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The Dynamic Strength of Composites and —
Polymers are not well characterized - Aerospace Engineering

- Little work done regarding strength in the shock regime
- Previously polymers have been modeled as having no strength
- Recent particle tracking experiments performed by Bober et al indicated that
silicone has a flow strength of 500 to 750 MPa, stronger than some metals
- Found that the simulations of the silicone composites could only match
experiments if the silicone strength was added

. Al,O5- Epoxy composne matrix
Particle Tracking Experlments in S|I|cone [Setchell et al (2007)]

[Bober et al (2019)]



Richtmyer-Meshkov Instability (RMI) ~ E@ swrmenet
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Study Objectives v e
- Alumina-Epoxy matrix (ALOX)
- Al,0O3 Loaded Epoxy - S e

Goal: Characterize the dynamic strength of the f j
ALOX matrix at different volumetric fractions . R 1
- 44% AIEOE 2 i particle size is “: g
- 21.5% Al,05 = I N
- 0% Al,O; (Neat Epon828 epoxy resin i ittt
cured with DEA) . | ‘ h il
- The corrugation aspect ratio kno, and impact ©. = - S.inzni (;”:n) PR P

velocity (stress) were also varied to promote
jet formation

Define Execute Epon828/DEA
Geometry Experiments Analysis
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- Experimental Facility at the Advanced Photon Source (APS) Facility at Argonne National
Laboratory
- Energy range from 7-36 keV — with energies to 100 keV for imaging
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Experiments performed using a
single stage powder gun
Samples were impacted from 0.8
to 2.5 km/s

Pressures estimated to be from 5
to 28 GPa

Shots were captured using X-ray
phase contrast imaging

Frame rate of 154 ns

1024 x 1024 pixels




Experimental Overview T R

Neat Epon828 Epoxy 21.5% AL, O, 44% Al,O,
BTN )

1.000 5.2 1.500 1.750
1.500 8.2 1.000 10.9 1.750 9.8
0.750 12.8 1.750 12.1 1.750 11.1
1.750 17.2
N . 0.750 247
M\A/ e ko =277 1.500 28.1

* Stress calculated with impedance
matching
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21.5% Al,O; encased in Epon828, 11 GPa
i Al 2B
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- Simulations were performed using the Sandia Eulerian hydrocode CTH
- CTH uses a fixed mesh that allows the material to move through it



Epon828 Resin Cured with DEA
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Default Strength Models for Similar beparmentol
Polymers Cannot Capture RMI Deformation™ =

Default Polymer Strength Models

800 -
Mulliken-Boyce: Epon826/DEA (Jordan et al)
Mulliken-Boyce: PMMA
Mulliken-Boyce: PC
Johnson-Cook: Lexan
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Jet Length Comp
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Jet Length vs Time for Neat Epoxy
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Preliminary simulations were run
using the elastic-perfectly-plastic
model

Used contour comparison to find

a strength value where there was

a minimum difference between
the experimental data and the
simulation

Strength was estimated to be
around 1.3 GPa for a stress of
about 8 GPa
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- Used strength value from the Elastic-Perfectly-Plastic model as a baseline case
Experiment
@ Simulation
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Alumina addition promotes jetting

Jet Length vs Time for Pressures ~5-7GPa
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Jet Length vs Time for 45% AI20 kno =1.750
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CO n CI u S I O n S . Esf;sr;gleenér?gineering
- Conducted 12 RMI experiments with varying Al,O, loading and drive
conditions
- Epon828/DEA experiments proved to have unexpected strength causing
a sort of “pullback” behavior
- This pullback behavior has not been seen in previous studies
- Modeling analysis indicates that this behavior due to the strength
- Using a simple strength model does not fully reproduce the experimental
data
- Further steps
- Apply a more complex strength model
- Calibrate a polymer specific strength model like Mulliken-Boyce
- Framework to framework solution verification
- Move on to ALOX strength modeling
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