SAND2023-08418C

®

Integrated machine learning models of event detection and source location identification for fault . a

® \
imaging using raw continuous IBDP microseismic data e _?T

Daniel Lizama, Hongkyu Yoon, , Jennifer L. Harding, Sandia National Laboratories, NM ) © o,

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

Motivation: For estimating microseismic (MS) source locations we develop a (a) () e e ) ol o
framework using multiple deep learning (DL) approaches for continuous waveform =~ T~ ' o
data observed at the Illinois Decatur Basin Project (IBDP) site [1] (Fig. 1). (b B ———————
IBDP Site: Continuous waveform data over a short time period (2/27/2012- —— gl o
03/12/2012) are analyzed with a total of 612 located MS events in the catalog. P % ]
= Data pre-processing of raw continuous microseismic data & event detection Flgur? 1 (ag 1tOS (rs)w contlrlwuou: " » ; N
= Data augmentation using WGAN (Wasserstein Generative Adversarial Network) WaveTorm datd, b} EXamples O R o
L L . multiple channel waveform, (c) > & e o
" PhaseNet used to downselect generated event data with high quality , = L b % T s S vz
. . . . L. IBDP site events and cluster #2 = | som[ *"[8 «| . 4
"= CNN model with multi-modal input for source location estimation of events IR V' - 117

Figure 7. Fault plane
estimation.

overview. [2]

Event Detection (Figure 2) Phase-pick (Figure 3) Source Location (Figure 5-7)

e Develop a DL model (with spectrogram input) for fast and accurate MS e Train a PhaseNet [4] model with transfer learning to optimize the e Develop a DL model with multiple modality feature extraction
event detection despite data limitations model for MS events capabilities for high fidelity MS event source location identification.

e Obtain accurate detection over a variety of MS event characteristics e Obtain high precision MS waveform phase arrival time information. e Implement trained model on field data to identify discrete fractures.
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