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ABSTRACT. While algal biofuels have the potential to reduce the national reliance on fossil fuels,
the high water consumption associated with algal biomass cultivation represents a major concern
compromising the sustainable commercialization of this technology. This study focuses on
quantifying the water footprint (WF) and water scarcity footprint (WSF) of renewable diesel
derived from algal biomass and provides insights into where algal cultivation is less water-
intensive than traditional ethanol and biodiesel feedstocks. Results are generated with an
engineering process model developed to predict the life cycle water consumption, considering
green, blue, and gray water, of algae facilities across the United States at a high spatiotemporal
resolution. The model predicts average blue WFs of 1.6 and 14.9 m* GJ! in Florida and Arizona,
respectively. When total WFs are compared, the total WF in Arizona is 26% larger than that of

Florida, with dramatic differences between blue and green WFs locations. The analysis reveals
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that the total life cycle WFs of algal renewable diesel are smaller than the optimal WFs of corn
ethanol and soybean biodiesel. Algal systems benefit from higher growth rates and offer the
opportunity to manage wastewater streams, therefore generating smaller green and gray WFs than
those of conventional biofuels. The WSF analysis identifies the Gulf Coast as the most suitable
region for algal cultivation, with cultivation in the western US shown to exacerbate local water

stress levels.

1. Introduction
Microalgae-derived fuels are perceived as promising alternatives to decarbonizing the

transportation sector. As a third-generation biofuel, cultivation of algal biomass does not
compromise food security and multiple algae species possess higher photosynthetic efficiencies
and generate greater oil yields than terrestrial energy crops 2. In addition, algae-to-fuel
pathways have the potential to generate a variety of high-value co-products, which could
potentially improve the economics of algae systems, while concurrently reducing greenhouse gas
emissions >. However, additional research and development are required not only to reach
economic parity with conventional fuels but also to understand the local and regional
environmental impacts of commercial-scale algal biofuel production.?

Although there are multiple life-cycle assessments (LCA) focused on algal biofuels in the
literature, the lack of freshwater consumption impacts represents a major research gap in the
field.> Understanding the added water demand that algal cultivation will have on local water
sources is paramount to avoid future water-related risks, particularly when the cultivation of
algal biomass is envisioned to be deployed in locations that are experiencing considerable water

shortages such as the southwest United States (US).* Water consumption is often measured using
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a water footprint (WF) methodology, where the WF of a product is the sum of direct and indirect
water consumption.’ More recently, a new method to assess the water scarcity footprint (WSF)
of a product has been proposed by the Water Use in LCA (WULCA) research group.® The
Available Water Remaining (AWARE) is a consensus-based model used to determine a WSF
based on a characterization factor that quantifies water availability and demand in a specific
region over a set timeframe.’

In previous assessments, the water consumption of algal systems has been estimated using the
discussed methods. However, studies often employed one method exclusively resulting in either
a WF*13 or WSF accounting'*! and fail to provide a complete assessment of the water impacts.
Previous studies do not account for geographic considerations or are restricted to a few
locations.®!%!316 In addition, multiple studies do not use a life-cycle assessment framework and
neglect water consumption of upstream processes or the direct consumption of the conversion to

fuel process®! 11417

, which underestimates the total water consumption of the algae to fuels
process.'®!8 More importantly, quantifying the contribution of rainwater to the water footprint of
algal systems is important to make an objective comparison to terrestrial crops. An accurate
water balance requires models able to calculate evaporation rates at a high spatiotemporal scale'!
and careful tracking of algal pond depth to avoid culture dilution caused by high precipitation
rates.® Wigmosta et al.!” is the only study that includes rainwater in water balance calculations,
however, the evaporation model used in the analysis was validated with small-scale pond data
and was not designed to estimate the evaporation rates of commercial-scale systems accurately.'!

This is critical as evaporation rates not only impact water balances but also propagate to

temperature and growth rate calculations.!! The WF of algal systems has not been clearly defined
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in the literature due to a lack of appropriate models and incorrect modeling assumptions or
methodological inconsistencies.

