
A Fast Matrix-Free Method for Low-Thrust Trajectory Optimization

Aurya Javeed, Drew Kouri, Denis Ridzal,
and I. Michael Ross

2023 AAS/AIAA Astrodynamics Specialist Conference

August 14, 2023
SAND2023-08452C

SAND2023-08452CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

2 Overview

This talk is about numerics for trajectory optimization.

Spectral collocation methods (also called pseudospectral methods) can be accurate, but they
produce dense matrices that are not thought to scale to large discretizations.

We have developed scalable solves for large spectral collocation discretizations.

Without loss of generality, we focus on initial value problem (IVP) constraints:

minimize
u,T

f (x , u,T)

subject to 0 = c(x , u,T) ≜

{
ẋ − g(x , u, t)

x(0)− xi .

(1)

In words, the goal is to a find control u(t) and terminal time T for which the objective f is
smallest.

Background

4 Orbit Transfer

We will use orbit transfer as a running example. Large
discretizations are needed to adequately resolve low-thrust
problems.
Following [4], we take the physics to be

x = (r , vr , vt), g(x , u, t) =


vr
v2
t

r − 1
r2 + a sin u

− vr vt
r + a cos u.

u is the angle a thruster makes with the back of a satellite
a is the thrust amplitude.

Goal: Transfer the satellite from a circular orbit of radius ri to
a larger radius of rf in as little time as possible (f = T).

xi = (ri , 0, r
−1/2
i) and xf = (rf , 0, r

−1/2
f)

0 200 400 600 800 1000 1200 1400 1600

time (seconds)

-15

-10

-5

0

5

10

15

a
n
g
le

 (
d
e
g
re

e
s
)

control

-6 -4 -2 0 2 4 6

1

-6

-4

-2

0

2

4

6

2

trajectory

a = 10−4

5 Spectral Collocation (Pseudospectral Methods)
These techniques are finite element methods.

Let c = (c1, . . . , cn) be a grid of n times, e.g.,

Most commonly,

The state x of the optimal control problem is approximated as a degree n − 1 polynomial pn(t).

pn(t) is required to satisfy the IVP at the initial time and at n − 1 of the ci , i.e.,{
pn(0) = xi ,

ṗn(ci) = g(pn(ci), u(ci), ci), ∥{i}∥ = n − 1.

These n conditions define a system of n equations for n unknowns

p ≜ pn|c =
(
pn(c1), . . . , pn(cn)

)
that uniquely specify pn(t).

6 Integration-Based Collocation
Instead of differentiating pn(t), we prefer
(1) enforcing the integral form of the IVP:

x(t) = xi +

∫ t

g(x(t), u(t), t) dt.

This approach is algebraically equivalent to
(2) discretizing the derivative v = ẋ and enforcing the differental

form of the IVP:

v(t) = g(xi +

∫ t

v(t) dt, u(t), t).

Both (1) and (2) are single-interval implicit Runge-Kutta
formulations of collocation [3].

A dense integration matrix B is key. B maps values on c to the
integral of their polynomial interpolant on c.

7 Trajectory Optimization

Derivative-based optimization algorithms are, at their core, Newton’s method applied to a set of
conditions F (ζ) = 0.

Let JF (ζ) be the Jacobian of F at ζ . The Newton direction η is the solution of(
JF (ζ)

)
η = −F (ζ). (2)

Let u be the values of the control at the collocation points: u =
(
u(c1), . . . , u(cn)

)
.

Consider the toy problem of solving the collocation equations for p (values of the polynomial
approximation of the state) given u and T :

F (p) = p−
(
xi + Bg(p,u, c)

)
and JF (p) = I − BJpg(p,u, c).

We developed ingredients for solving this problem quickly.

These same ingredients scale bona fide Newton solves for trajectory optimization.

Matrix-Free Solves

9 Matrix-Free Linear Algebra

The Newton system (
I − BJpg(p,u, c)

)
η =

(
xi + Bg(p,u, c)

)
− p

is an n × n linear problem
Ax = b.

We can solve this problem quickly with matrix-free linear algebra, i.e.,

we never instantiate A as an array of values.

We use an iterative solver that only requires applications of A to vectors.

