

1 Effects of Hydrogen Isotope Type on Oxidation Rates for Trace Releases

2 Randy C. Shurtz^a, Alexander L. Brown^b, Lynelle K. Takahashi^c, Eric N. Coker^d

3 ^aSandia National Laboratories, PO Box 5800, Albuquerque, 87185, USA, albrown@sandia.gov

4 ^bSandia National Laboratories, PO Box 5800, Albuquerque, 87185, USA, rshurtz@sandia.gov

5 ^cSandia National Laboratories, PO Box 5800, Albuquerque, 87185, USA, lktakah@sandia.gov

6 ^dSandia National Laboratories, PO Box 5800, Albuquerque, 87185, USA, encoker@sandia.gov

7

8 *Corresponding author

9

10 **Highlights:**

- 11 • Tritium fire safety considerations often differ from hydrogen fire safety concerns
- 12 • Tritium oxidation kinetics appropriate for simulating fire scenarios are lacking
- 13 • Oxidation rate measurements are reported for sub-flammable H₂ and D₂
- 14 • Oxidation kinetics for H₂ isotopes are fit to a 1-step model, appropriate for CFD
- 15 • A T₂ release is simulated with sub-flammable oxidation in a standard room fire

16

17 **Abstract:**

18 The fraction of tritium converted to the water form in a fire scenario is one of the metrics of
19 greatest interest for radiological safety assessments. The conversion fraction is one of the prime
20 variables contributing to the hazard assessment. This paper presents measurements of oxidation
21 rates for the non-radioactive hydrogen isotopes (protium and deuterium) at sub-flammable
22 concentrations that are typical of many of the most likely tritium release scenarios. These
23 measurements are fit to a simplified 1-step kinetic rate expression, and the isotopic trends for
24 protium and deuterium are extrapolated to produce a model appropriate for tritium. The effects
25 of the new kinetic models are evaluated via CFD simulations of an ISO-9705 standard room fire
26 that includes a trace release of hydrogen isotope (tritium), illustrating the high importance of the
27 correct (measurement-based) kinetics to the outcome of the simulated conversion.

28

29 **Keywords:** radionuclide fires; tritium hazards; facility safety; operations safety; CFD

30

31 **1. Introduction**

32 Tritium is a radioisotope of hydrogen (³H) that produces a low-energy beta particle upon decay
33 and has applications in self-luminous phosphors, fusion energy production, and nuclear weapons.
34 At various U.S. Department of Energy facilities, tritium is stored primarily as a diatomic gas (T₂)
35 or as a solid hydride that can be heated to release T₂ gas. At most of the smaller (i.e.,
36 radiological) tritium facilities, the potential flame or explosion hazard is not a major safety

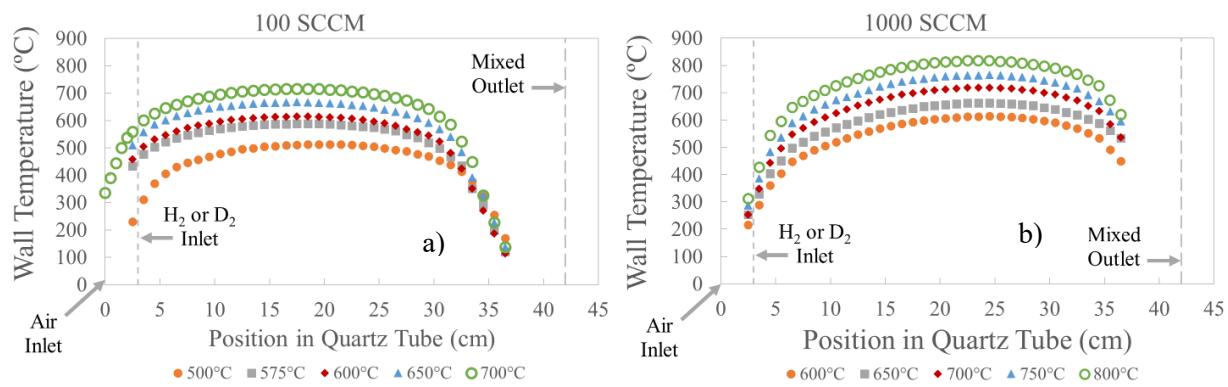
37 concern since the T_2 inventories are insufficient to sustain a flame, and gases are frequently
38 stored at sub-atmospheric pressures. Nevertheless, T_2 to water conversion in fire environments
39 remains a major safety concern due to radiological hazard considerations; tritiated water vapor is
40 readily absorbed by the human body, making it 10^4 times more hazardous than the same amount
41 of tritium exposure as T_2 gas [1].

42 Due to the relatively high dose consequence for tritiated water on the human body, the fraction
43 of T_2 that can convert to water vapor is an important factor in tritium safety evaluations. A report
44 reviewing tritium safety [2] has noted that T_2 to T_2O conversions lower than 100% could (in
45 principle) be applied for regulatory safety compliance in specific scenarios with adequate
46 technical support. It is the aim of this work to help provide such technical support. Although
47 extensive literature exists that examines H_2 gas safety involving combustion with high starting
48 pressures and volumes, specific information such as molecular conversion fractions (CFs) and
49 oxidation rates to the water form under low pressures and volumes of typical concern for
50 laboratories with hydrogen inventories are virtually non-existent. Even less information exists for
51 T_2 oxidation rates due to the inherent difficulties of performing experiments that generate
52 radiologically hazardous reaction products from such a rare isotope.

53 Measured flame speeds for D_2 are slower than measured for H_2 [3-5], consistent with early
54 observations of slower reaction rates for heavier isotopes [6]. In principle, these measurements
55 could be used to estimate even slower flame speeds for T_2 that would be applicable to releases
56 above the lower flammability limit (LFL). However, T_2 containers in many facilities operate at
57 low or even sub-atmospheric pressures; leaks from these are likely to result in concentrations
58 mostly below the LFL, which is the regime of focus for this paper. Flammable concentrations
59 arising from tritium stored at sub-atmospheric pressures is not a likely scenario [7].

60 To our knowledge, no prior literature considers high-temperature oxidation rates of hydrogen
61 isotopes in this low-concentration regime (where the non-radioactive isotopologues pose
62 minimal safety hazard), especially in terms of simplified global kinetics suitable for large-scale
63 simulations. There are a few studies of initial elementary steps in the oxidation process for H_2
64 and D_2 [8-11], but it is not clear whether these are sufficiently comprehensive to derive global
65 oxidation rates for distinct hydrogen isotopes that are applicable at very low concentrations.

66 Several studies measured kinetic rate constants for oxidation of tritium in air at room temperature
67 over timescales of many days, including a wide range of concentrations [12-16]. However, these
68 results do not include temperature dependence (i.e., activation energies) that would be needed to
69 extrapolate such rates to temperatures of several hundred degrees Celsius over timescales of
70 seconds or possibly much shorter. Additionally, the very short oxidation timeframes in fires are
71 likely too fast for oxidation rates of dilute mixtures to be significantly catalyzed by beta decay,
72 whereas such an effect was observed by these investigators over much longer timescales.


73 To address these critical knowledge gaps, this paper reports measurements of the non-radioactive
74 isotopologues of diatomic hydrogen (H_2 , D_2) in air at low concentrations (sub-flammable) over a
75 range of temperature and flow conditions in a tube reactor. The principal metric measured and
76 reported is the extent of conversion to water. The experimental data from the tube reactor
77 experiments are used to gauge isotopic trends for hydrogen oxidation rates, which are interpreted
78 via computational fluid dynamics (CFD). These trends are then extrapolated to produce kinetic
79 rate parameters appropriate for tritium oxidation at low concentrations of relevance to
80 radiological tritium facilities. Finally, the impact of the derived kinetic rate parameters on

conversion of a hydrogen isotope at low concentration in a room-scale fire scenario is demonstrated through CFD simulations.

