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Task 5 –Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:

• Field management, to maximize storage while minimizing pressure buildup

• Induced seismicity risk assessment
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Task 5 –Dynamic Storage Reservoir Modeling

Goal: Provide real-time modeling, data assimilation and forecasting to support:

• Field management, to maximize storage while minimizing pressure buildup

• Induced seismicity risk assessment

5.2: Rapid physics-based predictive models for flow and geomechanics

5.3: Machine learning surrogate models

5.4: Rapid data assimilation and history matching

5.5: Optimization of field Parameters

5.1: Unified simulation platform and data generation
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Task 5 –Dynamic Storage Reservoir Modeling

5.2: Rapid physics-based predictive models for flow and geomechanics

5.3: Machine learning surrogate models

5.4: Rapid data assimilation and history matching

5.5: Optimization of field Parameters

Goal: Provide real-time modeling, data assimilation and forecasting to support:

• Field management, to maximize storage while minimizing pressure buildup

• Induced seismicity risk assessment

5.1: Unified simulation platform and data generation Part 1

Part 2

Part 3

Today
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Part 1: Unified Simulation Module



Unified Simulation Module

Objectives:
• Provide a unified and flexible way for a 

user to interact with reservoir simulation 
data

• Read in data from commonly-used formats 
(GRDECL, RESQML), or from other SMART 
workflows (Task 4 imaging)

• Convert data into formats needed by ML 
models (Numpy arrays)

• Convert output of ML models into formats 
needed for visualization and analysis in the 
VLE and STRIVE



Unified Simulation Module

Input Reservoir 
Property Data

Data generated outside 
of platform (Petrel, 
EarthVision, etc.)

Data generated from 
Task 4 imaging 
workflow

GRDECL files (implemented)
RESQML files (planned)

USM ReservoirPropertyManager class

Local file
or from EDX 
(implemented)

• Mesh geometry (structured, 
cornerpoint, unstructured)

• Porosity fields
• Permeability fields (isotropic or 

anisotropic)

Data generated from 
Task 5 history matching 
workflow



Unified Simulation Module

Input Injection and 
Monitoring Well Data

Data generated outside 
of platform

*.csv, *.xlsx
USM OperationalScenarioManager class

Local file
or from EDX 
(implemented)

• Well location
• Perforation depths
• Injection rate
• Pressure

Data generated from 
Task 5 history matching 
or VLE

Direct interface 
(implemented 
but not tested)



Unified Simulation Module

USM ReservoirPropertyManager

USM OperationalScenarioManager

USM ForwardModel classes

• Base class that defines the interface, 
making all forward models 
interchangeable

• Derived classes implement specific 
forward models

• Directly use ReservoirPropertyManager 
and OperationalScenarioManager 
objects

• Outputs ReservoirStateManagerObject

USM ReservoirStateManager

• Mesh geometry
• Pressure field time history
• Saturation field time history
• Stress field time history 

(planned)
• Strain field time history 

(planned)



Unified Simulation Module

USM ReservoirStateManager

• Mesh geometry
• Pressure field time history
• Saturation field time history
• Stress field time history 

(planned)
• Strain field time history 

(planned)

Use outside of SMART 
platform enabled with:
• VTK files (implemented)
• RESQML files (planned)

Direct connection with 
other SMART platform 
components (VLE, history 
matching, etc.)

Output Dynamic Reservoir 
Data



Unified Simulation Module Data Flow

Use outside of SMART 
platform enabled with:
• VTK files (implemented)
• RESQML files (planned)

Direct connection with other 
SMART platform components 
(VLE, history matching, etc.)

Output Dynamic Reservoir 
DataInput Reservoir 

Property Data

ReservoirPropertyManager

OperationalScenarioManager

ForwardModel
(ML models)

ReservoirStateManager

Input Injection and 
Monitoring Well Data

• Data generated 
outside of 
platform (Petrel, 
EarthVision, etc.)