10 Generalized Minimal Residual Method (GMRES) [6]

The Cayley-Hamilton theorem implies that the solution x
belongs to a Krylov subspace of A, i.e.,

x ∈ Kk ≜ span(b,Ab, . . . ,Akb) for some k ≤ ℓ.

GMRES uses an orthonormal basis {qi}ki=1 for Kk to
cheaply compute

xk = arg min
x̃∈Kk

∥Ax̃ − b∥.

Until ∥Axk − b∥ is sufficiently small, k → k + 1:
Kk → Kk+1 by multiplying Aqk ,
orthogonalize Aqk against {qi}ki=1 to get qk+1:

AQk = Qk+1Hk . (Arnoldi)

Algorithm 1 GMRES
q = b/∥b∥
for k = 1, 2, . . . do

step k of Arnoldi
y = argminy

∥∥Hky − ∥b∥e1
∥∥

x = Qky
end for

Fast Matrix-Free Solves

12 Ingredient 1: Fast Matrix-Vector Multiplies (MVMs) [2]

Ax = b, where A = I − BJpg(p,u, c).

The integration matrix B is dense, so A is dense.
We collocate at the Chebyshev points

ck = cos

(
k − 1

n − 1
π

)
.

Hence we can
“apply the integral operator [B and hence A] in
O(n log n) operations, making iterative methods
more attractive”.

A degree n − 1 polynomial expands as

pn(t) =
n−1∑
j=0

ajTj(t),

where Tj is the jth Chebyshev polynomial:

Tj(t) = cos(jarcccos(t)).

B : Rn → Rn

1. interpolate the values
v ∈ Rn on c

IFFT

2. integrate this interpolant O(n)
3. evaluate the integral on c FFT

”Unfortunately, for many situations of interest,
complex behavior of the solution causes ... the
number of [solver] iterations to be large”.

13 Ingredient 2: Preconditioning

To reduce the number of iterations of GMRES, we right precondition:

We choose an easy to invert preconditioner P , and then solve

AP−1y = b

followed by
Px = y .

This x solves Ax = b since AP−1P = A.

For this strategy to be effective, P should be a “good approximation” of A.

∥Axk − b∥
∥b∥

≤ inf
pk∈Pk

∥pk(A)∥

14 A Preconditioner Based on B

As n → ∞, the integration matrix B converges to indefinite integration I (ξ)(t) =
∫ t

0
ξ(s)ds – the

continuous analogue of a cumulative sum:
To compute I (ξ), continually add the increment ξ(t)ds to the running tally

∫ t

0
ξ(s)ds

spectral integration matrix, B

0.00

0.02

0.00

0.02

0.01

0.02

0.01

0.01

0.01

0.01

0.00

0.04

0.14

0.10

0.13

0.11

0.12

0.11

0.12

0.12

0.00

-0.00

0.10

0.26

0.21

0.24

0.22

0.23

0.22

0.23

0.00

0.00

-0.02

0.14

0.33

0.28

0.31

0.30

0.30

0.30

0.00

-0.00

0.01

-0.02

0.17

0.37

0.33

0.35

0.34

0.34

0.00

0.00

-0.01

0.01

-0.03

0.17

0.37

0.34

0.34

0.34

0.00

-0.00

0.00

-0.01

0.02

-0.03

0.16

0.32

0.30

0.30

0.00

0.00

-0.00

0.01

-0.01

0.02

-0.03

0.13

0.23

0.23

0.00

-0.00

0.00

-0.01

0.01

-0.02

0.02

-0.03

0.08

0.12

0.00

0.00

-0.00

0.00

-0.01

0.01

-0.01

0.01

-0.01

0.01

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 0.00

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.00

0.04

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.00

0.00

0.10

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.00

0.00

0.00

0.14

0.30

0.30

0.30

0.30

0.30

0.30

0.00

0.00

0.00

0.00

0.17

0.34

0.34

0.34

0.34

0.34

0.00

0.00

0.00

0.00

0.00

0.17

0.34

0.34

0.34

0.34

0.00

0.00

0.00

0.00

0.00

0.00

0.16

0.30

0.30

0.30

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.13

0.23

0.23

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.08

0.12

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Each subdiagonal column of BL is constant, equalling a quadrature weight. Hence
preconditioner P = I − BL

(
Jpg(p,u, c)

)
requires only O(n) operations to invert.