This study focuses on estimating the WF and WSF of renewable diesel derived from algal
biomass by integrating water life cycle assessment methodologies with a robust dynamic
cultivation model. This work builds upon previous modeling work!! with novel aspects including
a thorough investigation of the impacts of water recycling, rainwater, and indirect water
consumption on the WF of the system. By using the high-fidelity model validated by Quiroz et
al.!!, the impacts of system scale on evaporation rates and consequently on water consumption,

pond temperatures, and growth rates are accurately modeled. In addition, Restltsfrom-the-model

spatial-and-tempeoralresolution-thatis—Furthermeore; the cultivation model was coupled with a

state-of-the-art conversion model'® to analyze the direct and indirect water consumption of the
biomass-to-fuel process. The local water scarcity impacts associated with the deployment of
commercial-scale algal biofuel systems across the US are also investigated. When integrated, the
models provide a geospatial analysis of the life cycle WF, including blue, green, and indirect
WFs, and WSF of the algae to renewable diesel process. Results identify the most water-
intensive processes in the algae-to-fuel pathway, compare the magnitudes of direct and indirect
water consumption, and illustrate the most suitable locations for algae fuel production based on
water consumption impacts. The discussion focuses on comparing these results to the water
intensity of saline algal cultivation and traditional biofuel systems. feedstoeks-and-biofaels. This
is the first work to complete a holistic life cycle water assessment and water scarcity evaluation

for the entire US of an algal-based biorefinery.



86 2. Methods

87 This study assesses the geographically resolved water consumption of algal biofuels through
88  two different water LCA methodologies. Both are informed by mass and energy balances

89  calculated from an engineering process model encompassing the geographically resolved

90  biomass cultivation, dewatering, and fuel conversion stages, as shown in Figure 1. The following
91  subsections provide detailed descriptions of the cultivation (including the growth model),

92  conversion, and water LCA methods adopted in this study.
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94  Figure 1. System diagram illustrating the microalgae cultivation process in open-raceway ponds,
95  three-step dewatering process, and conversion and upgrading to renewable diesel through

96  hydrothermal liquefaction (HTL) and hydrocracking.

97 2.1 Cultivation Model
98 The cultivation model used in this analysis includes the biomass growth process in

99  commercial-scale open-raceway pond (ORP) systems followed by a three-step dewatering
100  process consisting of settlers, membranes, and centrifuges. Detailed descriptions of these

101  modules are provided in the following subsections.

102  2.1.1 Open-Raceway Pond Model
103 ORPs have been the most studied algae growth architecture in the literature due to their low

104  cost and simplicity. Given the open nature of these systems, ORPs are subjected to the changing
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conditions of the environment, therefore, models with hourly timescales are required to
accurately simulate pond conditions. Thermal conditions in the ORP system were calculated
using the model validated by Quiroz et al.!!, while growth rates were simulated using the
dynamic growth model validated by Greene et al.?® Temporally and spatially resolved outputs for
a 400-hectare facility cultivating the strain UTEX 393 were generated following the framework
in previous modeling work with results presented in the Supporting Information (SI).!!

The foundational model from Quiroz et al.!' was modified to include precipitation data to
model realistic pond operations. Daily precipitation data for 21 years, retrieved from the Center
for Hydrometeorology and Remote Sensing database, was disaggregated into hourly time steps
and included in the water balance.?! The depth of the ponds was kept between 15 and 25 cm by
tracking hourly net evaporation rates, defined as the difference between evaporation and
precipitation rates. If the pond depth exceeded the allowable maximum, the pond was harvested
and reset to 15 cm and a concentration of 0.1 g L!. Similarly, potential culture dilution caused by
incoming precipitation was prevented by ensuring the concentration in the ponds was maintained
above 0.1 g L!. Further details on model calculations, implementation, and data curation are

presented in the SI.

2.1.2 Dewatering Model
The dewatering module is composed of a three-step dewatering process to remove excess

water from the biomass, 0.45 g L™ to 200 g L'!, based on the modeling work of Davis et al.?> The
biomass was first routed through settlers where it exits with a concentration of 10 g L™!. The
water retrieved from the biomass stream is recycled back to the ponds except for when the ponds
are drained due to excess precipitation. During pond drainage, the clarified water was routed
back to the local water source. The clarified water stream exiting the settlers was assumed to

contain a negligible concentration of nutrients and algae.?
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Subsequently, the biomass stream is routed to the remaining dewatering processes depicted in
Error! Reference source not found., and recycled water is sterilized in an ultra-violet sterilizer
before being returned to the ORPs. For the case when ponds do not have enough biomass to be
restarted to 0.1 g L™, mainly caused by constant harvesting during intense precipitation periods,
a fraction of biomass is routed from the exit stream of the centrifuge back to the ponds. This
pond operating strategy reduces freshwater consumption by storing all available rainfall and
preventing culture failure induced by diluted cultures.