• Task 5 history 
matching

• Task 4 imaging



Quality control and documentation

• USM code hosted on GitLab

• Installable Python package makes it easy to use

• Automated unit testing suite tests every commit pushed

• Standardized code formatting and style

• Sphinx documentation is automatically built

• Issue and milestone tracking on GitLab

Unified Simulation Module
Testing pipeline

Issue tracking
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Part 2: ML Surrogate Modeling
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ML Input Data

• Training (90 cases) and testing (10 cases)

• Input data

• Injection rate: (100, 50)

• Permeability: (100, 126, 125, 110, 3)

• Porosity: (100, 126, 125, 110)

• Topology: (100, 126, 125, 110)

• Output data

• Pressure: (, 50, 126, 125, 110)

• Saturation: (, 50, 40, 44, 94)

• Well data

• Injection rates: three perforation 
zones

• Monitoring: 6 multi-depth sensors

▪ Monthly pressure and saturation distributions at IBDP Site at 1.73M cells in 100 realizations 
of permeability and porosity fields with actual CO2 injection rates (1 M tons for 3 years)

Example of porosity, permeability, and 
injection rates (input to ML models) & 
examples of CO2 saturation distribution at 
1 year after the end of injection (Eclipse)

80 cases with open 
fault horizontally

20 cases with closed 
fault horizontally

Porosity Permeability (md)
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ML Models

▪ Computational efficiency to handle real Illinois Decatur Basin Project (IBDP) data
▪ Prediction accuracy
▪ Flexibility associated with input, output, portability, and potentially transfer learning

ORG ML Method
Pressure 

RMSE (psi)
Saturation 
RMSE (-)

Note

LANL* Fourier Neural Operator ~5 ~0.015 2D input due to data size on single GPU

LLNL Fourier Neural Operator ~4 ~0.015 32 GPUs for ML training with 3D data (2 & 1 hrs for P &S) 

ORNL Autoencoder-MLP ~20-25 ~0.018 Latent space based approach, 2D slice model for pressure

SNL
Modified DeepONet with 
subsampling

~2
~0.018 
(0.015#)

Subsampling for computational efficiency (~ 1hr training on 1 GPU 
& 2.2M parameters), handling full IBDP data

UIUC
Karhunen-Loeve (KL)-
Deep Neural Network

<2 ~0.02
Domain needs to be coarsened in both space and time to handle 
data.

UT-BEG UNet-MLP <2 ~0.016
Relatively big model (122M parameters, 23.6 hr training on 2 
GPUs), handling full IBDP data

WVU
Smart Proxy Modeling –
Spatiotemporal DCNN

Not completed over time and space. In progress

NETL Committee Machine See figure

BMI Library look-up model Not so good Not so good Not ML model, but as baseline

*UNet was also evaluated. Not reported here. # A simple CNN-LSTM model 



Pressure & Saturation Prediction (realization 10)
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Monthly RMSE/MAE and Max MAE
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Snapshots of Pressure and Saturation
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Pressure (psi) & Saturation (-) at six different depths in monitoring 
well (realization 10)

SNL

UT-BEG
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ML Committee Machine NETL



21

Part 3: Accelerate history matching through ML and transfer learning
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Fault imaging through event detection and source location estimation

Synthetic data generation: 
SeismoML (WGAN)

• 10s raw 
continuous 
waveform data 
(e.g., 4 to 3 
channels) 

• WGAN model Input: source locations 
and distance of ~400 events from 
catalog and output of waveform

• Apply trained seismoML model to 
generate synthetic waveforms of each 
channel (H1,H2,V)

• Screen generated waveform data by 
phase arrival times (PhaseNet)

• Construct synthetic waveform 
data over a range of source 
locations & distance

• Train a multi modal CNN with 
spectrograms and P&S arrival 
(binary) of each channel data

Event clustering & 
construct faults

Multi modal CNN for source 
locations of newly detected 
events

▪ Integrated ML approaches of event detection and source location estimation
▪ Data pre-processing of raw continuous microseismic data & event detection
▪ Data augmentation using WGAN (Wasserstein Generative Adversarial Network)
▪ PhaseNet used to downselect generated event data with high quality
▪ CNN model with multi-modal input for source location estimation of events

Data processing 
of raw waveform 
continuous data

Event detection & 
arrival time: CNN 
& U-Net models

• Train a CNN model for 
event detection with 
3 channel & energy 
feature as input and 
retrain PhaseNet for 
arrival time

• Event clustering using 
NMF-HMM model to 
construct planar faults
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