
SANDIA REPORT
SAND2024-xxxx
Printed September 2024

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

MAPIT User's Guide:
v1.4.6-beta
Nathan Shoman

SAND2024-11988

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE:This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

This work is supported by the DOE/NE Office of Materials and Chemical Technologies (NE-43) -
Materials Protection, Accounting, and Control Technologies (MPACT) program.

3

This page intentionally left blank.

4

CONTENTS

1. Introduction . 9

2. Theory guide . 10
2.1. Error model . 10

2.1.1. Historical context . 10
2.1.2. Theory . 10
2.1.3. Implementation . 12
2.1.4. Further reading . 15

2.2. MUF and Sigma MUF . 16
2.2.1. Historical context . 16
2.2.2. Theory: MUF . 16
2.2.3. Theory: Sigma MUF . 20
2.2.4. Discussion . 24
2.2.5. Material balance iterations . 25
2.2.6. MUF implementation . 25
2.2.7. Sigma MUF implementation . 28
2.2.8. Further reading . 30

2.3. CuMUF . 30
2.3.1. Historical context . 31
2.3.2. Theory . 31
2.3.3. Discussion . 31
2.3.4. Implementation . 31
2.3.5. Further reading . 32

2.4. SITMUF . 32
2.4.1. Historical context . 32
2.4.2. Theory . 33
2.4.3. Discussion . 35
2.4.4. Implementation . 36
2.4.5. Further reading . 42

2.5. Page’s trend test . 43
2.5.1. Historical context . 43
2.5.2. Theory . 43
2.5.3. Implementation . 44
2.5.4. Further reading . 44

2.6. Special computational considerations . 44
2.6.1. Numerical integration . 44

3. Download and installation . 47
3.1. Objective . 47
3.2. Experienced with Python . 47
3.3. New to Python . 47

3.3.1. Downloading MAPIT tools . 48
3.3.2. Installing MAPIT . 48

5

4. Introductory tutorial . 50
4.1. Fuel fabrication overview . 50
4.2. Walkthrough . 50

4.2.1. Downloading the exemplar dataset . 50
4.2.2. Loading the exemplar dataset . 50
4.2.3. Statistical test configuration . 51

4.3. Analysis . 52
4.3.1. Plotting . 53
4.3.2. Thresholds . 54
4.3.3. Error contributions . 54

4.4. Data export: figures . 55
4.5. Data export: data . 55

5. Guided exercises . 56
5.1. Exercise 1: General MAPIT familiarity . 56

5.1.1. Objective . 56
5.1.2. Opening MAPIT . 56
5.1.3. MAPIT main interface . 57
5.1.4. Performing a basic analysis . 58
5.1.5. Summary . 59

5.2. Exercise 2: Impacts of measurement error . 60
5.2.1. Objective . 60
5.2.2. Problem setup . 60
5.2.3. Data exploration . 61
5.2.4. Understanding error contribution . 64
5.2.5. Summary . 67

5.3. Exercise 3: Material loss . 67
5.3.1. Objective . 67
5.3.2. Problem setup . 67
5.3.3. Baseline data exploration . 68
5.3.4. Explore impact of lower uncertainty . 69
5.3.5. Summary . 70

5.4. Exercise 4: Quantifying probability of detection . 70
5.4.1. Objective . 70
5.4.2. Problem setup . 71
5.4.3. Determining statistical thresholds . 72
5.4.4. Evaluating probability of detection . 73
5.4.5. Summary . 74

6. API . 75

References . 87

6

LIST OF FIGURES
Figure 2-1. Single iteration of a material balance calculation . 18
Figure 2-2. Normal distributions with small relative mean shift compared to uncertainty 19
Figure 2-3. Differentiating between distributions becomes easier as the mean shift increases or

the uncertainty decreases . 20
Figure 3-1. MAPIT download location . 48
Figure 3-2. MAPIT install script location . 49
Figure 4-1. MAPIT main interface . 51
Figure 4-2. Progress bar . 52
Figure 4-3. Plot type controls . 53
Figure 4-4. Threshold box . 54
Figure 4-5. Figure navigation bar . 55
Figure 5-1. MAPIT main interface . 57
Figure 5-2. MAPIT main interface . 60
Figure 5-3. Plot data type controls . 61
Figure 5-4. Several MUF iterations . 62
Figure 5-5. Several SigmaMUF iterations . 63
Figure 5-6. Several SITMUF iterations . 63
Figure 5-7. Error contribution table . 65
Figure 5-8. Comparison of random and systematic contributions.Note that contributions are

identical as random and systematic are set to the same value of 3%. 65
Figure 5-9. Total error contribution by location . 66
Figure 5-10. Several MUF iterations . 68
Figure 5-11. Ground truth observation of fuel pin output flow . 69
Figure 5-12. Several MUF iterations under loss conditions . 70
Figure 5-13. Page scores for several SITMUF iterations . 72
Figure 5-14. Setting a threshold on Page’s scores . 73
Figure 5-15. Threshold evaluation on Page’s trend test on SITMUF for the abrupt loss dataset 74

LIST OF TABLES
Table 2-1. SITMUF formula code mapings . 36
Table 5-1. Nomenclature equalities for common accountancy terms . 56

7

NOMENCLATURE

C/S Containment and Surveillance

CFR Code of Federal Regulations

DA Destructive Assay

FAP False Alarm Probability

ID Inventory Difference

KMP Key Measurement Point

LEU Low Enriched Uranium

LWR Light Water Reactor

MB Material Balance

MBA Material Balance Area

MBP Material Balance Period

MTHM Metric Ton Heavy Metal

MTIHM Metric Ton Initial Heavy Metal

MUF Material Unaccounted For

NDA Non-destructive Assay

NMA Nuclear Material Accountancy

NRC Nuclear Regulatory Commission

PD Probability of Detection

SEID Standard Error of Inventory Difference

SigmaMUF Standard Error of MUF

SITMUF Standardized Independent Material Unaccounted For

SQ Significant Quantity

8

1. INTRODUCTION

MAPIT (Material Accountancy Performance Indicator Toolkit) is a Python package designed to aid in
developing effective material accountancy systems for bulk nuclear facilities. The inherit flexibility is
designed to allow safeguards practitioners to ask the ”what if?” questions while providing transparency
into commonly employed statistical tests.

MAPIT provides both a graphical user interface (GUI) and an application program interface (API).
The API can be used with other Python libraries to extend functionality and integrate with other
analytical workflows.

The purpose of this guide is to serve as an introduction to practical usage of MAPIT and it’s underlying
principles. This guide is not intended to be an comprehensive guide to safeguards or material
accountancy. The reader is encouraged to review suggestions for additional reading in the theory guide
(Section 2) for further understanding. Guidelines such as INFCIRC/153 [1], DOE Order 0474.2 [2],
and 10 CFR part 74 [3] are good places to start for understanding the regulatory aspects of safeguards
and accountancy.

The MAPIT authors will endeavour to update this guide on a semi-regular basis as major changes are
made to MAPIT. Additionally, the content of this guide will be available in a web format as part of our
public repository. The web format will be the always be the most up-to-date version given the
challenges with documenting an entire code base as parts of the web format are automatically generated.
Further, the web format does a better job of displaying code and allowing users to copy and paste parts
of examples.

Finally, please note that MAPIT has a permissive license, so feel free to use MAPIT for your own
applications as long as you acknowledge our work. We want MAPIT to improve accessibility of
safeguards to as many interested users as possible. If you have any suggestions/bugs, feel free to open an
issue, pull request, or send us an email at MAPIT-dev@sandia.gov.

9

https://sandialabs.github.io/MAPIT/
mailto:MAPIT-dev@sandia.gov

2. THEORY GUIDE

This section contains the mathematical context for the statistical tests used for material accountancy.
The goal is to tie the code of MAPIT to the mathematical frameworks that drive modern accountancy
practices. While the specifics of accountancy goals may vary depending on the regulatory stakeholder,
the objective is similar; to detect unauthorized removal of accountable material. MAPIT contains
statistical routines that are used by many stakeholders. Even if a particular test of interest is not included
in MAPIT, the API makes it easy to use core MAPIT routines in an arbitrary Python environment to
perform extended analyses using outside libraries.

First, the error model for measurements made for accountancy purposes is introduced. Next, key
statistical quantities such as MUF/ID and 𝜎MUF/SEID are introduced. Finally, several statistical tests
and transforms used to detect material loss are described.

2.1. Error model

The error model in MAPIT is implemented by MAPIT.core.Preprocessing.SimErrors. However,
this function is not intended to be used standalone through direct calls, rather, it is designed to be called
through the MBArea class of StatsProcessor. The MBArea class can recalculate errors using the
calcErrors()method.

2.1.1. Historical context

The multiplicative error model used in MAPIT was chosen based on the widespread and commonplace
use within the IAEA. It was recognized that as early as the IAEA’s founding in 1957 that there would be
a need to account for nuclear material in facilities [4, 5]. This created the subsequent need for statistical
methods to estimate uncertainties in measurements. One key component for the selection of an error
model is the necessity to propagate error from many measurements for downstream statistical analyses.
The multiplicative error model arose from the need to propagate measurements and perform top-down
(i.e., empirical) uncertainty quantification using both in-field IAEA measurements and operator
declared measurements. The specific values used in the multiplicative error models are determined
using a variety of techniques that changes based on the context of the underlying data. We refer the
reader to supplementary reading, Section 2.1.4 for more information on the history and determination
of the multiplicative error model.

2.1.2. Theory

No measurement, except counting, is completely accurate which results in a non-zero measurement
error. This is the reason that robust statistical analysis of the material balance is required; if material in a
facility were exactly known, detecting loss of that material would be trivial. Statistical analyses in
material accountancy often assumes a multiplicative error model (describe in the following equation)

𝑥̃𝑡 = 𝑥𝑡(1 + 𝑟𝑡 + 𝑠𝑡)

10

Where:

• 𝑥̃𝑡 is the observed value (i.e., what is actually measured) at time 𝑡

• 𝑥𝑡 is the true, but unknowable value at time 𝑡

• 𝑟𝑡 is relative random error of 𝑥

∘ Specifically 𝑟𝑡 is a random variate of the distributionN (0,𝛿2
𝑟) where 𝛿2

𝑟 is the random
relative standard deviation.

• 𝑠𝑡 is the relative systematic error of 𝑥

∘ Specifically, 𝑠𝑡 is a random variate of the distributionN (0,𝛿2
𝑠) where 𝛿2

𝑠 is the systematic
relative standard deviation.

Here, random error refers to sources of error that can be reduced through repeated measurements of the
same item. Systematic errors refers to short-term biases that are generally irreducible. These systematic
biases can arise from a variety of sources such as calibration errors. Regardless of the measurement type
(random or systematic), errors are characterized by a mean zero normal distribution with non-zero
standard deviation. The distributions characterizing the random and systematic error can vary based on
a variety of factors such as measurement type, measurement system, and even the specific isotope
measured.

Tip

Systematic errors behave as a bias. Consequently, the systematic variate, 𝑆𝑡, applied to the true
value 𝑥𝑡, from the multiplicative model described above is not updated at every time step. This
contrasts with the random variate which is updated at each time step. The systematic variate is held
constant and only updated on a periodic basis that corresponds to a specified calibration period.
The details of the calibration period are measurement system specific.

Important

As of version 1.4.6, there is no functionality to specify a calibration period directly. TheAPI can be
combined with data manipulation to simulate different calibrations by slicing the data and passing
it to MAPIT.core.Preprocessing.SimErrors.

By default, MAPIT assumes a single calibration for the length of the dataset that does not vary
with time. For example, a time series with 1000 steps will be assumed to have a single systematic
variate, drawn from a distribution described by the user supplied error matrix, that is applied to
every time step and does not change with time. A new feature is planned for FY25 that will add the
capability to specify a calibration period.

11

2.1.3. Implementation

The multiplicative error model described in the introduction assumes that there is a single iteration and
location. For example, the model in the introduction might express the simulated error for a single
input key measurement point. There might be multiple key measurement points in practice resulting
an error model with location 𝑙 and time 𝑡 such that:

𝑥̃𝑙,𝑡 = 𝑥𝑙,𝑡(1 + 𝑟𝑙,𝑡 + 𝑠𝑙,𝑡)

It is often desireable to consider simulated statistics and calculate error for multiple iterations to help
determine performance statistics of a safeguards system even if, in practice, only a single iteration is
measured. The multiplicative error model can be further expanded such that an iterative dimension, 𝑛,
that reflects independent draws of the underlying random and systematic error distributions, is also
considered. Note that there is no iteration added to the unobservable true value, 𝑥𝑙,𝑡 as it is not a
random variate.

𝑥̃𝑛,𝑙,𝑡 = 𝑥𝑙,𝑡(1 + 𝑟𝑛,𝑙,𝑡 + 𝑠𝑛,𝑙,𝑡)

For simplicity, assume that the systematic error does not have a calibration period and applies for an
entire iteration (i.e., the same bias is applied for all time steps of an iteration). One naive
implementation of the multiplicative model might then be as follows:

for n in range(len(iterations)):
for p in range(len(locations)):

sysError = np.random.normal(loc = 0, scale = sysSTD)

for t in range(len(timesteps)):
randomError = np.random.normal(loc = 0, scale = randSTD)
x_observed[n, p, t] = x_true[p, t] * (1 + randomError + sysError)

This approach is valid, but scales poorly. MAPIT vectorizes both the iteration and time step dimension
on a per location basis. Each location might have a different sample rate, so it is not possible to develop a
fully vectorized implementation. The multiplicative model, in a vectorized form, can first be expressed
as follows when vectorizing the time dimensions:

𝑥̃𝑛,𝑙 = 𝑥𝑙(1 + 𝑟𝑛,𝑙 +𝑠𝑛,𝑙)

Additionally, the iterative dimension can be vectorized resulting in the following:

𝑋̃𝑙 = 𝑥𝑙(1 +𝑅𝑙 +𝑆𝑙)

12

Note

While the random error component, 𝑅𝑛,𝑙,𝑡 is sampled at every time step, sensor setup might com-
plicated the specification of the systematic error component. It is assumed here that the systematic
error changes with location but not time as no calibration time is assumed (𝑆𝑛,𝑙𝑡=0 = 𝑆𝑛,𝑙,𝑡=50 =
𝑆𝑛,𝑙,𝑡=𝑡).

The implementation of this error model is performed in MAPIT by
MAPIT.core.Preprocessing.SimErrors starting on line 352:

352 def SimErrors(rawData, ErrorMatrix ,iterations, GUIObject=None, doTQDM=True,
batchSize=10, dopar=False, bar=None):↪

The function generates iterations simulated realizations of measurements (i.e., the iteration
dimension 𝑛) for each list entry. Each iteration represents a possible result of measuring at the
specific key measurement point (i.e., location dimension 𝑝) represented by the list entry.

First, a list of arrays is initialized to hold the errors calculated by the function (Lines 408-409).

408 for i in range(0, len(rawData)):
409 AppliedError.append(np.zeros((iterations,

rawData[i].shape[0]),dtype=np.float32))↪

Each entry in the AppliedError list is an array with shape (iterations 𝑛, time steps 𝑡) and presumably
refers to a different location in a measurement type. For example, the first entry in the list might be a
(time steps 𝑡, 1) shaped array of data collected at the first input key measurement point. Since each list
entry might have a different number of time steps, the arrays are stored in a list rather than being
concatenated. The list and constituent arrays are preinitalized.

The main calculation loop occurs between lines 442 and 479:

442 for j in range(0,outerloop):
443 startIdx = j*batchSize
444 endIdx = startIdx+batchSize
445 sysRSD = np.random.normal(size=(batchSize,1,1), loc=0,

scale=ErrorMatrix[i,1])↪

446 randRSD = np.random.normal(size=(batchSize,rawData[i].shape[0],1), loc=0,
scale=ErrorMatrix[i,0])↪

447 AppliedError[i][startIdx:endIdx,] = rawData[i][:,0].reshape((1,-1)) *
(1+sysRSD+randRSD).reshape((batchSize,-1))↪

448
449 if GUIObject is not None:
450 totalloops = (outerloop+1)*len(rawData)
451 GUIObject.progress.emit(loopcounter / totalloops*100)
452 loopcounter+=1
453
454 if doTQDM and not dopar:
455 pbar.update(1)
456

13

457 if remruns > 0:
458 sysRSD = np.random.normal(size=(remruns,1,1), loc=0,

scale=ErrorMatrix[i,1])↪

459 randRSD = np.random.normal(size=(remruns,rawData[i].shape[0],1), loc=0,
scale=ErrorMatrix[i,0])↪

460 AppliedError[i][endIdx:,] = rawData[i][:,0].reshape((1,-1)) *
(1+sysRSD+randRSD).reshape((remruns,-1))↪

461
462 if GUIObject is not None:
463 totalloops = (outerloop+1)*len(rawData)
464 GUIObject.progress.emit(loopcounter / totalloops*100)
465 loopcounter+=1
466
467 if doTQDM and not dopar:
468 pbar.update(1)
469
470 else:
471 sysRSD = np.random.normal(size=(iterations,1,1), loc=0,

scale=ErrorMatrix[i,1])↪

472 randRSD = np.random.normal(size=(iterations,rawData[i].shape[0],1), loc=0,
scale=ErrorMatrix[i,0])↪

473 AppliedError[i] = rawData[i][:,0].reshape((1,-1)) *
(1+sysRSD+randRSD).reshape((iterations,-1))↪

474
475 if GUIObject is not None:
476 GUIObject.progress.emit(i/len(rawData)*100)
477
478 if doTQDM and not dopar:
479 pbar.update(1)

SimErrors has a parameter batchSize that controls the number of iterations that are calculated at
once. The most efficient implementation would calculate all iterations at once using a single matrix
calculation. However, this could consume more memory than available in some scenarios, so the
batchSize parameter is provided. The code tries to batch iterations into batchSize chunks. If
iterations is not equally divisible by batchSize, then an extra remRuns sized calculation is
performed after the all iterations/batchSize chunks are calculated.