83 2. Experimental Methods

Hydrogen isotope oxidation tests were carried out within a quartz glass cylindrical tube (internal diameter 13.5 mm, length 420 mm) in a tube furnace under a range of H₂ (D₂): air ratios, gas flow rates, and temperatures. The hydrogen inlet was 2.5 cm inside the quartz glass tube, whereas the air flow entered the system further upstream. The hydrogen inlet tube was a piece of stainless-steel tubing (outer diameter 3.175 mm, inner diameter 1.75 mm) centered within the quartz. The gas within the quartz tube was maintained at atmospheric pressure, which in Albuquerque, NM is typically 635 Torr. Hydrogen gas (99.999%), deuterium gas (99.999%) and synthetic air (ultra-zero grade) were acquired from Matheson TriGas and used without further purification. Mass flow controllers were used for gas flows (MFCs, Brooks). The MFCs were calibrated using a bubble-meter, and flows are reported at standard temperature and pressure. The gas composition was monitored downstream of the quartz tube using a gas chromatograph (GC, Agilent 3000A). A cold finger was installed downstream of the quartz tube to condense out most of the water product and thereby prevent flooding of the GC separation column.

Once stable gas flows were achieved (as determined by GC output, typically within 10-15 mins of initiating gas flow) and the GC had been calibrated, the tube furnace was heated rapidly (stepwise) to 500°C and allowed to stabilize. No hydrogen isotope oxidation was observed at 500°C under any of the conditions used in this study, and this was used as the calibration point for the GC. The downstream cold finger was immersed in ice, and the furnace was programmed to heat at a rate of 1°C/min from 500°C to either 750°C or 800°C, hold for 15 minutes, and then cool at 1°C/min to 500°C. The GC drew a sample of the gas exiting the quartz tube approximately every three minutes throughout the entire experiment, and outlet conversion was calculated from the H₂ or D₂ concentration with respect to the calibration condition at 500°C [7].

107 **Fig. 1.** Temperature profile measurements used as boundary conditions for the quartz wall.

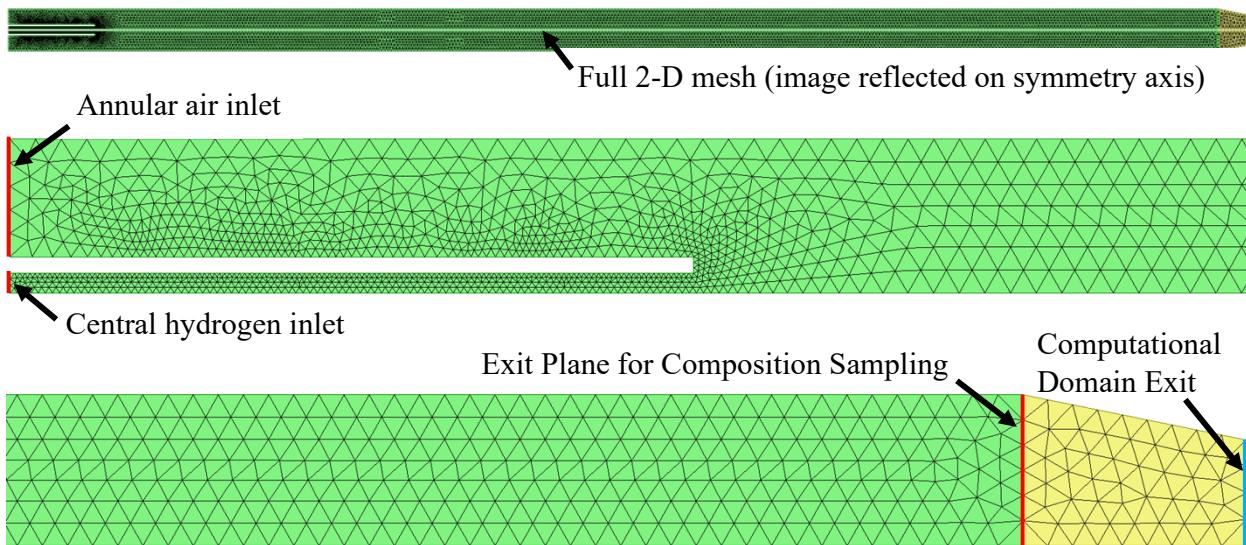
Fig. 1 presents steady-state temperature measured along the interior wall of the quartz tube. This was done by inserting a 1/8" diameter K-type thermocouple probe through the outlet with only air flowing. Hydrogen concentrations in the oxidation experiments were low enough to neglect thermal effects of hydrogen oxidation for the boundary conditions (BCs). Temperatures near the ends of the tube were less accessible using this approach but were sufficiently low (<< 500°C) to

113 be considered non-critical for modeling reaction rates. The furnace control temperatures used to
114 designate thermal conditions in this paper are designated in the legends and are all near the
115 plateaus in Fig. 1. Conditions with higher inlet airflow are expected to cool the inlet upstream of
116 the heat source more efficiently, so the lower measured wall temperatures near the H₂ inlet
117 shown in Fig. 1b at 1000 standard cubic centimeters per minute (SCCM) with respect Fig. 1a at
118 100 SCCM are reasonable.

119 **3. Computational Methods**

120 SIERRA/Fuego [17, 18] is a low-Mach number code for simulating objects in fires and is
121 extended to support a variety of problems of interest to Sandia and affiliates who use the code. A
122 major differentiating factor is that the code is a control volume finite element mechanics
123 (CVFEM) code rather than a more traditional control volume code. A variety of mesh elements
124 are available to the unstructured solver. The mesh for the fire simulations in this study is
125 hexahedral and regular, which would be suited to a structured code solver as well. Tetrahedral
126 elements were employed for 3-dimensional (3-D) simulations and triangular elements of with
127 comparable length scales were used for 2-D simulations; this choice facilitated meshing features
128 of different sizes present in the experimental geometry. Fuego is massively parallel, and the
129 resolved scale for these simulations is in the 0.1-100 cm range.

130 A variety of turbulence and reaction models exist, with this work electing to represent turbulence
131 effects using the Temporally Filtered Navier-Stokes (TFNS) model (a hybrid LES/RANS
132 capability) [19]. A fire in the corner of the simulated ISO-9705 standard room [20] was
133 represented using the Eddy Dissipation Concept (EDC) model for fluid (gas)-phase reactions
134 [21, 22]. The EDC model permits a single fuel. This effort simulates the fire with a methane gas
135 release. Due to this limitation, the reaction of tritium to oxide is solved separately through a 1-
136 step mechanism that is external to the EDC model, with separate tritium species variables.


137 Participating media radiation energy transport is simulated using Nalu coupling [17], which
138 mostly involves a heat loss from the fire to the surroundings. Nalu uses a Discrete Ordinates
139 solver to solve the radiative transfer equation. Participating species include soot, CO₂, and H₂O
140 using a gray approximation. The radiation contribution of released vapors is neglected and
141 believed to be small due to the low concentrations. The walls and ceiling are simulated with a 1D
142 conduction model and thermal properties consistent with the ISO standard (600 kg/m³ density,
143 20 mm thick). Walls become heated over the duration of the burn, providing thermal feedback.

144 All cases were run with version 4.56.4 of the SIERRA/Fuego code. Designed under the
145 governance of DOE order O 414.1D, version control, nightly testing, and verification are
146 inherent in the code design and maintenance practices that lend to the credibility of the results.
147 Validation involves benchmarking the solutions to datasets, which help establish the accuracy of
148 the modeling. A campaign to validate the code resulted in numerous component validation
149 results beginning approximately 20 years ago. More recent and relevant validation efforts
150 include a comparison to a dispersion in an urban geometry [23], and a comparison to a buoyant
151 plume of He gas [7, 24].

