water consumption of algal systems is primarily influenced by 357 

evaporation losses and rainwater contributes to increasing the water efficiency of these systems.  358 

The evaporation losses in the cultivation stage drive the water intensity of algal systems 359 

therefore it is critical to select sound evaporation models to reduce the uncertainty in evaporation 360 

estimates. To understand the importance of evaporation modeling in water usage metrics, net 361 

evaporation rates were compared to those of Wigmosta et al.17 In general, the results from this 362 

study were found to be 31% lower, based on the 204 sites used for comparison. This difference is 363 

anticipated as Wigmosta et al.17 used corrected pan evaporation data for model validation17, 364 

which has been shown to differ by 45% from commercial-scale algae systems.11 The differences 365 

in scales of the modeled facilities are critical as the surface area has a direct influence on 366 

evaporation rates.11 Facility sizes modeled in Wigmosta et al.17 were selected based on land 367 

availability, while this work fixed a standard 400-ha wetted area.  Although direct comparison 368 

would require harmonizing model inputs, the comparison highlights the importance of selecting 369 

appropriate evaporation models when modeling water consumption in open algae systems 370 

Biomass yields have a direct impact on the WF of the system, as it impacts the functional unit. 371 

The modeled productivity yields agree with experimental values for UTEX 39323 with annual 372 

averages areal productivity reached reaching a maximum of 23.6 g m-2 day-1 in Hawaii and 373 

Florida (Fig S4A). It should be noted that these values represent optimistic yields for commercial 374 

microalgae cultivation since the impacts of culture failure are not accounted for in the analysis. 375 

The potential impacts of pond contamination on modeled areal productivity values are illustrated 376 
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by reducing biomass yields by a safety factor (Fig S5). The results presented here represent 377 

projections based on the current biomass production potential in pilot-scale systems and should 378 

be improved by considering the impacts of culture mixing in commercial-scale systems as well 379 

as pond contamination and reliability.  380 

Other model outputs were found to be consistent with previous modeling work.11 Nutrient 381 

demands were found to scale directly with biomass yields, while electricity consumption is a 382 

function of operational days, growth rates, and precipitation rates (Fig. S6). The high electricity 383 

demand in the Gulf Coast states is credited to the higher pumping and dewatering power needed 384 

to control the depth of the ponds during periods of intense rainfall. Energy balance results show 385 

that minimizing freshwater use through the effective use of rainwater in the cultivation process 386 

comes with an increase in electricity consumption caused by more frequent pond harvesting and 387 

larger processing volumes.  388 

Moreover, the impacts of model inputs on the blue and indirect WFs for two case study 389 

locations were tested through a sensitivity analysis (details included in the SI).  The results of the 390 

sensitivity analysis (Fig. S16) indicate that in sites with low precipitation such as Phoenix, AZ 391 

the parameters that directly impact evaporation losses and biomass yields are the most sensitive 392 

to both the direct blue water footprint and indirect water footprint. Contrastingly, in sites with 393 

high precipitation such as Tampa, FL, the depth limits of the ponds were found to be sensitive. 394 

These inputs have an impact on the amount of rainwater that can be stored in the ponds and 395 

consequently impact the amount of freshwater needed to refill the ponds at the minimum depth. 396 

Although a reduction in the separation efficiency reduces the amount of biomass converted into 397 

fuels, there is also a decrease in the amount of water needed to make up for losses, as more water 398 

is recycled back to the ponds. An increase in the separation efficiency increases the amount of 399 
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biomass that is sent to conversion but increases the volume of water needed to make up for water 400 

losses (less water is recycled) and therefore balances the impacts of increased yields on the blue 401 

water footprint of the system.  402 

3.3 Water Scarcity Implications 403 
 Aside from quantifying life cycle water usage, the local water stress associated with the 404 

deployment of algal systems was calculated and reported as a WSF. The seasonal results shown 405 

in Fig. 4 illustrate the temporal dynamics of water consumption, availability, and biomass yields. 406 

The largest WSFs are found in the southwestern US, where water stress levels vary between 407 

1700 and 1760 m3-U.S.eq per GJ during spring (Fig 4A). Similar water stress levels propagate to 408 

southern and western California during the summer (Fig 4B). While there is an increase in water 409 

consumption during summer, this is balanced by an increase in biomass yields, consequently, the 410 

magnitude of WSFs during summer is comparable to those seen in spring. Similarly, the same 411 

regions present the highest water stress levels during the fall season (Fig 4C), but there is a 412 

reduction in the WSF compared to summer levels. The winter season experiences a reduction in 413 

water stress levels in California while southwestern Texas displays a minor change compared to 414 

fall. The seasonal analysis indicates that biomass yields drive the WSF during spring and 415 

summer, while water consumption is the driving factor during the fall and winter seasons.  416 