MAPIT specifically uses vectorized representations to more efficiently calculated the simulated error
model. The sections below map the model components to the relevant code expressions.

14

Model Component Code Expression

𝑟𝑛=1∶batch,𝑝 randRSD = np.random.normal(size=(batchSize, rawData[i].shape[0],

1), loc=0, scale=ErrorMatrix[i,0])

𝑠𝑛=1∶batch,𝑝 sysRSD = np.random.normal(size=(batchSize, 1, 1), loc=0,

scale=ErrorMatrix[i,1])

𝑥𝑝 rawData

𝑥̃𝑛=1∶batch,𝑝 AppliedError[i][startIdx:endIdx,] = rawData[i]

[:,0].reshape((1,-1)) *
(1+sysRSD+randRSD).reshape((batchSize,-1))

Important

Note that sysRSD has a shape of 1 for dim 1 (i.e., sysRSD.shape[1] = 1) as a single random vari-
ate from the underlying distribution is applied to all time steps for location 𝑙. Numpy broadcasting
ensures that the shape of is the same for all. This will be configurable in a future update.

Additional code present in this section is used to support GUI changes, such as updating of a progress
bar update, and is not important to the core multiplicative error model calculation.

2.1.4. Further reading

• Statistical error model-based and GUM-based analysis of measurement uncertainties in nuclear
safeguards - a reconciliation [5]

∘ Discussion about the development of the multiplicative error model and how UQ models
like GUM relate

• International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials
[6]

∘ Reference values for 𝛿𝑟 and 𝛿𝑠 for different measurement systems and materials

• Near Real Time Accountancy (IAEA STR-403)

∘ Finalized but not yet released by IAEA at time of writing

• Handbook of Nuclear Engineering: Proliferation Resistance and Safeguards [7]

∘ Specifically the section on “Statistics for Accountancy”

15

https://numpy.org/doc/stable/user/basics.broadcasting.html

2.2. MUF and Sigma MUF

MUF and 𝜎MUF calculations are implemented by MAPIT.core.StatsTests.MUF and
MAPIT.core.StatsTests.SEMUF respectively. These functions are not intended to be called directly,
rather, the intended usage is by calling the calcMUF() and calcSEMUF()methods of the MBArea
class.

2.2.1. Historical context

Fulfilling safeguards regulations and agreements requires demonstrating that nuclear material has not
been lost, removed, or otherwise been unaccounted. Both containment and surveillance methods in
addition to direct accountancy of nuclear material is used to meet these requirements. Containment
and surveillance (C/S), as the name implies, is used to contain (e.g., seal containers) and surveil (e.g.,
optical cameras) nuclear material which provides continuity of knowledge. C/S is complemented by
quantitative material accountancy which seeks to quantify the amount and form of nuclear material in a
given area. MAPIT focuses on providing tools and routines used in accountancy of nuclear material.
The material balance, discussed in depth here, is the cornerstone of nuclear material accountancy. For a
longer overview of the goals and safeguards and C/S or the history of material accountancy, readers are
encouraged to check the further reading, Section 2.2.8, as a detailed history of these topics are out of
scope for this document.

2.2.2. Theory: MUF

Accountancy of nuclear material is of interest to many regulatory bodies. One principle quantity used
to ensure material is accounted for is the material balance calculation. This is sometimes also called
Material Unaccounted For (MUF) or Inventory Difference (ID). Material balance calculations are
performed over defined physical areas of a nuclear facility, called material balance areas (MBAs), at
regular intervals called material balance periods (MBPs). There are a variety of metrics and criteria used
to determine both the MBA (in both structure and quantity) for a given facility and the associated
material balance period. Discussion ofMBA selection criteria will not be discussed here and we refer the
reader to the references (Section 2.2.8) for further inquiry. The material balance can be calculated by
understanding the inputs, inventories, and outputs for a given material balance area. First, let the
material balance period be represented as a non-zero, positive real integer:

mbp ∈ ℝ+
∗

Next, consider the sequence of material balance period values:

MBP = {1 ∗ mbp,2 ∗ mbp, ..., }

Then the 𝑖th material balance can be calculate as follows:

16

muf𝑖 = ∑
𝑙∈𝑙0

MBP𝑖

∑
𝑡=MBP𝑖−1

𝐼𝑡,𝑙 − ∑
𝑙∈𝑙1

MBP𝑖

∑
𝑡=MBP𝑖−1

𝑂𝑡,𝑙 − ∑
𝑙∈𝑙2

(𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙) (2.1)

Note

muf is calculated on a per material basis. For example, a material balance for uranium and pluto-
nium would be calculated independently.

Alternatively, if continuous flows are present (i.e., continuous inputs and outputs), then the material
balance can be represented as:

muf𝑖 = ∑
𝑙∈𝑙0

∫
MBP𝑖

𝑡=MBP𝑖−1

𝐼𝑡,𝑙 − ∑
𝑙∈𝑙1

∫
MBP𝑖

𝑡=MBP𝑖−1

𝑂𝑡,𝑙 − ∑
𝑙∈𝑙2

(𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙) (2.2)

• 𝐼𝑡,𝑙 is the input to the material balance area at time 𝑡 and location 𝑙

• 𝑂𝑡,𝑙 is the output of the material balance area at time 𝑡 and location 𝑙

• 𝐶𝑖,𝑙 is the inventory at time MBP𝑖 and location 𝑙

∘ 𝐶 was chosen to denote container and avoid overloaded notation between inventory and
input terms

Note

Location refers to a locationwithin amaterial balance area. A balance area with 3 tanksmight then
have 3 inventory terms, once for each tank location. Location 𝑙 is analogous to a key measurement
point (KMP).

Thematerial balance has three primary terms; input, output, and inventory. For each term, there may be
multiple different locations so 𝑙0, 𝑙1, 𝑙2 are used to denote the set of different measurement locations for
input, output, and inventory, respectively. Correspondingly, the sum ∑𝑙∈𝑙0

indicates that the quantity
should be summed over all input locations. The material balance simply sums all inputs over all
locations during the material balance period, sums all the outputs over all locations during the material
balance period, and takes the difference of inventory terms between the previous and current balance
times for all locations. These terms are then used to calculate input - output - change in inventory.

There is a separate expression for material balances with discrete items versus continuous flows. The
expression for the latter uses integrals over the time period of interest to denote that these quantities are
usually integral rather than summed. For example, discrete canisters of material arriving to a material
balance area might have their contents weighed, assayed, and summed for the material balance period.
A continuous input might be a flow measured in mass per unit time, which would be integrated over
the material balance period instead of summed.

17

Note

Material balances are calculated at discrete intervals of time and are consequently not continuous.
There are a variety of ways to represent thematerial balance graphically. InMAPIT, we opt to have
a continuous representation by holding the value calculated at 𝑡 = MBP𝑖 to 𝑡 = MBP𝑖+1 at which
point the value is updated. This representation results in a step-like representation which can be
seen in the figure below.

Figure 2-1: Single iteration of a material balance calculation

The material balance is intuitive and does not make assumptions about potential material loss
pathways. The material balance should be exactly zero due under normal operating conditions as all
material should be accounted for. In contrast, the material balance should be non-zero under
anomalous conditions that cause material losses or gains that are not measured. However, the material
balance will always be non-zero when bulk items are measured and included in the balance, even under
normal operating conditions, due to the presence of measurement error. Additional analyses are then
required to detect material loss in the presence of measurement uncertainty.

It is useful to express a series of MUF values as a sequence which facilitates various trend testing and
statistical analyses:

muf = {muf0,muf1, ...muf𝑛} (2.3)

The MUF sequence can be represented as a Gaussian distribution as, over long enough periods of time
and enough samples, even measurement biases behave as random errors. The fundamental goal of
material accountancy then is to detect a shift in the distribution of values in a MUF sequence. Consider
the two normal distributions below with different means and a standard deviation of one. This shift in
the mean between two distributions represents behavior that would occur during an anomalous
operation of a facility. However, the mean shift between the distribution would be difficult given that
the shift is small compared to the standard deviation of the distributions.

18

Tip

You can verify this yourself by calculating an odds ratio using Bayesian principles. That is, for two
normal distributionsN (𝜇1,𝜎2

1),N (𝜇2,𝜎2
2), the oddsofbelonging toN (𝜇1,𝜎2

1)overN (𝜇2,𝜎2
2)

(assuming equal odds of MUF value being normal or off-normal) can be calculated as the ratio of
the two PDFs. While this isn’t an exactly true statement (the odds of a MUF value having equal
odds of being normal or off-normal isn’t quite true), this is a simple way to illustrate the relation-
ship between the shift in the mean of a MUF sequence and the standard deviation.

See alsoThe guided exercises, Section 5, included in the documentation contain concrete examples
of the impact of measurement error on theMUF distribution and overall detection probability.

Figure 2-2: Normal distributions with small relative mean shift compared to uncertainty

Now consider the same mean shift, but with a smaller standard deviation for both distributions. The
overlap between the distributions has become notable smaller which makes discriminating between the
two distributions easier. Any loss pattern, and thus the underlying anomalous MUF distribution,
would be difficult to quantify in practice. However, this example should make clear that the uncertainty
of the MUF sequence is an important factor in detecting material loss. There are a variety of techniques

19

that can be applied to the MUF sequence to monitor for anomalous behavior, but all techniques are
ultimately limited by the uncertainty.

Figure 2-3: Differentiating between distributions becomes easier as the mean shift increases or the uncertainty decreases

2.2.3. Theory: Sigma MUF

𝜎MUF, or the uncertainty in the MUF sequence, is an important metric given it’s impact on the
probability of detection for anomalous conditions. It is important to quantify 𝜎MUF given the
connection to probability of detection. Regulatory stakeholders often implement limits on 𝜎MUF for
facilities. The following derivation below describes the analytical expression for 𝜎muf.

Note

For simplicity, the following derivation shows the calculation of a single entry of the 𝜎MUF se-
quence (i.e., 𝜎MUF𝑖). This calculation would need to be performed at each balance period to
form the full 𝜎MUF sequence. Note that the 𝜎MUF sequence is as follows:
𝜎MUF = {𝜎muf0,𝜎muf1, ...,𝜎muf𝑛}

20

𝜎muf2
𝑖 = var(mufi)

For simplicity we introduce the notation of ∑MBP𝑖
𝑡=MBP𝑖−1

𝐼𝑙,𝑡 = 𝐼∗
𝑙 and ∑MBP𝑖

𝑡=MBP𝑖−1
𝑂𝑙,𝑡 = 𝑂∗

𝑙 for the
case of discrete input and outputs to denote the total input and output over the 𝑖-th material balance. It
follows that

𝜎muf2
𝑖 = var

(∑
𝑙∈𝑙0

𝐼∗
𝑙 − ∑

𝑙∈𝑙1

𝑂∗
𝑙 − ∑

𝑙∈𝑙2

(𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙))
(2.4)

Substituting in the multiplicative error model for each term and starting with the input:

var(𝐼∗
𝑙) = var(𝐼∗

true,𝑙 ∗ (1 + 𝑅𝑖 + 𝑆𝑖))
= var(𝐼∗

true,𝑙 + 𝐼∗
true,𝑙𝑅𝑖 + 𝐼∗

true,𝑙𝑆𝑖)

= cov(𝐼∗
true,𝑙 + 𝐼∗

true,𝑙𝑅𝑖 + 𝐼∗
true,𝑙𝑆𝑖, 𝐼∗

true,𝑙 + 𝐼∗
true,𝑙𝑅𝑖 + 𝐼∗

true,𝑙𝑆𝑖)

= cov(𝐼∗
true,𝑙, 𝐼

∗
true,𝑙) + cov(𝐼∗

true,𝑙, 𝐼
∗
true,𝑙𝑅𝑖) + cov(𝐼∗

true,𝑙, 𝐼
∗
true,𝑙𝑆𝑖)

+ cov(𝐼∗
true,𝑙𝑅𝑖, 𝐼∗

true,𝑙) + cov(𝐼∗
true,𝑙𝑅𝑖, 𝐼∗

true,𝑙𝑅𝑖) + cov(𝐼∗
true,𝑙𝑅𝑖, 𝐼∗

true,𝑙𝑆𝑖)
+ cov(𝐼∗

true,𝑙𝑆𝑖, 𝐼∗
true,𝑙) + cov(𝐼∗

true,𝑙𝑆𝑖, 𝐼∗
true,𝑙𝑅𝑖) + cov(𝐼∗

true,𝑙𝑆𝑖, 𝐼∗
true,𝑙𝑆𝑖)

(2.5)

Note the following:

• 𝐼∗
true,𝑙 behaves as a constant for a specific slice in time

∘ The true input won’t change at an instant in time regardless of how many times it is
measured

Continuing on and zeroing out constant terms it follows that

var(𝐼∗
𝑙) = var(𝐼∗

true,𝑙 ∗ (1 + 𝑅𝑖 + 𝑆𝑖))
= cov(𝐼∗

true,𝑙𝑅𝑖, 𝐼∗
true,𝑙𝑅𝑖) + cov(𝐼∗

true,𝑙𝑅𝑖, 𝐼∗
true,𝑙𝑆𝑖)

+ cov(𝐼∗
true,𝑙𝑆𝑖, 𝐼∗

true,𝑙𝑅𝑖) + cov(𝐼∗
true,𝑙𝑆𝑖, 𝐼∗

true,𝑙𝑆𝑖)

It’s generally assumed that the random and systematic errors are random variables, and consequently
uncorrelated with each other, which leads to

21

var(𝐼∗
𝑙) = var(𝐼∗

true,𝑙 ∗ (1 + 𝑅𝑖 + 𝑆𝑖))
= cov(𝐼∗

true,𝑙𝑅𝑖, 𝐼∗
true,𝑙𝑅𝑖) + cov(𝐼∗

true,𝑙𝑆𝑖, 𝐼∗
true,𝑙𝑆𝑖)

= (𝐼∗
true,𝑙)

2 ∗ var(𝑅𝑖) + (𝐼∗
true,𝑙)

2 ∗ var(𝑆𝑖)

As the true input, 𝐼∗
true,𝑙, the variance of random variate 𝑅𝑖, and variance of systematic variate 𝑆𝑖

cannot be known in practice, the observed inventory, 𝐼∗
𝑙

2, relative random standard deviation for
location 𝑙, 𝛿𝑅,𝑖, and relative systematic standard deviation for location 𝑙, 𝛿𝑆,𝑖, are substituted into the
previous expression as an approximation leading to the final expression for the estimated variance of the
input.

var(𝐼∗
𝑙) =var(𝐼∗

true,𝑙 ∗ (1 + 𝑅𝑖 + 𝑆𝑖))

≈ (𝐼∗
𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)

Assuming that each input location is uncorrelated, then it is possible to simply sum the variances for
each location together such that

var
(∑

𝑙∈𝑙0

𝐼∗
𝑙)

≈ ∑
𝑙∈𝑙0

((𝐼∗
𝑙)

2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)) (2.6)

A similar exercise can be performed on the output term leading to the expression

var
(∑

𝑙∈𝑙1

𝑂∗
𝑙)

≈ ∑
𝑙∈𝑙1

((𝑂∗
𝑙)

2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)) (2.7)

The inventory term differs from the inputs and outputs since there is a temporal correlation between
inventory 𝑖 and 𝑖 − 1. Using the same reasoning as before

var(𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙) = var(
(𝐶true,𝑖,𝑙 + 𝐶true,𝑖,𝑙𝑅𝑖 + 𝐶true,𝑖,𝑙𝑆𝑖)−
(𝐶true,𝑖−1,𝑙 + 𝐶true,𝑖−1,𝑙𝑅𝑖 + 𝐶true,𝑖−1,𝑙𝑆𝑖)
)

It is assumed that the constant values for inventories are uncorrelated, random and systematic errors are
uncorrelated with each other, and random errors from different times are uncorrelated. However,
systematic errors at the same location but different time, (i.e., 𝑆𝑖,𝑙 and 𝑆𝑖−1,𝑙) are correlated as it is
assumed there is no recalibration. This results in the expression below. Note the additional highlighted
covariance term that arises correlated systematic errors between successive material balance periods.

22

var(𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙) = (𝐶true,𝑖,𝑙)2 ∗ (𝑅2
𝑙 + 𝑆2

𝑙)
+ (𝐶true,𝑖−1,𝑙)2 ∗ (𝑅2

𝑙 + 𝑆2
𝑙)

− 2(𝐶true,𝑖−1,𝑙)(𝐶true,𝑖,𝑙)𝑆2
𝑙

This is again approximated using the actual measured values as the true values are unobservable and is
summed across locations.

var
(∑

𝑙∈𝑙2

(𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙))
≈ ∑

𝑙∈𝑙2

(𝐶𝑖,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)

+ ∑
𝑙∈𝑙2

(𝐶𝑖−1,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)

− ∑
𝑙∈𝑙2

2(𝐶𝑖−1,𝑙)(𝐶𝑖,𝑙)(𝛿𝑆,𝑙)2

(2.8)

Substituting expressions for variance of input Equation 2.6, inventory Equation 2.8, and output
Equation 2.7 into the definition of 𝜎muf from Equation 2.4 yields the final expression Equation 2.9
below. Note that 𝜎muf is the square root of Equation 2.9 as Equation 2.9 expresses the variance.