152 **3.1 Simulated Tube Reactor**

153 The simple geometry of the tube reactor closely approximates a 1-D plug flow reactor (PFR), so
 154 the hydrogen oxidation is dominated by the temperature profile and the residence time.
 155 Turbulence (which is expected at Reynolds numbers between 10,000 and 440,000 calculated for
 156 the tube reactor) improves the PFR approximation and hence the kinetic rate measurements by
 157 ensuring radially uniform heating of the gas mixture and efficient mixing of H₂ or D₂ with air
 158 before the flowing gas achieves temperatures high enough for oxidation to occur. The main
 159 reasons for pursuing a CFD simulation for these kinetic studies rather than a simpler 1-D PFR
 160 simulation were (1) to obtain a pre-test indication of whether good mixing could be expected
 161 before the hydrogen encountered high temperatures and (2) to prepare for the simulations
 162 described in Section 3.3 by implementing the kinetics in a comparable but simplified
 163 SIERRA/Fuego simulation scenario.

164 A 3-D mesh was used for pre-test simulations to verify that mixing was essentially complete by
 165 the time the centerline gas temperature reached 325°C [7]. This is well below temperatures
 166 where conversion to water was first observed (> 500°C). Simulations comparing 3-D meshes and
 167 2-D axisymmetric meshes are reported separately [7]. It was found that differences in final
 168 conversion and steady-state profiles of centerline temperature, velocity, and concentrations were
 169 minimal between 3-D and 2-D meshes with identical mesh size parameters, while the
 170 computational expense was reduced by a factor of 40 for the 2-D mesh. Results were also
 171 consistent for 3 levels of mesh refinement in 2-D and 3-D; the worst-case deviation was 4% of
 172 nominal conversion, or 2.5% deviation in absolute conversion units [7].

173
 174 **Fig. 2.** Mesh used to model the H₂ and D₂ oxidation experiments, including zoomed views of the
 175 inlet and outlet (artificial contraction in yellow is for computational stability).

176 The top view in Fig. 2 includes normal and mirrored perspectives of the 2-D axisymmetric mesh
 177 used for most of the simulations shown in Section 4.1 to illustrate the entire domain with the axis
 178 of symmetry. The magnified view of the inlet in the middle panel of Fig. 2 has two vertical red
 179 edges of different sizes on the far left, representing BCs for the annular air inlet and the central
 180 hydrogen inlet tube. Both inlet BCs are specified in terms of velocity vectors, temperature (300

181 K or 27°C) and composition. The yellow contraction in Fig. 2 is an artificial extension that was
 182 appended to the green representation of the experimental geometry. This yellow conical region
 183 was designed to ensure that outlet concentrations at the designated sampling plane (red, at the
 184 axial position of the experimental exit plane) were not influenced by spurious backflow (not
 185 observed with this geometry) from the simulated domain outlet (defined as air at 300 K or 27°C).
 186 The simulated domain outlet (blue line) was defined as an open or outflow boundary condition.

187 3.2 Hydrogen Isotope Properties and Reaction Modeling in SIERRA/Fuego

188 Hydrogen and deuterium properties are available in standard references, but very few
 189 measurements are available for tritium. Thermophysical properties for isotopologues of
 190 hydrogen and water that were recently identified [7], along with methods used to deduce
 191 properties for tritium species that could not be found in literature. These temperature-dependent
 192 properties were used to simulate hydrogen isotopes in this study.

193 SIERRA/Fuego includes a capability to model user-defined reactions [17]. Hence, Fuego
 194 simulations with the geometry in Fig. 2 accounted for flow, mixing, heating, reaction (water
 195 formation) and cooling. The modeling parameters for kinetic rates were iteratively optimized
 196 using the CFD code. A global hydrogen oxidation mechanism from Marinov et al. (1995) [25]
 197 was initially selected for this work:

$$r_{global} = A \exp\left(-\frac{E}{RT}\right) [H_2]^{n_H} [O_2]^{n_O} \quad (1)$$

198 The default reaction orders of $n_H = 1.0$ and $n_O = 0.5$ specified in this equation are consistent with
 199 the stoichiometry of the global oxidation reaction ($H_2 + \frac{1}{2} O_2 \rightarrow H_2O$). We have adapted the
 200 originally reported rate constants for this reaction to units required by Fuego with concentrations
 201 in mol/m³ (indicated by square brackets). The originally reported Arrhenius parameters were
 202 calibrated to flame speed data [25], but the regime of interest for this work corresponds to sub-
 203 flammable hydrogen concentrations (far below 4% in air at atmospheric pressure) [26, 27]. Other
 204 H₂ kinetic models exist, and were also considered, including for example [28-38].

205 Arrhenius rate constants are defined as $k = A \exp(-E/RT)$, as in Equation (1). A relationship for
 206 isotopic pairs of Arrhenius rate constants may be derived from kinetic (collision) theory of gases,
 207 where molecular velocities are inversely related to the square root of molecular weight. This
 208 relationship is given by [39, 40]:

$$\left(\frac{k_H}{k_T}\right) = \left(\frac{k_H}{k_D}\right)^{1.44} \quad (2)$$

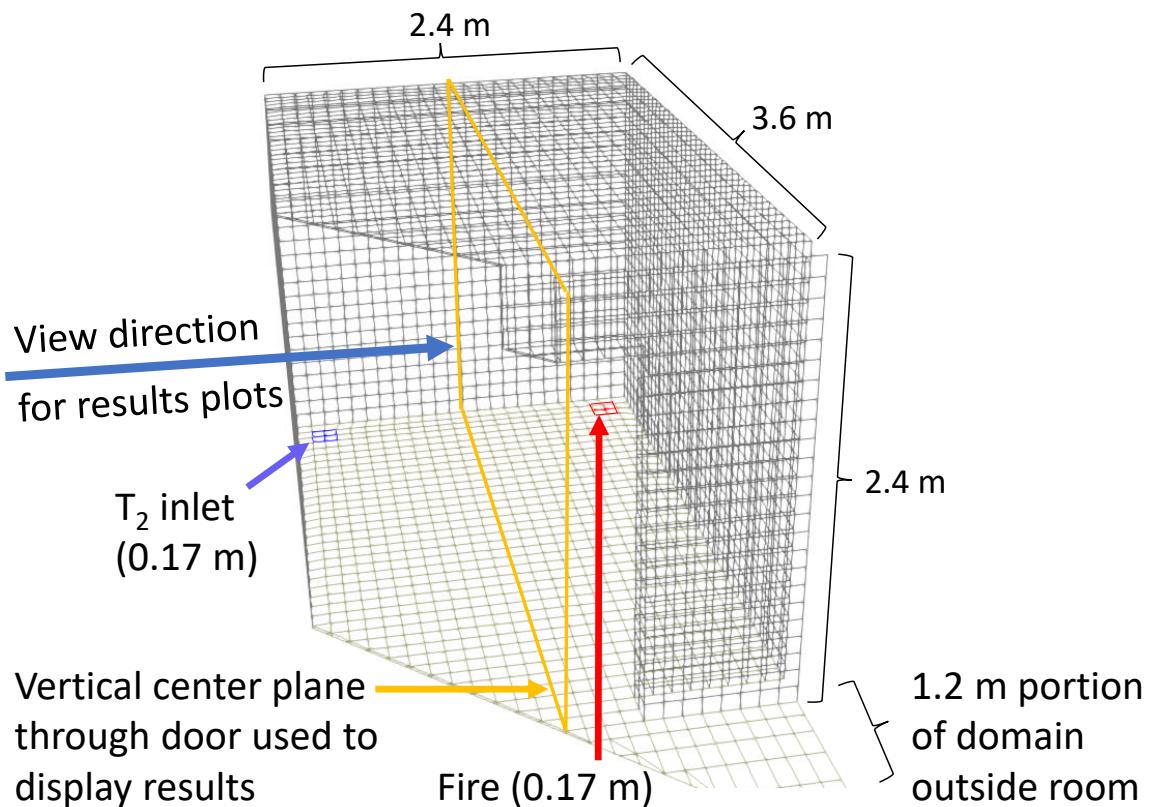
209 where the subscripts H, D and T refer to normal hydrogen (protium), deuterium, and tritium. The
 210 exponent of 1.44 is defined using the following function of atomic masses [39, 40]:

$$\frac{1 - \sqrt{\frac{m_H}{m_T}}}{1 - \sqrt{\frac{m_H}{m_D}}} = 1.44 \quad (3)$$

211 Equation (2) neglects quantum effects such as tunneling, which may become non-negligible at
212 the high temperatures investigated in this work. However, Equation (2) has been successful in
213 describing experimental trends over a very broad range of conditions [39, 41, 42] and is expected
214 to capture the most important aspects of the isotopic trend in reaction rates. Equation (2) is
215 recommended as the best available method to scale the experimentally derived pre-exponential
216 factors from protium and deuterium to produce the recommended value for the tritium rate
217 constant. A common activation energy yielded an acceptable fit of the experimental oxidation
218 measurements for H₂ and D₂, so the same activation energy was assumed for T₂ with a pre-
219 exponential factor calculated from Equation (2).

