

SMART-CS Initiative

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

Task 5: Field Deployment – Dynamic Storage Reservoir Modeling

FECM Project Review Meeting
August 28 – September 1, 2023

Task 5 –Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:

- Field management, to maximize storage while minimizing pressure buildup
- Induced seismicity risk assessment

Task 5 –Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:

- Field management, to maximize storage while minimizing pressure buildup
- Induced seismicity risk assessment

5.1: Unified simulation platform and data generation

5.2: Rapid physics-based predictive models for flow and geomechanics

5.3: Machine learning surrogate models

5.4: Rapid data assimilation and history matching

5.5: Optimization of field Parameters

Task 5 –Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:

- Field management, to maximize storage while minimizing pressure buildup
- Induced seismicity risk assessment

Today

5.1: Unified simulation platform and data generation

Part 1

5.2: Rapid physics-based predictive models for flow and geomechanics

5.3: Machine learning surrogate models

Part 2

5.4: Rapid data assimilation and history matching

Part 3

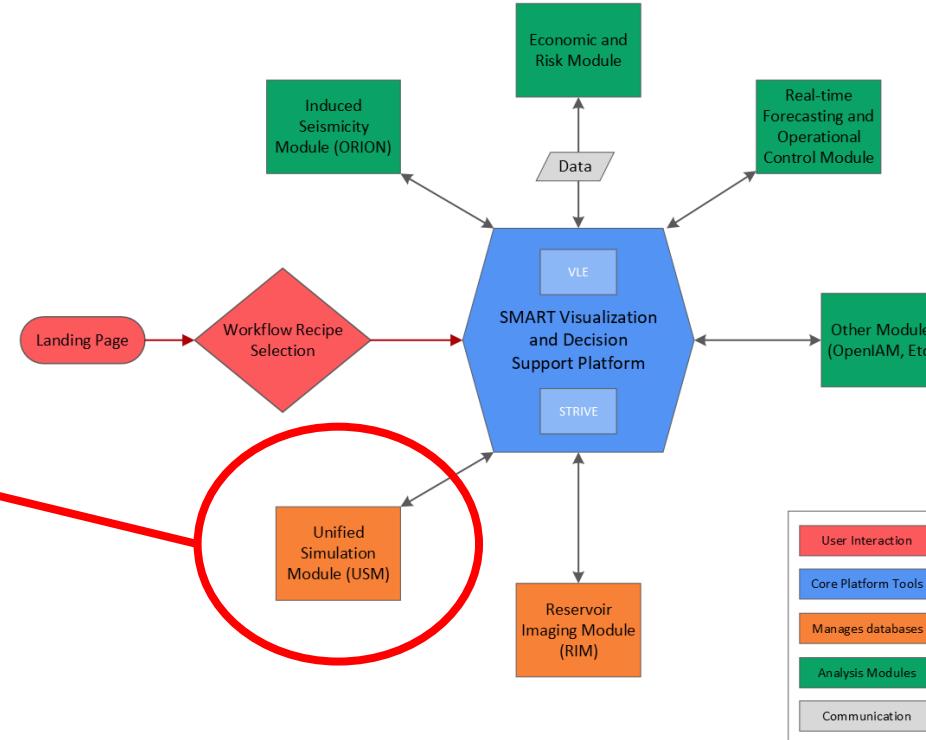
5.5: Optimization of field Parameters

Part 1: Unified Simulation Module

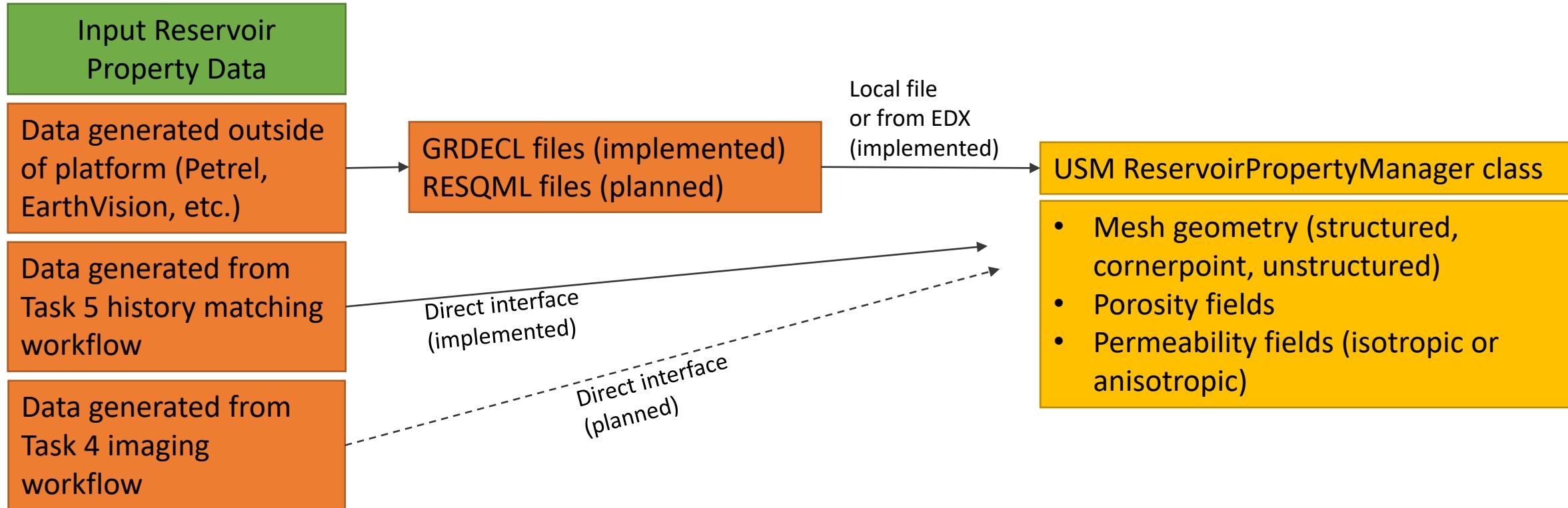
Unified Simulation Module

Objectives:

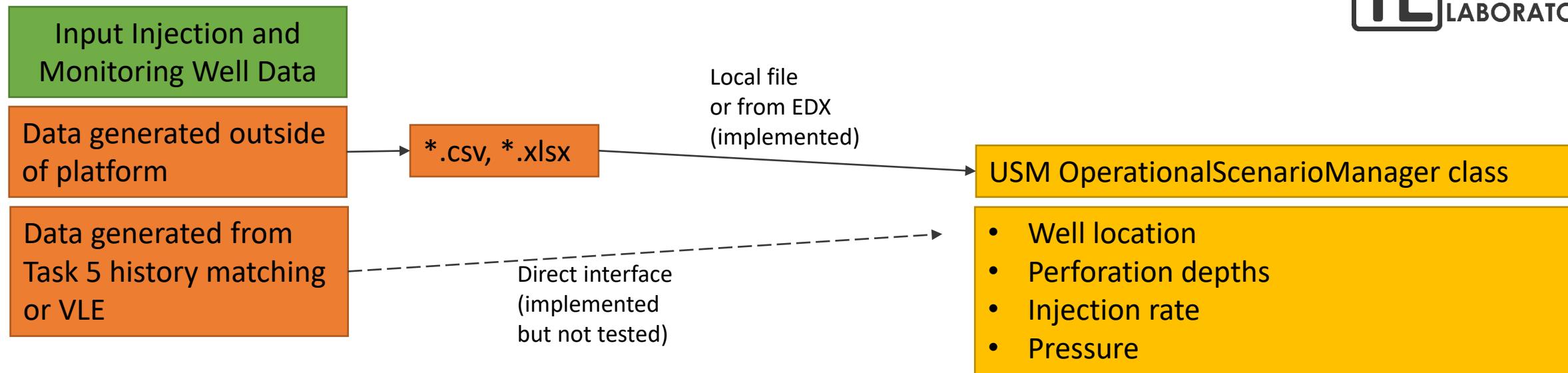
- Provide a unified and flexible way for a user to interact with reservoir simulation data
- Read in data from commonly-used formats (GRDECL, RESQML), or from other SMART workflows (Task 4 imaging)
- Convert data into formats needed by ML models (Numpy arrays)
- Convert output of ML models into formats needed for visualization and analysis in the VLE and STRIVE