𝜎muf2
𝑖 ≈ ∑

𝑙∈𝑙0

((𝐼∗
𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)) + ∑

𝑙∈𝑙2

((𝐶𝑖,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

+ ∑
𝑙∈𝑙2

((𝐶𝑖−1,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)) − ∑
𝑙∈𝑙2

(2 ∗ (𝐶𝑖−1,𝑙)(𝐶𝑖,𝑙)(𝛿𝑆,𝑙)2)

+ ∑
𝑙∈𝑙1

((𝑂∗
𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

(2.9)

Note

This assumes one strata for each measurement. That is, an item or flow is measured once when
it has the same attributes. Performing multiple measurements on the same strata will reduce the
relative standard deviation terms by approximately 1

𝑛 and should be accounted for in the 𝜎muf
calculation accordingly.

Equation 2.9 can be expanded by replacing the inputs and outputs with their non-integrated quantities.
This is done to better illustrate the different components that are calculated in MAPIT.

23

𝜎muf2
𝑖 ≈ ∑

𝑙∈𝑙0
((∫

MBP𝑖

𝑡=MBP𝑖−1

𝐼𝑙,𝑡)

2

∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)
)

+ ∑
𝑙∈𝑙2

((𝐶𝑖,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

+ ∑
𝑙∈𝑙2

((𝐶𝑖−1,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)) − ∑
𝑙∈𝑙2

(2𝐶𝑖−1,𝑙𝐶𝑖,𝑙(𝛿𝑆,𝑙)2)

+ ∑
𝑙∈𝑙1

((∫
MBP𝑖

𝑡=MBP𝑖−1

𝑂𝑙,𝑡)

2

∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)
)

(2.10)

2.2.4. Discussion

Much of the traditional literature and research around material balances and associated testing was
developed in the 1980s. The relevant seminal papers are listed in the further reading (Section 2.2.8)
portion of this document. There are a few key points from these papers that are important to note.

A natural inclination to improve performance of any testing on the material balance would be to reduce
the overall uncertainty through 1) smaller material balance areas which result in smaller inventory terms,
2) more frequent material balance frequency resulting in smaller input and output terms, or 3) some
combination of the two. Avenhaus and Jaech[8] considered this question and found that none of those
procedures necessarily lead to better performance, and in some instances, might lead to a lower
detection sensitivity. The work by Avenhaus and Jaech was particularly notable as it lead to several
important findings:

• Considering a statistical test with maximum test power (i.e., a test with the highest probability of
detection for any loss of material of a particular size) applied to a fix length of time, the optimal
test is one that ignores intermediate balance evaluations. Put another way, the optimal test for a
loss of material over a fixed period of time is one that considers the sum of all intermediate MUF
values. This is the same as if no intermediate MUF values had been taken; as if the balance was
conducted over the entire period of interest. This applies to protracted, but not abrupt, losses.
Here, protracted loss is one that occurs over multiple balance periods or areas.

∘ Concrete example; there might be a regulatory goal for detecting a loss within 3 months.
The optimal statistical test would be a balance over a 3 month period; performing a
monthly balance provides no benefit with respect to maximum detection probability of a
loss over a three month period.

• Combining intermediate MUF values in some optimal way, perhaps as a weighted average, still
results in a lower detection probability than a global MUF that only considers the beginning and
ending states.

∘ An important exception here is that this statement only applies to the unknown loss
pattern. Performance improvements can be seen with an optimally ordered MUF sequence
if the loss pattern is known, but in practice, the loss pattern is never known

24

• Even applying statistical tests to each intermediate MUF value and then linearly combining the
results (as opposed to a test on the combined MUF values) still results in a lower detection
probability than a test on a global MUF.

Further, Avenhaus and Jaech showed that not only do these statements apply to time (i.e., different
material balance periods), but also to space. Subdividing a material balance area provides no benefit in
terms of detection probability, and perhaps even decrease detection probability, compared a test on the
larger material balance. These statements also assume a fixed false alarm probability.

Important

Avenhaus and Jaech’s work applied only to the probability of detection. There are other benefits
to subdividing material balances into smaller units of time or space; principally to localize a poten-
tial material loss in space or time, but this comes at a cost to detection probability, specifically for
protracted losses that are split overmultiple balances or areas. Again, this statement applies only to
protracted losses, not abrupt. Avenhaus and Jaech’s work only considered random errors, but Burr
and Hamada [4] later went on to show that the inclusion of systematic error does not change the
limitations of subdividingmaterial balance areas (i.e., probability of detection does not increase for
more frequent balances and smaller balance areas).

2.2.5. Material balance iterations

In practice, only one material balance sequence,muf = {muf0,muf1, ...muf𝑛}, can be observed.
Following discussion from the error models, it is often advantageous to estimate the performance of a
safeguards system by performing statistical analyses and determining probabilities of detection. It
would be very difficult to estimate probability of detection for a facility using experimental data alone.
However, simulation tools can help provide these estimates. MUF and 𝜎MUF can subsequently be
represented as 2D matrix such that one dimension represents the MUF sequence in time and the other
dimension represents different draws of random variates from the error model. Later sections will have
additional discussion on the topic of this matrix representation, but for now, it is important to note this
concept as this is how MAPIT calculates MUF and 𝜎MUF.

MUF = {muf0,muf1, ...muf𝑛}
𝜎MUF = {𝜎muf0,𝜎muf1, ...𝜎muf𝑛} (2.11)

2.2.6. MUF implementation

The MAPIT implementation of MUF is the first function in MAPIT.core.StatsTests. The MUF
calculation requires a few key variables:

• Input, inventory, and output measurements

• Input, inventory, and output times

25

∘ Together the measurements and times should from a time series. The time entries should
represent the time at which the measurement is taken and should monotonically increase.
So a measurement taken at the start is t=0 and a measurement taken one day later should be
t=24 (hours) or t=1440 (minutes), etc. There are no unit requirements, but the time series
should all use the same units of time.

• Material balance period

∘ This should have the same units as the input, inventory, and output time

Since each measurement provided to MAPIT could potentially have a different length and/or number
of time steps, we first determine the maximum time step:

117 A1 = np.max(np.asarray(list(chain.from_iterable(processedInputTimes))))
#unroll list↪

118 A2 = np.max(np.asarray(list(chain.from_iterable(processedInventoryTimes))))
119 A3 = np.max(np.asarray(list(chain.from_iterable(processedOutputTimes))))
120
121
122 timeSteps = np.round(np.max(np.array([A1, A2, A3])))

MAPIT calculates the entire MUF and 𝜎MUF sequence (i.e., Equation 2.11) which results in a 2D
matrix that has a shape (iterations, MBPs) where iterations is the number of iterations/draws from the
error model over the total length of the data and MPBs is the total number of balance periods for the
dataset.

Example

Consider the following example:
• mbp = 100

∘ MBP = {100,200,300,400,500,600}
• Largest time in dataset: 670
• Iterations: 25

MAPIT will calculate a MUF sequence that is 6 balance periods long (0:100, 100:200, 200:300,
300:400, 400:500, 500:600). Since iterations are specified to be 25, MAPIT will perform the cal-
culation of Equation 2.3 25 times, each time, drawing a different set of random variates from the
multiplicative error model with relative standard deviations that were specified by the user. The
MUF value returned by MAPIT will have a shape of [25, 600].

Important

MAPIT represents periodic statistical quantities as continuous, so although there are only
6 balance periods, this is represented as 600 timesteps (once per unit time). Each material
balance iteration (i.e., slice [n, 0:600]) will only have 6 unique values that are held constant
between material balance updates.

26

MAPIT calculates the distribution of MUF values (i.e.,MUF = {MUF0,MUF1, ...MUF𝑛}) using
the equation for individual muf𝑖 values (Equation 2.1 or 2.2). There are three dimensions that require
iteration; time (the number of balance periods), locations (multiple input/inventory/output terms) and
iterations (unique draws of the multiplicative error model). The only component that can be effectively
vectorized is the iterations component as the potential for non-uniform sampling rates as a function of
time and/or locations require consideration of each component individually. The MUF calculation still
remains fairly quick in spite of a largely non-vectorized solution as the underlying computations are
fairly trivial.

At a high level, MAPIT vectorizes the error model iterations, but uses a for-loop to iterate over the
location and time components.

Of the two loops (balance periods and locations), MAPIT uses the time component as the outer
for-loop and locations as the inner for-loop.

Note

The outer time loop is indexed from i to MBPs rather than starting at zero. This facilitated more
understandable indexing, particularly when slicing some of the time indices, but runs counter to
the standard python notation that indices start at 0.

The outer for-loop is defined as follows:

150 for i in range(1, int(MBPs)): #each MBP

The outer loop calculates the muf𝑖 (assuming that the input and outputs are flows):

muf𝑖 = ∑
𝑙∈𝑙0

∫
MBP𝑖

𝑡=MBP𝑖−1

𝐼𝑡,𝑙 − ∑
𝑙∈𝑙1

∫
MBP𝑖

𝑡=MBP𝑖−1

𝑂𝑡,𝑙 − ∑
𝑙∈𝑙2

(𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙)

The summation component represents the inner for-loop and is split across three separate loops, each
representing the measurement type:

154 for j in range(0, len(inputAppliedError)):

157 for j in range(0, len(outputAppliedError)):

192 for j in range(0, len(inventoryAppliedError)):

The integral component assumed to be flows in units of mass/time, need to be integrated before they
can used in the balance calculation. This is done using a customized trapezoidal integration routine,

27

MAPIT.core.AuxFunctions.trapSum, which is explained in more depth in the computational
considerations (Section 2.6) part of this guide.

The relevant segment of time corresponding to [MBP𝑡−1,MBP𝑡] must be determined before the
integration is performed. This is represented by the logicalInterval variable (note that the interval
for the input terms is shown, but it is also calculated for the output terms):

164 logicalInterval = np.logical_and(
165 processedInputTimes[j] >= MBP * (i - 1),
166 processedInputTimes[j] <= MBP * i).reshape((-1,))

The relevant times for the current balance period must also be identified for the inventory, but the
procedure is easier as only the start and end points of the time series need to be identified, not all values
in the interval. This is because the inventories, already assumed to be in the correct mass units, do not
need to be integrated and can be subtracted (i.e., 𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙).

Finally, all of the components are combined and MAPIT iterates over material balance periods and
locations to calculateMUF.

2.2.7. Sigma MUF implementation

Important

The final expression for 𝜎MUF derived in Equation 2.10 includes a covariance term that accounts
for the shared systematic bias across two successive balance periods (assuming no recalibration).
However, the MAPIT implementation of 𝜎MUF does not include the shared covariance term.
In practice, 𝜎MUF is calculated as a sum of squared errors and neglects covariance. MAPIT con-
sequently uses this more conservative estimate to be better aligned with the state of practice in
material accountancy.

The implementation of 𝜎MUF follows much of the logic used in the material balance calculation;

• The entire sequence from Equation eq‘mufdist‘ is calculated

• Input, inventory, and output terms are considered separately

• Time components are vectorized whereas locations and balance periods are expressed in explicit
floor loops

The structure of the calculation is identical to that of MUF. The key difference is the quantity
calculated, here 𝜎muf𝑖 is calculated, instead of muf𝑖. Recall that 𝜎muf𝑖 is calculated as follows (noting
that we are ignoring the covariance term):

28

𝜎muf2
𝑖 ≈ ∑

𝑙∈𝑙0
((∫

MBP𝑖

𝑡=MBP𝑖−1

𝐼𝑙,𝑡)

2

∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)
)

+ ∑
𝑙∈𝑙2

((𝐶𝑖,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

+ ∑
𝑙∈𝑙2

((𝐶𝑖−1,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

+ ∑
𝑙∈𝑙1

((∫
MBP𝑖

𝑡=MBP𝑖−1

𝑂𝑙,𝑡)

2

∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)
)

Following from the muf calculation, integral terms are integrated using
MAPIT.core.AuxFunctions.trapSumwith locations and balance periods iterated over using a for
loop. It is often desireable to track the contribution to 𝜎MUF by component, so MAPIT rearranges
each term slightly to better track each component. For example, the inventory term is expressed as
follows:

∑
𝑙∈𝑙2

(((𝐶𝑖,𝑙)2 + (𝐶𝑖−1,𝑙)2) ∗ (𝛿𝑅,𝑙)2 + ((𝐶𝑖,𝑙)2 + (𝐶𝑖−1,𝑙)2) ∗ (𝛿𝑆,𝑙)2)

Here, the random and systematic contributions can be tracked separately. The input and output terms
are calculated in a similar way, but only the input term will be discussed for brevity.

First, the input term is integrated. Then the integral quantity and user supplied relative standard
deviations are squared and summed. These are added together and ”tiled”. Variables VR and VS are a
vector with length equal to iterations and must be ”tiled” for all time steps in the given balance. The
contribution components are then stored in a separate array. This process repeats for all locations and
balance periods.

490 AFTS = AuxFunctions.trapSum(logicalInterval, processedInputTimes[j],
inputAppliedError[j])↪

491 VR = AFTS**2 * ErrorMatrix[j, 0]**2
492 VS = AFTS**2 * ErrorMatrix[j, 1]**2
493 #variance is stored as a function of time, but contributions are
494 #stored per MBP which makes it easier to put in a table later
495 #especially considering the time might be variable
496
497 InpVar[:,i * MBP:(i + 1) * MBP] += ((VR + VS) * np.ones((MBP,iterations))).T
498 SEMUFContribR[:, j, i] = VR
499 SEMUFContribS[:, j, i] = VS
500 SEMUFContribI[:, j, i] = AFTS

The inventory calculation proceeds in a similar manner but differs in that the first and subsequent
balance period calculations differ. The previous inventory during the first balance is assumed to be zero,
and rather than trying to account for that in the array by prepending a series of zeros, MAPIT simply
drops that term. This is implemented by checking if the first balance period is being calculated (i==1),
and if so, not including inventoryAppliedError[j][:, startIdx].

29

518 if i == 1:
519 VR = inventoryAppliedError[j][:, endIdx]**2 * ErrorMatrix[locMatrixRow,

0]**2↪

520 VS = inventoryAppliedError[j][:, endIdx]**2 * ErrorMatrix[locMatrixRow,
1]**2↪

521
522 SEMUFContribI[:, j + len(inputAppliedError), i] =

inventoryAppliedError[j][:, endIdx]↪

523
524 else:
525
526 VR = (inventoryAppliedError[j][:, startIdx]**2 +

inventoryAppliedError[j][:, endIdx]**2) * ErrorMatrix[locMatrixRow,
0]**2

↪

↪

527 VS = (inventoryAppliedError[j][:, startIdx]**2 +
inventoryAppliedError[j][:, endIdx]**2) * ErrorMatrix[locMatrixRow,
1]**2

↪

↪

528
529 SEMUFContribI[:, j + len(inputAppliedError), i] =

inventoryAppliedError[j][:, endIdx]↪

2.2.8. Further reading

• Speed and Culpin [9]

• Avenhaus and Jaech [8]

• Handbook of Nuclear Engineering: Proliferation Resistance and Safeguards [7]

• Picard [10]

• Revisiting statistical aspects of NMA [4]

• Fundamentals of material accounting for nuclear safeguards [11]

• Page’s test performance (Jones) [12]

∘ Pages 402-408

• Page’s test performance (Jones) [13]

∘ Pages 19-22

2.3. CuMUF

The CuMUF test is implemented by MAPIT.core.StatsTests.CUMUF. However, this function is not
intended to be called directly, rather, the intended usage is through the calcCUMUF()method of the
MBArea class.

30

2.3.1. Historical context

Cumulative MUF (CuMUF) is the sum of all MUF values over a given period of time. The CuMUF
test is noteworthy due to power to detect protracted losses. CuMUF in particular is strong in detecting
protracted losses that occur early in the material balance sequence, but performs worse if the loss occurs
later in the sequence.

Note

CuMUF is not the same as MUF cusum. MUF cusum is not currently implemented explicitly in
MAPIT, but can be constructed using the API.

2.3.2. Theory

The CuMUF metric is calculated as follows:

CuMUF𝑖 =
𝑖

∑
𝑡=0

muf𝑡

2.3.3. Discussion

The CuMUF statistic is often combined with statistical testing. The most straightforward test is a
simple comparison to a critical value. That is, an alarm is triggered if CuMUF rises above a specific
value. CuMUF can also be used with other trend methods like control charts or further extended to
develop the cusum test.

Note

CuMUF is the optimal statistical for detecting the worst-case loss. Theworst-case loss, as originally
derived by Avenhaus and Jaech, is the loss for which detection probability is minimized for the
optimal statistical test. The worst-case loss was shown to be a loss wherein the per-balance loss is
proportional to the row sums of the covariance of the material balance sequence. Note that this
loss is the worst-case for any statistical test as it was derived using the assumption that the optimal
statistical test for detection of a loss could be known and applied.

2.3.4. Implementation

The CuMUF statistic calculation is relatively straightforward and requires a minimal amount of code.
The MUF array is a 2D array with shape (iterations, time steps) where time steps is on a per unit time
basis. First, a discrete 1D difference is performed on the MUF array to determine the location of unique
MUF value. Those locations are stored to the array idxs.