Numerical Results

16 ALESQP
We solve an orbit transfer problem using an augmented Lagrangian SQP algorithm (ALESQP) [1].

We can think of SQP as Newton’s method applied to first-order optimality conditions.

The key computational kernel of ALESQP is a linear solve Ãx̃ = b̃, where

Ã =

Rx 0 AT

0 Ru CT

A C 0

 .

Here, Rx and Ru are diagonal and again A = I − BJpg(p,u, c).1

From our preconditioner P , we build an approximate Schur complement preconditioner [5] for Ã:

P̃ =

Rx 0 0
0 Ru 0
0 0 S

 , S = PR−1
x PT . (3)

1This solve, for example, is a means of computing the least-squares solution to
(
AT

CT

)
x = b.

17 Numerics
Method 1: LU Factorizations

n Run Time Iterations
AL SQP CG

1025 425 seconds 11 30 241

96% of the run time is spent factoring instances of Ã.

Method 2: Unpreconditioned Matrix-Free

n Run Time Iterations
AL SQP CG

1025 1655 seconds 12 42 661

Ã is not well-conditioned, and unlike LU, we do not have a
factorization to reuse for different solves with the same Ã.

Method 3: Preconditioned Matrix-Free

n Run Time Iterations
AL SQP CG

1025 73 seconds 10 34 421

The matrix-free approach we propose is
not meant to address the number of
optimization iterations – only to make
those iterations cheaper.

0 5 10 15 20 25 30

time (seconds)

-40

-20

0

20

40

u
 (

d
e

g
re

e
s
)

control

-2 -1 0 1 2

1

-2

-1

0

1

2

2

trajectory

thrust amplitude a = 10−2

18 Numerics

Method 3: Preconditioned Matrix-Free

n Run Time Iterations
AL SQP CG

1025 73 seconds 10 34 421

of Linear Solver Iterations 4575
of linear Solver Calls 511
Average # of Iterations per Call 8.95

n Run Time Iterations
AL SQP CG

4097 251 seconds 10 32 500

of Linear Solver Iterations 4847
of linear Solver Calls 585
Average # of Iterations per Call 8.29

Matrix factorization is O(n3), meaning LU will take roughly 64 times longer for n = 4097 (about 7
hours). Our approach, however, takes approximately 4 times longer at this larger value of n.

For all methods, we use scaled inner products to make the discretization consistent with the infinite
dimensional problem. Indeed, we see that the number of AL and SQP iterations are roughly the same.

The preconditioner P becomes more accurate as n gets larger, which we see in the numerics. The
average number of solver iterations per call decreased.

19 Lagrange Multipliers

0 5 10 15 20 25 30

time (seconds)

-40

-20

0

20

40

u
 (

d
e
g
re

e
s
)

control

0 5 10 15 20 25 30

time (seconds)

-40

-20

0

20

40

a
rc

ta
n
(

v
t*/

v
r*)

multipliers

20 Conclusions

We developed matrix-free solves for large spectral collocation discretizations. These solves
scale for an orbit transfer example.
The two key ingredients are a new preconditioner and a known result: fast FFT MVMs with
the integration matrix B .

Thank you!

21 References

H. Antil, D. P. Kouri, and D. Ridzal.
ALESQP: An augmented Lagrangian equality-constrained SQP method for optimization with general constraints.
SIAM Journal on Optimization, 33(1):237–266, 2023.

L. Greengard.
Spectral integration and two-point boundary value problems.
SIAM Journal on Numerical Analysis, 28(4):1071–1080, 1991.

E. Hairer, S. P. Nørsett, and G. Wanner.
Solving Ordinary Differential Equations I, Nonstiff Problems.
Springer, 2nd edition, 1993.

N. Koeppen, I. M. Ross, L. C. Wilcox, and R. J. Proulx.
Fast mesh refinement in pseudospectral optimal control.
Journal of Guidance, Control, and Dynamics, 42(4):711–722, 2019.

T. Rees, H. S. Dollar, and A. J. Wathen.
Optimal solvers for PDE-constrained optimization.
SIAM Journal on Scientific Computing, 32(1):271–298, 2010.

Y. Saad and M. H. Schultz.
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.
SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986.