Energetics and recycling efficiencies of the dewatering and cultivation equipment are
presented in Table 1. The recycling efficiencies used in this study are informed by previous
modeling work in the literature?? and represent a current technical hurdle that must be addressed
for the optimal performance of commercial-scale systems. The impacts of these assumptions and
other key model inputs were tested through a sensitivity analysis, and further methods are

presented in the SI.



152 Table 1. Primary model inputs used for the calculation of mass and energy flows in the biomass
153 production process.
Value Unit
Open-Raceway Ponds
Inoculation density ** | 100 gLt
Harvest density 1! | 450 gLt
Harvest volume % | 75 %, fraction of pond
CO, utilization? | 90 %
Biomass Elemental Composition
Carbon (C)# | 48.3 %, AFDW basis
Nitrogen (N)?? | 9.5 %, AFDW basis
Phosphorous (N)# | 1.2 %, AFDW basis
Others (H, 0, 8)% | 41.0 %, AFDW basis
Biomass Component Composition
Lipids | 22.1 %, AFDW basis
Protein?? | 25.4 %, AFDW basis
Carbohydrates? | 52.5 %, AFDW basis
Ash?? | 8.00 %, DW basis
Diammonium Phosphate Composition
Phosphorous? | 20 %, weight
Nitrogen?® | 18 %, weight
Ammonia Composition
Nitrogen?® | 82 %, weight
Dewatering
Settlers target concentration?? | 10 gLt
Biomass blowdown loss?? | 0.1 %
Settlers separation efficiency ?? | 90 %
Membrane target concentration?? | 130 gLt
Membrane separation efficiency ?? | 99.5 %
Centrifuge target concentration?? | 200 gLt
Centrifuge separation efficiency # | 97 %
Energy Consumption
CO.delivery power?? | 0.0439  kWh kg? CO,
Paddlewheel power?? | 55.1 kWh hectare™ day*
Membrane power# | 0.04 kWh m?3
Centrifuge power?? | 1.35 kWh m?3
UV sterilizer power? | 2.71e-03 kWhm?
Freshwater pump power?? | 0.257 kWh m?3
Ponds to settlers pump power?? | 0.0189  kWhm?
Settlers recycling pump power?? | 0.0177 kWhm?
Settlers to membrane pump power?? | 0.129 kWh m?3
Membrane to centrifuge pump power?? | 0.0194  kWh m?
Recycling stream pump power ?? | 0.184 kWh m?3
154
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2.2 Conversion Model
After dewatering the biomass to 20% solids, the biomass was converted to biocrude via

hydrothermal liquefaction (HTL) based on the work of Chen et al.!® Inputs to the HTL model
include biomass composition and biomass productivity yields. The ash-free lipid, protein, and
carbohydrate content of the biomass were set to 22%, 25%, and 53%, respectively.?* The ash
content of the biomass was assumed to be 8%.2> After the biomass is processed to a biocrude,
upgrading to renewable diesel and naphtha is done via hydrocracking.'® The nutrient-rich
aqueous stream exiting the HTL module is recycled back to the ponds, while the gaseous stream

is utilized for on-site heat and power."”

2.3 Water LCA Methods
The primary goal of this study is to determine the WF and WSF of microalgae biomass and

biofuels. The direct and indirect water consumption of the supply chain was included to provide
a final value of life cycle water consumed per functional unit. Two different system boundaries
were established to facilitate comparison to other energy crops and biofuels from previous
assessments. The first system boundary includes the biomass cultivation and dewatering to 20%
solids processes while the second system boundary is expanded to incorporate the fuel
conversion process (Fig. 1). Similarly, the functional units for each system configuration were
set to one metric ton of ash-free dry weight biomass and one GJ of renewable diesel,

respectively.