31

https://numpy.org/doc/stable/reference/generated/numpy.diff.html

336 z = np.diff(MUF[0,])
337 idxs = np.concatenate(([0,], np.argwhere(z!=0).squeeze(),

[int(MUF.shape[1]-1),])).astype(int)↪

The CuMUF statistic is then calculated for the sequence of MUF values. The resulting statistic is tiled
across time steps to again result in a 2D array with shape (iterations, time steps). Without tiling, the
shape would be (iterations, number of balance periods). After calculation, the array of statistics is
returned.

345 for i in range(1,len(idxs)):
346 cumuf[:,idxs[i-1]:idxs[i]] = np.tile(cumuf[:,idxs[i-1]-1] + MUF[:,idxs[i]],
347 (int(idxs[i] -

idxs[i-1]),1)).swapaxes(0,1)↪

2.3.5. Further reading

• Revisiting statistics for NMA [4]

• Comparison of Page’s test on SITMUF to MUF and CUMUF [14]

2.4. SITMUF

The SITMUF transformation is implemented in MAPIT.core.StatsTests.SITMUF. This function is
not intended to be used standalone through direct calls, rather, it is intended to call calcSITMUF()
through the MBArea class.

2.4.1. Historical context

The statistical properties of the MUF sequence has been studied extensively, and as early as the 1980s, it
was noted that there was correlation between successive material balance periods. Pike and Woods were
the first to develop a concept called ITMUF (Independent Transformed MUF) and later SITMUF
(Standardized Independent MUF). The SITMUF sequence is a transformed material balance sequence
wherein the mean is approximately zero and the standard deviation is approximately one. There are two
key advantages to performing statistical testing on such an independent sequence:

• Alarm thresholds for SITMUF depend only on the sequence length, not the form or properties
of the MUF covariance

∘ This alleviates the need to determine alarm thresholds by strictly using simulation

• In a near-real time accountancy context, the variance of SITMUF decreases as the approximate
covariance of the MUF sequence approaches the true value

32

∘ Consequently, the detection probability of SITMUF increases over time, often resulting in
a higher detection probability than the MUF sequence alone

The transformation from MUF to SITMUF was quite difficult until Picard showed that the SITMUF
transform can be easily expressed using the Cholesky decomposition. A series of papers in the late 1980s
onward showed that applying Page’s trend test to SITMUF performs well for a wide range of potential
material loss scenarios when the pattern is not known. Page’s trend test on SITMUF has been
frequently used as an effective test in nuclear material accountancy.

2.4.2. Theory

Recall that themuf sequence is defined as follows:

muf = {muf0,muf1, ...muf𝑛}

With

muf𝑖 = ∑
𝑙∈𝑙0

∫
MBP𝑖

𝑡=MBP𝑖−1

𝐼𝑡,𝑙 − ∑
𝑙∈𝑙1

∫
MBP𝑖

𝑡=MBP𝑖−1

𝑂𝑡,𝑙 − ∑
𝑙∈𝑙2

(𝐶𝑖,𝑙 − 𝐶𝑖−1,𝑙)

It’s generally assumed that since the error models are normally distributed, individual muf values (i.e.,
mbp𝑖) and the muf sequence (i.e.,muf) will also be normally distributed. Consequently, the muf
sequence can be thought of as a multivariate normal distribution such that:

muf ∼ N (𝜇,Σ)

The covariance matrix contains the covariance between different material balances in the sequence. For
example, consider the entry 𝜎2

2𝑛 of the covariance matrix below. This term is the variance between
material balance 𝑛 and 2.

Σ =
⎛
⎜
⎜
⎜
⎝

𝜎2
11 𝜎2

12 … 𝜎2
1𝑛

𝜎2
21 𝜎2

22 … 𝜎2
2𝑛

⋮ ⋮ ⋱ ⋮
𝜎2

𝑛1 𝜎2
𝑛2 … 𝜎2

𝑛𝑛

⎞
⎟
⎟
⎟
⎠

= (
Σ𝑖−1 𝜎𝑖−1
𝜎𝑖−1

𝑇 𝜎𝑖,𝑖) (2.12)

Note

The covariance matrixΣ is symmetric (i.e., 𝜎1,2 = 𝜎2,1).

The SITMUF statistic is muf with a mean of zero and standard deviation of one. This can be initially
considered through the subtraction of the sequence mean and division by the sequence standard

33

https://en.wikipedia.org/wiki/Cholesky_decomposition

deviation. The independent material balance sequence can be expressed by estimating the sequence
mean through the conditional expectation given all previously observed muf values:

itmuf𝑖 = muf𝑖 − 𝐸(muf𝑖 ∣ muf𝑖−1,muf𝑖−2, ...,muf0)

Then note that SITMUF is ITMUF divided by the standard deviation:

sitmuf𝑖 =
itmuf𝑖
𝜎itmuf

Then using the expression for conditional expectation of the multivariate normal distribution with the
covariance expression Equation 2.12 from the expression then becomes:

sitmuf𝑖 = (muf𝑖 −𝜎𝑖−1
𝑇Σ𝑖−1

−1muf𝑖−1)
𝜎itmuf = 𝜎𝑖,𝑖 −𝜎𝑖−1

𝑇Σ𝑖−1
−1𝜎𝑖−1

Picard [10] showed that a convenient way to calculating the above expression is through the use of the
Cholesky decomposition. Since Picard fully derives the relationship between the expression above and
the Cholesky decomposition, we refrain from showing that work here. The final expression for
SITMUF becomes

Σ𝑖 = C𝑖C𝑖
𝑇

sitmuf𝑖 = C𝑖
−1muf𝑖

WhereC𝑖 is the lower triangular Cholesky factor of the covariance matrix.

The covariance matrix itself is often calculated using relative standard deviations, similar to the
calculation for 𝜎muf. In fact, the diagonal terms (i.e., Σ1,1,Σ2,2, ...) are the variance of the material
balance (the covariance of material balance 𝑖 with itself is the variance). Recall the expression that was
derived from 𝜎muf.

𝜎2
𝑖,𝑖 ≈ ∑

𝑙∈𝑙0
((∫

MBP𝑖

𝑡=MBP𝑖−1

𝐼𝑙,𝑡)

2

∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)
)

+ ∑
𝑙∈𝑙2

((𝐶𝑖,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

+ ∑
𝑙∈𝑙2

((𝐶𝑖−1,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

+ ∑
𝑙∈𝑙1

((∫
MBP𝑖

𝑡=MBP𝑖−1

𝑂𝑙,𝑡)

2

∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)
)34

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Note

The covariance term for the variancewill be included in the covariance matrix calculation.

The off-diagonal is calculated in a similar manner, but has more terms. The off-diagonal is the
covariance between material balance 𝑖 and 𝑗.

𝜎2
𝑖,𝑗 ≈ ∑

𝑙∈𝑙2

((𝐶𝑖,𝑙𝐶𝑗,𝑙 + 𝐶𝑖−1,𝑙𝐶𝑗−1,𝑙) ∗ (𝛿𝑆,𝑙)2)

− ∑
𝑙∈𝑙2

((𝐶𝑖,𝑙𝐶𝑗−1,𝑙) ∗ ((𝛿𝑆,𝑙)2 + 𝑃 (𝑗 − 1 == 𝑖) ∗ (𝛿𝑅,𝑙)2))

− ∑
𝑙∈𝑙2

((𝐶𝑖−1,𝑙𝐶𝑗,𝑙) ∗ ((𝛿𝑆,𝑙)2 + 𝑃 (𝑖 − 1 == 𝑗) ∗ (𝛿𝑅,𝑙)2))

+ ∑
𝑙∈𝑙0

((∫
MBP𝑗

𝑡=MBP𝑖−1

𝐼𝑡,𝑙)(∫
MBP𝑗

𝑡=MBP𝑗−1

𝐼𝑡,𝑙)
(𝛿𝑆,𝑙)2

)

+ ∑
𝑙∈𝑙1

((∫
MBP𝑗

𝑡=MBP𝑖−1

𝑂𝑡,𝑙)(∫
MBP𝑗

𝑡=MBP𝑗−1

𝑂𝑡,𝑙)
(𝛿𝑆,𝑙)2

)

Where

[𝑃] ≡ {
0 𝑃 == false
1 𝑃 == true

Note

The goal of the SITMUF transform is to result in an standardized independent sequenceof MUF
values.

2.4.3. Discussion

The Cholesky-based approach above has the property that the variance of SITMUF decreases with time
as the estimated covariance matrix approaches the true value. This is the implementation used in
MAPIT, however, one could also do a yearly SITMUF transform wherein the transform was applied
only after the covariance matrix was well approximated from a year’s worth of material balances.

35

2.4.4. Implementation

The SITMUF implementation in MAPIT is particularly computationally intensive as the “NRTA”
type calculation is used. In a simulation space, we can calculate the entire covariance matrix at once with
all entries from all balance periods. However, a “NRTA” styled calculation performs the SITMUF
transform with a reduced covariance matrix that grows as new observations are added. This results in a
decrease in variance of SITMUF over time.

The covariance matrix is a 𝑁𝑥𝑁 matrix at the N-th material balance period. Since MAPIT adopts the
“NRTA” style calculation, all 𝑁𝑥𝑁 entries must be updated at each balance period which simulates
the arrival of new information. The MAPIT SITMUF calculation is not well vectorized as the 𝑁𝑥𝑁
must be resized and calculated at each balance. The calculation starts by looping over balance periods
and each entry in the covariance matrix at balance 𝑃:

691 for P in range(1,int(MBPs)):
692 for j in range(0,P):

The variables for the different times have a different meaning than in the expressions that were defined
above. This is for legacy purposes and to improve alignment with the papers. The following table
describes the mapping between the derived expressions and associated code:

Model Component Code Expression

Balance 𝑖 I

Balance 𝑗 IPrime

Table 2-1: SITMUF formula code mapings

For simplicity, the diagonal and off-diagonal terms are broken into multiple components.

Diagonal Terms

𝜎2
𝑖,𝑖 ≈ ∑𝑙∈𝑙0 ((∫MBP𝑖

𝑡=MBP𝑖−1
𝐼𝑙,𝑡)

2
∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)) + ∑𝑙∈𝑙2 ((𝐶𝑖,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

+ ∑𝑙∈𝑙2 ((𝐶𝑖−1,𝑙)2 ∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2)) − ∑𝑙∈𝑙2 (2𝐶𝑖−1,𝑙𝐶𝑖,𝑙(𝛿𝑆,𝑙)2)

+ ∑𝑙∈𝑙1 ((∫MBP𝑖
𝑡=MBP𝑖−1

𝑂𝑙,𝑡)
2

∗ ((𝛿𝑅,𝑙)2 + (𝛿𝑆,𝑙)2))

36

Term 1

728 for k in range(len(inputAppliedError)):
729 logicalInterval = np.logical_and(processedInputTimes[k] >= IPrevious_time,

processedInputTimes[k] <= I_time).reshape((-1,))
#select the indices for the relevant time

↪

↪

730 term1 += AuxFunctions.trapSum(logicalInterval, processedInputTimes[k],
inputAppliedError[k]) **2 * (ErrorMatrix[k, 0]**2 + ErrorMatrix[k,
1]**2)

↪

↪

Term 2

748 for k in range(len(inventoryAppliedError)):
749 locMatrixRow = k+len(inputAppliedError)
750
751 startIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -

IPrevious_time).argmin()↪

752 endIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -
I_time).argmin()↪

753
754 term3 += inventoryAppliedError[k][:,endIdx]**2 *

(ErrorMatrix[locMatrixRow, 0]**2 + ErrorMatrix[locMatrixRow, 1]**2)↪

Term 3

742 for k in range(len(inventoryAppliedError)):
743 locMatrixRow = k+len(inputAppliedError)
744
745
746 startIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -

IPrevious_time).argmin()↪

747 endIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -
I_time).argmin()↪

748
749 term3 += inventoryAppliedError[k][:,endIdx]**2 *

(ErrorMatrix[locMatrixRow, 0]**2 + ErrorMatrix[locMatrixRow, 1]**2)↪

750
751 if j != 0:
752 for k in range(len(inventoryAppliedError)):
753 locMatrixRow = k + len(inputAppliedError)
754 startIdx = np.abs(processedInventoryTimes[k].reshape((-1,))

-IPrevious_time).argmin()↪

755 endIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -
I_time).argmin()↪

756
757 term4 += inventoryAppliedError[k][:,startIdx]**2 *

(ErrorMatrix[locMatrixRow, 0]**2 + ErrorMatrix[locMatrixRow,
1]**2)

↪

↪

758 term5 += inventoryAppliedError[k][:,startIdx] *
inventoryAppliedError[k][:,endIdx] * ErrorMatrix[locMatrixRow,
1]**2

↪

↪

37

Term 4

Note

The factor of 2 for this term is included later in the code when the terms are added together and
assigned to the covariance matrix.

742 for k in range(len(inventoryAppliedError)):
743 locMatrixRow = k+len(inputAppliedError)
744
745
746 startIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -

IPrevious_time).argmin()↪

747 endIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -
I_time).argmin()↪

748
749 term3 += inventoryAppliedError[k][:,endIdx]**2 *

(ErrorMatrix[locMatrixRow, 0]**2 + ErrorMatrix[locMatrixRow, 1]**2)↪

750
751 if j != 0:
752 for k in range(len(inventoryAppliedError)):
753 locMatrixRow = k + len(inputAppliedError)
754 startIdx = np.abs(processedInventoryTimes[k].reshape((-1,))

-IPrevious_time).argmin()↪

755 endIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -
I_time).argmin()↪

756
757 term4 += inventoryAppliedError[k][:,startIdx]**2 *

(ErrorMatrix[locMatrixRow, 0]**2 + ErrorMatrix[locMatrixRow,
1]**2)

↪

↪

758 term5 += inventoryAppliedError[k][:,startIdx] *
inventoryAppliedError[k][:,endIdx] * ErrorMatrix[locMatrixRow,
1]**2

↪

↪

Term 5

739 for k in range(len(outputAppliedError)):
740
741 logicalInterval = np.logical_and(processedOutputTimes[k] >=

IPrevious_time,processedOutputTimes[k] <= I_time).reshape((-1,))↪

742 locMatrixRow = k + len(inputAppliedError) + len(inventoryAppliedError)
743
744 term2 += AuxFunctions.trapSum(logicalInterval, processedOutputTimes[k],

outputAppliedError[k])**2 * (ErrorMatrix[locMatrixRow, 0]**2 +
ErrorMatrix[locMatrixRow, 1]**2)

↪

↪

38

Off-Diagonal Terms

Term 1

808 for k in range(len(inventoryAppliedError)):
809 startIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -

I_time).argmin() #I↪

810 endIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrime_time).argmin()↪

811 startIdx2 = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrevious_time).argmin()↪

812 endIdx2 = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrimePrevious_time).argmin()↪

813 locMatrixRow = k + len(inputAppliedError)
814
815 term3a = inventoryAppliedError[k][:, startIdx] *

inventoryAppliedError[k][:, endIdx]↪

816 term3b = inventoryAppliedError[k][:, startIdx2] *
inventoryAppliedError[k][:, endIdx2]↪

817 term3c = ErrorMatrix[locMatrixRow, 1]**2
818 term3 += (term3a+term3b)*term3c

39

Term 2

808 for k in range(len(inventoryAppliedError)):
809 startIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -

I_time).argmin() #I↪

810 endIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrime_time).argmin()↪

811 startIdx2 = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrevious_time).argmin()↪

812 endIdx2 = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrimePrevious_time).argmin()↪

813 locMatrixRow = k + len(inputAppliedError)
814
815 term3a = inventoryAppliedError[k][:, startIdx] *

inventoryAppliedError[k][:, endIdx]↪

816 term3b = inventoryAppliedError[k][:, startIdx2] *
inventoryAppliedError[k][:, endIdx2]↪

817 term3c = ErrorMatrix[locMatrixRow, 1]**2
818 term3 += (term3a+term3b)*term3c
819
820 term4a = inventoryAppliedError[k][:, startIdx] *

inventoryAppliedError[k][:, endIdx2]↪

821 term4b = ErrorMatrix[locMatrixRow, 1]**2
822 if IPrime-1 == I:
823 term4c = ErrorMatrix[locMatrixRow, 0]**2
824 else:
825 term4c = np.zeros((iterations,))
826
827
828 term4 += term4a*(term4b+term4c)

40

Term 3

808 for k in range(len(inventoryAppliedError)):
809 startIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -

I_time).argmin() #I↪

810 endIdx = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrime_time).argmin()↪

811 startIdx2 = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrevious_time).argmin()↪

812 endIdx2 = np.abs(processedInventoryTimes[k].reshape((-1,)) -
IPrimePrevious_time).argmin()↪

813 locMatrixRow = k + len(inputAppliedError)
814
815 term3a = inventoryAppliedError[k][:, startIdx] *

inventoryAppliedError[k][:, endIdx]↪

816 term3b = inventoryAppliedError[k][:, startIdx2] *
inventoryAppliedError[k][:, endIdx2]↪

817 term3c = ErrorMatrix[locMatrixRow, 1]**2
818 term3 += (term3a+term3b)*term3c
819
820 term4a = inventoryAppliedError[k][:, startIdx] *

inventoryAppliedError[k][:, endIdx2]↪

821 term4b = ErrorMatrix[locMatrixRow, 1]**2
822 if IPrime-1 == I:
823 term4c = ErrorMatrix[locMatrixRow, 0]**2
824 else:
825 term4c = np.zeros((iterations,))
826
827
828 term4 += term4a*(term4b+term4c)
829
830 term5a = inventoryAppliedError[k][:, startIdx2] *

inventoryAppliedError[k][:, endIdx]↪

831 term5b = ErrorMatrix[locMatrixRow, 1]**2
832
833 if I - 1 == IPrime:
834 term5c = ErrorMatrix[locMatrixRow, 0]**2
835 else:
836 term5c = np.zeros((iterations,))
837
838 term5 += term5a*(term5b+term5c)