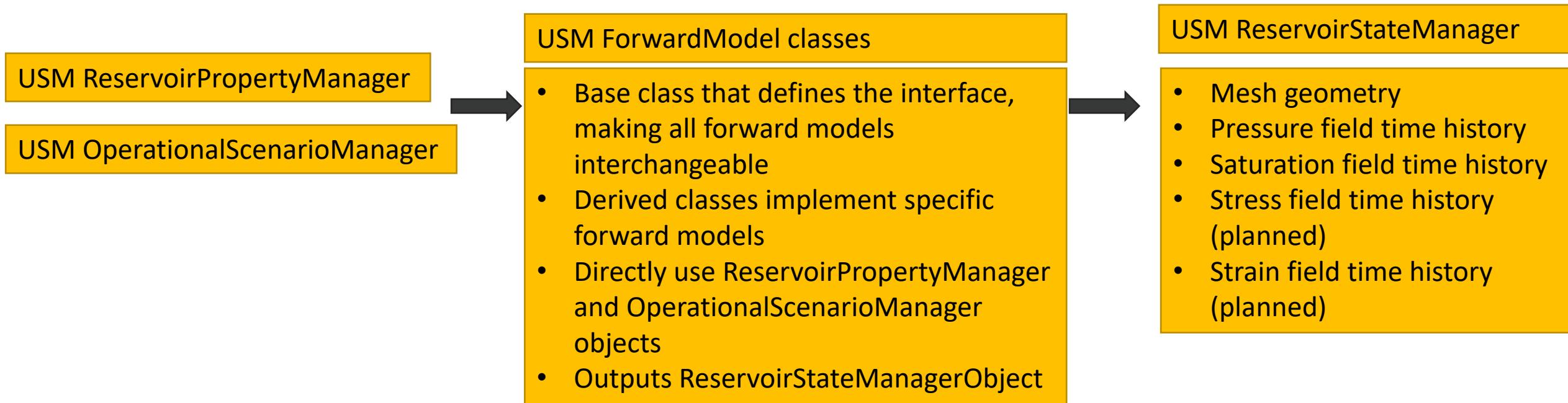
Unified Simulation Module



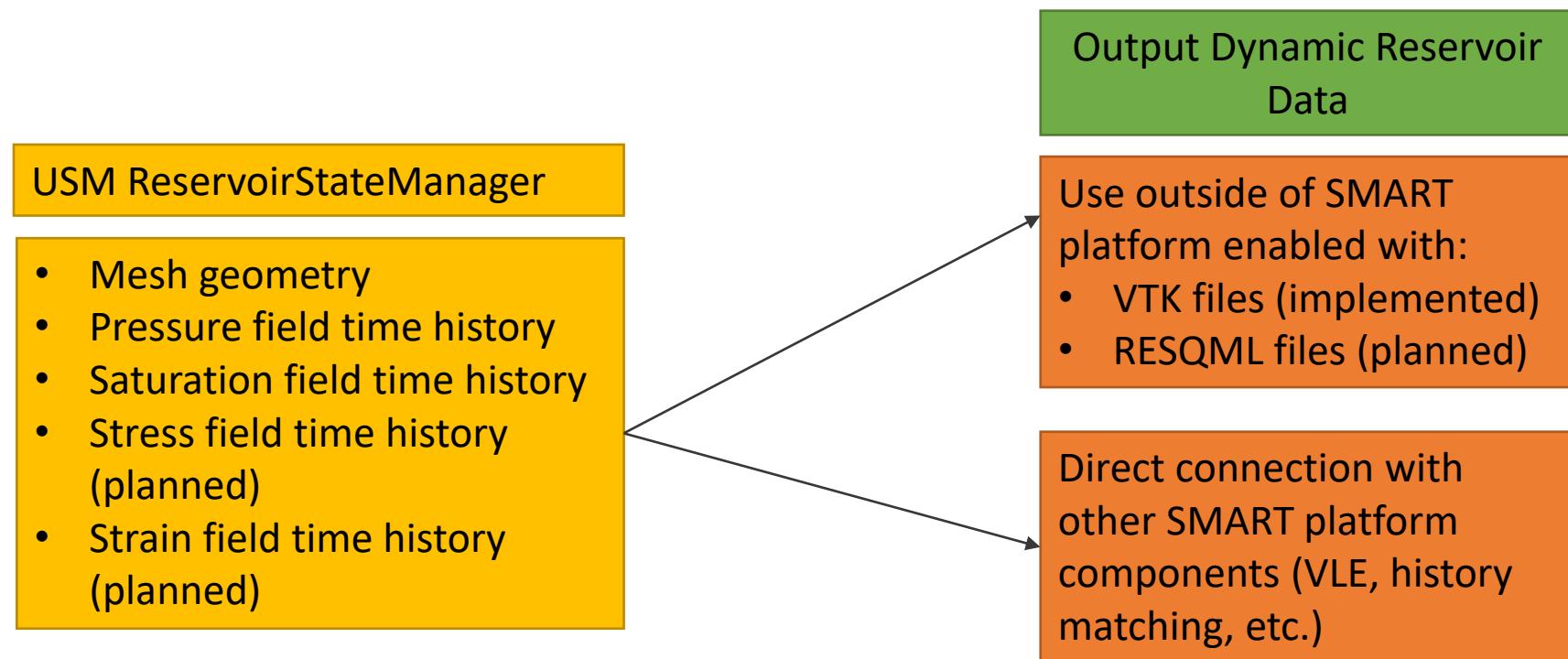
Unified Simulation Module



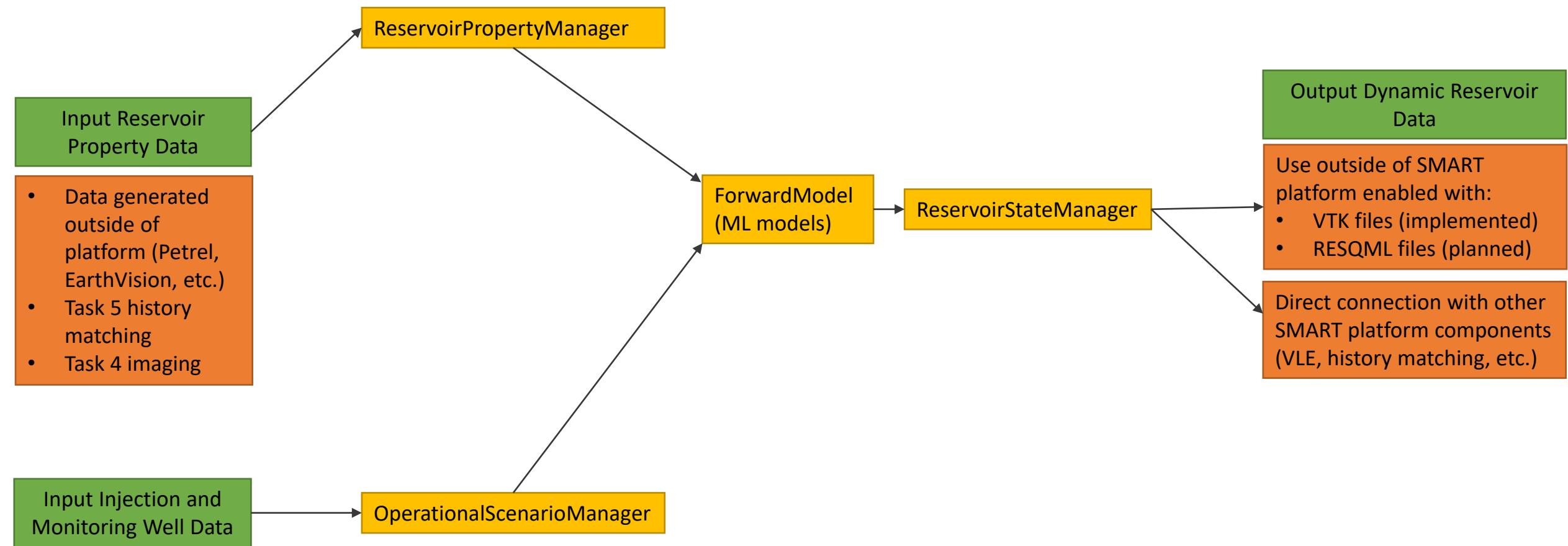
Unified Simulation Module



Unified Simulation Module



Unified Simulation Module Data Flow



Unified Simulation Module

Quality control and documentation

- USM code hosted on GitLab
- Installable Python package makes it easy to use
- Automated unit testing suite tests every commit pushed
- Standardized code formatting and style
- Sphinx documentation is automatically built
- Issue and milestone tracking on GitLab

Testing pipeline

Status	Pipeline	Triggerer	Stages
passed 00:00:28 1 month ago	forgot to include new DataManagerBase sourc... #930552655 feature/pickle a0bec5e8 latest		
passed 00:00:28 1 month ago	applied yapf #930551570 feature/pickle 55c1784d 		
passed 00:06:27 1 month ago	Merge branch 'petrel-support' into 'main' #929529305 main 60dbd821 latest		
passed 00:03:08 1 month ago	switched tests to using a small 1D 2-cell grdec... #929526526 6 e640725e latest		
passed 00:00:28 1 month ago	switched tests to using a small 1D 2-cell grdec... #929526505 petrel-support e640725e 		

Issue tracking

Create methods to access pickled objects from EDX #99 - created 1 month ago by Jeffrey Burghardt 	0 0 0 updated 1 month ago
fix data scaling in UTBEG model #88 - created 1 month ago by Jeffrey Burghardt	0 0 0
STRIVE Integration #77 - created 2 months ago by Christopher Sherman 	1 0 1 updated 1 month ago
Add sphinx documentation for mesh, property reshaping #66 - created 2 months ago by Christopher Sherman 	0 0 0
Code restructure related to handling of field attributes #55 - created 2 months ago by Veronika Vasylykivska 	0 0 0
Convenience functions for slicing mesh #33 - created 2 months ago by Kayla Kroll	0 0 0

Part 2: ML Surrogate Modeling

ML Input Data

- Monthly pressure and saturation distributions at IBDP Site at 1.73M cells in 100 realizations of permeability and porosity fields with actual CO₂ injection rates (1 M tons for 3 years)
- Training (90 cases) and testing (10 cases)
- Input data
 - Injection rate: (100, 50)