2.3.1 Water Footprint Methodology
The most common method used to quantify the water consumption of bioenergy systems is the

water footprint method developed by Hoekstra et al.’ The total WF of a product is defined as the
addition of three different WF components: blue, green, and gray WFs. Each component is
further divided into a direct and indirect WF. The indirect WF measures upstream water

consumption in the supply chain, while the direct WF refers to on-site water consumption. It is
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worth noting that this method considers water consumption only and neglects the impacts to
water quality.’

The blue WF of a product measures the amount of water consumed from surface or
groundwater sources.’ In the case of algal cultivation, freshwater consumption is equal to the
difference between the volume of water withdrawn from the water source (to make up for
evaporation losses and water incorporated in the biomass stream) and the volume of clarified
water returned to the catchment area, due to system drainage. Accordingly, an increase in the
water discharged due to inefficiencies in the dewatering equipment has no impact on the net
freshwater consumption of the system. However, an increment in the volume of discharged water
could have implications for the gray WF of the system, as discussed below. The water used for
cooling equipment and other processes in the conversion stage was assumed to all be consumed,
making the total blue water demand equal to the sum of the water consumed in the cultivation
and conversion processes.

In addition to estimating blue WFs, computing the green WF is essential in the water analysis
of energy crops. The green WF measures the volume of rainfall that is not returned to
groundwater sources and is either stored or consumed.’ Green water demand was calculated by
tracking the volume of rain entering the ponds. This study assumed that all rainwater is stored in
the ponds and therefore all precipitation contributes to the green WF.

In contrast to the blue and green components, the gray WF measures freshwater pollution and
is defined as the volume of freshwater required to dilute pollutants to meet water quality
standards.’ Different from terrestrial crops, the gray WF of algal cultivation can be minimized
by proper nutrient recycling and treating waste streams before disposal.'® For example, all

disposed water from cultivation is previously clarified in the settlers to reduce the concentration

10
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of suspended solids in the clarified water stream. Based on experimental data reported in the
literature®*27, the algae culture was assumed to consume all available nutrients and therefore the
nutrient load in the harvested and water discharged streams was assumed to be negligible. For
the same means, the effluent from the conversion stage was recycled back to the ponds instead of
being directly disposed. Considering the above assumptions, algal cultivation does not generate a
gray WF and the analysis focused on blue and green WFs with a sensitivity to this assumption
explored.

The indirect WFs attributed to process consumables were retrieved from different LCA
databases and literature. Water consumption associated with the production of diammonium-
phosphate, ammonia, hydrogen, and natural gas was retrieved from the GREET 2021 model.?®
The water consumed in electricity generation was determined by expanding the methods

presented in Lee et al.? to an eGRID subregion level.>° More detailed indirect WF calculations

are provided in the SI.

2.3.2 Available Water Remaining Methodology
The Available Water Remaining in the US (AWARE-US) model*! was used to calculate the

WSF of algal biomass and biofuels based on a monthly analysis that is averaged into seasonal
results. This model defines the WSF as the product of direct freshwater consumption and a
characterization factor (CF). The CF is a water-stress indicator characterizing the water
availability and demand of a given location relative to the water availability of a specific
location.%” The AWARE-US model provides monthly characterization factors for US counties
relative to the US average freshwater availability.?! The output of the analysis is a monthly WSF
at a county level. The methods used to interpolate model outputs to a county level are described

in the SI.
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3. Results and Discussion
The WF of algae biofuels is presented and disaggregated into the direct blue, green, and

indirect blue, and then summed for a total WF. The grey water footprint is regarded as negligible
assuming optimal operation of the system. Process model outputs are then analyzed to
understand the parameters that have a major impact on WF results. Results are combined with
AWARE-CF to determine the WSF of algal-based biofuels with seasonal resolution. The results

presented in this section are the averages of the 21-year simulation.

3.1 National Water Footprint Mapping
The life cycle WF for all simulated sites were surface interpolated and results for the algal

fuels system are summarized in Fig. 2. The range of total life cycle WF was calculated to be 30
m? GJ! with the maximum located in the northwest US (39 m*® GJ'!), while Hawaii and southern
California yield the smallest WFs, ranging between 9 and 10.6 m* GJ''. The large WFs in the
Pacific Coast are explained by the high precipitation rates and low biomass yields in the region.
Similarly, the large WF of hydroelectricity has a modest impact on the indirect water
consumption of algae farms located across the northwestern US (Fig. 2C). While the larger
indirect WF of sites in Florida is correlated to the energy penalty associated with elevated
rainwater usage. These results show that even in scenarios with high energy consumption, the
indirect WF is an order of magnitude lower than the direct blue and green components of
freshwater cultivation. In conclusion, direct freshwater and rainwater consumption are the largest
contributors to the total WF and the indirect WF of upstream processes was found to be strongly
dependent on the WF of electricity generation.

