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Fast shuttling of ions Integrated Modulators

Why Modulators? Requirements
Recent work [1] —— —\ » Reduce alignment issues » Fast switching (< 1 us)
> Demonstrated a closed-loop optimization of ion » Reduce the optical phase drift » Support optical powers (1 to 10 mW)
shuttling to achieve sub-quanta excitation at " » Reduce number of optical input » High extinction ratio (gate laser >60 dB,
average speeds of 35m/s \ couplers while maintaining higher for resonant detection beam)
> Controlling axial frequency and well trajectory . — ) addressability » Support high fidelity quantum gates
> Varying hold offset allows for soutions R ) » Requires on-chip modulators for » CMOS compatible
independent of dwell-time switching. » Cryogenic operation (desired)
» Used custom electronics that output arbitrary st nex o
waveforms with 12 MHz analog bandwidth for 96 .
channels. | ) :
» Obvserved ~0.3quanta gain indpendent of phase v
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» Driving 729nm optical qubit transition in 2
Current Work Ca|Cium 729 nm Laser A;M MZM
» Designing trajectories to shuttle ions through a junction > Compare performance of modulators with . O
» Lack of trap symmetry makes path generation more complex AOM setup
» Have been able to successfully shuttle 50m/s through a junction
» Getting optimization to work is more challenging W o mzMon " 160 =] L0
» Developing both closed and open loop approaches Zos ©  MZMOff <4 . 3.
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» Measurement of Rabi flopping with
P \/_\ MZM on and off, indicating a 38.7dB > Pulse areas from AOM and MzM
C = V2 Pyota(x) extinction ’ 9 ' exhibit similar variance in pulse area,
y " ' but different noise/drift
Junction behavior
: : : : Modulator Process infidelity (x107?)
> Confinement [2] drop; In th? Junctlop | _ | (GST, stabilization) X / V¥ / I 10
» Trap becomes isotropic,leading to mixing of radial and axial modes MZM (standard, in) __ 2.64=0.06 / 2.422:0.05 / 2.6420.06 _
. . . . . y . = 0.8
> What IS a OOd IOSS fu nctlon? MZM (physical, in) 0.23+£0.01 // 1.62 £0.02 =
g AOM (standard, in) 1.6+0.1/15+0.1/0.7+0.1 E 06
\/ /Start Through junction End \ Rotation of weak axis vs. AOM (standard, out)  0.73+0.07 / 1.05 :(t 0.08 2;)().1 +0.1 CE '
Compression/expansion Modulator Diamond error x10™ S 04 -
/ \ - /’. \ (GST, stabilization) \/T/ VY /1 B
/ MZM (standard, in) 1.90+0.04 / 2.154+0.03 / 4.784+0.03 é‘j 0.2
MZM (physical, in) 1.524+£0.02 // 4.03 £0.02
AOM (standard, in) 2.83+0.07 / 2.344+0.06 / 0.30+0.04 0.0 1
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Complex ion trap design (Enchilada trap)

Purpose and Capabilities Status

» To perform operations on many more ionic qubits than previous » Fabrication completed spring 2023

traps. » Installation, test, delivery: Summer 2023

» Able to store up to 200 ions using 4 outer storage regions » Experiments: Utilize and extend previous optimization
connected by a central interaction region. and junction transport efforts

» Contains 6 junctions for transporting ions and 5 linear sections
for manipulation/storage (Earlier traps had 1 or 2 junctions, and 1
linear section)

Scaling Challenges

Challenge 1: RF Capacitance and power dissipation
» 4x reduction of rf capactiance by raising the RF electrodes
above the control layer and perforating the dielectric

Challenge 2: 1/O and routing density

» Enchilada contains 316 control electrodes, which can be
iIndependent or tied together.

» Full version requires a new package.

$4800 3.0KV 8.1mm x40 SE(M) 51412023 ' 54800 3.0V 10.3mm x700 SE(M) 5/4/2023 o » Multiple metal levels needed to connect islanded electrodes. $4800 3.0KV 8.3mm x50 SE(M) 51412023

$4800 5.0kV 8.4mm x400 SE(M) 5/15/2023
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