 - Permeability: (100, 126, 125, 110, 3)
 - Porosity: (100, 126, 125, 110)
 - Topology: (100, 126, 125, 110)
- Output data
 - Pressure: (, 50, 126, 125, 110)
 - Saturation: (, 50, 40, 44, 94)
- Well data
 - Injection rates: three perforation zones
 - Monitoring: 6 multi-depth sensors

The figure consists of three parts. At the top are two 3D surface plots: the left one is labeled 'Porosity' and the right one is labeled 'Permeability (md)'. Both plots show a subsurface model with a central injection zone and surrounding reservoir properties. Below these is a line graph titled 'Historic Gas Injection Rate [MSCF/d]'. The x-axis represents time from January 2012 to January 2016, and the y-axis represents the injection rate in thousands of MSCF per day, ranging from 0 to 20,000. The data shows high-frequency, low-amplitude oscillations around a mean value of approximately 18,000.

Example of porosity, permeability, and injection rates (input to ML models) & examples of CO₂ saturation distribution at 1 year after the end of injection (Eclipse)

80 cases with open fault horizontally

A 3D plot titled 'Saturation_001 @ CCS1, Dec 2015'. The vertical axis is 'depth' from -5400 to -6600 meters. The horizontal axes are 'x' (339000 to 347000) and 'y' (339000 to 347000). The plot shows a vertical column of high CO₂ saturation (red/orange) extending from the surface down to approximately -5800 meters, indicating an open fault that has allowed CO₂ to migrate vertically.

20 cases with closed fault horizontally

A 3D plot titled 'Saturation_081 @ CCS1, Dec 2015'. The vertical axis is 'depth' from -5400 to -6600 meters. The horizontal axes are 'x' (339000 to 347000) and 'y' (339000 to 347000). The plot shows a vertical column of high CO₂ saturation (red/orange) that is limited to a shallow depth of about -5000 meters by a closed fault, preventing further vertical migration.

U.S. DEPARTMENT OF
ENERGY

ML Models

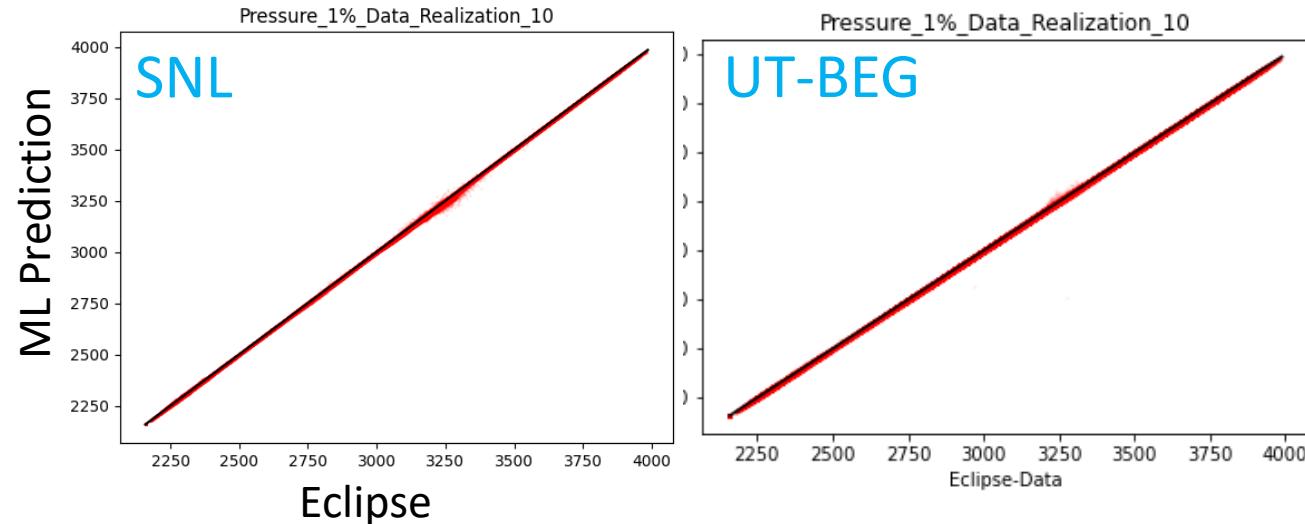
- Computational efficiency to handle real Illinois Decatur Basin Project (IBDP) data
- Prediction accuracy
- Flexibility associated with input, output, portability, and potentially transfer learning