The results from the work illustrate that the indirect WF of freshwater cultivation is low and

dominated by electricity usage in the system. Contrastingly, the indirect WF is dramatically

impacted in a saline cultivation scenario, where the-indirect- W -compenentispartictlarly

12
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m-and there is an

increase in electricity consumption due to higher pumping and blowdown energy needed to
maintain adequate salinity levels. The differences in WFs between freshwater and saline
cultivation scenarios for Tampa, FL, and Corpus Christi, TX were quantified following the saline
modeling assumptions provided in the SI. Results show that saline cultivation in Corpus Christi,
TX provides a 30% reduction in the total WF by eliminating freshwater consumption to make up
for evaporation which exceeds the increased indirect water consumption from pumping (Fig
S13). In Tampa, FL saline cultivation increased the indirect WF component by an order of
magnitude, which resulted in similar total WFs as the freshwater cultivation scenario. These two
case studies highlight the potential of coastal areas for reducing the WFs of algal systems

through saline cultivation, but also show it is location-dependent.
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Figure 2. Life cycle water footprint breakdown of algal diesel: (A) direct blue water footprint, (B)

direct green water footprint, (C) indirect blue water footprint, and (D) total water footprint.

The regional differences observed in Fig. 2 emphasize the need for water LCAs with
geospatial resolution. For instance, the blue WF (Fig 2A) is driven purely by evaporation rates
with the highest rates located in dry climates such as the Desert Southwest. Contrastingly, the
southeastern US shows the largest green WFs (Fig 2B) and the smallest blue WFs, explained by
the high precipitation rates in the region. However, when comparing the total WF of these

regions, similar trends are observed in total WFs. For example, the total WF of Phoenix, AZ was

14



271  found to be only 3% larger than that of Macon, GA, although freshwater consumption in Phoenix
272 represents 85% of the total water consumption compared to 14% in Macon, GA. The freshwater
273  consumption in a water-scarce region such as the southwestern US will potentially bring about
274  more severe environmental impacts than the consumption of rainwater in Georgia. This

275  comparison stresses a limitation of the water footprint method, as it only accounts for water

276  consumption, but does not consider water stress impacts. This is further explored in this study
277  through water scarcity calculations.

278 The results from this study were also compared to published water LCAs using identical

279  system boundaries and metrics. Compared to the algal WFs (m?® GJ!) reported by Ou et al.*?, an
280  average difference of 14% across the eight sites used for comparison was estimated. These

281  discrepancies were larger in sites located in the Midwest US and are attributed to differences in
282  evaporation modeling, meteorological data, and biomass yields. At the same time, the model
283  used in this study predicts lower freshwater consumption per area (m® m yr'!) across the eight
284  sites used for comparison, corresponding to an average difference of 38%. Moreover, the

285  magnitudes of other water consumption sources (i.e. conversion and indirect) agree with the
286  results from this analysis, implying that differences between water LCAs of algae systems are
287  mainly attributed to variations in net evaporation rates and growth rates.

288 Furthermore, a WF comparison to first and second-generation biofuels shows blue WFs of
289  algal fuel systems can approximate those of conventional corn ethanol and soybean biodiesel
290  systems, and the difference depends on the location where algal biomass is cultivated. In

291  particular, the blue WF of algal fuels in the southwestern US is generally larger than the average
292 blue WFs of corn ethanol and soybean biodiesel cultivated in lowa, but comparable if algal

293 biomass is cultivated in the Gulf Coast region (Fig, 3A). A comparison to wheat straw ethanol

15
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shows that algal production in California and Texas incurs smaller blue WFs; however, when
algal biomass is cultivated in Arizona, production of first and second-generation biofuels
generates a smaller blue WF. Although a larger volume of freshwater is required for algal
cultivation in these locations, the higher biomass yields make the blue WF of algal biofuels
comparable to those of its first and second-generation counterparts. In summary, the regional
variations of freshwater consumption and biomass yields must be considered to determine the
scenarios under which algal fuels present a smaller blue WF than conventional biofuel systems.