As discussed above, the temporal variations of the WSF are a product of the seasonal 417 

variabilities of freshwater consumption and biomass yields. Potential algae sites must support 418 

high growth and low evaporation rates, in addition, sites must be located in areas with sufficient 419 

water availability to support a low WSF (low AWARE-US CF). Based on these criteria, the 420 

southeastern and Gulf Coast U.S are characterized as the most suitable regions for microalgal 421 

fuels (Fig. 4) and biomass production considering WSF (Fig. S14). The southeastern US region 422 

achieves the maximum biomass yields with average areal productivities above 20 g m-2 day-1 and 423 
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the abundant rainwater has a propitious effect on the WSF, by not only reducing the water 424 

consumption of algal systems but also increasing freshwater availability and therefore returning a 425 

low AWARE-US CF. There was found to be minimal variability among the distribution of WSF 426 

for counties in Gulf Coast states and Georgia. Even in the scenario of having below-average 427 

precipitation rates, the maximum seasonal WSF in the region remains between 5.2 and 5.8 m3-428 

U.S.eq m-2 month-1, suggesting that the WSF is more strongly correlated to biomass yields. The 429 

analysis reveals that the southeastern US is the best candidate for siting algal systems based on 430 

WSF due to the low water consumption, high growth rates, and low water stress levels. 431 

 432 
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 433 

Figure 4. Seasonal water scarcity footprints of renewable diesel from algal biomass: (A) spring, 434 

(B) summer, (C) fall, and (D) winter.  435 

Although sites in the southwestern US also present high biomass yields, low water 436 

availability in the western US risks unsustainable cultivation of algal biomass in the region. For 437 

instance, if algal farms are projected to be deployed in Arizona or southern California, these 438 

facilities will need to be supported by saline water sources to avoid any negative water stress 439 

impacts and minimize freshwater withdrawals. Furthermore, if freshwater were available in the 440 

region, algal biomass proves to be a more efficient user of water than conventional energy crops 441 
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and could potentially substitute terrestrial protein crops (e.g., soybean) in water-scarce regions 442 

such as CA and AZ.   443 

Moreover, the results presented here suggest that the deployment of algal systems would not 444 

stress water resources in the southeastern US and thus could be developed alongside traditional 445 

agriculture. Although this study is not meant to establish the freshwater, wastewater, or saline 446 

resource availability and the implications on the scalability of these systems, the water scarcity 447 

analysis shows that freshwater consumption should not be a deterrent against the scale-up of 448 

algal facilities in certain geographical locations. However, land and CO2 availability in the 449 

southeastern US are resources that could risk the sustainable scaling of these systems.17,40 450 

Ultimately, freshwater is not a resource limiting the scale-up of algal biomass production and 451 

algal biomass can be characterized as a low water alternative to conventional terrestrial energy 452 

crops.   453 

 It is also important to note that the WSFs presented here consider only freshwater 454 

consumption impacts. As discussed, the cultivation of algal biomass in the southeastern US will 455 

require an appropriation of the available precipitation that could lead to changes in green water 456 

availability or impact the water supply of other crops in the area. Additionally, freshwater 457 

availability can also be reduced as groundwater will not be naturally recharged by rainwater.41 458 

Therefore, expansion of this analysis could investigate the green WSF of algal cultivation in 459 

areas where green water consumption dominates and analyze the tradeoffs between areas with 460 

large blue WSF and those with large green WSF.  461 

4 Conclusions 462 
 463 
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The WF and WSF of microalgal biomass cultivation and conversion to fuel across the 464 

continental US and Hawaii are evaluated through a regionalized water LCA. The biomass 465 

cultivation stage was found to be the most water-intensive process with evaporation losses in 466 

open ponds representing the major source of freshwater consumption in the system. When all 467 

WF components are considered, the WF of algal renewable diesel was found to be smaller than 468 

that of traditional biofuels, however, algal biofuels generate larger blue WFs. The smaller WFs 469 

of algal renewable diesel are a result of both higher growth rates and the lack of a gray WF 470 

component stemming from nutrient recycling and proper waste stream management. In terms of 471 

WSF, sites in the Gulf Coast and the southeastern US were found to have the lowest water stress 472 

levels. Finally, cultivation in the southwestern US will cause substantial water stress in the 473 

region and saline algal cultivation is advised to reduce the water consumption of sites in these 474 

water-scarce regions. The potential of reducing the WF of algal systems in coastal areas by 475 

implementing saline cultivation was also explored. Although saline cultivation reduces 476 

freshwater consumption, there is an increase in indirect water consumption and future work 477 

should focus on better quantifying this component as it was shown to be equivalent to the water 478 

savings associated with evaporative makeup water. Finally, for a true understanding of the 479 

potential indirect water consumption impacts associated with cultivation in saline or brackish 480 

water, a detailed quantification of the energetics of groundwater pumping and brine disposal 481 

methods is required.  482 

 483 

 484 

 485 

 486 
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