220 Equation (1) was selected as a sufficiently simple chemical rate expression for application in the
221 CFD simulations of the ISO-9705 scenario [20] described in Section 3.3. It is normally not
222 advisable to simulate fire scenarios with direct kinetic mechanisms such as this because flames
223 are typically ~1 mm in scale and the resolution required to resolve this is not generally available
224 for fire problems of practical interest. Besides the resolution problem, stiff reactions can also be
225 challenging to solve with accuracy. The EDC model is designed to produce approximations to
226 fires in under-resolved scenarios and is a mixing-limited approximation. The use of the global 1-
227 step mechanism is thought to be reasonable for the hydrogen contaminant reactions in this
228 circumstance because:

- 229 1. The hydrogen oxidation reactions are not expected to occur under flaming environments
230 with the low-concentration leaked hydrogen as the primary fuel source.
- 231 2. The reactions are very non-linear with temperature, and cell average temperatures in the
232 vicinity of the EDC-heated plume (with a steady, uniform source of flow) are probably
233 adequate to capture the bulk extent of reaction for the hydrogen isotopes.
- 234 3. There is a degree to which the reactions will be advection and/or diffusion controlled, this
235 being the case the mechanism can be approximate and may still yield acceptable results.


236 Because the fire in the ISO-9705 simulations is intended only as a heat source, simulating it with
237 the EDC model is an acceptable approximation for a fire condition as it affects the reaction of the
238 contaminant release of hydrogen. The EDC fuel is CH₄, and the inflow is selected to give a heat
239 release rate for the reaction as specified in the ISO-9705 standard [20] and Section 3.3 below.

240 **3.3 Simulated ISO9705 Standard Room Fire with Hydrogen Isotope Release**

241 It was not obvious in advance whether the oxidation rates developed in this work for low
242 concentrations would have an important influence on the extent of hydrogen isotope oxidation in
243 a reasonable room-scale fire scenario. The ISO-9705 (2016) standard [20] was selected as a
244 representative fire scenario to evaluate via simulation in conjunction with a release of hydrogen
245 isotope contaminant. This standard prescribes a 3.6-m by 2.4-m room 2.4 m high with a doorway
246 of 2.0 m height and 0.8 m width centered along one of the 2.4 m walls, as shown in Fig. 3. A
247 170-mm square gas burner surface is prescribed, and this dimension is used to locate a methane
248 injection on the ground in the corner furthest from the doorway of the domain. The contaminant
249 is released from a similarly dimensioned boundary condition in the other corner with comparable
250 distance from the door. The standard fire is prescribed as 100 kW, with the potential for

251 increasing the output to 300 kW at 10 minutes and continuing the test for an additional 10
252 minutes. The simulations in this work modified these guidelines by specifying the larger 300 kW
253 fire throughout to ensure that conversions of T_2 to T_2O from a small release would be high
254 enough for useful comparisons. The release of hydrogen isotope is not part of the standard, so the
255 release was assumed to be 0.1 g occurring between 10 s and 16.5 s at a constant rate.

256 To model the fire, an extended flow region outside the doorway is added to allow for natural
257 ventilation conditions that would be more representative of the ISO-9705 tests. An open
258 boundary is applied to the periphery of this extension of the domain. During tests, the open door
259 provides an escape path for hot products towards the top, and an inflow of fresh air towards the
260 bottom naturally develops under these conditions, which helps sustain the fire. This causes a net
261 movement of tritium and hot gases upward due to buoyancy and towards the domain exit through
262 the door, which is from lower left to upper right on the central results plane designated in Fig. 3.
263 The ISO-9705 mesh used for this study has a mesh length scale of 4.25 cm, which is double the
264 length-scale refinement of 8.5 cm shown in Fig. 3 (about a factor of 8 increase in mesh
265 elements). This mesh length of 4.25 cm was found to produce results in a convergence study that
266 were adequately similar to simulations with an even more refined mesh length scale of 2.83 cm
267 (triple the length-scale refinement shown in Fig. 3, or a factor of about 27 increase in mesh
268 elements). These results are presented in more detail in a separate technical report [7].

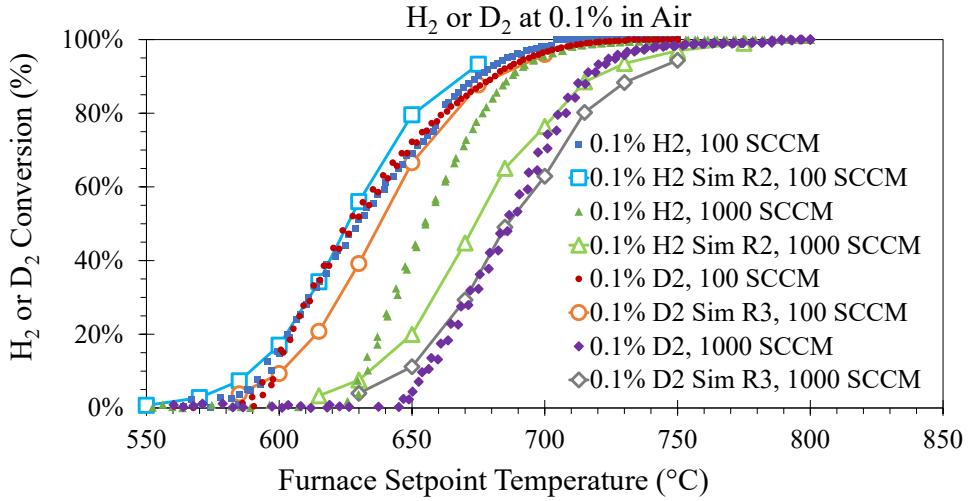
272 The ISO-9705 standard room is conservatively small with respect to industrial and laboratory
273 spaces where tritium is typically stored. The tritium concentrations that can exist within it are
274 therefore maximized. A second conservatism is the lack of any ceiling ducts within the room;
275 active ventilation is nearly universal and even ducts with no airflow can provide an escape path
276 for either hot gases or hydrogen isotopes that rise to the ceiling.

