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RMI = It’s not just for shocks anymore! oS
Using a GDI reduces temperature in driver for planar case

planar, shock loading GDI, b=0.15 mm thick
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» shock heating in the driver is significantly less when a GDI is used, ~300 C vs. 900 C

* GDI not optimized but reasonable — shock starting to form at 1.3 mm




Temperature Map for Driver .

temperatures along
centerline of jet
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» temperatures are significantly higher for the shock case, mainly because of reduced shock dissipation

* also somewhat greater plastic work for shock case

» somewhat different behavior in liquid tamper ahead of shock




GDI, h=2 mm, vary b

rise times for h=2 mm,
planar configuration
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 for b=0.20 mm, wave has shocked up at h=2 mm
* rise time increases as b increases

* jet growth decreases as b increases
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Efficiency of GDI T .

normalized jet growth

jet growth vs. layer thickness VS, rise time
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* jet growth shows dependence on layer thickness and rise time (Atyg.g9 — time from 10% to 90% of wave
amplitude)

» when plotted versus rise time (0 for shock), a consistent linear trend emerges




Spike and Bubble Velocities for GDI

velocities and jet length

velocities for shock and

GDI (b=0.45 mm)
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« velocity histories quite different for shock and GDI cases
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* in situ planar velocity history (x2) very close to spike velocity for GDI

* rise time for spike (~0.55 us) comparable to Atq,; (~0.75 us)
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Incremental Analysis of non-shock GDI

input wave, jet growth, and jet
growth estimate
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Incremental Analysis of GDI ) S

input wave, jet growth, and jet

growth estimate - For shock loading, &, scales as A? (kn, )22z
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* For simplicity, we assume that Ag; « Au;, where
A1; is the jump in particle velocity for the it shock

| | . . ) » To obtain an estimate for n;, we integrate the input
0.8 1 1.2 wave velocity (dashed red curve). Itis a good
—>t(us) approximation to the actual jet length (purple).

» For the case of b=0.45 mm, approximate the wave using the six jumps shown.

» Using the integral for velocity to estimate n;, a value E”/Eshock=0.71. The actual value is 0.69.
» More testing is needed to ensure that the approach is generally applicable.




Scaling for At

time for perturbation to flatten
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 For relatively long jets that arrest, Atg,; linear against non-dimensional groups, only weakly dependent on
Y (exponent -0.2-0.0)



Probing Thermal Aspects of Strength Models
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« Johnson-Cook strength model used with Y, adjusted to give results similar to EPP model (Y,=0.75 GPa)

for shock case

* There is a dramatic difference between the shock and GDI results with Johnson-Cook because of the

temperature dependence of that strength model




Conclusions )

» Although RMI is termed the shock instability, it can also occur under non-shock (ramp) loading for
loading times less than or comparable to the time for the surface to flatten

Non-shock loading leads to less heating of the driver material, allowing thermal aspects of the strength
model to be probed

Non-shock loading is less efficient for jet growth

Efficiency can quantified by considering evolution of the interface during the arrival of the ramp wave

Behavior of liquid tamper (e.g. solidification) might complicate interpretation