41

Term 4

787 for k in range(len(inputAppliedError)):
788 logicalInterval = np.logical_and(processedInputTimes[k] >=

IPrevious_time, processedInputTimes[k] <= I_time).reshape((-1,))
#select the indices for the relevant time

↪

↪

789 logicalInterval2 = np.logical_and(processedInputTimes[k] >=
IPrimePrevious_time, processedInputTimes[k] <=
IPrime_time).reshape((-1,)) #select the indices for the relevant time

↪

↪

790
791 A = AuxFunctions.trapSum(logicalInterval,

processedInputTimes[k],inputAppliedError[k])↪

792 B = AuxFunctions.trapSum(logicalInterval2,
processedInputTimes[k],inputAppliedError[k])↪

793 C = ErrorMatrix[k, 1]**2
794 term1 += (A*B*C)

Term 5

797 for k in range(len(outputAppliedError)):
798 logicalInterval = np.logical_and(processedOutputTimes[k] >=

IPrevious_time,processedOutputTimes[k] <= I_time).reshape((-1,))
#select the indices for the relevant time

↪

↪

799 logicalInterval2 = np.logical_and(processedOutputTimes[k] >=
IPrimePrevious_time,processedOutputTimes[k] <=
IPrime_time).reshape((-1,)) #select the indices for the relevant time

↪

↪

800 locMatrixRow = k + len(inputAppliedError) + len(inventoryAppliedError)
801
802 A = AuxFunctions.trapSum(logicalInterval,

processedOutputTimes[k],outputAppliedError[k])↪

803 B = AuxFunctions.trapSum(logicalInterval2,
processedOutputTimes[k],outputAppliedError[k])↪

804 C = ErrorMatrix[locMatrixRow, 1]**2
805 term2 += (A*B*C)

2.4.5. Further reading

• Speed and Culpin [9]

• Avenhaus and Jaech [8]

• Handbook of Nuclear Engineering: Proliferation Resistance and Safeguards [7]

• Picard [10]

• Revisiting statistical aspects of NMA [4]

• Fundamentals of material accounting for nuclear safeguards [11]

• Page’s test performance (Jones) [12]

42

∘ Pages 402-408
• Page’s test performance (Jones) [13]

∘ Pages 19-22

2.5. Page's trend test

Page’s trend test on SITMUF is implemented in MAPIT.core.StatsTests.PageTrendTest(). This
function is not designed to be used through standalone, direct calls, rather, it is designed to be called
through the calcPageTT()method of the MBArea class.

2.5.1. Historical context

The statistical discussed so far (MUF, 𝜎MUF, and SITMUF) are often combined with subsequent
analyses. Statistical testing must be performed. For example, the CuMUF test (Section 2.3) is a simple
one that compares the summed MUF values to a threshold. There are many different statistical tests
that have been studied and deployed for use in material accountancy. One such test is Page’s trend test.
Page has been a popular sequential test given its relatively good performance on a wide range of loss
scenarios. Page’s trend test can be applied to any sequence, but is most commonly applied to SITMUF.
Page’s trend test on SITMUF specifically is what is implemented in MAPIT.

2.5.2. Theory

Page’s test is similar to CuMUF, but instead of allowing for negative values, the test statistic is
constrained to positive values only. Page’s statistic can be defined as:

𝑃𝑖(𝑦) = max(𝑃𝑖−1(𝑦) + 𝑦𝑖 − 𝑘,0)

Where:

• 𝑃𝑖(𝑦) is the 𝑖th page statistic for the sequence 𝑦
• 𝑃𝑖−1 is the previous page statistic (zero if 𝑖 = 0)
• 𝑦𝑖 is the 𝑖th element of sequence 𝑦
• 𝑘 is a hyper parameter

An alarm occurs if 𝑃𝑖(𝑦) > ℎ𝑖 for some threshold ℎ𝑖, although ℎ is often taken to be constant.
Parameter ℎ is used to tune the false alarm probability while 𝑘 is designed to give some control over the
size loss that the test is designed to detect. Generally, smaller 𝑘 is better for small protracted losses
whereas larger 𝑘 is better for detecting abrupt losses. A good rule of thumb is to set 𝑘 = 𝜎/2 where 𝜎 is
the magnitude of the loss to detect in terms of material balance standard deviation. In practice, there
might be two page’s tests calculated on the same sequence, one for abrupt losses and one for protracted
losses, each with a different set of (ℎ,𝑘) values.

43

2.5.3. Implementation

Note

As of MAPIT 1.4.6, K value is set to 0.5 and is only adjustable through the API, not the GUI.

The implementation of the trend test is straightforward following the equation given in the theory
section. The only addition from the page’s equation above is the tiling in line 808 which copies the page
test statistic for all time steps between material balances.

797 for k in range(PageCalcs.shape[0]):
798 for P in range(1,int(MBPs)):
799
800 if P == 1:
801 RZN = inQty[k,int((P - 1) * MBP)]
802 else:
803 RZN = inQty[k,int((P - 2) * MBP)] + inQty[k,int((P - 1) * MBP)] - K
804
805 if RZN < 0:
806 RZN = 0
807
808 PageCalcs[k,int((P - 1) * MBP):int(P * MBP)] = np.ones((MBP,)) * RZN

2.5.4. Further reading

• Page’s test performance (Jones) [12]

∘ Pages 402-408

• Page’s test performance (Jones) [13]

∘ Pages 19-22

• Page’s trend test [15]

2.6. Special computational considerations

2.6.1. Numerical integration

Inputs and outputs are currently assumed by MAPIT to be flows although a future update will better
support discrete items. That is, their units are represented as mass/time. It is assumed that flows will be
represented in a continuous space as a non-zero value when the flow is on and zero (or near-zero) when
off. These signals must be subsequently integrated to be used as input and/or output terms in the
material balance. A routine called trapSum performs this task in MAPIT and is described in more
detail below.

44

An important consideration when recording data is the sample frequency. If the sample frequency is
very large (i.e., sampled infrequently) then the resulting data stream might not have recorded key flow
events. Very small sample frequencies (i.e., sampled frequently) will capture all relevant events, but will
result in a large, potentially sparse, dataset. The F3M library has specific blocks that implements an
appropriate sample frequency if the F3M framework is being used. Solver step size for simulated models
can also have a similar impact; large steps can result in key events being stepped over but small steps can
result in a computationally expensive calculation. Keep data sample frequency and model simulation
step size in mind when generating data for use within MAPIT.

MAPIT.core.AuxFunctions.trapSum is a function within MAPIT that attempts to numerically
integrate a segment of data. The function expects that an array of boolean values is supplied which
indicates if a region is to be integrated, along with the time step information, effective zero value (i.e., if
a signal’s off condition is not zero), and finally the data itself.

First, the function attempts to find the left and right indices that are relevant for the requested
integration. Next, the data is sliced into the relevant segment.

42 LI = np.argmin(relevantIndex == False)
43 RI = len(relevantIndex) - np.argmin(relevantIndex[::-1] == False)
44 relevantDataVals = data[IDXC, LI:RI:1]
45 relevantDataValsAbs = np.abs(relevantDataVals)
46 relevantTimeVals = time[LI:RI:1]

If the requested segment has a non-zero signal before and/or after this segment note it (i.e., the first and
final time steps are not zero)

61 if relevantDataValsAbs[0] > baseline_zero:
62 partialLeft = True
63
64 if relevantDataValsAbs[-1] > baseline_zero:
65 partialRight = True

The function attempts to find index pairs that represent a pulse of material. For example, if a tank fills
and empties within the interval to integrate, it will have a geometric shape. The shape will depend on
the flow rate to/from the tank, but it generally be a piecewise discontinuous shape (i.e., a pulse). The
function generates a boolean mask for locations where the data is zero and non-zero, the intersection of
which can be used to find segments of non-zero data.

Generate the left and right indices of non-zero data segments using the intersection of zero and
non-zero values.

45

75 Z_mask = np.roll(np.concatenate(
76 (np.zeros((1,)), Z_mask, np.zeros((1,)))), 1)[1:-1]
77
78 mask = NZ_mask*Z_mask
79 LeftIndicies = np.where(mask)[0].reshape((-1, 1))
80
81 Z_mask = np.roll(np.concatenate(
82 (np.zeros((2,)), Z_mask, np.zeros((2,)))), -2)[2:-2]
83
84 mask = NZ_mask*Z_mask
85 RightIndicies = np.where(mask)[0].reshape((-1, 1))

Next, if there is a “partial” segment, that is a segment that stretches outside the bounds of the
integration window, that case should be handled. This involves injecting some indices manually
depending on what segments have been found so far. There’s some additional checks to look for errors
we have seen in Simulink, and to remedy them if present.

Finally numerical trapezoidal integration is performed on each segment found in the integration
window:

205 for Q in range(len(datasegs)):
206
207 if datasegs[Q][0, -1] == 0:
208 traptot += (np.trapz(datasegs[Q], timesegs[Q]) + 0.5 *
209 (timesegs[Q][:, -1]-timesegs[Q][:, -2])*datasegs[Q][:, -2])
210 else:
211 traptot += (np.trapz(datasegs[Q], timesegs[Q]))

46

3. DOWNLOAD AND INSTALLATION

3.1. Objective

This section will show you how to download & install MAPIT. MAPIT is an open-source
Python-based program that relies on the work of other open-source libraries to work properly. As such,
we cannot distribute a binary executable that contains all necessary code to run. Instead MAPIT must
be distributed as a Python package and we prefer to use conda, and miniconda in specific, to manage the
Python installation. If you’re new to Python, we have some tools to help you easily install MAPIT and
get started (Section 3.3). If you’ve used Python before, see Section 3.2.

3.2. Experienced with Python

In most cases, you can simply install directly from our repository. We recommend using an
environmental manager (either venv or conda, but we assume conda).

Depending on your conda distribution your install instruction might vary slightly. Here’s an example
assuming you have an empty conda environment:

conda install pip "python<3.12,>3.8"
pip install git+https://github.com/sandialabs/MAPIT

Important:We strongly recommend using conda to also install numpy (conda install numpy)
if on a Apple silicon-based machine as we have observed problems wherein pip installs the wrong
version (x86_64) which can cause errors, particularly with the MAPIT’s SITMUF calculation.

After MAPIT has been installed, you can call the GUI entry point from the command line simply by
calling MAPIT from your environment. You can also import the MAPIT API and use it as a library.

Additional scripts and tools can be found in the MAPIT-tools repo. The exemplar data is in the folder
data from the tools repo and can be loaded in MAPIT by going File -> Load exemplar data and
pointing the dialog to the data folder.

3.3. New to Python

If you’re not very familiar with Python, we provide several setup scripts to help you get started.

47

https://github.com/conda/conda
https://docs.anaconda.com/miniconda/
https://www.github.com/sandialabs/MAPIT-tools

3.3.1. Downloading MAPIT tools

Figure 3-1: MAPIT download location

The MAPIT-tools repo contains additional, non-essential files for running MAPIT. Here you will find
the scripts needed to help you install MAPIT if it’s your first time using Python. The scripts will
download and and install Miniconda, then install MAPIT and it’s required dependencies. It will also
include shortcuts to launch MAPIT.

• The tools repo can be found at https://www.github.com/sandialabs/MAPIT-tools

∘ In the directory click on the green code button in the top right

∘ In the pull down menu click the download zip button

∘ Once the download is complete, unzip the folder on your computer

3.3.2. Installing MAPIT

Once you have downloaded and unzipped the MAPIT-tools folder you will have the following folders
on your computer

48

https://www.github.com/sandialabs/MAPIT-tools
https://www.github.com/sandialabs/MAPIT-tools

Figure 3-2: MAPIT install script location

• The key folders for the install process are the windows_scripts and linux_scripts

∘ If you are using a windows operating system click on the windows scripts_folder

∘ If you are using a unix operating system (Mac or Linux) click on the unix scripts_folder
• Inside the respective folders you will see three key files: install, run, and remove_MAPIT

∘ Click on the install file and MAPIT will begin the install process

∘ The install file will download miniconda3, a minamalist version of Anaconda, and will only
download the python packages required to run MAPIT

∘ After installing miniconda3, the key python modules are installed

� This process can take a few minutes, please keep the command prompt or shell open
until “MAPIT environment install completed”

49

4. INTRODUCTORY TUTORIAL

4.1. Fuel fabrication overview

The purpose of this tutorial is to introduce you to the example dataset found in the MAPIT-tools
repository. This dataset was based on a fuel fabrication facility described by IAEA STR-150 [16] . There
are some unique features of MAPIT that are only present when using the included datasets and might
not be available when analyzing an external dataset.

Some key features of the fuel fabrication facility are noted below:

• 300 MT UO2 throughput

• 3.0% 235U

• Final products are LWR fuel assemblies

• Feed materials:

∘ Low enriched UF6

∘ Uranyl nitrate

∘ UO2 powder

∘ Material from scrap facility

4.2. Walkthrough

This tutorial describes basic functions of MAPIT and how to get started using the sample dataset that
has been included.

4.2.1. Downloading the exemplar dataset

The exemplar dataset for MAPIT is no longer included in the main repository and must be
downloaded from the MAPIT-tools repository. See Section 3.3.1 for further details.

4.2.2. Loading the exemplar dataset

The pre-generated dataset described in the introduction can be imported into MAPIT by specifying the
path to the data folder. This usually occurs when launching MAPIT for the first time, but it can also be
accessed by selecting File > Load Exemplar Data > Select directory. The path selected here should be
the path to the data folder downloaded from the MAPIT tools repository. For example, your path
might be /path/to/folder/data.

50

https://www.github.com/sandialabs/MAPIT-tools
https://www.github.com/sandialabs/MAPIT-tools

Note

Selecting the data path only needs to be performed once and is stored inMAPIT internally. If you
move your data directory, you can always redefine the path to the data folder by again going to File
> Load Exemplar Data > Select directory.

If a valid path to data is selected, then several of the options in the data selection area will populate.
Currently, the MAPIT-tools repo includes data from a generic fuel fabrication facility with notional
scenarios for nominal behavior, an abrupt material loss, and a protracted material loss. Your MAPIT
window should look similar to the image below.

Figure 4-1: MAPIT main interface

4.2.3. Statistical test configuration

The boxes with gold borders are the next steps in the MAPIT workflow. The currently available
statistical tests are denoted by check boxes, go ahead and select all of them.

The suggest parameters for the statistics parameters are as follows:

• MBP (Material Balance Period, units of hours) : 416

∘ Try different MBP lengths to see how performance statistics change

• Iterations (Number of statistical realizations to run): 50

51

∘ Increasing the number of Iterations can reduce the simulation uncertainty in the
probability of detection

• Analysis Element/Index: U

∘ The exemplar dataset only includes uranium, so multiple options are not available

• Temporal Offset: Empty

After setting the required statistics inputs the final step before starting the calculation is setting the
errors. As no measurements are perfect it is impossible to know the true value of some quantity of
interest (in this case Uranium) at a particular location. Use Select Errors to open an interactive
dialog to set measurement errors. These can be set individually or as a group. Press Donewhen
finished.

Tip

One purpose of MAPIT is to understand how these errors impact common safeguards statistical
tests, so feel free to choose any value. The IAEA ITV (International Target Values) [6] provides a
good reference for expected performance for different types of measurement systems.

Tip

Entering a customized error table can be tedious. The included example scenario has 31 different
measurement locations! MAPIT allows for loading (Load Error Config) that reads a .csv table
of errors so that manual specification is not required every time MAPIT is run. Similarly, you can
use (Save Error Config) to save a specified error configuration to disk. The directory contain-
ing this configuration file can be found using the platformdirs package as follows:

from platformdirs import user_config_dir
print(user_config_dir("MAPIT",None))

4.3. Analysis

Once the statistical tests and errors have been configured press Run to start the calculation. MAPIT is a
lightweight tool that should run fairly quickly for a small number of iterations (100), but varies based
on hardware configuration. Progress can be monitored through the dialog and progress bar at the
bottom of the tool (see below).

Figure 4-2: Progress bar

52

Tip

Large-scale jobs can be processed in parallel using StatsProcessor from the API.

4.3.1. Plotting

The first step in many analytical workflows is to plot data to gain an intuition for what is happening.
MAPIT has multiple plot options (shown below) that dynamically change based on the option
selected. Try plotting different quantities of interest (also make sure to note how these change with the
selected errors).

Figure 4-3: Plot type controls

The various options are as follows. Note that some options may not be available depending on what
quantity is being plotted.

• Plot Data Type

∘ Varies depending on selected statistical tests

∘ Always includes the “ground truth data” and “observed data”

� Ground truth is the data before errors are applied by MAPIT

� Observed data is the ground truth after errors have been applied

∘ Requested statistical tests will also be available here
• Plot Data Location

∘ Only relevant for “ground truth data” and “observed data”

� Location doesn’t apply to the statistical tests at the moment as MAPIT only supports
analysis of one material balance area at a time

∘ Lists locations based data used

� Included dataset has locations baked in

� Attempts to use user provided locations if data was imported
• Plot Data Nuclide

∘ Only relevant for “ground truth data” and “observed data”

∘ Used to plot specific nuclide at a location of interest within the material balance
• Iterations to Plot

53

∘ Not relevant for “ground truth data”

∘ Used to control how many iterations are plotted

4.3.2. Thresholds

Statistical tests used in safeguards usually require adjustment of at least one tunable parameter. For
example, Page’s trend test actually has two (h and k) of which one is made available to users (h).