277 **4. Results and Discussion**

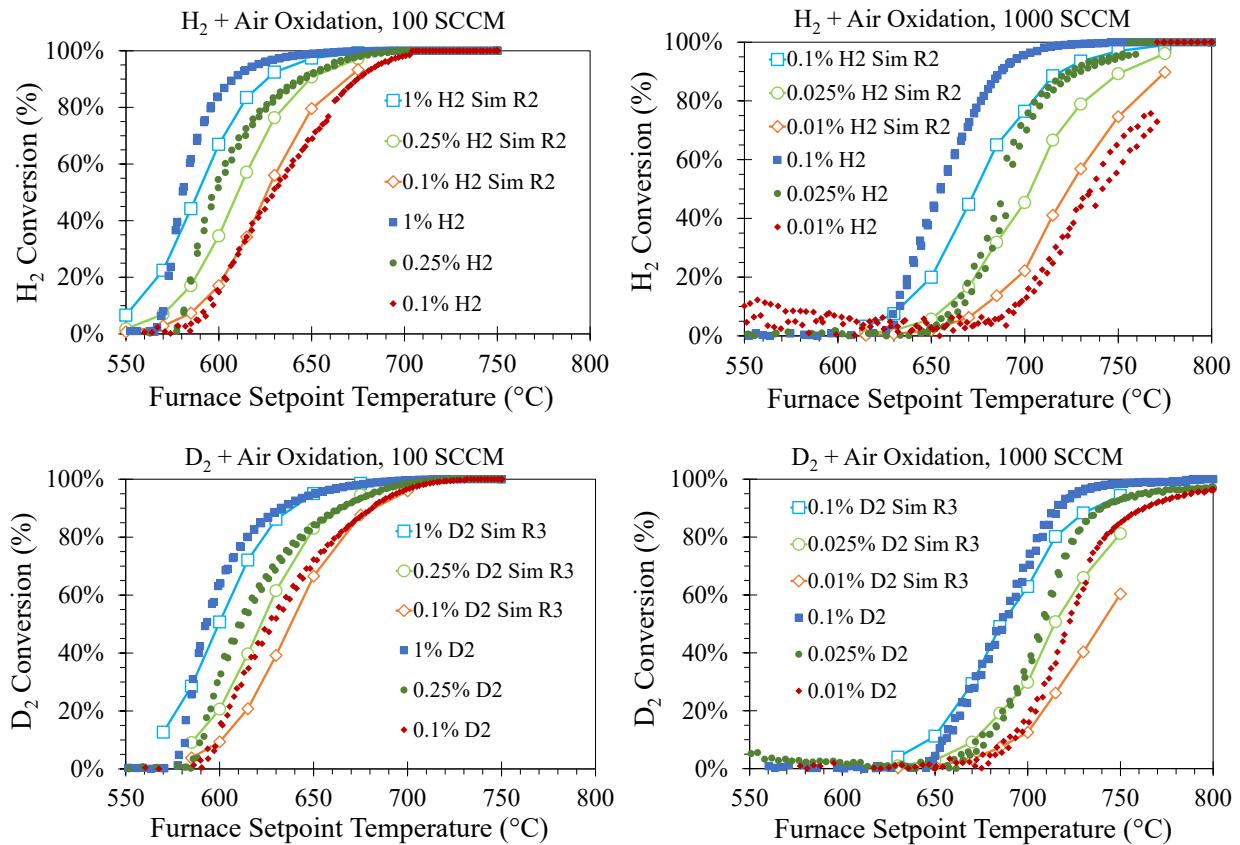
278 **4.1 Oxidation Measurements and Kinetic Modeling**

279 For brevity, the oxidation data for H₂ and D₂ are presented in terms of conversion versus
280 temperature in combination with the optimized simulations at a subset of temperatures. The
281 original kinetic parameters [25] for Equation (1) caused simulated oxidation of hydrogen to
282 occur at temperatures about 250°C lower than the measurements [7]. Therefore, several
283 parameter adjustments were required to represent the measurements. Equation (1) is a global
284 mechanism that omits details inherent in the underlying elementary reaction steps; it cannot
285 predict all conversion profiles features over the full range of possible experimental conditions.

286 The finalized parameters for Equation (1) are listed below the original values [25] in Table 1; the
287 rate parameters are numbered in the leftmost column as R1 through R4 for convenience. Manual
288 parameter adjustment to produce a good visual fit of the data was most efficient when the
289 activation energy *E* was adjusted first, followed by the hydrogen reaction order *n_H*. The pre-
290 exponential factor *A* was updated for each intermediate step to ensure a good match of the target
291 data. The default oxygen reaction order of *n_O* = 0.5 was retained because measurements with
292 varying oxygen were lacking; this is adequate when oxygen concentration does not vary much.


293 **Table 1.** Kinetic parameters for oxidation of trace concentrations of hydrogen isotopes using
294 Equation (1). The tritium pre-exponential factor is extrapolated via Equation (2).

#	Isotope and Source	Molecular Mass (g/mol)	<i>A</i>	<i>E/R</i> (K)	<i>n_H</i>
R1	H ₂ (protium, [25])	2.016	1.77x10 ¹⁰ m ^{1.5} /mol ^{0.5} /s	17,600	1.0
R2	H ₂ (protium, this work)	2.016	8.0x10 ²⁴ m ^{4.5} /mol ^{1.5} /s	50,000	2.0
R3	D ₂ (deuterium, this work)	4.028	4.0x10 ²⁴ m ^{4.5} /mol ^{1.5} /s	50,000	2.0
R4	T ₂ (tritium, extrapolated)	6.032	2.9x10 ²⁴ m ^{4.5} /mol ^{1.5} /s	50,000	2.0


295

296 Fig. 4 highlights a subset of conditions with H₂ or D₂ concentrations of 0.1% used to determine
297 activation energy. Symbols without lines are measurements, and open symbols with lines are
298 optimized simulations with rates from Table 1 (R2 for H₂, R3 for D₂). Differences in residence
299 time from 2 magnitudes of airflow are the principal cause of the horizontal shift between about
300 600°C and 650°C. The magnitude of this horizontal shift and the slope of the conversion curves
301 both increase with the activation energy *E*. It was apparent from the low slopes of the initial
302 simulated conversion curves that activation energies much larger than the published value of *E/R* =

303 17,600 K [25] (derived from measurements in the flammable regime) would be required. The
 304 revised activation energy ($E/R = 50,000$ K) with the pre-exponential factors in Table 1 yield
 305 simulated conversions that agree with measured onset behavior, which is defined here as
 306 conversions between 5% and 20%. For simplicity, the same activation energy was used for H_2 and
 307 D_2 . Some literature suggests higher activation energies may apply to heavier isotopologues [39], but
 308 this approach was rejected because doing so would produce a worse fit of our measurements.

309
 310 **Fig. 4.** Experimental and simulated conversion of H_2 and D_2 at 0.1% in air; rates from Table 1

311

312

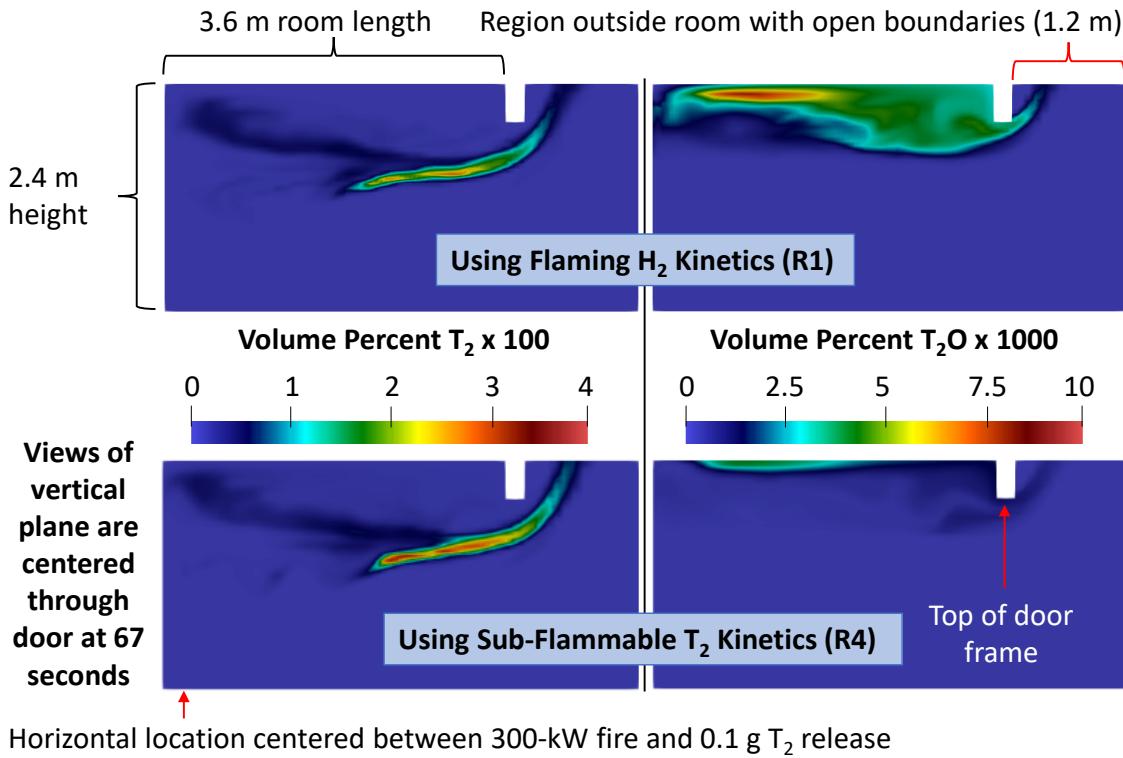
313 **Fig. 5.** Experimental and simulated conversion of H₂ (top, R2) and D₂ (bottom, R3) with long
314 residence time (left, 100 SCCM airflow) and short residence time (right, 1000 SCCM airflow).