In the context of the green WF component, algal systems present some advantages over
terrestrial energy crops. Notably, the impact of higher growth rates achieved by algae systems is
best reflected when comparing the green WF between biofuels. The results illustrated in Fig. 3A
show that algal renewable diesel uses less rainwater per unit of energy than all other biofuel
systems.

In terms of gray water, algal cultivation presents the advantage of generating no gray WF if
pollutants loadings in waste streams are carefully tracked, ponds are properly managed, and
recycling across process stages is practiced.!®* It is important to note that complete nutrient
assimilation in the ponds is critical for maintaining negligible gray WFs in algae systems.
Negligible gray WFs in algal systems are dependent on proper pond management, and operating
the ponds without carefully tracking nutrient loadings and water discharged volumes could result
in considerable gray WFs (Fig. S2). Contrastingly, the gray WF of terrestrial crops is a function
of fertilizer loss and has been found to represent a large portion of the total WF>**, particularly
for corn ethanol (Fig. 3A). Based on the modeled gray WFs, findings of this comparison suggest
that a shift to algal biofuels has the potential to lower the gray and green water consumption of

bioenergy.
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As shown in Fig. 3A, if all components are considered, the total WF of algal biofuel systems is
approximately four to six times smaller than the average WF of corn ethanol while an order of
magnitude smaller than that of soybean biodiesel. If only blue and gray WFs are compared, algal
systems have a larger total WF than soybean and switchgrass biofuels but a smaller total WF
than corn grain and wheat straw ethanol. This comparison indicates that from an overall WF
perspective, algal systems benefit from their higher growth rates and opportunity for recycling

nutrients.
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Figure 3. A) Life cycle water footprint comparison between renewable diesel from microalgal
biomass for six locations in the United States and average regional life cycle water footprints for
first and second-generation biofuels derived from corn grain (CG), switchgrass (SG), wheat straw
(WS), and soybean (SB). The water footprints of corn grain and wheat straw ethanol, as well as

those of soybean biodiesel and switchgrass biodiesel blend, were retrieved from the literature*®—°
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and represent average values of high crop production areas: corn and soybean are assumed to be
grown in the Corn Belt and the southeastern US, while switchgrass and wheat straw are mainly
cultivated in the central and eastern US. B) Life cycle water footprint of algal fuel systems across
six locations in the US. Inset, the blue water footprint breakdown. The water footprint values of

algae sites represent the average of the 21 simulated years.

3.2  Water Footprint Breakdown
The results shown are all driven by the different parameters calculated by the engineering

process model, thus, evaluating the mass and energy balance is critical to identifying
opportunities for reducing freshwater consumption. The analysis indicates that freshwater and
rainwater consumption in the biomass production process dominates the overall water
consumption of algae systems. As seen in the blue WF breakdown of the six case study locations
shown in Fig. 3B, water consumed in the conversion process is minimal compared to the
evaporation losses during the cultivation stage. Consequently, algae fuel systems benefit from
the recycling of cultivation water embedded in the biomass making them less water-intensive
than traditional terrestrial-based biomass systems, where the water leaving with the biomass is
assumed to be consumed. The outcomes from both modeled system boundaries demonstrate that
water consumed in the biomass production stage dominates the total WF and the co-location of
biorefineries with farms decreases the WF of algae fuels by promoting water recycling across
processes.

Beyond the effects of water recycling, the usage of rainwater also contributes to minimizing
freshwater withdrawal and consumption. This is observed when comparing the net evaporation
rates in this study, ranging from 0.05 to 1.47 m® m™ yr'!, with the range previously calculated by