ORG	ML Method	Pressure RMSE (psi)	Saturation RMSE (-)	Note
LANL*	Fourier Neural Operator	~5	~0.015	2D input due to data size on single GPU
LLNL	Fourier Neural Operator	~4	~0.015	32 GPUs for ML training with 3D data (2 & 1 hrs for P & S)
ORNL	Autoencoder-MLP	~20-25	~0.018	Latent space based approach, 2D slice model for pressure
SNL	Modified DeepONet with subsampling	~2	~0.018 (0.015 [#])	Subsampling for computational efficiency (~ 1hr training on 1 GPU & 2.2M parameters), handling full IBDP data
UIUC	Karhunen-Loeve (KL)-Deep Neural Network	<2	~0.02	Domain needs to be coarsened in both space and time to handle data.
UT-BEG	UNet-MLP	<2	~0.016	Relatively big model (122M parameters, 23.6 hr training on 2 GPUs), handling full IBDP data
WVU	Smart Proxy Modeling – Spatiotemporal DCNN			Not completed over time and space. In progress
NETL	Committee Machine			See figure
BMI	Library look-up model	Not so good	Not so good	Not ML model, but as baseline

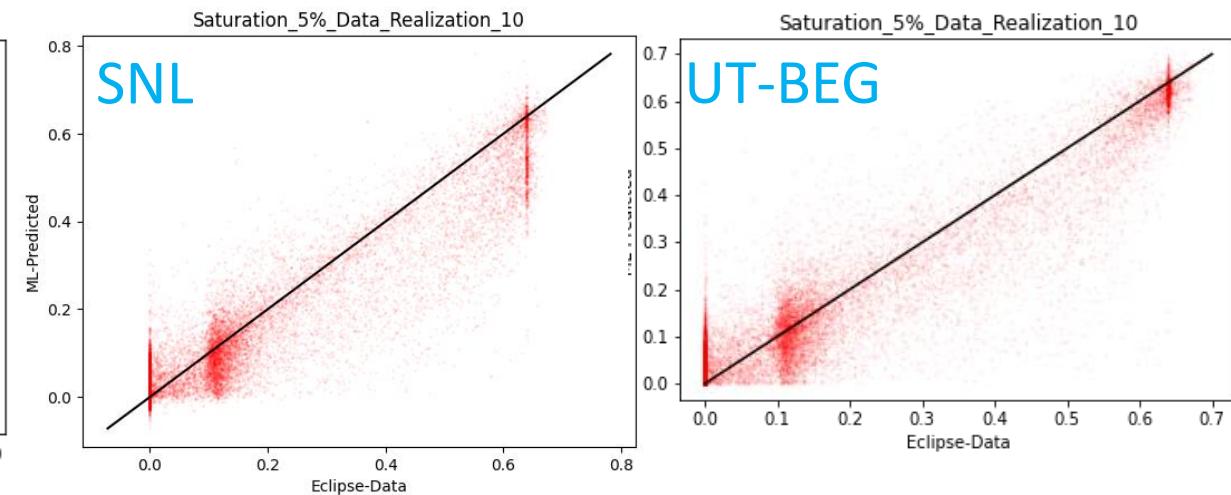
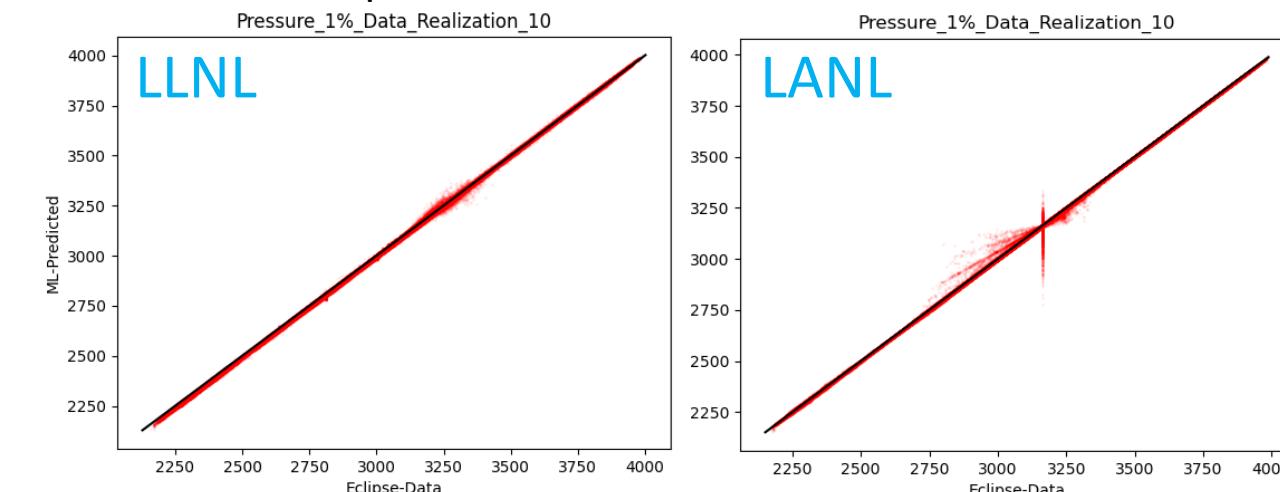
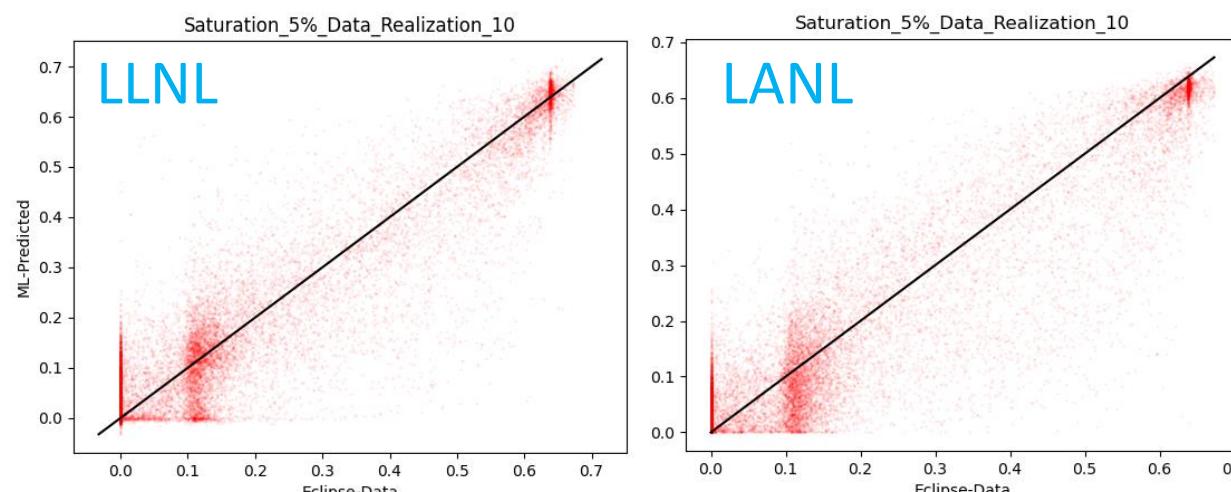
*UNet was also evaluated. Not reported here. [#] A simple CNN-LSTM model