315 Fig. 5 shows that the full set of oxidation measurements are of good quality. Minor hysteresis
316 occurs only at the lowest flow rates for H₂ or D₂ (see far right series). The optimized simulations
317 compare favorably to these data. Attempts to model oxidation with the default hydrogen reaction
318 order of $n_H = 1.0$ would produce identical results for all simulations (open symbols) shown within
319 each panel of Fig. 5. This makes sense for a first-order reaction with an identical temperature
320 history because the higher average reaction rates are proportional to the higher initial reactant
321 concentration, and these factors cancel out when the data are normalized as fractional
322 conversions. Parameter scoping exercises indicate that values of n_H closer to 3.0 yield too much
323 vertical separation between conversion curves for both D₂ and H₂. An integer value for n_H is
324 preferred given the experimental uncertainty and because the units for the pre-exponential factor are
325 greatly simplified. The optimal reaction order of $n_H = 2.0$ from Table 1 yields the best vertical
326 separation between different inlet concentrations in Fig. 5 at temperatures where the lowest
327 concentrations (open orange diamonds) have conversions of 10% or lower.

328 Although oxidation rates for deuterium and protium had measurable differences for some
329 experimental conditions, these measured rates and the extrapolated tritium oxidation rates from
330 Table 1 are all of the same order of magnitude. The rate reduction in the sub-flammable regime
331 (R2 through R4 in Table 1) compared to rates for flammable concentrations (R1 in Table 1) is a
332 much more pronounced effect, increasing onset temperatures by about 250°C. The uncertainties
333 associated with the kinetic fits to Equation 1 and the extrapolation via Equation 2 are not well
334 established at this writing, but it is apparent that these uncertainties are orders of magnitude
335 lower than errors resulting from applying flammable kinetic rates to the sub-flammable regime.

336 **4.2 Effect of Kinetic Models on Tritium Oxidation with a Simulated ISO-9705 Fire**

337 Selected results from two SIERRA/Fuego CFD simulations of a tritium release in the ISO-9705
338 room shown in Fig. 3 were used to investigate effects of the updated hydrogen isotope oxidation
339 kinetics in a full-scale 300-kW fire scenario. Fig. 6 shows T₂ and T₂O concentrations in the
340 center-plane of the simulated room with oxidation rates based on flaming H₂ (R1 from Table 1)
341 and sub-flammable T₂ (R4 from Table 1, as developed in this work). The results plane through
342 the center of the door at 67 seconds was chosen to illustrate maximum T₂O and the dispersion
343 path through the door.


344 Hot gases from the fire rise to the ceiling, and any T₂ migrating into regions with sufficiently
345 high temperatures can react to form T₂O (approximately 550°C to 800°C, as shown in Fig. 5).
346 “Flammable” T₂ above a conservatively low LFL of 4% from H₂ (Cadwallader et al. estimated
347 the T₂ LFL as 6.6% [43]) is localized to the time and (cold) vicinity of the T₂ release event with a
348 maximum volume of 792 cm³. This is equivalent to a 2.74-cm thick layer above the injection
349 plane. The maximum scale for T₂ shown in Fig. 6 corresponds to 1% of this conservative LFL.

350 The T₂ concentrations shown as light blue in Fig. 6 are equivalent to the lowest inlet
351 concentrations measured in the tube furnace for H₂ and D₂, so the highest simulated reaction
352 rates appear to be within the range of the measurements used to derive the sub-flammable
353 kinetics. The maximum scale for T₂O shown in Fig. 6 corresponds to 0.25% of what would be

354 expected before dispersion of a mixture at the 4% LFL when fully oxidized. The T_2O
355 concentration is near its maximum at 67 s, which is why this time was chosen for the images in
356 Fig. 6 (nearly 1 minute after the release ends).

357 The thin regions enriched in unconverted T_2 escaping through the doorframe just below the hot
358 gas layer shown on the left panels of Fig. 6 are nearly identical. As expected, the maximum T_2
359 concentration is higher with the updated (slower) oxidation rates because less is consumed. T_2
360 concentrations are maximized just below the hot layer of gas due to diffusive and advective
361 transport from the release, flow behaviors induced by the fire, and consumption in the hot zone.
362 The region with T_2O in the hot layer near the ceiling is much larger with the faster oxidation
363 rates originally derived from flaming H_2 [25], with an overall T_2 oxidation CF of 15.43% for the
364 full simulated duration (180 s). The slower rates derived in this study (more appropriate for the
365 concentration regime of these simulations) produce only a small region of T_2O with lower
366 maximum concentrations and an overall CF of 4.72% with respect to the released T_2 .

367 Thus, updating the kinetics reduced conversion of T_2 to T_2O by a factor of 3.27 at the conditions
368 simulated. Conversion in both versions of this scenario is limited by the extent that T_2 mixes
369 with hot gas, and it could easily be assumed that the effect of chemical kinetics would not
370 strongly affect a scenario where mixing dominates. The large difference in conversion with
371 different oxidation rate models is attributable to the fact that the volume of gases that exceed the
372 higher temperature threshold of about 550°C associated with the sub-flammable kinetics is small
373 compared to the volume of gases that exceed the lower threshold of about 300°C associated with the
374 flaming kinetic rates. Hence, little or no conversion occurs for T_2 that encounters maximum
375 temperatures between 300°C and 550°C when the kinetics developed in this work are used, whereas
376 significant conversion of T_2 occurs in this temperature range if oxidation rates based on flaming
377 kinetics are assumed. It was not obvious before this study that the oxidation rates at low
378 concentrations would be so much slower than rates derived from the flaming regime, which made
379 the effect of kinetics significant even in this room-scale fire scenario.

380

381 **Fig. 6.** Simulated volume fractions of T₂ (left views) and T₂O (right views) in ISO-9705 room
382 (plane shown in Fig. 3) using different oxidation rates from Table 1.

383 **5. Summary and Conclusions**

384 This work reports oxidation measurements for H₂ and D₂ at sub-flammable concentrations in a
385 tube furnace, with five concentrations from 0.01% to 1% by volume in air. Oxidation to the
386 water form (H₂O or D₂O, respectively) occurred between 550°C and 800°C, and the rates of
387 protium conversion exceeded the deuterium oxidation rates for most experimental conditions. These
388 experimental trends suggest that tritium should have oxidation rates lower than the measured
389 deuterium rates reported in this study, but on the same order of magnitude. Furthermore, the
390 hydrogen oxidation rates reported in this work were significantly slower than predicted by a global
391 1-step reaction model that was originally developed from high-concentration measurements in the
392 flammable regime [25]; the measured threshold for the onset of H₂ oxidation increased by about
393 250°C with respect to pre-test simulations with the rate expression derived for flaming reactions.