Quiroz et al.'! (0.30-1.68 m®> m? yr!). The wider range presented in Quiroz et al.!! is expected,
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as rainwater was not accounted for, and instead, a “gross” evaporation rate was estimated. The
southeastern US is one of the regions that benefit the most from rainfall utilization. For example,
in Tampa, FLL most of the water consumption can be supplied with rainwater. The model outputs
demonstrate that the net water consumption of algal systems is primarily influenced by
evaporation losses and rainwater contributes to increasing the water efficiency of these systems.
The evaporation losses in the cultivation stage drive the water intensity of algal systems
therefore it is critical to select sound evaporation models to reduce the uncertainty in evaporation
estimates. To understand the importance of evaporation modeling in water usage metrics, net
evaporation rates were compared to those of Wigmosta et al.!” In general, the results from this
study were found to be 31% lower, based on the 204 sites used for comparison. This difference is
anticipated as Wigmosta et al.!” used corrected pan evaporation data for model validation'’,
which has been shown to differ by 45% from commercial-scale algae systems.!! The differences
in scales of the modeled facilities are critical as the surface area has a direct influence on
evaporation rates.!! Facility sizes modeled in Wigmosta et al.!” were selected based on land
availability, while this work fixed a standard 400-ha wetted area. Although direct comparison
would require harmonizing model inputs, the comparison highlights the importance of selecting
appropriate evaporation models when modeling water consumption in open algae systems
Biomass yields have a direct impact on the WF of the system, as it impacts the functional unit.
The modeled productivity yields agree with experimental values for UTEX 393% with annual
averages areal produetivityreached reaching a maximum of 23.6 g m day! in Hawaii and
Florida (Fig S4A). It should be noted that these values represent optimistic yields for commercial
microalgae cultivation since the impacts of culture failure are not accounted for in the analysis.

The potential impacts of pond contamination on modeled areal productivity values are illustrated
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by reducing biomass yields by a safety factor (Fig S5). The results presented here represent
projections based on the current biomass production potential in pilot-scale systems and should
be improved by considering the impacts of culture mixing in commercial-scale systems as well
as pond contamination and reliability.

Other model outputs were found to be consistent with previous modeling work.!'! Nutrient
demands were found to scale directly with biomass yields, while electricity consumption is a
function of operational days, growth rates, and precipitation rates (Fig. S6). The high electricity
demand in the Gulf Coast states is credited to the higher pumping and dewatering power needed
to control the depth of the ponds during periods of intense rainfall. Energy balance results show
that minimizing freshwater use through the effective use of rainwater in the cultivation process
comes with an increase in electricity consumption caused by more frequent pond harvesting and
larger processing volumes.

Moreover, the impacts of model inputs on the blue and indirect WFs for two case study
locations were tested through a sensitivity analysis (details included in the SI). The results of the
sensitivity analysis (Fig. S16) indicate that in sites with low precipitation such as Phoenix, AZ
the parameters that directly impact evaporation losses and biomass yields are the most sensitive
to both the direct blue water footprint and indirect water footprint. Contrastingly, in sites with
high precipitation such as Tampa, FL, the depth limits of the ponds were found to be sensitive.
These inputs have an impact on the amount of rainwater that can be stored in the ponds and
consequently impact the amount of freshwater needed to refill the ponds at the minimum depth.
Although a reduction in the separation efficiency reduces the amount of biomass converted into
fuels, there is also a decrease in the amount of water needed to make up for losses, as more water

is recycled back to the ponds. An increase in the separation efficiency increases the amount of
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biomass that is sent to conversion but increases the volume of water needed to make up for water
losses (less water is recycled) and therefore balances the impacts of increased yields on the blue

water footprint of the system.

3.3 Water Scarcity Implications
Aside from quantifying life cycle water usage, the local water stress associated with the

deployment of algal systems was calculated and reported as a WSF. The seasonal results shown
in Fig. 4 illustrate the temporal dynamics of water consumption, availability, and biomass yields.
The largest WSFs are found in the southwestern US, where water stress levels vary between
1700 and 1760 m3-U.S.¢q per GJ during spring (Fig 4A). Similar water stress levels propagate to
southern and western California during the summer (Fig 4B). While there is an increase in water
consumption during summer, this is balanced by an increase in biomass yields, consequently, the
magnitude of WSFs during summer is comparable to those seen in spring. Similarly, the same
regions present the highest water stress levels during the fall season (Fig 4C), but there is a
reduction in the WSF compared to summer levels. The winter season experiences a reduction in
water stress levels in California while southwestern Texas displays a minor change compared to
fall. The seasonal analysis indicates that biomass yields drive the WSF during spring and
summer, while water consumption is the driving factor during the fall and winter seasons.

