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Task 5 -Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:
« Field management, to maximize storage while minimizing pressure buildup
* Induced seismicity risk assessment
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Task 5 -Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:

« Field management, to maximize storage while minimizing pressure buildup
* Induced seismicity risk assessment

5.1: Unified simulafion platform and data generation

5.2: Rapid physics-based predictive models for flow and geomechanics

5.3: Machine learning surrogate models

5.4: Rapid data assimilation and history matching

5.5: Optimization of field Parameters
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Task 5 -Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:
« Field management, to maximize storage while minimizing pressure buildup
* Induced seismicity risk assessment

Today
5.1: Unified simulafion platform and data generation < Part 1
5.2: Rapid physics-based predictive models for flow and geomechanics
5.3: Machine learning surrogate models < Part 2
5.4: Rapid data assimilation and history matching P Part 3

5.5: Optimization of field Parameters
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Part 1: Unified Simulation Module
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NATIONAL

Unified Simulation Module N= [N

=
T L TECHNOLOGY
LABORATORY

Objectives:

* Provide a unified and flexible way for a
user to interact with reservoir simulation
data

* Read in data from commonly-used formats
(GRDECL, RESQML), or from other SMART
workflows (Task 4 imaging)

e Convert data into formats needed by ML
models (Numpy arrays)

e Convert output of ML models into formats
needed for visualization and analysis in the
VLE and STRIVE
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Unified Simulation Module N=[RiToNAL
TL | ESaNASSY

_ Local file

or from EDX
(implemented)

Directinterface -7

-
-
-

S. DEPARTMENT OF

'ENERGY



Unified Simulation Module N=[RERY™
T L J{REOkRTorY
Local file
or from EDX

(implemented)

y

USM OperationalScenarioManager class

______________ » | * Welllocation
Direct interface * Perforation depths

(implemented * Injection rate
but not tested)
* Pressure
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Unified Simulation Module N=[RiToNAL
TL | ESaNASSY

USM ForwardModel classes USM ReservoirStateManager
SIS FEESEM BT PO R E —) » Base class that defines the interface, —) * Mesh geometry
: : making all forward models * Pressure field time history
USM OperationalScenarioManager interchangeable * Saturation field time history
* Derived classes implement specific » Stress field time history
forward models (planned)
* Directly use ReservoirPropertyManager e Strain field time history
and OperationalScenarioManager (planned)
objects
* Outputs ReservoirStateManagerObject
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Unified Simulation Module Data Flow

ReservoirPropertyManager

ForwardModel
(ML models)

OperationalScenarioManager
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Unified Simulation Module

Quality control and documentation

« USM code hosted on GitLab

« Installable Python package makes it easy to use

« Automated unit testing suite tests every commit pushed
« Standardized code formatting and style

« Sphinx documentation is automatically built

« Issue and milestone tracking on GitLab
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Testing pipeline

Status Pipeline
() passed forgot to include new DataManagerBase sourc...
& 00:00:28 #930552655 ¥ feature/pickle - aBbec5e8
B3 1 month ago @
latest
(©) passed applied yapf
& 00:00:28 #930551570 ¥ feature/pickle -© 55¢1784d

B3 1 month ago B

() passed Merge branch 'petrel-support’ into 'main’
& 00:06:27 #929529305 § main o 60dbd821 &
B 1 month ago latest

(©) passed switched tests to using a small 1D 2-cell grdec...
& 00:03:08 #929526526 $16 © e640725e &

B4 1 month ago latest ~ merge request

(©) passed switched tests to using a small 1D 2-cell grdec...

& 00:00:28 #929526505 ¥ petrel-support -0 e640725e

B 1 month ago 4

Issue tracking

D create methods to access pickled objects from EDX
#9 - created 1 month ago by Jeffrey Burghardt (D USM Daployment

[ fix data scaling in UTBEG model
#8 - created 1 month ago by Jeffrey Burghardt

O STRIVE Integration
#7 - created 2 months ago by Christopher Sherman @ USM Deployment

priority: high

[ Add sphinx documentation for mesh, property reshaping
#6 - created 2 months ago by Christopher Sherman (@ Initial USM Development

priority: medium

@ Code restructure related to handling of field attributes
#5 - created 2 months ago by Veronika Vasylkivska

LEarancament Y oo opimizaton

@ Convenience functions for slicing mesh
#3 - created 2 months ago by Kayla Kroll

GCIEEED

== INATIONAL
= [ENERGY
TL TECHNOLOGY
LABORATORY

Triggerer Stages

updated 1 month ago

-

e &

updated 1 month ago
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Part 2: ML Surrogate Modeling
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ML Input Data

