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MOTIVATION

Microstructure of an explosive influences the shock-

to-detonation behavior ;
Aging and thermal environments have the potential gz, \\
to affect microstructure through: g ’\F\\P\\Q NN
- Grain coarsening g RN
L : 0 \\\\\\ \\§§\
* Grain sintering : NASNRNNRERSS
» Changes in porosity distribution T

Objective: Develop hydrocode models to predict effects of
aging on initiation thresholds and growth to
detonation observed in PETN experiments

»]oe Monti: Phase-Field Modeling of Aging of Energetic
Thin Films (E06 - Monday 2:15 pm)

»Rob Knepper: Effect of Accelerated Aging on 1
Microstructure and Initiation of Vapor-Deposited PETN :
Films (VO3 - Thursday 10:30 am) o

Pressed explosive with different grain sizes.

Simulations following flyer impact at the same velocity.
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HIGH-THROUGHPUT INITIATION (HTI) EXPERIMENTS

Flyer characteristics define impact shock parameters
* Flyer material (Parylene C) and impact velocity define pressure

* Flyer thickness (25 um) defines shock pulse width
Transmitted shock wave provides evidence of reaction in sample
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See Rob Knepper’s talk on HTI experiments and microstructure characterization of PETN samples (V03: Thurs. 10:30 am)
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MODEL DESCRIPTION - MICROSTRUCTURE

Parylene Flyer impact
(25 pm thick)

lon-polished cross-section of PETN

film (110 pm FOV) (Zr gﬂ”eﬁcft\gf:)'m - l
Repeating B.C's Substrate (PMMA)

(lateral) —»

Binarized image is imported into CTH hydrocode model (20 nm mesh resolution)




MODEL DESCRIPTION - MATERIAL PROPERTIES FOR PETN

Equations of State:;
* Unreacted solid (UR):
« Sesame table with temperature-dependent
specific heat as described by [1]
e Reaction Products (RP):
« Sesame table calculated by TIGER [1]

The rate of conversion of unreacted solid to high

pressure reaction products is governed by

temperature dependent kinetics:

« Global reaction kinetics for PETN derived from
physical chemistry and experimental data by
Bryan Henson (LANL)

k= A exp(-E/RT)

Material strength:
 Elastic-plastic model with yield strength of 1 GPa

1. Kittell, et al., J. Appl. Phys. 131, 154902 (2022)
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INERT RESPONSE (NO REACTION)

HTI Experiment at 1=19.019 ns
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1-d inert simulations as

described previously [1]

* Continuum model (no
microstructure)

« Porous Hugoniot from p-alpha
model

* Flyer L/D ~40

Thinnest films (30, 67 um) have

similar inert response

* Impact shock reaches the Al /
PMMA interface before the
release wave

Thickest film (125 pm) has lower

transmitted shock wave

* Release wave reaches the shock
front and reduces the shock
strength before it is measured at
the interface
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Mesoscale simulations of inert film agree with
continuum calculations.

1. Kittell, et al., J. Appl. Phys. 131, 154902 (2022)




MESOSCALE MODEL - SIMULATION AT 2 KM/S (WITH REACTION)
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Voids and defects at grain boundaries create hotspots that initiate the

reaction chemistry

Tracers at the Al / PMMA interface record the particle velocity history;
averaged for comparison to PDV data

Simulations ran with various flyer impact velocity and film thickness
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MODEL VS. EXPERIMENTS - UNAGED FILMS N\
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Preliminary model results:

« No tuning of material parameters or reaction rate

« Simulations and experiments [2] show increasing reactivity with sample thickness (longer run distance)
* Other metrics for comparison include onset of reaction, and growth to detonation

Further development:
» Strength model for PETN crystals
* Multi-step reaction rates or P,T-dependent burn models 2. Knepper, et al, J. Appl. Phys. 131, 155901 (2022)
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CONCLUDING REMARKS

A mesoscale model for shock initiation of PETN films has been developed

« Microstructures from ion-polished films are explicitly modeled
« Equations of state for solid crystal PETN and reaction products

* Global reaction kinetics (temperature-dependent)
Preliminary results show reasonable agreement with experimental trends

Additional refinement of material models may be required

Concurrent/Future work:
= Can mesoscale hydrocode simulations capture the observed shifts in initiation threshold due
to ageing?
Informed by binarized images of ion-polished cross-sections that can be imported to the simulations
= Can phase field models capture the observed trends in microstructure evolution?
Predict age-induced changes in microstructure

= Additional experiments at various temperatures, and additional microscopy of PETN films