Important

Page’s trend test currently uses k=0 which is the ideal statistic for a one unit shift in SITMUF. See
the theory guide in Section 2 for more details.

The statistical threshold area of MAPIT (shown below) allows users to input a value and see how many
times that threshold has been crossed. The threshold calculation is generic and can be applied to any of
the plot quantities.

Figure 4-4: Threshold box

Note

The quantity reported byMAPIT, % Above Threshold, reflects all of the runs, even if not plot-
ted. For example, if 1000 iterations were requested, then the max quantity of iterations allowed to
be plotted at once is 100. However, the threshold will check all 1000 runs and report the quantity
that exceeds the threshold.

Note

The threshold tool reports if a particular iteration of a quantity of interest has past the threshold
at any time in the dataset. There may be some desire to check a threshold for a limited window of
time, however this capability is not yet implemented. In themeantime, please preprocess your data
if desired to circumvent this limitation. For example, if you want to know yearly performance, but
your dataset is two years long, split the dataset in half before importing into MAPIT.

4.3.3. Error contributions

Understanding the contribution of various facility measurements to the material balance uncertainty is
often important. Identifying large sources of error can help prioritize areas for improvement. MAPIT
facilitates this analysis by providing tabular data describing the error contribution of various
components. This can be accessed through by selecting Tabular Data View > Error Contribution.

54

Additionally, the contribution can be plotted by selecting error contribution in the plot options. These
options are only available if SEID/SEMUF has been selected.

4.4. Data export: figures

Figures can be saved by using the save icon at the bottom of the plot (see below) which directly interacts
with the Matplotlib backend. Plots can be further customized by using the options on the navigation
bar.

Figure 4-5: Figure navigation bar

4.5. Data export: data

The data can be exported by selecting the Filemenu option in the MAPIT main area and selecting
Save Data. An option will be presented to save the underlying data used for the safeguards statistical
tests (i.e. “observed data”). The default behavior is to save data in .csv format with a shape of [time x
iterations]. For example, for a case where 100 iterations were requested and the time was 5000, then the
.csv would be of shape (5000,100).

Caution

Do not expect reliable performance of this capability when using irregularly sampled data. Al-
though MAPIT can handle this type of data, validation efforts are ongoing and have not yet been
completed.

Tip

The default output directory can be found by using the platformdirs package as follows:

from platformdirs import user_data_dir
print(user_data_dir("MAPIT",None))

55

5. GUIDED EXERCISES

5.1. Exercise 1: General MAPIT familiarity

5.1.1. Objective

The goal of this tutorial is to gain familiarity with basic MAPIT functionality.

Note

Different stakeholders use different terminology for safeguards quantities. In some instances, the
terms involve the same mathematical calculation even if the method to obtain the underlying data
differs. MAPIT includes both “domestic” and “international” terminology. The following table
shows terms that are mathematically equivalent. The operational and policy differences between
the terms are not described here.

Generic International Domestic

MB MUF ID

𝜎MB 𝜎MUF 𝜎ID
— SEMUF SEID
— SITMUF —

Table 5-1: Nomenclature equalities for common accountancy terms

5.1.2. Opening MAPIT

• Start by launching MAPIT

∘ If new to Python:

� Windows: Run run.bat located in \MAPIT\windows_scripts by double clicking

� Unix: Run bash run.sh in a console, ensuring that the current working directory is
located in \MAPIT\unix_scripts

∘ Otherwise:

� Run MAPIT from you previously setup environment by running MAPIT from the
command line

Tip

If you are having trouble viewing MAPIT on your screen, try maximizing or resizing the win-
dow.

56

5.1.3. MAPIT main interface

• The main window of MAPIT should now be shown (see below for light theme example)

∘ MAPIT has both light and dark themes available

� These can be toggled at any time using the Theme dropdown menu

∘ MAPIT allows users to control the font size

� The font size can be changed using the Accessibility dropdown menu

∘ MAPIT preferences regarding style and font size is stored internally and will be retained
after closing MAPIT

• If the exemplar data has not been downloaded from the MAPIT-tools repository do so now
before proceeding.

∘ If there are no options listed in the Scenario Selection box of the Data area, make sure
the Exemplar Data box is checked and the /path/to/data is specified correctly in File >
Load Exemplar Data > Select directory.

Figure 5-1: MAPIT main interface

Note

The status bar in the bottom left lets the user knowwhat theGUI is doing at themoment. Initially
when the GUI is opened it states waiting for problem setup. After data is imported, the analysis

57

https://www.github.com/sandialabs/MAPIT-tools

boxes are checked, statistical boxes are filled out, the simulated measurement error is specified, and
Run is pressed, the bar will display the progress through the selected analyses.

Once all of the analyses have been completed, the status bar states execution finished. At this point,
the user is able to use the plot controls and statistical thresholds to plot the analyses and the base
data. The status bar, GUI animations, and tooltips are all used withinMAPIT to help explain the
safeguards analysis flow. Initially, the analyses and statistics boxes are highlighted in gold, which
indicate those inputs are required for analysis.

Note

Currently, only options for statistical tests on uranium are available as it is the only element tracked
in the fuel fabrication facility examples.

5.1.4. Performing a basic analysis

• Start by selecting Normal for Scenario selection if not already selected

∘ Continue by selecting the checkboxes for the following statistical tests

� MUF

� Cumulative MUF

� Sigma MUF

� SITMUF

� Page’s test on SITMUF

• Next, configure required parameters in the statistical box:

∘ MBP: 416

∘ MBP is the material balance period

∘ For this exercise, the MBP least common multiple of the facility’s input and output stream
period

∘ Iterations: 50

∘ The number of realizations to run

∘ Note that in practice, only a single iterations would be observable

∘ If running on a lower performance device, try running with Iterations: 20

∘ Analysis Element/ Index: U

∘ MAPIT can perform statistical tests on general datasets (i.e. not just uranium and
plutonium)

58

∘ In such scenarios, information must be provided about the element in the dataset that tests
should be performed on

∘ MAPIT can only process one element at a time

∘ Temporal Offset: Empty

� In some cases, it may be desirable to ignore a startup period

� The offset rebases the calculations to a new zero
• Setup errors by clicking the Select Errors button in the statistics box.

∘ This opens the error selection pane

∘ All errors are in percents

∘ Options are provided to adjust measurement errors for various KMPs

∘ Users can manually enter values in the boxes

∘ Alternatively, the drop down boxes can change all values for that measurement type
automatically

� For example, all random input errors can be changed at once, or all systematic errors

∘ Some error configurations can be tedious to input. Functionality is provided to save and
load configurations using the Load Error Config and Save Error Config buttons.

• For now, select 1% errors for all values using the drop down options.
• Press the Run button to run MAPIT

Tip

The default config directory can be found by using the platformdirs package as follows:

from platformdirs import user_config_dir
print(user_config_dir("MAPIT",None))

5.1.5. Summary

In this exercise you learned the about the basic functionality of MAPIT:

• Opening MAPIT
• How to load included datasets
• How to run MAPIT
• How to input required parameters to run MAPIT

59

5.2. Exercise 2: Impacts of measurement error

5.2.1. Objective

Explore the impact of measurement error on safeguards metrics. Recall that measurement error
negatively impacts the ability to detect anomalies such as material loss.

Caution

This exercise assumes that you are familiar with MAPIT and can perform tasks discussed in the
previous exercise in Section 5.1 (i.e. launching MAPIT, loading the included scenarios, setting up
MAPIT to perform analyses, etc).

5.2.2. Problem setup

• Start this exercise by launching MAPIT, selecting the Fuel Fab model under Model option, and
selecting the Normal dataset

∘ This tutorial starts by assuming you are at the main MAPIT interface (similar to the image
below)

Figure 5-2: MAPIT main interface

• Select the following statistical tests

∘ MUF

60

∘ Cumulative MUF

∘ Sigma MUF

∘ SITMUF

• Next, configure the required parameters in the statistical box using the same parameters from
exercise 1:

∘ MBP: 416

∘ Iterations: 50

∘ Analysis Element/ Index: U

∘ Temporal Offset: Empty
• Set the measurement errors by pressing the Select Errors button

∘ Choose 3% for all random and systematic errors

• Run MAPIT by pressing the Run button

5.2.3. Data exploration

• After running, several plot options should be available under the plot controls option (similar to
image below)

∘ Plot Data Type

∘ Plot Data Location (to investigate the behavior at all key measurement points)

∘ Contribution Type

∘ Iterations to Plot

Figure 5-3: Plot data type controls

Note

MAPIT’s plotting options are dependent on the data type selected. Ground Truth andObserved
Data are the only data types that have access to the Plot Data Locations. The Sigma MUF
Contribution plots are the only plots that have access to the Contribution option, which will
become selectable when the Sigma MUF Contribution data is selected. The Analysis boxes
selected and the Observed Data have additional plotting options under the to plot toolbar. The
user is able to plot 1 random iteration, the average of all iterations, and all iterations. In this exercise
some of the potential plots available are shown.

61

Note

MAPIT can export any figures for later use. Simply click the floppy disc icon below the plotting
window.

• Start by observing the calculated MUF values

∘ Plotting options dynamically change based on the data type selected and number of
iterations considered

∘ Since Iterationswere set to ≤ 50 (a relatively small number), start by plotting them all

∘ The plot should generally look like the images below, but will vary due to the inherent
randomness of the calculation

Figure 5-4: Several MUF iterations

• Next, plot the U Sigma MUF (i.e. 𝜎MUF) and notice that it tends to remain around 600 kg

∘ The first balance period has a smaller Sigma MUF due to startup conditions

62

Figure 5-5: Several SigmaMUF iterations

• Try plotting the U SITMUF data

∘ Your plot should look similar to the one below

∘ Notice that U SITMUF tends to decrease overtime and then reaches a steady state value

∘ Also, SITMUF has (approximately) a mean of zero and standard deviation of one once the
covariance matrix is well approximated

Figure 5-6: Several SITMUF iterations

Note

The results seen when plotting SITMUF match the description from earlier lessons. That is, that

63

SITMUF is the independentMUF sequence. However, notice that the SITMUFvalues start larger
than their final, steady state values. Recall that the transformation fromMUF to SITMUF uses an
estimate of the covariance matrix (shown below).

Σ =
⎛
⎜
⎜
⎜
⎝

𝜎2
11 𝜎2

12 … 𝜎2
1𝑛

𝜎2
21 𝜎2

22 … 𝜎2
2𝑛

⋮ ⋮ ⋱ ⋮
𝜎2

𝑛1 𝜎2
𝑛2 … 𝜎2

𝑛𝑛

⎞
⎟
⎟
⎟
⎠

Note

The covariance matrix grows as repeated material balance calculations are made and observed,
which results in a better approximation of the true covariance matrix. In fact, the approximation
will converge on the true value as the number ofmeasurements approaches infinity. Consequently,
the variance and mean of the transformed sequence, SITMUF, converge to 1 and 0 respectively
as the covariance estimate improves.

• Finally, try plotting the Page U SITMUF. This is Page’s trend test on SITMUF which is used to
detect subtle trends in SITMUF that could indicate a material loss

∘ Page’s test will be discussed further in the next exercise

∘ Feel free to try entering numbers into the Enter Threshold box and pressing Calculate
MAPIT will return the number of runs that exceed the user specified threshold, which is
useful for analyzing performance of a safeguards system.

� MAPIT returns the % of all runs over the threshold, even if not all are plotted. For
example, even if only one of the 50 runs are plotted, it will still return the same value.

5.2.4. Understanding error contribution

• After examining the different quantities calculated by MAPIT, open the error contribution table
to better understand the contributions of different KMPs to the material balance uncertainty. Do
this by selecting the Tabular Data View > Error Contribution from the top menu bar of MAPIT.

• The error contribution table should display all the locations in addition to their random and
systematic contributions to Sigma MUF. Your table should look similar to the image below.

∘ The inventory column refers to the actual mass at the selected material balance period

� For flows (e.g. inputs and outputs) this is the time integrated flow over the material
balance period

� For inventories this is the instantaneous inventory value

64

∘ The random and systematic contribution are the contributions to Sigma MUF

Figure 5-7: Error contribution table

• Along with the error contribution table, MAPIT has a set of plots that visualize the error
contribution of each key measurement point. The Contribution (both absolute and relative)
plot the impact individual measurement points have on the Sigma MUF.

Figure 5-8: Comparison of random and systematic contributions.Note that contributions are identical as random and
systematic are set to the same value of 3%.

• Try looking at different material balance periods.

∘ Both the plots and the table shows that Cylinder (input) and Fuel Pins (output) have the
largest inventory terms and consequently the largest contribution

• Change the measurement uncertainty of the Cylinder (input) and Fuel Pins (output) error terms
to 1%.

∘ MAPIT does not need to be restarted to perform another calculation on a new dataset,
however, note that current results will be lost

65

∘ Press the Select Errors button and edit the corresponding boxes to reduce the error for
the two components.

∘ Press Run to again calculate the statistical quantities.

• Check the newly calculated values by plotting key quantities such as Sigma MUF.

∘ Note that Sigma MUF has decreased dramatically from approximately 600 to 210.

∘ Examine the Error Contribution and note that the contribution from the Cylinder
(input) and Fuel Pins (output) has similarly fallen in magnitude.

∘ The next exercise will consider the impact of measurement error for safeguards more
concretely by considering a hypothetical material loss.

∘ The total contribution plot now shows decreased measurement uncertainty on the
Cylinder (input) and Fuel Pins (output), other key measurement points now have
comparable uncertainty.

Figure 5-9: Total error contribution by location

Note

The material balance period can similarly impact key quantities like SigmaMUF. Longer balances
lead to higher SigmaMUFs whereas shorter balances lead to smaller SigmaMUFs. However, there
is a limitation to the gains of shorter material balances. While not explored in this exercise, further
details can be found in work by Avenhaus and Jaech [8].

66

5.2.5. Summary

In this exercise, you learned about how to change simulated measurement errors in MAPIT and their
impact on calculated statistical quantities. Further, the capability of MAPIT to show individual error
components was also introduced.

• Higher measurement error leads to larger Sigma MUF values

• Uncertainty contributions rely on both measurement error and inventory size

5.3. Exercise 3: Material loss

5.3.1. Objective

CautionGain familiarity with the notional material losses. This exercise will prepare you for using
MAPIT to evaluate safeguards systems.

This exercise assumes that you are familiar with MAPIT and can perform tasks discussed in the
previous exercises in Sections 5.1 and 5.2.

5.3.2. Problem setup

• Start this exercise by launching MAPIT, selecting the SNL curated dataset option, and
loading the Abrupt dataset.

∘ This tutorial starts by assuming you are at the main MAPIT interface

• Select all the checkboxes for available statistical tests

∘ A total of five (5) checkboxes should be checked

• Next, configure the required parameters in the statistical box using the same parameters from
exercise 1 and 2:

∘ MBP: 416

∘ Iterations: 50

� If running on a lower performance device, try running with Iterations:20

∘ Analysis Element/ Index: U

∘ Temporal Offset: Empty

• Set the measurement errors by pressing the Select Errors button. Choose 3% for all random
and systematic errors.

• Run MAPIT by pressing the Run button.

67

5.3.3. Baseline data exploration

• Start by plotting the various statistical quantities (i.e. MUF, CUMUF, SEID, SITMUF, and
Page’s trend test)

∘ Note that the results look similar to the Normal dataset.

∘ MUF plot should look similar to the image below.

Figure 5-10: Several MUF iterations

• Continue by examining the fuel pins. Do so by selecting Ground Truth Data for the data type
and Fuel Pins (output) for the location.

∘ Here, Ground Truth Data refers to the true value of the fuel pins (output), which can never
be observed in practice.

∘ Note: There are many fuel pins that are generated at a fuel fabrication facility. Plotting Fuel
Pins (output) could take several seconds depending on your hardware.

∘ Your plot should look similar to the image below.

68

Figure 5-11: Ground truth observation of fuel pin output flow

5.3.4. Explore impact of lower uncertainty

• Perform the calculations again using a value of 0.5% for all random and systematic errors.

∘ MAPIT does not need to be restarted. Simply press Select Errors and use the
dropdown menus to select the new error values. Then press Run.

• After MAPIT has run with the updated error values, try plotting the statistical quantities again.
You should notice some observable changes have occurred.

∘ MUF shows a distinct change during the material balance period in which the material loss
occurs (see image below).

∘ CUMUF, SEID, SITMUF, and Page’s trend test on SITMUF should all exhibit changes
due to the presence of the material loss.

69

Figure 5-12: Several MUF iterations under loss conditions

Note

This example demonstrates the importance of precise measurement systems. This particular loss
was too small to be reliably detected at the 3% uncertainty level.

5.3.5. Summary

This exercise introduced concepts related to notional material loss. The abrupt material loss was
originally not visible at the 3% measurement uncertainty level. However, after lowering the uncertainty,
the change in MUF was clearly visible. This is an important phenomena in safeguards that must be
considered when selecting measurement systems for key measurement points. In this exercise you:

• Explored MUF

• Used MAPIT to look at the ground truth data

• Explored the impact of measurement uncertainty

5.4. Exercise 4: Quantifying probability of detection

5.4.1. Objective

Understand how MAPIT can be used to evaluate probability of detection. So far, exercises have focused
on exploring qualitative changes that are induced by changes in measurement uncertainty or material
loss. This section will focus on developing quantitative metrics for safeguards performance.

