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Tamped Richtmyer-Meshkov Instability
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§ Adding tamper keeps P 

above zero, reducing role 
of damage

§ Initial shock leads to 
significant heating of driver

§ Can adjust history by 
choosing different tampers
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for arresting jets (Vogler & Hudspeth):
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RMI – It’s not just for shocks anymore!
Using a GDI reduces temperature in driver for planar case
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planar, shock loading GDI, b=0.15 mm thick
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• shock heating in the driver is significantly less when a GDI is used, ~300 C vs. 900 C

• GDI not optimized but reasonable – shock starting to form at 1.3 mm
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Temperature Map for Driver

• temperatures are significantly higher for the shock case, mainly because of reduced shock dissipation

• also somewhat greater plastic work for shock case

• somewhat different behavior in liquid tamper ahead of shock
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GDI, 
b = 0.35 mm

shock

temperatures along 
centerline of jet
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GDI, h=2 mm, vary b
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rise times for h=2 mm, 
planar configuration jet growth
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• for b=0.20 mm, wave has shocked up at h=2 mm

• rise time increases as b increases

• jet growth decreases as b increases
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jet growth vs. layer thickness
normalized jet growth 

vs. rise time
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• jet growth shows dependence on layer thickness and rise time (Dt10-90 – time from 10% to 90% of wave 
amplitude)

• when plotted versus rise time (0 for shock), a consistent linear trend emerges
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Spike and Bubble Velocities for GDI
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velocities for shock and 
GDI (b=0.45 mm)

Ta

• velocity histories quite different for shock and GDI cases

• in situ planar velocity history (x2) very close to spike velocity for GDI

• rise time for spike (~0.55 µs) comparable to Dtflat (~0.75 µs)
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velocities and jet length
GDI (b=0.45 mm)



0

500

1000

-0.4

-0.2

0

0.4 0.6 0.8 1 1.2

t (μμs)

u
p

(km/s)

ξξ

(mm)

b = 0.45 mm
1

2

3

4

5

6

jet

u
p
 dt

velocity from
planar simulation

t
flat

   ~ 0.405 μsshock

Incremental Analysis of non-shock GDI
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• For the case of b=0.45 mm, approximate the wave using the six jumps shown.

• Using the integral for velocity to estimate 𝜂!, a value %
"#!

"#!
"#$%&=0.71.  The actual value is 0.69.

• More testing is needed to ensure that the approach is generally applicable.
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• For shock loading, ̅𝜉$ 	scales as 𝐴%(𝑘𝜂&)%
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[Vogler & Hudspeth, 2021]
• Interpreting the last term as a normalized jump in 

stress Δ .𝜎, the jet growth for multiple shocks can be 
written as ̅𝜉$ ∝ ∑𝐴%(𝑘𝜂!)%Δ .𝜎! where 𝜂! is the 
amplitude of the interface perturbation when the ith 
shock arrives and Δ .𝜎! is the amplitude of the ith 
shock.

• For simplicity, we assume that Δ .𝜎! ∝ Δ.𝑢!, where 
Δ.𝑢! is the jump in particle velocity for the ith shock

• To obtain an estimate for 𝜂!, we integrate the input 
wave velocity (dashed red curve).  It is a good 
approximation to the actual jet length (purple).
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• For relatively long jets that arrest, Dtflat linear against non-dimensional groups, only weakly dependent on 
Y (exponent -0.2-0.0)
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Probing Thermal Aspects of Strength Models
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• Johnson-Cook strength model used with Yo adjusted to give results similar to EPP model (Yo =0.75 GPa) 
for shock case

• There is a dramatic difference between the shock and GDI results with Johnson-Cook because of the 
temperature dependence of that strength model
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elastic-perfectly plastic Johnson-Cook strength model 

for Ta, Yo = 1.00 GPa



Conclusions

• Although RMI is termed the shock instability, it can also occur under non-shock (ramp) loading for 
loading times less than or comparable to the time for the surface to flatten

• Non-shock loading leads to less heating of the driver material, allowing thermal aspects of the strength 
model to be probed

• Non-shock loading is less efficient for jet growth

• Efficiency can quantified by considering evolution of the interface during the arrival of the ramp wave

• Behavior of liquid tamper (e.g. solidification) might complicate interpretation
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Related Talks:
TBD – Voorhees et al., tamped RMI expts. on Mo
TBD – Padgiotis et al., RMI on ALOX
TBD – Guo et al., shock and optical characterization of PFO