As discussed above, the temporal variations of the WSF are a product of the seasonal
variabilities of freshwater consumption and biomass yields. Potential algae sites must support
high growth and low evaporation rates, in addition, sites must be located in areas with sufficient
water availability to support a low WSF (low AWARE-US CF). Based on these criteria, the
southeastern and Gulf Coast U.S are characterized as the most suitable regions for microalgal
fuels (Fig. 4) and biomass production considering WSF (Fig. S14). The southeastern US region

achieves the maximum biomass yields with average areal productivities above 20 g m™ day™! and
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the abundant rainwater has a propitious effect on the WSF, by not only reducing the water
consumption of algal systems but also increasing freshwater availability and therefore returning a
low AWARE-US CF. There was found to be minimal variability among the distribution of WSF
for counties in Gulf Coast states and Georgia. Even in the scenario of having below-average
precipitation rates, the maximum seasonal WSF in the region remains between 5.2 and 5.8 m>-
U.S.eq m™? month™!, suggesting that the WSF is more strongly correlated to biomass yields. The
analysis reveals that the southeastern US is the best candidate for siting algal systems based on

WSF due to the low water consumption, high growth rates, and low water stress levels.
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Figure 4. Seasonal water scarcity footprints of renewable diesel from algal biomass: (A) spring,

(B) summer, (C) fall, and (D) winter.

Although sites in the southwestern US also present high biomass yields, low water
availability in the western US risks unsustainable cultivation of algal biomass in the region. For
instance, if algal farms are projected to be deployed in Arizona or southern California, these
facilities will need to be supported by saline water sources to avoid any negative water stress
impacts and minimize freshwater withdrawals. Furthermore, if freshwater were available in the

region, algal biomass proves to be a more efficient user of water than conventional energy crops
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and could potentially substitute terrestrial protein crops (e.g., soybean) in water-scarce regions

such as CA and AZ.

Moreover, the results presented here suggest that the deployment of algal systems would not
stress water resources in the southeastern US and thus could be developed alongside traditional
agriculture. Although this study is not meant to establish the freshwater, wastewater, or saline
resource availability and the implications on the scalability of these systems, the water scarcity
analysis shows that freshwater consumption should not be a deterrent against the scale-up of
algal facilities in certain geographical locations. However, land and CO; availability in the
southeastern US are resources that could risk the sustainable scaling of these systems. !
Ultimately, freshwater is not a resource limiting the scale-up of algal biomass production and

algal biomass can be characterized as a low water alternative to conventional terrestrial energy

Crops.

It is also important to note that the WSFs presented here consider only freshwater
consumption impacts. As discussed, the cultivation of algal biomass in the southeastern US will
require an appropriation of the available precipitation that could lead to changes in green water
availability or impact the water supply of other crops in the area. Additionally, freshwater
availability can also be reduced as groundwater will not be naturally recharged by rainwater.*!
Therefore, expansion of this analysis could investigate the green WSF of algal cultivation in
areas where green water consumption dominates and analyze the tradeoffs between areas with

large blue WSF and those with large green WSF.

4 Conclusions
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The WF and WSF of microalgal biomass cultivation and conversion to fuel across the
continental US and Hawaii are evaluated through a regionalized water LCA. The biomass
cultivation stage was found to be the most water-intensive process with evaporation losses in
open ponds representing the major source of freshwater consumption in the system. When all
WF components are considered, the WF of algal renewable diesel was found to be smaller than
that of traditional biofuels, however, algal biofuels generate larger blue WFs. The smaller WFs
of algal renewable diesel are a result of both higher growth rates and the lack of a gray WF
component stemming from nutrient recycling and proper waste stream management. In terms of
WSEF, sites in the Gulf Coast and the southeastern US were found to have the lowest water stress
levels. Finally, cultivation in the southwestern US will cause substantial water stress in the
region and saline algal cultivation is advised to reduce the water consumption of sites in these
water-scarce regions. The potential of reducing the WF of algal systems in coastal areas by
implementing saline cultivation was also explored. Although saline cultivation reduces
freshwater consumption, there is an increase in indirect water consumption and future work
should focus on better quantifying this component as it was shown to be equivalent to the water
savings associated with evaporative makeup water. Finally, for a true understanding of the
potential indirect water consumption impacts associated with cultivation in saline or brackish
water, a detailed quantification of the energetics of groundwater pumping and brine disposal

methods is required.
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