394 Rate parameters for the global 1-step hydrogen oxidation reaction [25] were adapted in this work
395 to model the experimentally measured conversions, using a common apparent reaction order and
396 activation energy for H₂ and D₂ in the low-concentration regime. The final activation energy
397 obtained for this regime was much higher than reported for the flammable regime, which is
398 consistent with the low measured rates. The same reaction order and activation energy are
399 recommended for T₂ oxidation, while the tritium pre-exponential factor was extrapolated to a
400 lower value based on the experimental trends observed for protium and deuterium oxidation.

401 These results have safety implications for tritium, as the hazard level for a release scenario is largely
402 determined by the fraction of released tritium that is converted to the more hazardous water form
403 (T_2O or THO). The low measured oxidation rates for H_2 and D_2 and the expected reduction in
404 oxidation rates for T_2 with respect to the lighter hydrogen isotopes both imply that a substantial
405 fraction of tritium released in a credible low-concentration scenario could remain unoxidized in
406 the vicinity of a heat source such as a fire. The global rate expression with the parameters
407 recommended in this study are intended to facilitate comparisons to other data sources and to
408 provide an alternative means to evaluate the hazards of tritium release scenarios with respect to
409 the non-informed initial regulatory assumption of 100% oxidation [1].

410 CFD simulations employing an ISO-9705 standard fire geometry and fire with an adjacent
411 release of T_2 demonstrate that limited oxidation can be expected in a representative room fire
412 scenario with a release of hydrogen isotope contaminant. The conversion fraction to T_2O is
413 greatly reduced by the slower oxidation rates derived from our measurements in a low-
414 concentration regime. This is attributable to the much smaller volume of hot gas above the higher
415 oxidation threshold associated with the slower rates developed in this work. These simulated
416 results are valuable because it was not clear *a priori* that the reduced oxidation rates at low
417 concentrations would be substantial enough to cause a strong interaction between mixing and
418 kinetic effects.

419 **Acknowledgements**

420 This article has been authored by an employee of National Technology & Engineering Solutions
421 of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE).
422 The employee owns all right, title and interest in and to the article and is solely responsible for
423 its contents. The United States Government retains and the publisher, by accepting the article for
424 publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
425 irrevocable, world-wide license to publish or reproduce the published form of this article or
426 allow others to do so, for United States Government purposes. The DOE will provide public
427 access to these results of federally sponsored research in accordance with the DOE Public Access
428 Plan <https://www.energy.gov/downloads/doe-public-access-plan>.

429 **References**

- 430 [1] *Tritium Handling and Safe Storage*, DOE-STD-1129-2015, Washington, D.C., (2015).
- 431 [2] J. Mishima and C. M. Steele, *Oxidation of Tritium Gas Under Accident and Transport*
432 *Conditions*, LA-UR-02-3803, (July 2002).
- 433 [3] P. Gray, S. Holland, and D. B. Smith, "The effect of isotopic substitution on the flame
434 speeds of hydrogen-oxygen and hydrogen-nitrous oxide flames," *Combustion and Flame*,
435 vol. 14, no. 3, pp. 361-374, (1970), doi: [https://doi.org/10.1016/S0010-2180\(70\)80050-5](https://doi.org/10.1016/S0010-2180(70)80050-5).
- 436 [4] P. Gray and D. B. Smith, "Isotope effects on flame speeds for hydrogen and deuterium,"
437 *Chemical Communications (London)*, 10.1039/C19670000146 no. 4, pp. 146-148,
438 (1967), doi: <https://doi.org/10.1039/C19670000146>.
- 439 [5] G. W. Koroll and R. K. Kumar, "Isotope effects on the combustion properties of
440 deuterium and hydrogen," *Combustion and Flame*, vol. 84, no. 1, pp. 154-159, (1991),
441 doi: [https://doi.org/10.1016/0010-2180\(91\)90044-C](https://doi.org/10.1016/0010-2180(91)90044-C).

442 [6] C. N. Hinshelwood, A. T. Williamson, and J. H. Wolfenden, "The Reaction Between
443 Oxygen and the Heavier Isotope of Hydrogen," *Proceedings of the Royal Society of*
444 *London. Series A, Mathematical and Physical Sciences*, vol. 147, no. 860, pp. 48-57,
445 (1934). [Online]. Available: <http://www.jstor.org/stable/2935460>.

446 [7] A. L. Brown, R. C. Shurtz, L. K. Takahashi, E. N. Coker, J. C. Hewson, and M. L.
447 Hobbs, *Tritium Fires: Simulation and Safety Assessment*, Sandia National Laboratories,
448 SAND2022-4187, (April 2022). Available: <https://doi.org/10.2172/1862102>

449 [8] A. A. Westenberg and N. de Haas, "Atom—Molecule Kinetics Using ESR Detection. III.
450 Results for $O+D_2 \rightarrow OD+D$ and Theoretical Comparison with $O+H_2 \rightarrow OH+H$," *The*
451 *Journal of Chemical Physics*, vol. 47, no. 10, pp. 4241-4246, (1967), doi:
452 <https://doi.org/10.1063/1.1701606>.

453 [9] K. M. Pamidimukkala and G. B. Skinner, "Resonance absorption measurements of atom
454 concentrations in reacting gas mixtures. VIII. Rate constants for $O+H_2 \rightarrow OH+H$ and
455 $O+D_2 \rightarrow OD+D$ from measurements of O atoms in oxidation of H₂ and D₂ by N₂O," *The*
456 *Journal of Chemical Physics*, vol. 76, no. 1, pp. 311-315, (1982), doi:
457 <https://doi.org/10.1063/1.442779>.

458 [10] J. V. Michael, "Rate constants for the reaction $O+D_2 \rightarrow OD+D$ by the flash photolysis–
459 shock tube technique over the temperature range 825–2487 K: The H₂ to D₂ isotope
460 effect," *The Journal of Chemical Physics*, vol. 90, no. 1, pp. 189-198, (1989), doi:
461 <https://doi.org/10.1063/1.456513>.

462 [11] P. Marshall and A. Fontijn, "HTP kinetics studies of the reactions of O(2 3PJ) atoms with
463 H₂ and D₂ over wide temperature ranges," *The Journal of Chemical Physics*, vol. 87, no.
464 12, pp. 6988-6994, (1987), doi: <https://doi.org/10.1063/1.453395>.

465 [12] L. M. Dorfman and B. A. Hemmer, "Ion-Pair Yield of the Tritium-Oxygen Reaction,"
466 *The Journal of Chemical Physics*, vol. 22, no. 9, pp. 1555-1558, (1954), doi:
467 <https://doi.org/10.1063/1.1740456>.

468 [13] J. E. Phillips and C. E. Easterly, *Tritium oxidation and exchange: preliminary studies*,
469 Oak Ridge National Laboratory, United States, ORNL/TM-5963, (May 1, 1978).
470 Available: <https://doi.org/10.2172/7157724>

471 [14] P. J. Papagiannopoulos and C. E. Easterly, "Mechanism of HTO Formation in Gaseous
472 Tritium Mixtures," *International Journal of Chemical Kinetics*, vol. 14, pp. 77-90,
473 (1982). [Online]. Available: <https://doi.org/10.1002/kin.550140109>.

474 [15] C. E. Easterly and M. R. Bennett, "Radiation Catalyzed Conversion of Tritium Gas to
475 Tritiated Water," *Nuclear Technology - Fusion*, vol. 4, no. 2P2, pp. 116-120, (1983), doi:
476 <https://doi.org/10.13182/FST83-A22854>.

477 [16] C. E. Easterly, H. Noguchi, and M. R. Bennett, "Low Concentration Conversion of
478 Tritium Gas to Tritiated Water," *Fusion Technology*, vol. 8, no. 2P2, pp. 2564-2568,
479 (1985), doi: <https://doi.org/10.13182/FST85-A24665>.