70

Caution

This exercise assumes that you are familiar with MAPIT and can perform tasks discussed in the
previous exercises; Sections 5.1, 5.2, and 5.3.

5.4.2. Problem setup

• Start this exercise by launching MAPIT, selecting the Normal dataset.

∘ This tutorial starts by assuming you are at the main MAPIT interface

• Select all the checkboxes for available statistical tests

∘ A total of five (5) checkboxes should be checked

� MUF

� Cumulative MUF

� Sigma MUF

� SITMUF

� Page’s test on SITMUF

• Next, configure the required parameters in the statistical box using the same parameters from
exercise 1 and 2:

∘ MBP: 416

∘ Iterations: 50

� If running on a lower performance device, try running with Iterations:20

∘ Analysis Element/ Index: U

∘ Temporal Offset: Empty

• Set the measurement errors by pressing the Select Errors button. Choose 0.5% for all random
and systematic errors.

• Run MAPIT by pressing the Run button.

Note

Safeguards statistical tests are commonly tuned to have an average false alarm probability of 5% per
year. The next steps will useMAPIT functionality to determine this threshold for Page’s trend test
on SITMUF.

Caution

The data provided in these examples are 6480 hours long, which translate to about 270 days (a

71

reasonable estimate of an operational year). Therefore, one iteration is a single year of simulated
operation. When using your own data, use caution in determining statistical thresholds if your
datasets have different lengths of time.

5.4.3. Determining statistical thresholds

• Plot Page’s trend test on SITMUF

∘ This is labeled as U Page’s test on SITMUF in MAPIT

∘ Plotting a quantity is necessary to use the threshold functionality

Note

Plots in this excercise are using 300 iterations to have better statistics, so if less iterations are being
run the results may differ slightly from those shown here. In large iteration datasets, MAPIT only
plots 15 iterations to ensure the plotting window is not overloaded.

Figure 5-13: Page scores for several SITMUF iterations

• Use the Statistical Thresholds box to determine an appropriate threshold (i.e. 5% FAP)

∘ This is performed by entering values in the Enter Threshold box

∘ MAPIT returns the number of iterations that exceed this threshold

� MAPIT operates on the entire dataset, not just the iterations that are plotted. This can
be important in cases where many iterations are calculated and only a few are plotted.

72

Figure 5-14: Setting a threshold on Page's scores

• Your threshold should be near 0.5

∘ Due to the randomness of the calculations, your threshold might be slightly different

∘ Increasing the number of iterations can help obtain a more precise estimate of the threshold

� The uncertainty in the threshold itself should roughly decrease with sqrt(iterations).

5.4.4. Evaluating probability of detection

• Load the Abrupt dataset.

• Select the same options from steps 2, 3, and 4 then run MAPIT.

∘ Select all the options in the Tests/Uranium box

∘ Select a uncertainty a value of 0.5% for all random and systematic errors

∘ MBP: 416

∘ Iterations: 50

� If running on a lower performance device, try running with Iterations:20

∘ Analysis Element/ Index: U

∘ Temporal Offset: Empty

• Plot Page’s trend test on U SITMUF

∘ This is labeled as U Page’s test on SITMUF in MAPIT

73

Figure 5-15: Threshold evaluation on Page's trend test on SITMUF for the abrupt loss dataset

• Enter in the previously determined threshold to determine the probability of detection for this
material loss.

∘ The value should be approximately 50-60%

Note

In this exercise, we changed the measurement uncertainties for all locations to be the same value.
However, in practice, different measurement technologies are deployed based on safeguards need.
On your own, try changing just some high impact measurement locations to 0.5% while leaving
others at higher levels to see if you can reach similar results.

5.4.5. Summary

This exercise introduced the the SITMUF test in MAPIT along with the capability to set threshold and
evaluate probability of detection. In this exercise you:

• Set a threshold based on a false alarm probability
• Evaluated probabilities of detection
• Explored the SITMUF transform
• Explored Page’s trend test on SITMUF

74

6. API

Page intentionally left blank.
API documentation starts on the next page due to formatting.

75

API home

Added in version 1.40.0: Added parallel capabilities. Note that we do not yet provide guidance on optimal settings for
parallel batching.
Changed in version 1.40.0: API breaking changes! Instead of accessing statistical tests directly, a new object, MBArea,
is the preferred way to perform analyses using the API. The StatsTests module is provided for educational purposes
only and it is expected that users instead user MBArea functions. See the API example notebooks for more details.

core

AuxFunctions

MAPIT.core.AuxFunctions.trapSum(relevantIndex, time, data, IT=None, baseline_zero=1e-10)
Function performs trapezoidal integration on a dataset segment. This is required for bulk facility flows that might
need integration before use within statistical tests.
In some cases, flows might be represented as discontinuous pulses of material, in which case, special care is needed
to identify the non-zero regions of the dataset to enable proper integration.
This function first identified a list of non-zero pulses of material before performing trapezoidal integration on each
non-zero pulse segment. np.trapz is used to perform the integration. See the numpy documentation for more
information.
∫︀
𝑦(𝑥)𝑑𝑥

Parameters
• relevantIndex (ndarray) –An array that expresses the relevant time slice, with boolean
values (0 = not relevant, 1 = relevant), with shape [𝑚, 𝑗]where𝑚 is the total number of relevant
samples and 𝑗 is the total number of iterations.

• time (ndarray) – An array containing the total number of timestep values under con-
sideration for the analysis. Has shape [𝑛, 𝑗] where 𝑛 is the total number of samples under
consideration and 𝑛 > 𝑚 for𝑚 in relevantIndex and 𝑗 is the total number of iterations.

• data (ndarray) – An array containing the total number of samples under consideration for
the analysis. Should have the same shape as time.

• baseline_zero (float) – A float that expresses the threshold below which values are
considered zero. Important as datasets often do not represent zero as exactly zero for a variety
of reasons.

Returns
An array of shape [1, 𝑗] containing the integrated total for each iteration over the time specified by
time[relevantIndex].

Return type
ndarray

Preprocessing

MAPIT.core.Preprocessing.SimErrors(rawData, ErrorMatrix, iterations, GUIObject=None,
doTQDM=True, batchSize=10, dopar=False, bar=None)

Function to add simulated measurement error. Supports variable sample rates. Assumes the traditional multiplica-
tive measurement error model:
𝑀𝑖,𝑗 = 𝑇 (1 +𝑅𝑖,𝑗 + 𝑆𝑗)

Random errors: 𝑅𝑖,𝑗 ∼ 𝒩 (0, 𝛿𝑅
2
𝑗)

Systematic errors: 𝑆𝑗 ∼ 𝒩 (0, 𝛿𝑆
2
𝑗)

where 𝑖 is the measurement time and 𝑗 is the location
Parameters

• rawData (list) – Raw data to apply errors to, list of 2D ndarrays. Each entry in the list
should correspond to a different location and the shape of ndarray in the list should be [MxN]
where M is the sample dimension (number of samples) and N is the elemental dimension, if
applicable. If only considering one element, each ndarray in the rawData list should be [Mx1].

• ErrorMatrix (ndarray) – 2D ndarray of shape [Mx2] describing the relative standard
deviation to apply to rawData. M sample dimension in each input array and should be iden-
tical to M described in rawData. The second dimension (e.g., 2) refers to the random and
systematic error respectively such that ErrorMatrix[0,0] refers to the random relative
standard deviation of the first location and ErrorMatrix[0,1] refers to the systematic
relative standard deviation.

• iterations (int) – Number of iterations to calculate
• GUIObject (obj, default=None) – GUI object for internal MAPIT use
• doTQDM (bool, default=True) – Controls the use of TQDMprogress bar for command
line or notebook operation.

Returns
List of arrays identical in shape to rawData. A list is returned so that each location can have a
different sample rate.

Return type
list

StatsProcessor

Overview

The StatsProcessor module contains the MBArea object, which is the foundation of the MAPIT API. The first
step in using MAPIT is to define a material balance area (i.e., MBArea). This object takes a number of parameters that
are used to define a material balance area. The initial properties can be later modified by accessing the specific object
properties.
After the MBArea is successfully defined, different statistical tests can be applied to the MBArea by calling object
methods. The results are returned after calling the method, but results are also stored as object attributes that can be
easily accessed.

Tip: The MBArea object is designed to streamline the analysis experience while providing flexibility. For example, a
MBArea could be initialized, copied, then have a few properties modified to compare “what-if” scenarios.

initalize with some variables
MBA0 = MBArea(...)

clone MBArea
MBA1 = copy.copy(MB0)

modify input term errors
MBA1.inputErrorMatrix = otherErrorMatrix

calculate sigma MUF
MBA0.SEMUF()
MBA1.SEMUF()

do comparison between baseline and modified input error cases
...

Important: If modifying the error matrix after having calculated errors or a statistical quantity, the errors must be
recalculated using the calcErrors method.

Parallel Processing

MAPIT provides parallel processing capabilities through the (Ray)[https://www.ray.io/] library. By default, Ray provides
a local dashboard at 127.0.0.1:8265 which can be used to monitor progress and view job related statistics. Two key
parameters are used for parallel processing; ncpu and nbatch. ncpu controls the number of CPUs provided to Ray
whereas nbatch is the number of iterations to process for each task. Once provided, each Ray worker (total is equal
to ncpu) works through a queue of tasks. Each task returns some of the iterations requested by the user (defined by
nbatch) until all results are processed. A table showing the relationship between user specified variables iterations,
ncpu, and nbatch the number of tasks performed by each worker is shown below. Workers process tasks in the queue
until the queue is completed.

iterations ncpu nbatch total number of tasks tasks completed per worker
100 5 1 100 20
100 5 5 20 4
100 5 20 5 1

nbatch is provided as a parameter as there is overhead incurred when copying data to/from workers. If nbatch is too
small, then parallel processing might be slower than sequential processing if the calculation time is small compared to the
memory copying time. We do not provide guidance on setting these parameters as performance will be system specific.

Classes

class MAPIT.core.StatsProcessor.MBArea(rawInput, rawInventory, rawOutput, rawInputTimes,
rawInventoryTimes, rawOutputTimes, inputErrorMatrix,
inventoryErrorMatrix, outputErrorMatrix, mbaTime,
iterations=1, dopar=False, ncpu=1, nbatch=1,
GUIObject=None, dataOffset=0, rebaseToZero=True,
doTQDM=True)

Object representing a material balance area.
Parameters

• rawInput (list of ndarrays) – Raw input data for the material balance area, list of
2D ndarrays. Each entry in the list should correspond to a different location and the shape of
ndarray in the list should be [MxN] where M is the sample dimension (number of samples)
and N is the isotopic dimension, if applicable. If only considering one isotope, each ndarray
in the rawData list should be [Mx1]. It is expected that M will have rate units (i.e., kg/hr) as
this quantity will be integrated.

• rawInventory (list of ndarrays) – Raw inventory data for the material balance
area, list of 2D ndarrays. Shape structure is the same as rawInput. It is expected that M
will have mass units (i.e., kg) as this quantity will not be integrated.

• rawOutput (list of ndarrays) – Raw output data for the material balance area, list
of 2D ndarrays. Shape structure is the same as rawInput. It is expected that M will have
rate units (i.e., kg/hr) as this quantity will be integrated.

• rawInputTimes (list of ndarrays) – A list of ndarrays that has length equal to the
total number of input locations. Each array should be [𝑚, 1] in shape where 𝑚 is the number
of samples. len(rawInputTimes) and the shape of each list entry (ndarray) should be the same
as for rawInput. Each entry in each ndarray should correspond to a timestamp indicating when
the value was taken.

• rawInventoryTimes (list of ndarrays) – A list of ndarrays that has length equal
to the total number of inventory locations. Shape structure is the same as rawInputTimes.

• rawOutputTimes (list of ndarrays) – A list of ndarrays that has length equal to
the total number of output locations. Shape structure is the same as rawInputTimes.

• inputErrorMatrix (ndarray) – 2D ndarray of shape [Mx2] describing the relative
standard deviation to apply to rawInput. M sample dimension in each input array and should
be identical to M described in rawInput. The second dimension (e.g., 2) refers to the ran-
dom and systematic error respectively such that ErrorMatrix[0,0] refers to the random
relative standard deviation of the first location and ErrorMatrix[0,1] refers to the sys-
tematic relative standard deviation.

• inventoryErrorMatrix (ndarray) – 2D ndarray with the same shape structure as
inputErrorMatrix describing errors to apply to rawInventory.

• outputErrorMatrix (ndarray) – 2D ndarray with the same shape structure as in-
putErrorMatrix describing errors to apply to rawOutput.

• mbaTime (int) – The material balance period.
• iterations (int, default=1) – Number of statistical realizations.
• doPar (bool, default=False) – Controls the use of parallel processing provided by
Ray. If used, progress can be monitored on a local dashboard that is accessible at http://127.
0.0.1:8265.

• ncpu (int, default=1) – The number of CPUs to use if parallel processing is enabled.
• nbatch (int, default=1) – The number of batches to process for each job.
• GUIObject (object, default=None) – An object containing MAPIT GUI param-
eters. Only used interally by the GUI.

• dataOffset (int, default=0) – Offset to apply to the data. If specified, data before
this value in time will be removed. For example, if dataOffset=273, then any data with a
corresponding time before 273 will be excluded from calculations.

• rebaseToZero (bool, default=False) – Used in conjunction with dataOffset. If
true, then times after dataOffset will be rebased to start at zero (i.e., if dataOffset=273,
then t=274 will be rebased to be t=1).

• doTQDM (bool, default=True) – Boolean used to control progress bar of calculations.
Returns

None
calcCUMUF()

Calculates cumulative MUF using StatsTests.CUMUF. The result is returned and stored as an attribute
after the calculation is complete. Automatically calculates MUF if not present as an attribute.

Returns
CUMUF sequence with identical shape to the input MUF.

Return type
ndarray

calcErrors()

Function that applies the specified error matrices to the supplied raw data and stores the results as object
attributes. Uses the Preprocessing.SimErrors implementation.

Returns
None

calcMUF()

Calculates MUF using StatsTests.MUF. The result is returned and stored as an attribute after the cal-
culation is complete.

Returns
MUF sequence with shape [𝑛, 𝑗] where 𝑛 length equal to the maximum time based on the
number of material balances that could be constructed given the user provided mbaTime and
number of samples in the input data. 𝑗 is the number of iterations given as input. The term 𝑛
is calculated by finding the minimum of each of the provided input times.
For example:

import numpy as np

time1[-1] = 400
time2[-1] = 300
time3[-1] = 800

n = np.floor(
np.min(
(time1,time2,time3)))

Tip: MAPIT doesn’t assume that time series provided have zero value if unspecified. For
example, if a time series starts at t=800, it is assumed that values before t=800 are undefined
so MUF cannot be calculated before t=800. The user can modify input data such that values
before t=800 are present, but zero, if that assumption is valid.

Return type
ndarray

calcPageTT()

Calculates Page’s trend test on SITMUF using StatsTests.PageTrendTest. The result is returned
and stored as an attribute after the calculation is complete. Automatically calculates SITMUF if not present
as an attribute.

Returns
The results of the trend test which has shape [𝑚,𝑛].

Return type
ndarray

calcSEMUF()

Calculates 𝜎 MUF using StatsTests.SEMUF. The result is returned and stored as an attribute after the
calculation is complete. Automatically calculates MUF if not present as an attribute.

Returns
• SEID (ndarray): sequence with shape [𝑛, 𝑗, 1] where 𝑛 is the number of material balances
and 𝑗 is the number of iterations given as input. The term 𝑛 is calculated by finding the
minimum of each of the provided input times.

• SEMUFContribR (ndarray): the random contribution to the overall SEMUF with shape
[𝑗, 𝑙,𝑛] where 𝑗 is the number of iterations given as input, 𝑙 is the total number of locations
stacked in the order [inputs, inventories, outputs] and 𝑛 is the number of material balances.

• SEMUFContribS (ndarray): the systematic contribution to the overall SEMUF with shape
[𝑗, 𝑙,𝑛] where 𝑗 is the number of iterations given as input, 𝑙 is the total number of locations
stacked in the order [inputs, inventories, outputs] and 𝑛 is the number of material balances.

• ObservedValues (ndarray): the observed values used to calculate SEMUF with shape [𝑗, 𝑙,𝑛]
where 𝑗 is the number of iterations given as input, 𝑙 is the total number of locations stacked
in the order [inputs, inventories, outputs] and 𝑛 is the number of material balances.

Return type
tuple (ndarray, ndarray, ndarray, ndarray)

calcSITMUF()

Calculates SITMUF using StatsTests.SITMUF. The result is returned and stored as an attribute after
the calculation is complete. Automatically calculates MUF if not present as an attribute.

Returns
SITMUF sequence with shape [𝑛, 𝑗] where 𝑛 length equal to the maximum time based on the
number ofmaterial balances that could be constructed given the user providedMBP and number
of samples in the input data and 𝑗 is the number of iterations given as input. As is the case with
MUF, the term 𝑛 is calculated by finding the minimum of each of the provided input times.

Return type
ndarray

StatsTests

MAPIT.core.StatsTests.CUMUF(MUF , GUIObject=None, doTQDM=True, ispar=False)
This function performs the cumulative MUF test. This is simply the sum of all previous MUF values at a particular
time.
CUMUF𝑡 =

∑︀𝑡
𝑡=0 MUF𝑡

Parameters
• MUF (ndarray) – MUF sequence with shape [𝑛, 𝑗] where 𝑛 is the number of iterations and
𝑗 is the temporal dimension. Expects a continuous valued MUF sequence that is similar in
format to what is returned by core.StatsTests.MUF.