Pressure & Saturation Prediction (realization 10)

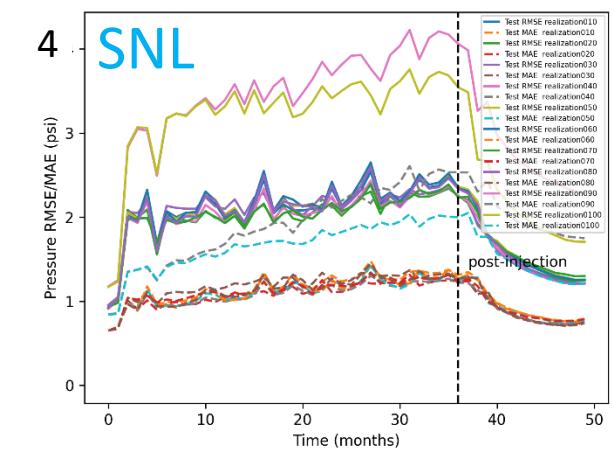
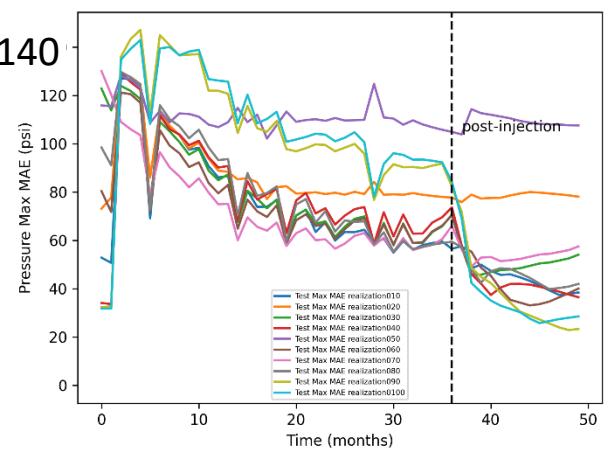
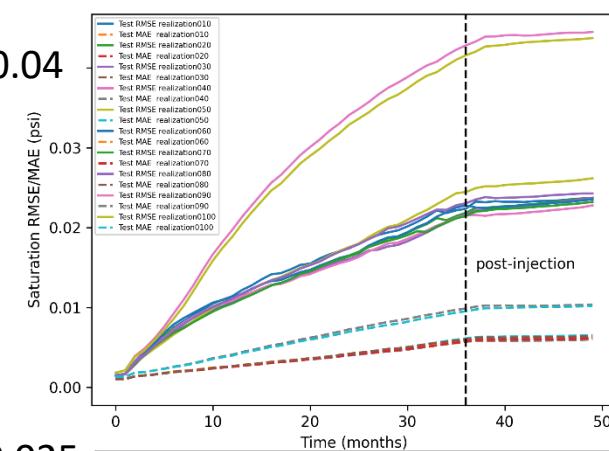
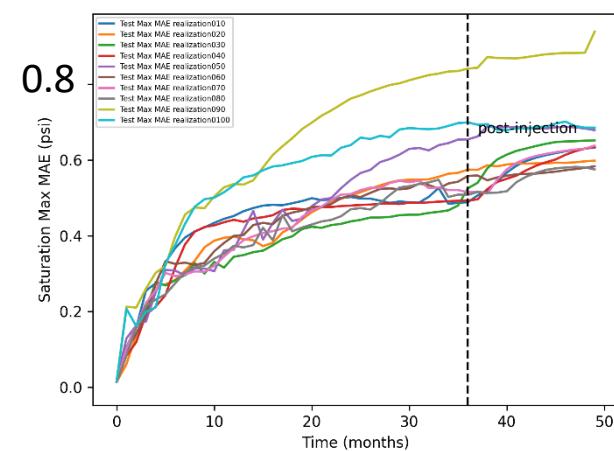
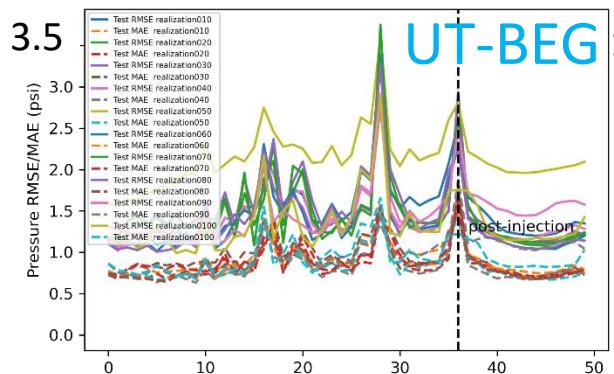
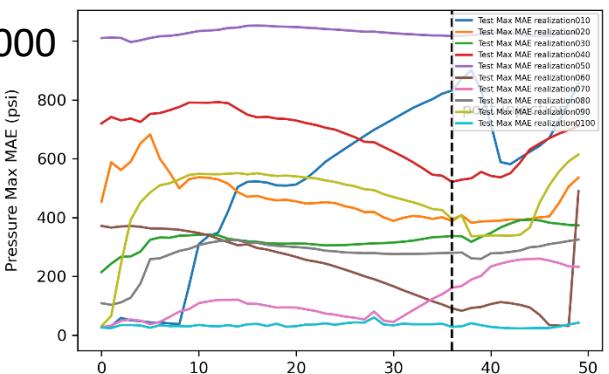
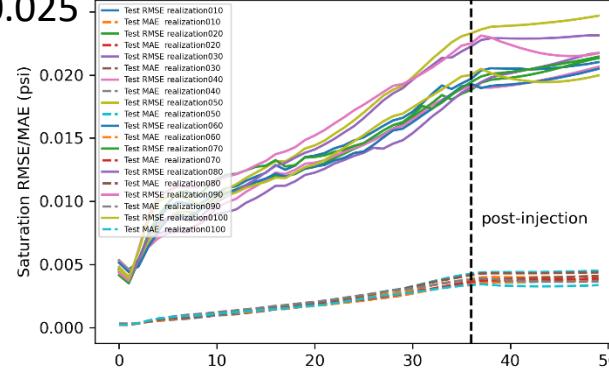
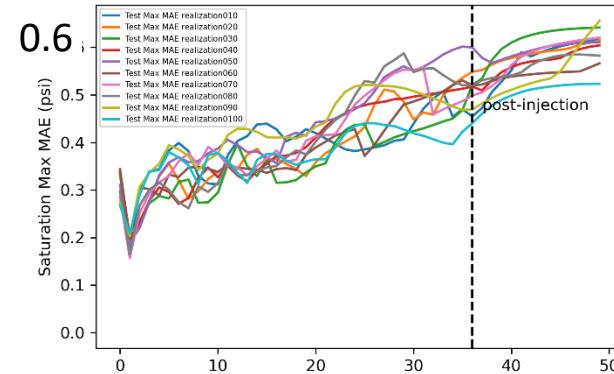
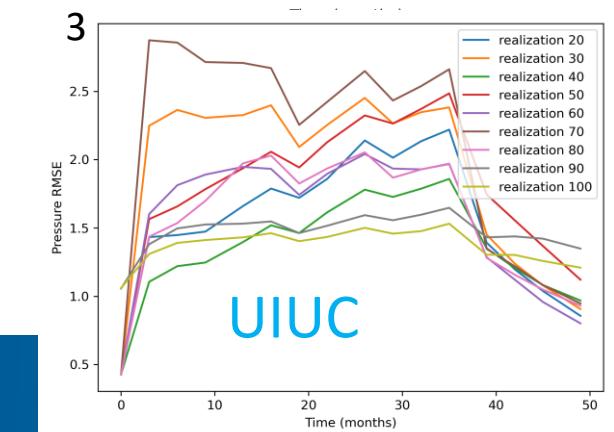
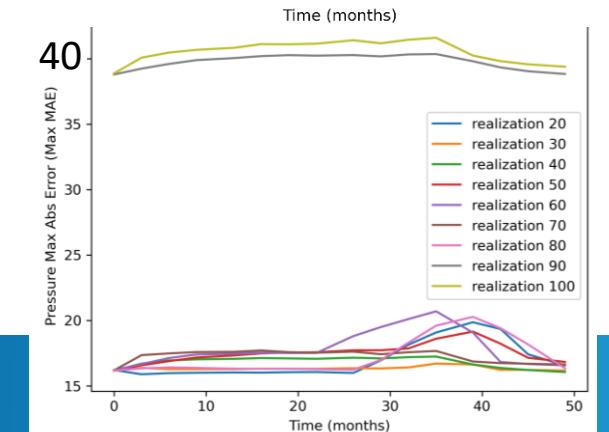
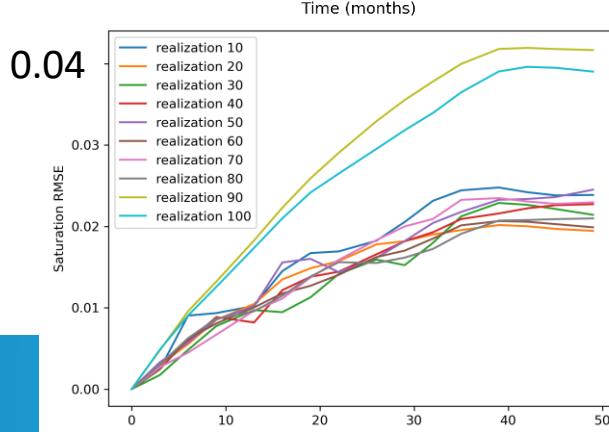
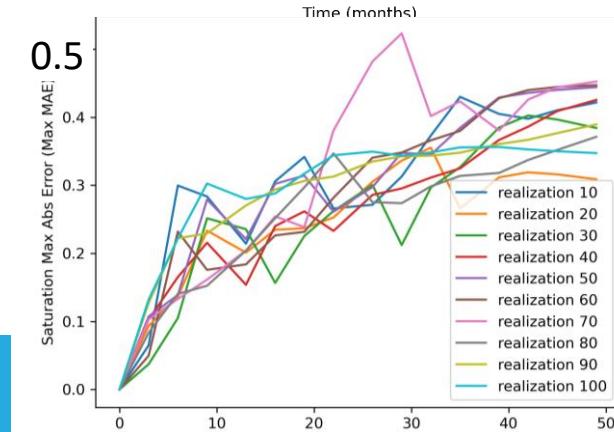
Pressure (1% data)