480 [17] SIERRA Thermal/Fluid Development Team, *SIERRA Low Mach Module: Fuego User*
481 *Manual - Version 4.58*, Sandia National Laboratories, SAND2020-11536, (October
482 2020). Available: <https://doi.org/10.2172/1716571>

483 [18] SIERRA Thermal/Fluid Development Team, *SIERRA Low Mach Module: Fuego Theory*
484 *Manual - Version 4.58*, Sandia National Laboratories, SAND2020-11535, (October
485 2020). Available: <https://doi.org/10.2172/1716570>

486 [19] S. R. Tieszen, S. P. Domino, and A. R. Black, *Validation of a simple turbulence model*
487 *suitable for closure of temporally-filtered Navier-Stokes equations using a helium plume*,

488 Sandia National Laboratories, SAND2005-3210, (June 2005). Available:
489 <https://doi.org/10.2172/923079>

490 [20] *Reaction to fire tests - Room corner test for wall and ceiling lining products - Part 1: Test method for a small room configuration*, ISO 9705-1:2016(E), Vernier, Geneva, Switzerland, (2016). [Online]. Available: <https://www.iso.org/standard/59895.html>

491 [21] B. F. Magnussen and B. H. Hjertager, "On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion," *Symposium (International) on Combustion*, vol. 16, no. 1, pp. 719-729, (1977), doi: [https://doi.org/10.1016/S0082-0784\(77\)80366-4](https://doi.org/10.1016/S0082-0784(77)80366-4).

492 [22] B. F. Magnussen, "On the structure of turbulence and a generalized eddy dissipation concept for chemical reactions in turbulent flow," presented at the 9th AIAA Society Meeting, St. Louis, MO, USA, 1981).

493 [23] A. L. Brown, B. W. Lance, N. P. Grieb, M. Clemenson, M. Benson, and C. Elkins, *Dispersion Validation for Urban Flow in Downtown Oklahoma City*, Sandia National Laboratories, SAND2020-10131, 2020).

494 [24] A. L. Brown *et al.*, "Proceedings of the first workshop organized by the IAFSS working group on measurement and computation of fire phenomena (MaCFP)," *Fire Safety Journal*, vol. 101, pp. 1-17, (2018). [Online]. Available: <https://doi.org/10.1016/j.firesaf.2018.08.009>.

495 [25] N. M. Marinov, C. K. Westbrook, and W. J. Pitz, "Detailed and Global Chemical Kinetics Model for Hydrogen," presented at the 8th International Symposium on Transport Properties, San Francisco, California, United States, (March 1995). Available: <https://www.osti.gov/servlets/purl/90098>.

496 [26] M. Hertzberg, "Flammability limits and pressure development in H₂-air mixtures," presented at the Workshop on the Impact of Hydrogen on Water Reactor Safety, Albuquerque, NM, United States, pp. 13-67, (September, 1981), NUREG/CR--2017-Vol3. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:15046472.

497 [27] F. J. Benz and P. L. Boucher, "Flammability characteristics of hydrogen/oxygen/nitrogen mixtures at reduced pressures," presented at the Workshop on the Impact of Hydrogen Water Reactor Safety, Albuquerque, NM, United States, pp. 137-169, (September, 1981), NUREG/CR--2017-Vol3. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:15047089.

498 [28] N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. J. Castaldi, and S. M. Senkan, "Modeling of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames," *Combustion Science and Technology*, vol. 116-117, no. 1-6, pp. 211-287, (1996), doi: <https://doi.org/10.1080/00102209608935550>.

499 [29] D. Fernández-Galisteo, A. L. Sánchez, A. Liñán, and F. A. Williams, "One-step reduced kinetics for lean hydrogen-air deflagration," *Combustion and Flame*, vol. 156, no. 5, pp. 985-996, (2009), doi: <https://doi.org/10.1016/j.combustflame.2008.10.009>.

500 [30] A. A. Konnov, "Yet another kinetic mechanism for hydrogen combustion," *Combustion and Flame*, vol. 203, pp. 14-22, (2019), doi: <https://doi.org/10.1016/j.combustflame.2019.01.032>.

501 [31] A. A. Konnov, "Remaining uncertainties in the kinetic mechanism of hydrogen combustion," *Combustion and Flame*, vol. 152, no. 4, pp. 507-528, (2008), doi: <https://doi.org/10.1016/j.combustflame.2007.10.024>.

533 [32] J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, "An updated comprehensive kinetic model
534 of hydrogen combustion," *International Journal of Chemical Kinetics*, vol. 36, no. 10, pp.
535 566-575, (2004), doi: <https://doi.org/10.1002/kin.20026>.

536 [33] J. A. Miller and R. J. Kee, "Chemical nonequilibrium effects in hydrogen-air laminar jet
537 diffusion flames," *The Journal of Physical Chemistry*, vol. 81, no. 25, pp. 2534-2542,
538 (1977), doi: <https://doi.org/10.1021/j100540a035>.

539 [34] M. A. Mueller, T. J. Kim, R. A. Yetter, and F. L. Dryer, "Flow reactor studies and kinetic
540 modeling of the H₂/O₂ reaction," *International Journal of Chemical Kinetics*, vol. 31, no.
541 2, pp. 113-125, (1999), doi: [https://doi.org/10.1002/\(SICI\)1097-4601\(1999\)31:2<113::AID-KIN5>3.0.CO;2-0](https://doi.org/10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0).

542 [35] R. C. Rogers and W. Chinitz, "Using a global hydrogen-air combustion model in
543 turbulent reacting flow calculations," *AIAA Journal*, vol. 21, no. 4, pp. 586-592, (1983),
544 doi: 10.2514/3.8117.

545 [36] B. Sekar and H. S. Mukunda, "A computational study of direct simulation of high speed
546 mixing layers without and with chemical heat release," *Symposium (International) on
547 Combustion*, vol. 23, no. 1, pp. 707-713, (1991), doi: [https://doi.org/10.1016/S0082-0784\(06\)80320-6](https://doi.org/10.1016/S0082-0784(06)80320-6).

548 [37] T. Varga *et al.*, "Optimization of a hydrogen combustion mechanism using both direct
549 and indirect measurements," *Proceedings of the Combustion Institute*, vol. 35, no. 1, pp.
550 589-596, (2015), doi: <https://doi.org/10.1016/j.proci.2014.06.071>.

551 [38] C. K. Westbrook and F. L. Dryer, "Simplified Reaction Mechanisms for the Oxidation of
552 Hydrocarbon Fuels in Flames," *Combustion Science and Technology*, vol. 27, no. 1-2, pp.
553 31-43, (1981), doi: <https://doi.org/10.1080/00102208108946970>.

554 [39] L. Melander and W. H. Saunders, *Reaction rates of isotopic molecules*. New York:
555 Wiley, pp. 28-29, (1980).

556 [40] C. G. Swain, E. C. Stivers, J. F. Reuwer, and L. J. Schaad, "Use of Hydrogen Isotope
557 Effects to Identify the Attacking Nucleophile in the Enolization of Ketones Catalyzed by
558 Acetic Acid1-3," *Journal of the American Chemical Society*, vol. 80, no. 21, pp. 5885-
559 5893, (1958), doi: <https://doi.org/10.1021/ja01554a077>.

560 [41] E. S. Lewis and J. K. Robinson, "The influence of tunneling on the relation between
561 tritium and deuterium isotope effects. The exchange of 2-nitropropane-2-t," *Journal of
562 the American Chemical Society*, vol. 90, no. 16, pp. 4337-4344, (1968), doi:
563 <https://doi.org/10.1021/ja01018a025>.

564 [42] M. J. Stern and R. E. Weston, "Phenomenological manifestations of quantum-mechanical
565 tunneling. III. Effect on relative tritium-deuterium kinetic isotope effects," *The Journal of
566 Chemical Physics*, vol. 60, no. 7, pp. 2815-2821, (1974), doi:
567 <https://doi.org/10.1063/1.1681449>.

568 [43] L. C. Cadwallader and D. A. Petti, "Deuterium and Tritium Safety Issues in IFE Target
569 Fabrication," *Fusion Science and Technology*, vol. 41, no. 3P2, pp. 635-641, (2002), doi:
570 <https://doi.org/10.13182/FST02-A22665>.

571

572