• GUIParams (object, default=None) – An optional object that carries GUI related
parameters when the API is used inside the MAPIT GUI.

• doTQDM (bool, default=True) – Controls the use of TQDMprogress bar for command
line or notebook operation.

Returns
CUMUF sequence with identical shape to the input MUF.

Return type
ndarray

MAPIT.core.StatsTests.MUF(inputAppliedError, processedInputTimes, inventoryAppliedError,
processedInventoryTimes, outputAppliedError, processedOutputTimes, MBP,
GUIObject=None, GUIparams=None, doTQDM=True, ispar=False)

Function to calculate Material Unaccounted For (MUF), which is sometimes also called ID (inventory difference).
Specifically calculates the material balance sequence given some input time series.
MUF𝑡 = 𝐼𝑡 −𝑂𝑡 − (𝐶𝑡 − 𝐶𝑡−1)

𝐼𝑡 is input at time 𝑡
𝑂𝑡 is output at 𝑡
𝐶𝑡 is inventory at time 𝑡 (note C is used to denote container to have clearer notation rather than using 𝐼 with
subscripts for both inventory and input)

Important: The lengths and shapes of appliedErrors and processedTimes should be the same. For example:

assert(len(inputAppliedError) == len(processedInputTimes)
assert(inputAppliedError[0].shape == processedInputTimes[0].shape)

See the Input guide for more information.

Parameters
• inputAppliedError (list of ndarrays) – A list of ndarrays that has length equal
to the total number of input locations. Each array should be [𝑚, 1] in shape where 𝑚 is the
number of samples. This array should reflect observed quantites (as opposed to ground truths).
Inputs are assumed to be flows in units of 1

𝑠 and will be integrated.

• processedInputTimes (list of ndarrays) – A list of ndarrays that has length
equal to the total number of input locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. len(processedInputTimes) and the shape of each list entry (ndarray)
should be the same as for inputAppliedError. Each entry in the ndarray should correspond to a
timestamp indicating when the value was taken.

• inventoryAppliedError (list of ndarrays) – A list of ndarrays that has length
equal to the total number of inventory locations. Each array should be [𝑚, 1] in shape where
𝑚 is the number of samples. This array should reflect observed quantites. Inventories are
assumed to be in units of mass and will not be integrated.

• processedInventoryTimes (list of ndarrays) – A list of ndarrays that has
length equal to the total number of inventory locations. Each array should be [𝑚, 1] in shape
where𝑚 is the number of samples. len(processedInventoryTimes) and shape of each list entry
(ndarray) should be the same as for inventoryAppliedError. Each entry in the ndarray should
corresond to a timestamp indicating when the value was taken.

• outputAppliedError (list of ndarrays) – A list of ndarrays that has length
equal to the total number of output locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. This array should reflect observed quantites. Outputs are assumed
to be in flows with units of 1

𝑠 and will be integrated.
• processedOutputTimes (list of ndarrays) – A list of ndarrays that has length
equal to the total number of output locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. len(processedOutputTimes) and shape of each list entry (ndarray)
should be the same as for outputAppliedError. Each entry in the ndarray should correspond to
a timestamp indicating when the value was taken.

• MBP (float) – Defines the material balance period.
• GUIObject (object, default=None) – An optional object that carries GUI related
references when the API is used inside the MAPIT GUI.

• GUIParams (object, default=None) – An optional object that carries GUI related
parameters when the API is used inside the MAPIT GUI.

• doTQDM (bool, default=True) – Controls the use of TQDMprogress bar for command
line or notebook operation.

Returns
MUF sequence with shape [𝑛, 𝑗] where 𝑛 length equal to the maximum time based on the number
of material balances that could be constructed given the user providedMBP and number of samples
in the input data and 𝑗 is the number of iterations given as input. The term 𝑛 is calculated by finding
the minimum of each of the provided input times.
For example:

import numpy as np

time1[-1] = 400
time2[-1] = 300
time3[-1] = 800

n = np.floor(
np.min(

(time1,time2,time3)))

Return type
ndarray

MAPIT.core.StatsTests.PageTrendTest(inQty, MBP, MBPs, K=0.5, GUIObject=None, doTQDM=True)
Function for calculating Page’s trend test, which is commonly applied to the SITMUF sequence. Formally compares
the null hypothesis that there is no trend versus the alternate trend where there is a trend.

Parameters
• inQty (ndarray) – A ndarray with shape [𝑚,𝑛] where 𝑚 is the number of iterations and
𝑛 is the total number of timesteps.

• MBP (float) – A float expressing the material balance period.
• MBPs (float) – The total number of material balance periods present in inQty.
• K (float, default = 0.5) – Parameter in the trend test.
• GUIObject (object, default=None) – An optional object that carries GUI related
references when the API is used inside the MAPIT GUI.

• GUIParams (object, default=None) – An optional object that carries GUI related
parameters when the API is used inside the MAPIT GUI.

• doTQDM (bool, default=True) – Controls the use of TQDMprogress bar for command
line or notebook operation.

Returns
The results of the trend test which has shape [𝑚,𝑛].

Return type
ndarray

MAPIT.core.StatsTests.SEMUF(inputAppliedError, processedInputTimes, inventoryAppliedError,
processedInventoryTimes, outputAppliedError, processedOutputTimes, MBP,
ErrorMatrix, GUIObject=None, doTQDM=True, ispar=False)

Function for calculating standard error of the material balance sequence (often called SEID or Standard Error of
Inventory Difference; 𝜎ID). This is accomplished by assuming the error incurred at each location (specified in the
ErrorMatrix) rather than estimating it emperically, which is difficult in practice. The equation used here is suitable
for most traditional bulk facilities such as enrichment or reprocessing where input and output flows are independent.
This function should not be used for facilitiy types where there are more complex statistical dependencies between
input, inventory, and output terms (e.g., molten salt reactors). See guide XX for more information.

Parameters
• inputAppliedError (list of ndarrays) – A list of ndarrays that has length equal
to the total number of input locations. Each array should be [𝑚, 1] in shape where 𝑚 is the
number of samples. This array should reflect observed quantites (as opposed to ground truths).
Inputs are assumed to be flows in units of 1

𝑠 and will be integrated.
• processedInputTimes (list of ndarrays) – A list of ndarrays that has length
equal to the total number of input locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. len(processedInputTimes) and the shape of each list entry (ndarray)
should be the same as for inputAppliedError. Each entry in the ndarray should correspond to a
timestamp indicating when the value was taken.

• inventoryAppliedError (list of ndarrays) – A list of ndarrays that has length
equal to the total number of inventory locations. Each array should be [𝑚, 1] in shape where
𝑚 is the number of samples. This array should reflect observed quantites. Inventories are
assumed to be in units of mass and will not be integrated.

• processedInventoryTimes (list of ndarrays) – A list of ndarrays that has
length equal to the total number of inventory locations. Each array should be [𝑚, 1] in shape
where𝑚 is the number of samples. len(processedInventoryTimes) and shape of each list entry

(ndarray) should be the same as for inventoryAppliedError. Each entry in the ndarray should
corresond to a timestamp indicating when the value was taken.

• outputAppliedError (list of ndarrays) – A list of ndarrays that has length
equal to the total number of output locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. This array should reflect observed quantites. Outputs are assumed
to be in flows with units of 1

𝑠 and will be integrated.
• processedOutputTimes (list of ndarrays) – A list of ndarrays that has length
equal to the total number of output locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. len(processedOutputTimes) and shape of each list entry (ndarray)
should be the same as for outputAppliedError. Each entry in the ndarray should correspond to
a timestamp indicating when the value was taken.

• MBP (float) – Defines the material balance period.
• ErrorMatrix (ndarray) – mx1 A ndarray shaped [𝑀, 2] where 𝑀 is the total number
of locations across inputs, inventories, and outputs stacked together (in that order) and 2 refers
to the relative random and systematic errors. For example with 2 inputs, 2 inventories, and 2
outputs, ErrorMatrix[3,1] would be the relative systematic error of inventory 2. See guide XX
for more information.

• GUIObject (object, default=None) – An optional object that carries GUI related
references when the API is used inside the MAPIT GUI.

• GUIParams (object, default=None) – An optional object that carries GUI related
parameters when the API is used inside the MAPIT GUI.

• doTQDM (bool, default=True) – Controls the use of TQDMprogress bar for command
line or notebook operation.

Returns
tuple containing:

SEID (ndarray): sequence with shape [𝑛, 𝑗, 1] where 𝑛 is the number of material balances
and 𝑗 is the number of iterations given as input. The term 𝑛 is calculated by finding the
minimum of each of the provided input times.
SEMUFContribR (ndarray): the random contribution to the overall SEMUF with shape
[𝑗, 𝑙,𝑛] where 𝑗 is the number of iterations given as input, 𝑙 is the total number of locations
stacked in the order [inputs, inventories, outputs] and 𝑛 is the number of material balances.
SEMUFContribS (ndarray): the systematic contribution to the overall SEMUF with shape
[𝑗, 𝑙,𝑛] where 𝑗 is the number of iterations given as input, 𝑙 is the total number of locations
stacked in the order [inputs, inventories, outputs] and 𝑛 is the number of material balances.
ObservedValues (ndarray): the observed values used to calculate SEMUF with shape
[𝑗, 𝑙,𝑛] where 𝑗 is the number of iterations given as input, 𝑙 is the total number of lo-
cations stacked in the order [inputs, inventories, outputs] and 𝑛 is the number of material
balances.

Return type
(tuple)

MAPIT.core.StatsTests.SITMUF(inputAppliedError, processedInputTimes, inventoryAppliedError,
processedInventoryTimes, outputAppliedError, processedOutputTimes,
ErrorMatrix, MUF , MBP, GUIObject=None, doTQDM=True, ispar=False)

Function that carries out the standardized independent transformation of MUF. More detailed information can be
found in the guide XX.

Parameters

• inputAppliedError (list of ndarrays) – A list of ndarrays that has length equal
to the total number of input locations. Each array should be [𝑚, 1] in shape where 𝑚 is the
number of samples. This array should reflect observed quantites (as opposed to ground truths).
Inputs are assumed to be flows in units of 1

𝑠 and will be integrated.
• processedInputTimes (list of ndarrays) – A list of ndarrays that has length
equal to the total number of input locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. len(processedInputTimes) and the shape of each list entry (ndarray)
should be the same as for inputAppliedError. Each entry in the ndarray should correspond to a
timestamp indicating when the value was taken.

• inventoryAppliedError (list of ndarrays) – A list of ndarrays that has length
equal to the total number of inventory locations. Each array should be [𝑚, 1] in shape where
𝑚 is the number of samples. This array should reflect observed quantites. Inventories are
assumed to be in units of mass and will not be integrated.

• processedInventoryTimes (list of ndarrays) – A list of ndarrays that has
length equal to the total number of inventory locations. Each array should be [𝑚, 1] in shape
where𝑚 is the number of samples. len(processedInventoryTimes) and shape of each list entry
(ndarray) should be the same as for inventoryAppliedError. Each entry in the ndarray should
corresond to a timestamp indicating when the value was taken.

• outputAppliedError (list of ndarrays) – A list of ndarrays that has length
equal to the total number of output locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. This array should reflect observed quantites. Outputs are assumed
to be in flows with units of 1

𝑠 and will be integrated.
• processedOutputTimes (list of ndarrays) – A list of ndarrays that has length
equal to the total number of output locations. Each array should be [𝑚, 1] in shape where 𝑚
is the number of samples. len(processedOutputTimes) and shape of each list entry (ndarray)
should be the same as for outputAppliedError. Each entry in the ndarray should correspond to
a timestamp indicating when the value was taken.

• MBP (float) – Defines the material balance period.
• GUIObject (object, default=None) – An optional object that carries GUI related
references when the API is used inside the MAPIT GUI.

• GUIParams (object, default=None) – An optional object that carries GUI related
parameters when the API is used inside the MAPIT GUI.

• doTQDM – Controls the use of TQDM progress bar for command line or notebook operation.

REFERENCES

[1] I. A. E. Agency, “The structure and content of agreements between the agency and states required
in connection with the tready of the non-proliferation of nuclear weapons.”
https://www.iaea.org/sites/default/files/publications/
documents/infcircs/1972/infcirc153.pdf, June 1972.

[2] D. of Energy, “Nuclear material control and accountability.” https://www.directives.
doe.gov/directives-documents/400-series/0474.2-BOrder-a, February
2023.

[3] N. R. Commission, “Material control and accounting of special nuclear material.” https://
www.nrc.gov/reading-rm/doc-collections/cfr/part074/index.html,
September 2015.

[4] T. Burr and M. S. Hamada, “Revisiting statistical aspects of nuclear material accounting,” Science
and Technology of Nuclear Installations, March 2013.

[5] O. Alique, Y. Aregbe, R. Bencardino, R. Binner, T. Burr, J. A. Chapman, S. Croft, A. Fellerman,
T. Krieger, K. Martin, et al., “Statistical error model-based and gum-based analysis of
measurement uncertainties in nuclear safeguards–a reconciliation,” ESARDA BULLETIN,
vol. 64, no. FZJ-2023-00429, pp. 10–29, 2022.

[6] I. A. E. Agency, International Target Values for Measurement Uncertainties in Safeguarding
Nuclear Materials, December 2022.

[7] D. G. Cacuci,Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals; Vol.
2: Reactor Design; Vol. 3: Reactor Analysis; Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel
Cycles, Decommissioning, Waste Disposal and Safeguards, vol. 1. Springer Science & Business
Media, 2010.

[8] R. Avenhaus and J. Jaech, “On subdividing material balances in time and/or space,” Journal of
Nuclear Materials Management, vol. 10, 1981.

[9] T. Speed and D. Culpin, “The role of statistics in nuclear materials accounting: issues and
problems,” Journal of the Royal Statistical Society: Series A (General), vol. 149, no. 4,
pp. 281–300, 1986.

[10] R. R. Picard, “Sequential analysis of material balances,” Journal of Nuclear Materials
Management, vol. 15, 1987.

[11] K. K. Pillay, “Fundamentals of materials accounting for nuclear safeguards,” tech. rep., Los
Alamos National Lab.(LANL), Los Alamos, NM (United States), 1989.

[12] B. Jones, “Calculation of diversion detection using the sitmuf sequence and page’s test,” in
Nuclear safeguards technology 1986, 1987.

[13] B. Jones, “Near real time material accountancy,” ESARDA Bulletin, vol. 7, pp. 19–22, 1984.

[14] B. Jones, “Near real time material accountancy using SITMUF and a joint page’s test: comparison
with MUF and CUMUF tests,” 1988.

87

https://www.iaea.org/sites/default/files/publications/documents/infcircs/1972/infcirc153.pdf
https://www.iaea.org/sites/default/files/publications/documents/infcircs/1972/infcirc153.pdf
https://www.directives.doe.gov/directives-documents/400-series/0474.2-BOrder-a
https://www.directives.doe.gov/directives-documents/400-series/0474.2-BOrder-a
https://www.nrc.gov/reading-rm/doc-collections/cfr/part074/index.html
https://www.nrc.gov/reading-rm/doc-collections/cfr/part074/index.html

[15] E. S. Page, “Continuous inspection schemes,” Biometrika, June 1954.

[16] R. J. Jones, E. V. Weinstock, and W. R. Kane, “Detailed description of an ssac at the facility level
for a low-enriched uranium conversion and fuel fabrication facility,” tech. rep., International
Atomic Energy Agency, 1984.

88

DISTRIBUTION

Email-External

Name
Company Email

Address
Company Name

Mike Browne mcbrowne@lanl.gov LANL

Email-Internal

Name Org. Sandia Email Address

Technical Library 1911 sanddocs@sandia.gov

Nathan Shoman 8845 nshoman@sandia.gov

89

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	Theory guide
	Error model
	Historical context
	Theory
	Implementation
	Further reading

	MUF and Sigma MUF
	Historical context
	Theory: MUF
	Theory: Sigma MUF
	Discussion
	Material balance iterations
	MUF implementation
	Sigma MUF implementation
	Further reading

	CuMUF
	Historical context
	Theory
	Discussion
	Implementation
	Further reading

	SITMUF
	Historical context
	Theory
	Discussion
	Implementation
	Further reading

	Page's trend test
	Historical context
	Theory
	Implementation
	Further reading

	Special computational considerations
	Numerical integration

	Download and installation
	Objective
	Experienced with Python
	New to Python
	Downloading MAPIT tools
	Installing MAPIT

	Introductory tutorial
	Fuel fabrication overview
	Walkthrough
	Downloading the exemplar dataset
	Loading the exemplar dataset
	Statistical test configuration

	Analysis
	Plotting
	Thresholds
	Error contributions

	Data export: figures
	Data export: data

	Guided exercises
	Exercise 1: General MAPIT familiarity
	Objective
	Opening MAPIT
	MAPIT main interface
	Performing a basic analysis
	Summary

	Exercise 2: Impacts of measurement error
	Objective
	Problem setup
	Data exploration
	Understanding error contribution
	Summary

	Exercise 3: Material loss
	Objective
	Problem setup
	Baseline data exploration
	Explore impact of lower uncertainty
	Summary

	Exercise 4: Quantifying probability of detection
	Objective
	Problem setup
	Determining statistical thresholds
	Evaluating probability of detection
	Summary

	API
	References