Saturation (5% data)

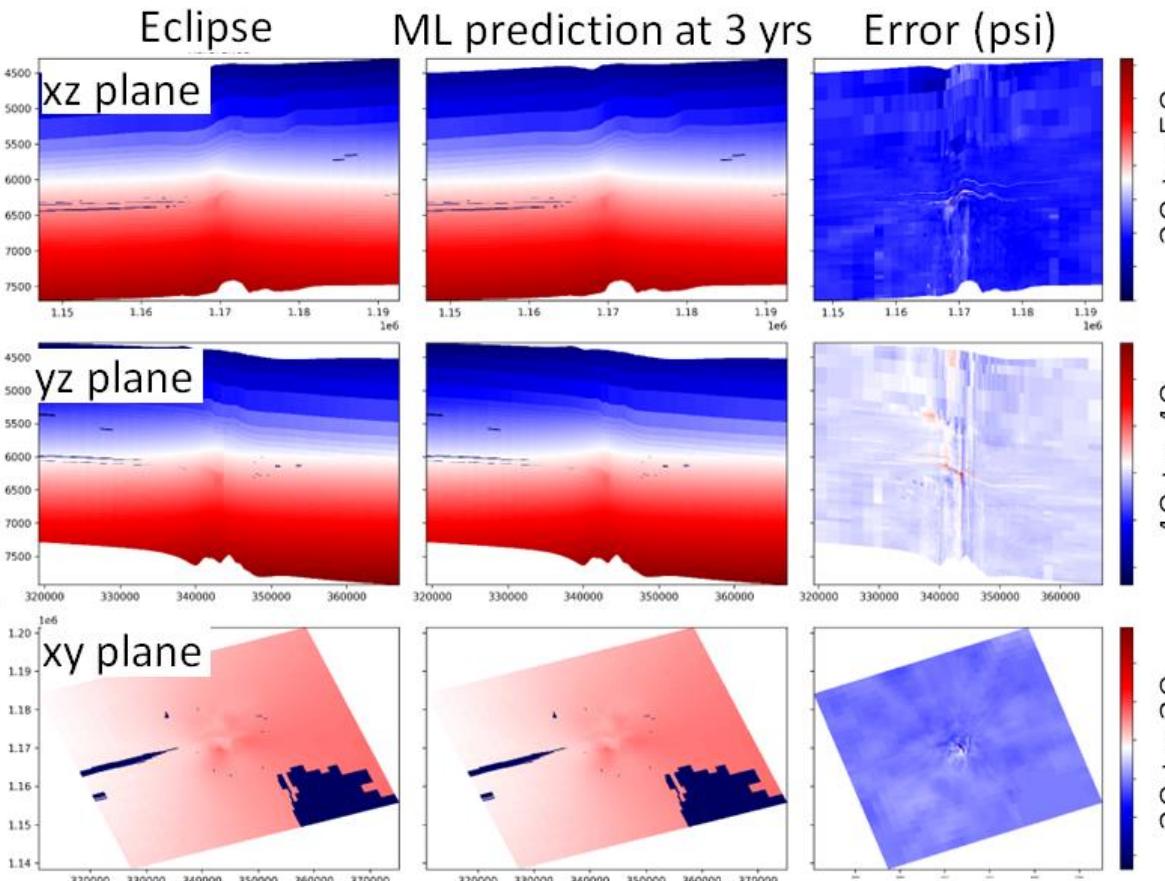


Monthly RMSE/MAE and Max MAE

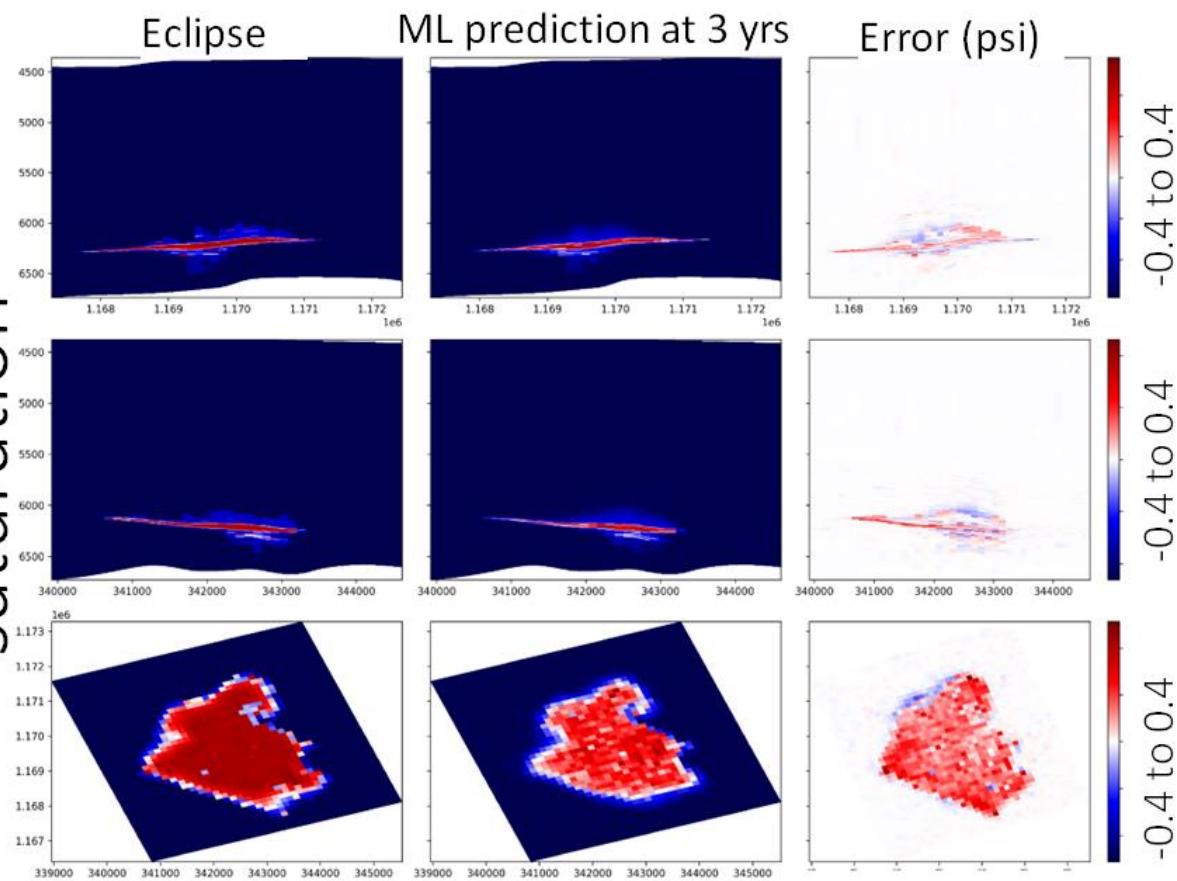


Snapshots of Pressure and Saturation

pressure

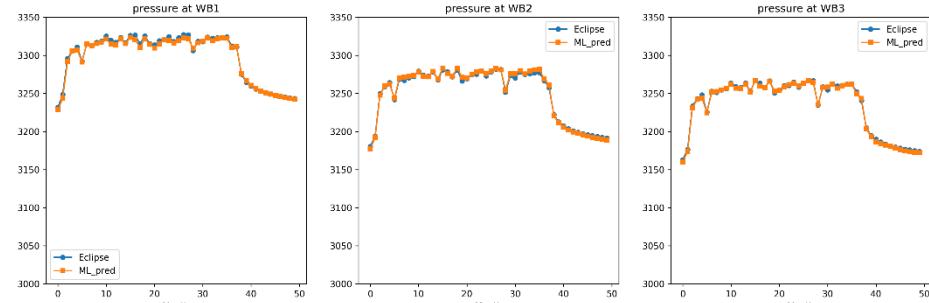
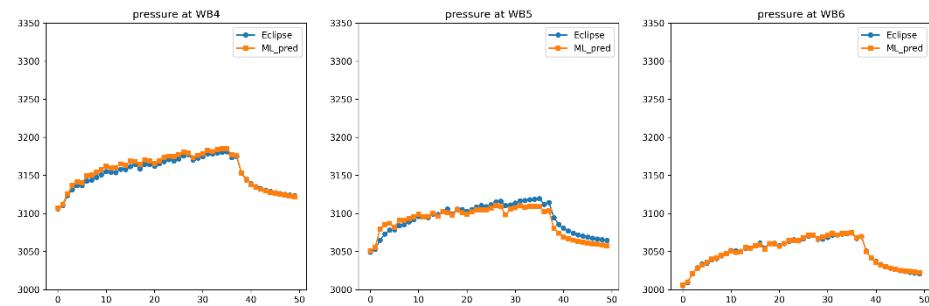