= Monthly pressure and saturation distributions at IBDP Site at 1.73M cells in 100 realizations
of permeability and porosity fields with actual CO, injection rates (1 M tons for 3 years)

80 cases with open
fault horizontally

Training (90 cases) and testing (10 cases) porosity T Permeability (md)

Input data
* Injection rate: (100, 50)
* Permeability: (100, 126, 125, 110, 3)
e Porosity: (100, 126, 125, 110)
* Topology: (100, 126, 125, 110)

Historic Gas Injection Rate [MSCF/d]

Output data = m
e Pressure: (, 50, 126, 125, 110) ’°°

20 cases W|th closed
fault horizontally

W

201201 2012-07 2013-01 2013-07 2014-01 2014-07 2015()1 2015-07  2016-01

e Saturation: (, 50, 40, 44, 94)

e Well data Example of porosity, permeability, and
* Injection rates: three perforation injection rates (input to ML models) &
zones examples of CO, saturation distribution at

« Monitoring: 6 multi-depth sensors 1 year after the end of injection (Eclipse)
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ML Models

= Computational efficiency to handle real Illinois Decatur Basin Project (IBDP) data
= Prediction accuracy
= Flexibility associated with input, output, portability, and potentially transfer learning

Pressure Saturation

LANL* Fourler Neural Operator ~5 ~0.015 2D input due to data size on single GPU

LLNL Fourier Neural Operator ~4 ~0.015 32 GPUs for ML training with 3D data (2 & 1 hrs for P &S)

ORNL Autoencoder-MLP ~20-25 ~0.018 Latent space based approach, 2D slice model for pressure

SNL Modified DeepONet with ~> ~0.018 Subsampling for computational efficiency (~ 1hr training on 1 GPU
subsampling (0.015%) & 2.2M parameters), handling full IBDP data

uluC Karhunen-Loeve (KL)- < ~0.02 Domain needs to be coarsened in both space and time to handle
Deep Neural Network data.

N Relatively big model (122M parameters, 23.6 hr training on 2
HISBES UNet-MLP <2 0.016 GPUs), handling full IBDP data

Smart Proxy Modeling — -
Spatlotemporal DCNN Not completed over time and space. In progress

NETL Committee Machine See figure

m Library look-up model Notsogood Notsogood Not ML model, but as baseline

*UNet was also evaluated. Not reported here. # A simple CNN-LSTM model
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Pressure & Saturation Prediction (realization 10)
Saturation (5% data)

Pressure (1% data)

Pressure_1% Data_Realization_10

Pressure_1%_Data_Realization_10
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Saturation_5%_Data_Realization_10

Saturation_5%_Data_Realization_10

ISNL '| UT-BEG
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Pressure RMSE/MAE (psi)

Pressure RMSE/MAE (psi)
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Snapshots of Pressure and Saturation

Eclipse ML prediction at 3yrs Error (psi) Eclipse ML predictionat 3yrs  Error (psi)
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Pressure (psi) & Saturation (-) at six different depths in monitoring
well (realization 10)
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ML Committee Machine

NETL
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Part 3: Accelerate history matching through ML and transfer learning
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Fault imaging through event detection and source location estimation

" |ntegrated ML approaches of event detection and source location estimation

= Data pre-processing of raw continuous microseismic data & event detection

= Data augmentation using WGAN (Wasserstein Generative Adversarial Network)
= PhaseNet used to downselect generated event data with high quality

= CNN model with multi-modal input for source location estimation of events

Event clustering &
construct faults

Data processing Event detection & . . Multi modal CNN for source
of raw waveform arrival time: CNN gypthetI{/Ichat\A?Ggfgeratlon: locations of newly detected
continuous data & U-Net models slotuehil | ) events

— ~ e WGAN model Input: source locations ) a8 ) ) ) )
continuous event detection with catalog and output of waveform data over arange of source NMF-HMM model to
Cavefor Hata 3 channel & energy « Apply trained seismoML model to locations & distance construct planar faults
(e g 4103 feature as input and generate Synthetic waveforms of each ¢ Train a multi modal CNN with
ch'ar'{nels) retrain PhaseNet for channel (H1,H2,V) spectrograms and P&S arrival

S | J L arrival time ) « Screen generated waveform data by \(bmary) of each channel data D

:j:ﬂ +' — RSN \phase arrlval tlmes (PhaseNet) / Parity plot for training data predictions

e N = Al " True and generated data comparison -
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