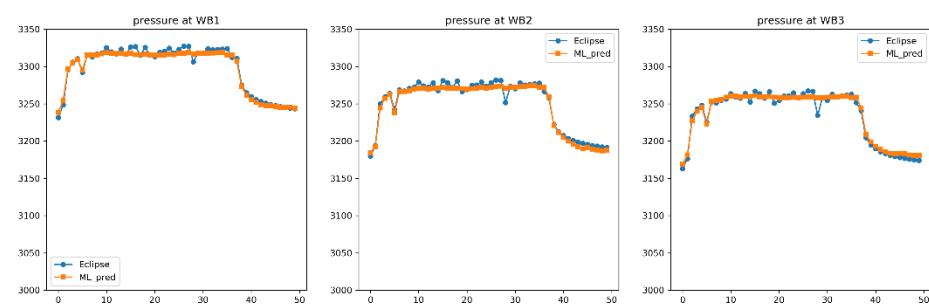
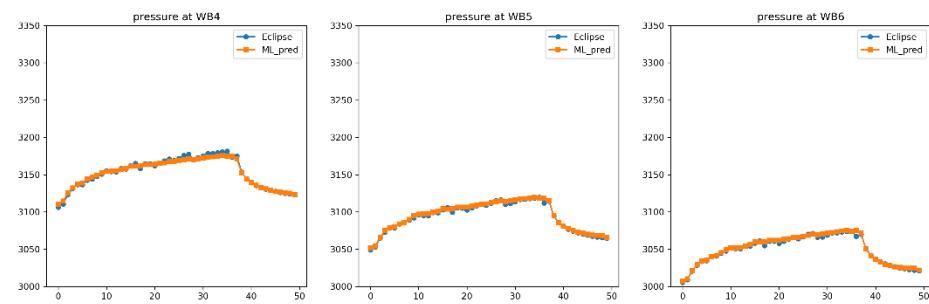
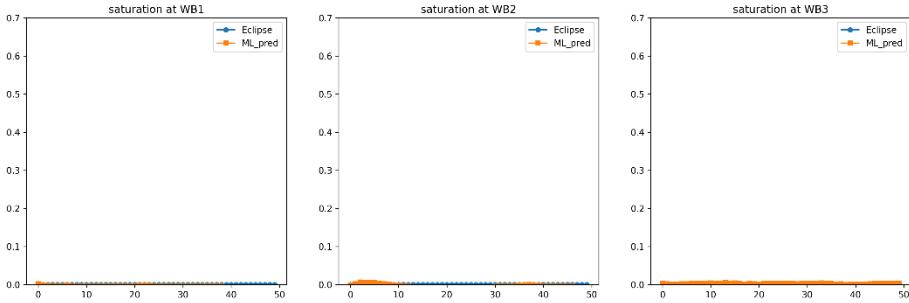
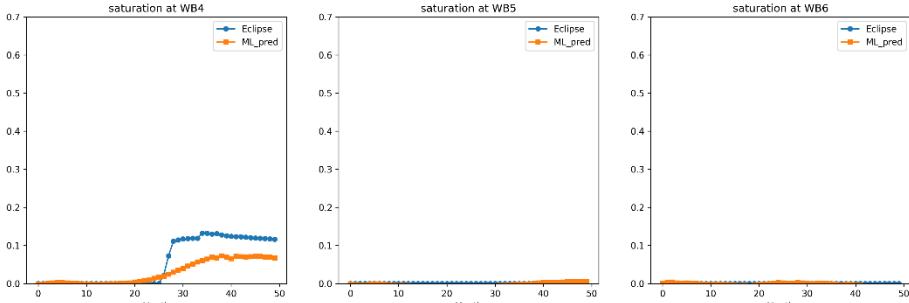
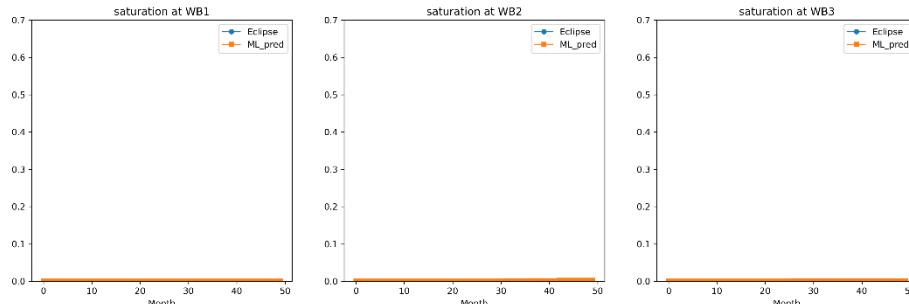
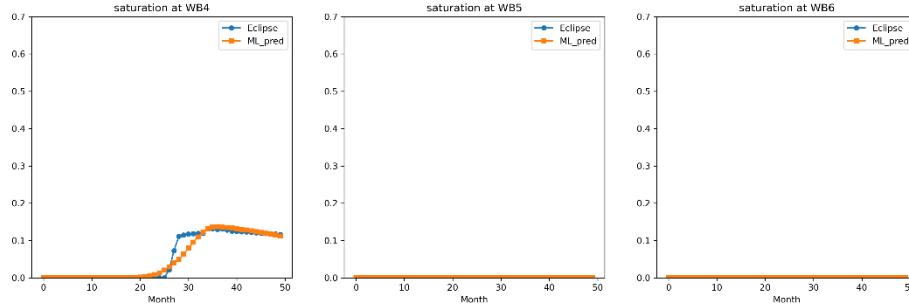


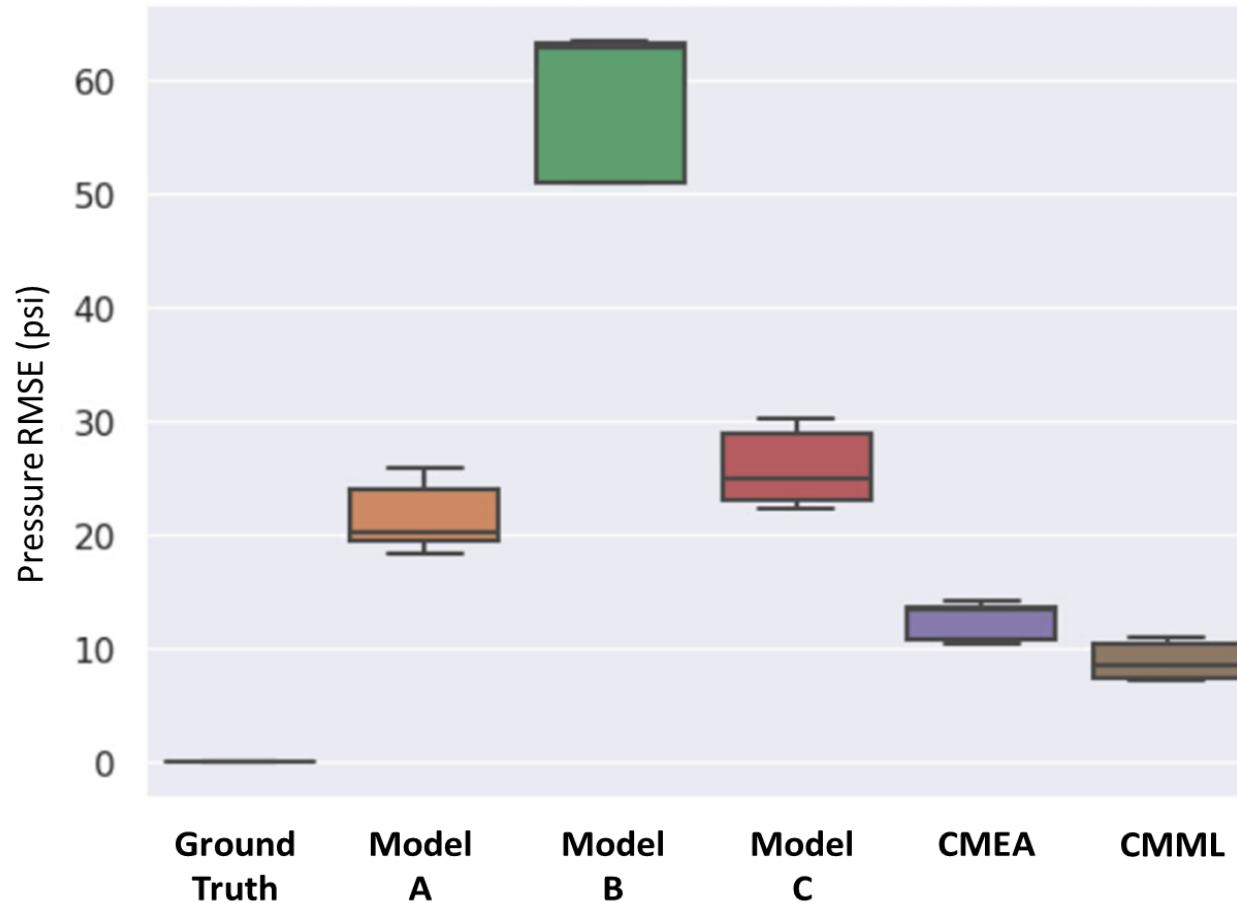
saturation



U.S. DEPARTMENT OF
ENERGY

Pressure (psi) & Saturation (-) at six different depths in monitoring well (realization 10)





Part 3: Accelerate history matching through ML and transfer learning

Acknowledgements

Funding:

- This work was funded by the SMART Initiative through the DOE Office of Fossil Energy and Carbon Management and the Bipartisan Infrastructure Law.

Auspices:

- Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07-NA27344.
- Portions of this work were performed under the auspices of the U.S. Department of Energy by Pacific Northwest National Laboratory under contract DE-AC05-76RL01830.
- Portions of this work were performed under the auspices of the U.S. Department of Energy by Sandia National Laboratories under contract DE-NA0003525.
- Portions of this research were executed through the NETL Research and Innovation Center's Carbon Storage Program

SMART-CS Initiative

Science-informed Machine Learning to Accelerate
Real Time (SMART) Decisions in Subsurface Applications

Task 4

FECM Project Review Meeting
August 28 – September 1, 2023

Fault imaging through event detection and source location estimation

- Integrated ML approaches of event detection and source location estimation
- Data pre-processing of raw continuous microseismic data & event detection
- Data augmentation using WGAN (Wasserstein Generative Adversarial Network)
- PhaseNet used to downselect generated event data with high quality
- CNN model with multi-modal input for source location estimation of events

